fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / net / wireless / rt2x00 / rt73usb.c
bloba140170b1eb3e63625ecde7b4cc43ec6bf1b87b1
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
20 Module: rt73usb
21 Abstract: rt73usb device specific routines.
22 Supported chipsets: rt2571W & rt2671.
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/usb.h>
33 #include "rt2x00.h"
34 #include "rt2x00usb.h"
35 #include "rt73usb.h"
38 * Allow hardware encryption to be disabled.
40 static bool modparam_nohwcrypt;
41 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
42 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00usb_register_read and rt2x00usb_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 * The _lock versions must be used if you already hold the csr_mutex
58 #define WAIT_FOR_BBP(__dev, __reg) \
59 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
63 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
64 const unsigned int word, const u8 value)
66 u32 reg;
68 mutex_lock(&rt2x00dev->csr_mutex);
71 * Wait until the BBP becomes available, afterwards we
72 * can safely write the new data into the register.
74 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
75 reg = 0;
76 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
77 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
78 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
79 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
81 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
84 mutex_unlock(&rt2x00dev->csr_mutex);
87 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
88 const unsigned int word, u8 *value)
90 u32 reg;
92 mutex_lock(&rt2x00dev->csr_mutex);
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the read request into the register.
97 * After the data has been written, we wait until hardware
98 * returns the correct value, if at any time the register
99 * doesn't become available in time, reg will be 0xffffffff
100 * which means we return 0xff to the caller.
102 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
103 reg = 0;
104 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
105 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
106 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
108 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
110 WAIT_FOR_BBP(rt2x00dev, &reg);
113 *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
115 mutex_unlock(&rt2x00dev->csr_mutex);
118 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
119 const unsigned int word, const u32 value)
121 u32 reg;
123 mutex_lock(&rt2x00dev->csr_mutex);
126 * Wait until the RF becomes available, afterwards we
127 * can safely write the new data into the register.
129 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
130 reg = 0;
131 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
133 * RF5225 and RF2527 contain 21 bits per RF register value,
134 * all others contain 20 bits.
136 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
137 20 + (rt2x00_rf(rt2x00dev, RF5225) ||
138 rt2x00_rf(rt2x00dev, RF2527)));
139 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
142 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
143 rt2x00_rf_write(rt2x00dev, word, value);
146 mutex_unlock(&rt2x00dev->csr_mutex);
149 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
150 static const struct rt2x00debug rt73usb_rt2x00debug = {
151 .owner = THIS_MODULE,
152 .csr = {
153 .read = rt2x00usb_register_read,
154 .write = rt2x00usb_register_write,
155 .flags = RT2X00DEBUGFS_OFFSET,
156 .word_base = CSR_REG_BASE,
157 .word_size = sizeof(u32),
158 .word_count = CSR_REG_SIZE / sizeof(u32),
160 .eeprom = {
161 .read = rt2x00_eeprom_read,
162 .write = rt2x00_eeprom_write,
163 .word_base = EEPROM_BASE,
164 .word_size = sizeof(u16),
165 .word_count = EEPROM_SIZE / sizeof(u16),
167 .bbp = {
168 .read = rt73usb_bbp_read,
169 .write = rt73usb_bbp_write,
170 .word_base = BBP_BASE,
171 .word_size = sizeof(u8),
172 .word_count = BBP_SIZE / sizeof(u8),
174 .rf = {
175 .read = rt2x00_rf_read,
176 .write = rt73usb_rf_write,
177 .word_base = RF_BASE,
178 .word_size = sizeof(u32),
179 .word_count = RF_SIZE / sizeof(u32),
182 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
184 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
186 u32 reg;
188 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
189 return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
192 #ifdef CONFIG_RT2X00_LIB_LEDS
193 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
194 enum led_brightness brightness)
196 struct rt2x00_led *led =
197 container_of(led_cdev, struct rt2x00_led, led_dev);
198 unsigned int enabled = brightness != LED_OFF;
199 unsigned int a_mode =
200 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
201 unsigned int bg_mode =
202 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
204 if (led->type == LED_TYPE_RADIO) {
205 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
206 MCU_LEDCS_RADIO_STATUS, enabled);
208 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
209 0, led->rt2x00dev->led_mcu_reg,
210 REGISTER_TIMEOUT);
211 } else if (led->type == LED_TYPE_ASSOC) {
212 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
213 MCU_LEDCS_LINK_BG_STATUS, bg_mode);
214 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
215 MCU_LEDCS_LINK_A_STATUS, a_mode);
217 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
218 0, led->rt2x00dev->led_mcu_reg,
219 REGISTER_TIMEOUT);
220 } else if (led->type == LED_TYPE_QUALITY) {
222 * The brightness is divided into 6 levels (0 - 5),
223 * this means we need to convert the brightness
224 * argument into the matching level within that range.
226 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
227 brightness / (LED_FULL / 6),
228 led->rt2x00dev->led_mcu_reg,
229 REGISTER_TIMEOUT);
233 static int rt73usb_blink_set(struct led_classdev *led_cdev,
234 unsigned long *delay_on,
235 unsigned long *delay_off)
237 struct rt2x00_led *led =
238 container_of(led_cdev, struct rt2x00_led, led_dev);
239 u32 reg;
241 rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
242 rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
243 rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
244 rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
246 return 0;
249 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
250 struct rt2x00_led *led,
251 enum led_type type)
253 led->rt2x00dev = rt2x00dev;
254 led->type = type;
255 led->led_dev.brightness_set = rt73usb_brightness_set;
256 led->led_dev.blink_set = rt73usb_blink_set;
257 led->flags = LED_INITIALIZED;
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
262 * Configuration handlers.
264 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
265 struct rt2x00lib_crypto *crypto,
266 struct ieee80211_key_conf *key)
268 struct hw_key_entry key_entry;
269 struct rt2x00_field32 field;
270 u32 mask;
271 u32 reg;
273 if (crypto->cmd == SET_KEY) {
275 * rt2x00lib can't determine the correct free
276 * key_idx for shared keys. We have 1 register
277 * with key valid bits. The goal is simple, read
278 * the register, if that is full we have no slots
279 * left.
280 * Note that each BSS is allowed to have up to 4
281 * shared keys, so put a mask over the allowed
282 * entries.
284 mask = (0xf << crypto->bssidx);
286 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
287 reg &= mask;
289 if (reg && reg == mask)
290 return -ENOSPC;
292 key->hw_key_idx += reg ? ffz(reg) : 0;
295 * Upload key to hardware
297 memcpy(key_entry.key, crypto->key,
298 sizeof(key_entry.key));
299 memcpy(key_entry.tx_mic, crypto->tx_mic,
300 sizeof(key_entry.tx_mic));
301 memcpy(key_entry.rx_mic, crypto->rx_mic,
302 sizeof(key_entry.rx_mic));
304 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
305 rt2x00usb_register_multiwrite(rt2x00dev, reg,
306 &key_entry, sizeof(key_entry));
309 * The cipher types are stored over 2 registers.
310 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
311 * bssidx 1 and 2 keys are stored in SEC_CSR5.
312 * Using the correct defines correctly will cause overhead,
313 * so just calculate the correct offset.
315 if (key->hw_key_idx < 8) {
316 field.bit_offset = (3 * key->hw_key_idx);
317 field.bit_mask = 0x7 << field.bit_offset;
319 rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
320 rt2x00_set_field32(&reg, field, crypto->cipher);
321 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
322 } else {
323 field.bit_offset = (3 * (key->hw_key_idx - 8));
324 field.bit_mask = 0x7 << field.bit_offset;
326 rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
327 rt2x00_set_field32(&reg, field, crypto->cipher);
328 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
332 * The driver does not support the IV/EIV generation
333 * in hardware. However it doesn't support the IV/EIV
334 * inside the ieee80211 frame either, but requires it
335 * to be provided separately for the descriptor.
336 * rt2x00lib will cut the IV/EIV data out of all frames
337 * given to us by mac80211, but we must tell mac80211
338 * to generate the IV/EIV data.
340 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
344 * SEC_CSR0 contains only single-bit fields to indicate
345 * a particular key is valid. Because using the FIELD32()
346 * defines directly will cause a lot of overhead we use
347 * a calculation to determine the correct bit directly.
349 mask = 1 << key->hw_key_idx;
351 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
352 if (crypto->cmd == SET_KEY)
353 reg |= mask;
354 else if (crypto->cmd == DISABLE_KEY)
355 reg &= ~mask;
356 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
358 return 0;
361 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
362 struct rt2x00lib_crypto *crypto,
363 struct ieee80211_key_conf *key)
365 struct hw_pairwise_ta_entry addr_entry;
366 struct hw_key_entry key_entry;
367 u32 mask;
368 u32 reg;
370 if (crypto->cmd == SET_KEY) {
372 * rt2x00lib can't determine the correct free
373 * key_idx for pairwise keys. We have 2 registers
374 * with key valid bits. The goal is simple, read
375 * the first register, if that is full move to
376 * the next register.
377 * When both registers are full, we drop the key,
378 * otherwise we use the first invalid entry.
380 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
381 if (reg && reg == ~0) {
382 key->hw_key_idx = 32;
383 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
384 if (reg && reg == ~0)
385 return -ENOSPC;
388 key->hw_key_idx += reg ? ffz(reg) : 0;
391 * Upload key to hardware
393 memcpy(key_entry.key, crypto->key,
394 sizeof(key_entry.key));
395 memcpy(key_entry.tx_mic, crypto->tx_mic,
396 sizeof(key_entry.tx_mic));
397 memcpy(key_entry.rx_mic, crypto->rx_mic,
398 sizeof(key_entry.rx_mic));
400 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
401 rt2x00usb_register_multiwrite(rt2x00dev, reg,
402 &key_entry, sizeof(key_entry));
405 * Send the address and cipher type to the hardware register.
407 memset(&addr_entry, 0, sizeof(addr_entry));
408 memcpy(&addr_entry, crypto->address, ETH_ALEN);
409 addr_entry.cipher = crypto->cipher;
411 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
412 rt2x00usb_register_multiwrite(rt2x00dev, reg,
413 &addr_entry, sizeof(addr_entry));
416 * Enable pairwise lookup table for given BSS idx,
417 * without this received frames will not be decrypted
418 * by the hardware.
420 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
421 reg |= (1 << crypto->bssidx);
422 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
425 * The driver does not support the IV/EIV generation
426 * in hardware. However it doesn't support the IV/EIV
427 * inside the ieee80211 frame either, but requires it
428 * to be provided separately for the descriptor.
429 * rt2x00lib will cut the IV/EIV data out of all frames
430 * given to us by mac80211, but we must tell mac80211
431 * to generate the IV/EIV data.
433 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
437 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
438 * a particular key is valid. Because using the FIELD32()
439 * defines directly will cause a lot of overhead we use
440 * a calculation to determine the correct bit directly.
442 if (key->hw_key_idx < 32) {
443 mask = 1 << key->hw_key_idx;
445 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
446 if (crypto->cmd == SET_KEY)
447 reg |= mask;
448 else if (crypto->cmd == DISABLE_KEY)
449 reg &= ~mask;
450 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
451 } else {
452 mask = 1 << (key->hw_key_idx - 32);
454 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
455 if (crypto->cmd == SET_KEY)
456 reg |= mask;
457 else if (crypto->cmd == DISABLE_KEY)
458 reg &= ~mask;
459 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
462 return 0;
465 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
466 const unsigned int filter_flags)
468 u32 reg;
471 * Start configuration steps.
472 * Note that the version error will always be dropped
473 * and broadcast frames will always be accepted since
474 * there is no filter for it at this time.
476 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
477 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
478 !(filter_flags & FIF_FCSFAIL));
479 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
480 !(filter_flags & FIF_PLCPFAIL));
481 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
482 !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
483 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
484 !(filter_flags & FIF_PROMISC_IN_BSS));
485 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
486 !(filter_flags & FIF_PROMISC_IN_BSS) &&
487 !rt2x00dev->intf_ap_count);
488 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
489 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
490 !(filter_flags & FIF_ALLMULTI));
491 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
492 rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
493 !(filter_flags & FIF_CONTROL));
494 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
497 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
498 struct rt2x00_intf *intf,
499 struct rt2x00intf_conf *conf,
500 const unsigned int flags)
502 u32 reg;
504 if (flags & CONFIG_UPDATE_TYPE) {
506 * Enable synchronisation.
508 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
509 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
510 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
513 if (flags & CONFIG_UPDATE_MAC) {
514 reg = le32_to_cpu(conf->mac[1]);
515 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
516 conf->mac[1] = cpu_to_le32(reg);
518 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
519 conf->mac, sizeof(conf->mac));
522 if (flags & CONFIG_UPDATE_BSSID) {
523 reg = le32_to_cpu(conf->bssid[1]);
524 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
525 conf->bssid[1] = cpu_to_le32(reg);
527 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
528 conf->bssid, sizeof(conf->bssid));
532 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
533 struct rt2x00lib_erp *erp,
534 u32 changed)
536 u32 reg;
538 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
539 rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
540 rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
541 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
543 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
544 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
545 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
546 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
547 !!erp->short_preamble);
548 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
551 if (changed & BSS_CHANGED_BASIC_RATES)
552 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
553 erp->basic_rates);
555 if (changed & BSS_CHANGED_BEACON_INT) {
556 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
557 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
558 erp->beacon_int * 16);
559 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
562 if (changed & BSS_CHANGED_ERP_SLOT) {
563 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
564 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
565 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
567 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
568 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
569 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
570 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
571 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
575 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
576 struct antenna_setup *ant)
578 u8 r3;
579 u8 r4;
580 u8 r77;
581 u8 temp;
583 rt73usb_bbp_read(rt2x00dev, 3, &r3);
584 rt73usb_bbp_read(rt2x00dev, 4, &r4);
585 rt73usb_bbp_read(rt2x00dev, 77, &r77);
587 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
590 * Configure the RX antenna.
592 switch (ant->rx) {
593 case ANTENNA_HW_DIVERSITY:
594 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
595 temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
596 (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
597 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
598 break;
599 case ANTENNA_A:
600 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
601 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
602 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
603 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
604 else
605 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
606 break;
607 case ANTENNA_B:
608 default:
609 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
610 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
611 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
612 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
613 else
614 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
615 break;
618 rt73usb_bbp_write(rt2x00dev, 77, r77);
619 rt73usb_bbp_write(rt2x00dev, 3, r3);
620 rt73usb_bbp_write(rt2x00dev, 4, r4);
623 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
624 struct antenna_setup *ant)
626 u8 r3;
627 u8 r4;
628 u8 r77;
630 rt73usb_bbp_read(rt2x00dev, 3, &r3);
631 rt73usb_bbp_read(rt2x00dev, 4, &r4);
632 rt73usb_bbp_read(rt2x00dev, 77, &r77);
634 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
635 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
636 !rt2x00_has_cap_frame_type(rt2x00dev));
639 * Configure the RX antenna.
641 switch (ant->rx) {
642 case ANTENNA_HW_DIVERSITY:
643 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
644 break;
645 case ANTENNA_A:
646 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
647 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
648 break;
649 case ANTENNA_B:
650 default:
651 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
652 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653 break;
656 rt73usb_bbp_write(rt2x00dev, 77, r77);
657 rt73usb_bbp_write(rt2x00dev, 3, r3);
658 rt73usb_bbp_write(rt2x00dev, 4, r4);
661 struct antenna_sel {
662 u8 word;
664 * value[0] -> non-LNA
665 * value[1] -> LNA
667 u8 value[2];
670 static const struct antenna_sel antenna_sel_a[] = {
671 { 96, { 0x58, 0x78 } },
672 { 104, { 0x38, 0x48 } },
673 { 75, { 0xfe, 0x80 } },
674 { 86, { 0xfe, 0x80 } },
675 { 88, { 0xfe, 0x80 } },
676 { 35, { 0x60, 0x60 } },
677 { 97, { 0x58, 0x58 } },
678 { 98, { 0x58, 0x58 } },
681 static const struct antenna_sel antenna_sel_bg[] = {
682 { 96, { 0x48, 0x68 } },
683 { 104, { 0x2c, 0x3c } },
684 { 75, { 0xfe, 0x80 } },
685 { 86, { 0xfe, 0x80 } },
686 { 88, { 0xfe, 0x80 } },
687 { 35, { 0x50, 0x50 } },
688 { 97, { 0x48, 0x48 } },
689 { 98, { 0x48, 0x48 } },
692 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
693 struct antenna_setup *ant)
695 const struct antenna_sel *sel;
696 unsigned int lna;
697 unsigned int i;
698 u32 reg;
701 * We should never come here because rt2x00lib is supposed
702 * to catch this and send us the correct antenna explicitely.
704 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
705 ant->tx == ANTENNA_SW_DIVERSITY);
707 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
708 sel = antenna_sel_a;
709 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
710 } else {
711 sel = antenna_sel_bg;
712 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
715 for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
716 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
718 rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
720 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
721 (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
722 rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
723 (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
725 rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
727 if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
728 rt73usb_config_antenna_5x(rt2x00dev, ant);
729 else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
730 rt73usb_config_antenna_2x(rt2x00dev, ant);
733 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
734 struct rt2x00lib_conf *libconf)
736 u16 eeprom;
737 short lna_gain = 0;
739 if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
740 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
741 lna_gain += 14;
743 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
744 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
745 } else {
746 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
747 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
750 rt2x00dev->lna_gain = lna_gain;
753 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
754 struct rf_channel *rf, const int txpower)
756 u8 r3;
757 u8 r94;
758 u8 smart;
760 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
761 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
763 smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
765 rt73usb_bbp_read(rt2x00dev, 3, &r3);
766 rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
767 rt73usb_bbp_write(rt2x00dev, 3, r3);
769 r94 = 6;
770 if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
771 r94 += txpower - MAX_TXPOWER;
772 else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
773 r94 += txpower;
774 rt73usb_bbp_write(rt2x00dev, 94, r94);
776 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
777 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
778 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
779 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
781 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
782 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
783 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
784 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
786 rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
787 rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
788 rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
789 rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
791 udelay(10);
794 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
795 const int txpower)
797 struct rf_channel rf;
799 rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
800 rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
801 rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
802 rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
804 rt73usb_config_channel(rt2x00dev, &rf, txpower);
807 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
808 struct rt2x00lib_conf *libconf)
810 u32 reg;
812 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
813 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
814 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
815 rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
816 rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
817 libconf->conf->long_frame_max_tx_count);
818 rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
819 libconf->conf->short_frame_max_tx_count);
820 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
823 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
824 struct rt2x00lib_conf *libconf)
826 enum dev_state state =
827 (libconf->conf->flags & IEEE80211_CONF_PS) ?
828 STATE_SLEEP : STATE_AWAKE;
829 u32 reg;
831 if (state == STATE_SLEEP) {
832 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
833 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
834 rt2x00dev->beacon_int - 10);
835 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
836 libconf->conf->listen_interval - 1);
837 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
839 /* We must first disable autowake before it can be enabled */
840 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
841 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
843 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
844 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
846 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
847 USB_MODE_SLEEP, REGISTER_TIMEOUT);
848 } else {
849 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
850 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
851 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
852 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
853 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
854 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
856 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
857 USB_MODE_WAKEUP, REGISTER_TIMEOUT);
861 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
862 struct rt2x00lib_conf *libconf,
863 const unsigned int flags)
865 /* Always recalculate LNA gain before changing configuration */
866 rt73usb_config_lna_gain(rt2x00dev, libconf);
868 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
869 rt73usb_config_channel(rt2x00dev, &libconf->rf,
870 libconf->conf->power_level);
871 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
872 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
873 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
874 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
875 rt73usb_config_retry_limit(rt2x00dev, libconf);
876 if (flags & IEEE80211_CONF_CHANGE_PS)
877 rt73usb_config_ps(rt2x00dev, libconf);
881 * Link tuning
883 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
884 struct link_qual *qual)
886 u32 reg;
889 * Update FCS error count from register.
891 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
892 qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
895 * Update False CCA count from register.
897 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
898 qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
901 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
902 struct link_qual *qual, u8 vgc_level)
904 if (qual->vgc_level != vgc_level) {
905 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
906 qual->vgc_level = vgc_level;
907 qual->vgc_level_reg = vgc_level;
911 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
912 struct link_qual *qual)
914 rt73usb_set_vgc(rt2x00dev, qual, 0x20);
917 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
918 struct link_qual *qual, const u32 count)
920 u8 up_bound;
921 u8 low_bound;
924 * Determine r17 bounds.
926 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
927 low_bound = 0x28;
928 up_bound = 0x48;
930 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
931 low_bound += 0x10;
932 up_bound += 0x10;
934 } else {
935 if (qual->rssi > -82) {
936 low_bound = 0x1c;
937 up_bound = 0x40;
938 } else if (qual->rssi > -84) {
939 low_bound = 0x1c;
940 up_bound = 0x20;
941 } else {
942 low_bound = 0x1c;
943 up_bound = 0x1c;
946 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
947 low_bound += 0x14;
948 up_bound += 0x10;
953 * If we are not associated, we should go straight to the
954 * dynamic CCA tuning.
956 if (!rt2x00dev->intf_associated)
957 goto dynamic_cca_tune;
960 * Special big-R17 for very short distance
962 if (qual->rssi > -35) {
963 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
964 return;
968 * Special big-R17 for short distance
970 if (qual->rssi >= -58) {
971 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
972 return;
976 * Special big-R17 for middle-short distance
978 if (qual->rssi >= -66) {
979 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
980 return;
984 * Special mid-R17 for middle distance
986 if (qual->rssi >= -74) {
987 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
988 return;
992 * Special case: Change up_bound based on the rssi.
993 * Lower up_bound when rssi is weaker then -74 dBm.
995 up_bound -= 2 * (-74 - qual->rssi);
996 if (low_bound > up_bound)
997 up_bound = low_bound;
999 if (qual->vgc_level > up_bound) {
1000 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1001 return;
1004 dynamic_cca_tune:
1007 * r17 does not yet exceed upper limit, continue and base
1008 * the r17 tuning on the false CCA count.
1010 if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1011 rt73usb_set_vgc(rt2x00dev, qual,
1012 min_t(u8, qual->vgc_level + 4, up_bound));
1013 else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1014 rt73usb_set_vgc(rt2x00dev, qual,
1015 max_t(u8, qual->vgc_level - 4, low_bound));
1019 * Queue handlers.
1021 static void rt73usb_start_queue(struct data_queue *queue)
1023 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1024 u32 reg;
1026 switch (queue->qid) {
1027 case QID_RX:
1028 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1029 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1030 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1031 break;
1032 case QID_BEACON:
1033 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1034 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1035 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1036 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1037 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1038 break;
1039 default:
1040 break;
1044 static void rt73usb_stop_queue(struct data_queue *queue)
1046 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1047 u32 reg;
1049 switch (queue->qid) {
1050 case QID_RX:
1051 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1052 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1053 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1054 break;
1055 case QID_BEACON:
1056 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1057 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1058 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1059 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1060 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1061 break;
1062 default:
1063 break;
1068 * Firmware functions
1070 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1072 return FIRMWARE_RT2571;
1075 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1076 const u8 *data, const size_t len)
1078 u16 fw_crc;
1079 u16 crc;
1082 * Only support 2kb firmware files.
1084 if (len != 2048)
1085 return FW_BAD_LENGTH;
1088 * The last 2 bytes in the firmware array are the crc checksum itself,
1089 * this means that we should never pass those 2 bytes to the crc
1090 * algorithm.
1092 fw_crc = (data[len - 2] << 8 | data[len - 1]);
1095 * Use the crc itu-t algorithm.
1097 crc = crc_itu_t(0, data, len - 2);
1098 crc = crc_itu_t_byte(crc, 0);
1099 crc = crc_itu_t_byte(crc, 0);
1101 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1104 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1105 const u8 *data, const size_t len)
1107 unsigned int i;
1108 int status;
1109 u32 reg;
1112 * Wait for stable hardware.
1114 for (i = 0; i < 100; i++) {
1115 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1116 if (reg)
1117 break;
1118 msleep(1);
1121 if (!reg) {
1122 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1123 return -EBUSY;
1127 * Write firmware to device.
1129 rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1132 * Send firmware request to device to load firmware,
1133 * we need to specify a long timeout time.
1135 status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1136 0, USB_MODE_FIRMWARE,
1137 REGISTER_TIMEOUT_FIRMWARE);
1138 if (status < 0) {
1139 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1140 return status;
1143 return 0;
1147 * Initialization functions.
1149 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1151 u32 reg;
1153 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1154 rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1155 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1156 rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1157 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1159 rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1160 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1161 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1162 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1163 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1164 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1165 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1166 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1167 rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1168 rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1171 * CCK TXD BBP registers
1173 rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1174 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1175 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1176 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1177 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1178 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1179 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1180 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1181 rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1182 rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1185 * OFDM TXD BBP registers
1187 rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1188 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1189 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1190 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1191 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1192 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1193 rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1194 rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1196 rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1197 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1198 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1199 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1200 rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1201 rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1203 rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1204 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1205 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1206 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1207 rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1208 rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1210 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1211 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1212 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1213 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1214 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1215 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1216 rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1217 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1219 rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1221 rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1222 rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1223 rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1225 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1227 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1228 return -EBUSY;
1230 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1233 * Invalidate all Shared Keys (SEC_CSR0),
1234 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1236 rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1237 rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1238 rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1240 reg = 0x000023b0;
1241 if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1242 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1243 rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1245 rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1246 rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1247 rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1249 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1250 rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1251 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1254 * Clear all beacons
1255 * For the Beacon base registers we only need to clear
1256 * the first byte since that byte contains the VALID and OWNER
1257 * bits which (when set to 0) will invalidate the entire beacon.
1259 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1260 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1261 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1262 rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1265 * We must clear the error counters.
1266 * These registers are cleared on read,
1267 * so we may pass a useless variable to store the value.
1269 rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1270 rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1271 rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1274 * Reset MAC and BBP registers.
1276 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1277 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1278 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1279 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1281 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1282 rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1283 rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1284 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1286 rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1287 rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1288 rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1290 return 0;
1293 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1295 unsigned int i;
1296 u8 value;
1298 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1299 rt73usb_bbp_read(rt2x00dev, 0, &value);
1300 if ((value != 0xff) && (value != 0x00))
1301 return 0;
1302 udelay(REGISTER_BUSY_DELAY);
1305 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1306 return -EACCES;
1309 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1311 unsigned int i;
1312 u16 eeprom;
1313 u8 reg_id;
1314 u8 value;
1316 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1317 return -EACCES;
1319 rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1320 rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1321 rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1322 rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1323 rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1324 rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1325 rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1326 rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1327 rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1328 rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1329 rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1330 rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1331 rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1332 rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1333 rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1334 rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1335 rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1336 rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1337 rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1338 rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1339 rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1340 rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1341 rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1342 rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1343 rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1345 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1346 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1348 if (eeprom != 0xffff && eeprom != 0x0000) {
1349 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1350 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1351 rt73usb_bbp_write(rt2x00dev, reg_id, value);
1355 return 0;
1359 * Device state switch handlers.
1361 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1364 * Initialize all registers.
1366 if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1367 rt73usb_init_bbp(rt2x00dev)))
1368 return -EIO;
1370 return 0;
1373 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1375 rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1378 * Disable synchronisation.
1380 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1382 rt2x00usb_disable_radio(rt2x00dev);
1385 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1387 u32 reg, reg2;
1388 unsigned int i;
1389 char put_to_sleep;
1391 put_to_sleep = (state != STATE_AWAKE);
1393 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1394 rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1395 rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1396 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1399 * Device is not guaranteed to be in the requested state yet.
1400 * We must wait until the register indicates that the
1401 * device has entered the correct state.
1403 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1404 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1405 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1406 if (state == !put_to_sleep)
1407 return 0;
1408 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1409 msleep(10);
1412 return -EBUSY;
1415 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1416 enum dev_state state)
1418 int retval = 0;
1420 switch (state) {
1421 case STATE_RADIO_ON:
1422 retval = rt73usb_enable_radio(rt2x00dev);
1423 break;
1424 case STATE_RADIO_OFF:
1425 rt73usb_disable_radio(rt2x00dev);
1426 break;
1427 case STATE_RADIO_IRQ_ON:
1428 case STATE_RADIO_IRQ_OFF:
1429 /* No support, but no error either */
1430 break;
1431 case STATE_DEEP_SLEEP:
1432 case STATE_SLEEP:
1433 case STATE_STANDBY:
1434 case STATE_AWAKE:
1435 retval = rt73usb_set_state(rt2x00dev, state);
1436 break;
1437 default:
1438 retval = -ENOTSUPP;
1439 break;
1442 if (unlikely(retval))
1443 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1444 state, retval);
1446 return retval;
1450 * TX descriptor initialization
1452 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1453 struct txentry_desc *txdesc)
1455 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1456 __le32 *txd = (__le32 *) entry->skb->data;
1457 u32 word;
1460 * Start writing the descriptor words.
1462 rt2x00_desc_read(txd, 0, &word);
1463 rt2x00_set_field32(&word, TXD_W0_BURST,
1464 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1465 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1466 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1467 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1468 rt2x00_set_field32(&word, TXD_W0_ACK,
1469 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1470 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1471 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1472 rt2x00_set_field32(&word, TXD_W0_OFDM,
1473 (txdesc->rate_mode == RATE_MODE_OFDM));
1474 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1475 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1476 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1477 rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1478 test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1479 rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1480 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1481 rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1482 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1483 rt2x00_set_field32(&word, TXD_W0_BURST2,
1484 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1485 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1486 rt2x00_desc_write(txd, 0, word);
1488 rt2x00_desc_read(txd, 1, &word);
1489 rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1490 rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1491 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1492 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1493 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1494 rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1495 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1496 rt2x00_desc_write(txd, 1, word);
1498 rt2x00_desc_read(txd, 2, &word);
1499 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1500 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1501 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1502 txdesc->u.plcp.length_low);
1503 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1504 txdesc->u.plcp.length_high);
1505 rt2x00_desc_write(txd, 2, word);
1507 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1508 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1509 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1512 rt2x00_desc_read(txd, 5, &word);
1513 rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1514 TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1515 rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1516 rt2x00_desc_write(txd, 5, word);
1519 * Register descriptor details in skb frame descriptor.
1521 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1522 skbdesc->desc = txd;
1523 skbdesc->desc_len = TXD_DESC_SIZE;
1527 * TX data initialization
1529 static void rt73usb_write_beacon(struct queue_entry *entry,
1530 struct txentry_desc *txdesc)
1532 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1533 unsigned int beacon_base;
1534 unsigned int padding_len;
1535 u32 orig_reg, reg;
1538 * Disable beaconing while we are reloading the beacon data,
1539 * otherwise we might be sending out invalid data.
1541 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1542 orig_reg = reg;
1543 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1544 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1547 * Add space for the descriptor in front of the skb.
1549 skb_push(entry->skb, TXD_DESC_SIZE);
1550 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1553 * Write the TX descriptor for the beacon.
1555 rt73usb_write_tx_desc(entry, txdesc);
1558 * Dump beacon to userspace through debugfs.
1560 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1563 * Write entire beacon with descriptor and padding to register.
1565 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1566 if (padding_len && skb_pad(entry->skb, padding_len)) {
1567 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1568 /* skb freed by skb_pad() on failure */
1569 entry->skb = NULL;
1570 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1571 return;
1574 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1575 rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1576 entry->skb->len + padding_len);
1579 * Enable beaconing again.
1581 * For Wi-Fi faily generated beacons between participating stations.
1582 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1584 rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1586 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1587 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1590 * Clean up the beacon skb.
1592 dev_kfree_skb(entry->skb);
1593 entry->skb = NULL;
1596 static void rt73usb_clear_beacon(struct queue_entry *entry)
1598 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1599 unsigned int beacon_base;
1600 u32 reg;
1603 * Disable beaconing while we are reloading the beacon data,
1604 * otherwise we might be sending out invalid data.
1606 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1607 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1608 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1611 * Clear beacon.
1613 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1614 rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1617 * Enable beaconing again.
1619 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1620 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1623 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1625 int length;
1628 * The length _must_ be a multiple of 4,
1629 * but it must _not_ be a multiple of the USB packet size.
1631 length = roundup(entry->skb->len, 4);
1632 length += (4 * !(length % entry->queue->usb_maxpacket));
1634 return length;
1638 * RX control handlers
1640 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1642 u8 offset = rt2x00dev->lna_gain;
1643 u8 lna;
1645 lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1646 switch (lna) {
1647 case 3:
1648 offset += 90;
1649 break;
1650 case 2:
1651 offset += 74;
1652 break;
1653 case 1:
1654 offset += 64;
1655 break;
1656 default:
1657 return 0;
1660 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1661 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1662 if (lna == 3 || lna == 2)
1663 offset += 10;
1664 } else {
1665 if (lna == 3)
1666 offset += 6;
1667 else if (lna == 2)
1668 offset += 8;
1672 return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1675 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1676 struct rxdone_entry_desc *rxdesc)
1678 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1679 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1680 __le32 *rxd = (__le32 *)entry->skb->data;
1681 u32 word0;
1682 u32 word1;
1685 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1686 * frame data in rt2x00usb.
1688 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1689 rxd = (__le32 *)skbdesc->desc;
1692 * It is now safe to read the descriptor on all architectures.
1694 rt2x00_desc_read(rxd, 0, &word0);
1695 rt2x00_desc_read(rxd, 1, &word1);
1697 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1698 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1700 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1701 rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1703 if (rxdesc->cipher != CIPHER_NONE) {
1704 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1705 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1706 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1708 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1709 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1712 * Hardware has stripped IV/EIV data from 802.11 frame during
1713 * decryption. It has provided the data separately but rt2x00lib
1714 * should decide if it should be reinserted.
1716 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1719 * The hardware has already checked the Michael Mic and has
1720 * stripped it from the frame. Signal this to mac80211.
1722 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1724 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1725 rxdesc->flags |= RX_FLAG_DECRYPTED;
1726 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1727 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1731 * Obtain the status about this packet.
1732 * When frame was received with an OFDM bitrate,
1733 * the signal is the PLCP value. If it was received with
1734 * a CCK bitrate the signal is the rate in 100kbit/s.
1736 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1737 rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1738 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1740 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1741 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1742 else
1743 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1744 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1745 rxdesc->dev_flags |= RXDONE_MY_BSS;
1748 * Set skb pointers, and update frame information.
1750 skb_pull(entry->skb, entry->queue->desc_size);
1751 skb_trim(entry->skb, rxdesc->size);
1755 * Device probe functions.
1757 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1759 u16 word;
1760 u8 *mac;
1761 s8 value;
1763 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1766 * Start validation of the data that has been read.
1768 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1769 if (!is_valid_ether_addr(mac)) {
1770 eth_random_addr(mac);
1771 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1774 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1775 if (word == 0xffff) {
1776 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1777 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1778 ANTENNA_B);
1779 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1780 ANTENNA_B);
1781 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1782 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1783 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1784 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1785 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1786 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1789 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1790 if (word == 0xffff) {
1791 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1792 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1793 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1796 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1797 if (word == 0xffff) {
1798 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1799 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1800 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1801 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1802 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1803 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1804 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1805 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1806 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1807 LED_MODE_DEFAULT);
1808 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1809 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1812 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1813 if (word == 0xffff) {
1814 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1815 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1816 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1817 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1820 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1821 if (word == 0xffff) {
1822 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1823 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1824 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1825 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1826 } else {
1827 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1828 if (value < -10 || value > 10)
1829 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1830 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1831 if (value < -10 || value > 10)
1832 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1833 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1836 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1837 if (word == 0xffff) {
1838 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1839 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1840 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1841 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1842 } else {
1843 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1844 if (value < -10 || value > 10)
1845 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1846 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1847 if (value < -10 || value > 10)
1848 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1849 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1852 return 0;
1855 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1857 u32 reg;
1858 u16 value;
1859 u16 eeprom;
1862 * Read EEPROM word for configuration.
1864 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1867 * Identify RF chipset.
1869 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1870 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1871 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1872 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1874 if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1875 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1876 return -ENODEV;
1879 if (!rt2x00_rf(rt2x00dev, RF5226) &&
1880 !rt2x00_rf(rt2x00dev, RF2528) &&
1881 !rt2x00_rf(rt2x00dev, RF5225) &&
1882 !rt2x00_rf(rt2x00dev, RF2527)) {
1883 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1884 return -ENODEV;
1888 * Identify default antenna configuration.
1890 rt2x00dev->default_ant.tx =
1891 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1892 rt2x00dev->default_ant.rx =
1893 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1896 * Read the Frame type.
1898 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1899 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1902 * Detect if this device has an hardware controlled radio.
1904 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1905 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1908 * Read frequency offset.
1910 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1911 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1914 * Read external LNA informations.
1916 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1918 if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1919 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1920 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1924 * Store led settings, for correct led behaviour.
1926 #ifdef CONFIG_RT2X00_LIB_LEDS
1927 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1929 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1930 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1931 if (value == LED_MODE_SIGNAL_STRENGTH)
1932 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1933 LED_TYPE_QUALITY);
1935 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1936 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1937 rt2x00_get_field16(eeprom,
1938 EEPROM_LED_POLARITY_GPIO_0));
1939 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1940 rt2x00_get_field16(eeprom,
1941 EEPROM_LED_POLARITY_GPIO_1));
1942 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1943 rt2x00_get_field16(eeprom,
1944 EEPROM_LED_POLARITY_GPIO_2));
1945 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1946 rt2x00_get_field16(eeprom,
1947 EEPROM_LED_POLARITY_GPIO_3));
1948 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1949 rt2x00_get_field16(eeprom,
1950 EEPROM_LED_POLARITY_GPIO_4));
1951 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1952 rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1953 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1954 rt2x00_get_field16(eeprom,
1955 EEPROM_LED_POLARITY_RDY_G));
1956 rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1957 rt2x00_get_field16(eeprom,
1958 EEPROM_LED_POLARITY_RDY_A));
1959 #endif /* CONFIG_RT2X00_LIB_LEDS */
1961 return 0;
1965 * RF value list for RF2528
1966 * Supports: 2.4 GHz
1968 static const struct rf_channel rf_vals_bg_2528[] = {
1969 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1970 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1971 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1972 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1973 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1974 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1975 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1976 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1977 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1978 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1979 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1980 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1981 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1982 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1986 * RF value list for RF5226
1987 * Supports: 2.4 GHz & 5.2 GHz
1989 static const struct rf_channel rf_vals_5226[] = {
1990 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1991 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1992 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1993 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1994 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1995 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1996 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1997 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1998 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1999 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2000 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2001 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2002 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2003 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2005 /* 802.11 UNI / HyperLan 2 */
2006 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2007 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2008 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2009 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2010 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2011 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2012 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2013 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2015 /* 802.11 HyperLan 2 */
2016 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2017 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2018 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2019 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2020 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2021 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2022 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2023 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2024 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2025 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2027 /* 802.11 UNII */
2028 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2029 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2030 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2031 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2032 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2033 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2035 /* MMAC(Japan)J52 ch 34,38,42,46 */
2036 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2037 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2038 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2039 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2043 * RF value list for RF5225 & RF2527
2044 * Supports: 2.4 GHz & 5.2 GHz
2046 static const struct rf_channel rf_vals_5225_2527[] = {
2047 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2048 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2049 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2050 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2051 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2052 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2053 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2054 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2055 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2056 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2057 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2058 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2059 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2060 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2062 /* 802.11 UNI / HyperLan 2 */
2063 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2064 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2065 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2066 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2067 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2068 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2069 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2070 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2072 /* 802.11 HyperLan 2 */
2073 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2074 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2075 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2076 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2077 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2078 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2079 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2080 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2081 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2082 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2084 /* 802.11 UNII */
2085 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2086 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2087 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2088 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2089 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2090 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2092 /* MMAC(Japan)J52 ch 34,38,42,46 */
2093 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2094 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2095 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2096 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2100 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2102 struct hw_mode_spec *spec = &rt2x00dev->spec;
2103 struct channel_info *info;
2104 char *tx_power;
2105 unsigned int i;
2108 * Initialize all hw fields.
2110 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2111 * capable of sending the buffered frames out after the DTIM
2112 * transmission using rt2x00lib_beacondone. This will send out
2113 * multicast and broadcast traffic immediately instead of buffering it
2114 * infinitly and thus dropping it after some time.
2116 rt2x00dev->hw->flags =
2117 IEEE80211_HW_SIGNAL_DBM |
2118 IEEE80211_HW_SUPPORTS_PS |
2119 IEEE80211_HW_PS_NULLFUNC_STACK;
2121 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2122 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2123 rt2x00_eeprom_addr(rt2x00dev,
2124 EEPROM_MAC_ADDR_0));
2127 * Initialize hw_mode information.
2129 spec->supported_bands = SUPPORT_BAND_2GHZ;
2130 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2132 if (rt2x00_rf(rt2x00dev, RF2528)) {
2133 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2134 spec->channels = rf_vals_bg_2528;
2135 } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2136 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2137 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2138 spec->channels = rf_vals_5226;
2139 } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2140 spec->num_channels = 14;
2141 spec->channels = rf_vals_5225_2527;
2142 } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2143 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2144 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2145 spec->channels = rf_vals_5225_2527;
2149 * Create channel information array
2151 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2152 if (!info)
2153 return -ENOMEM;
2155 spec->channels_info = info;
2157 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2158 for (i = 0; i < 14; i++) {
2159 info[i].max_power = MAX_TXPOWER;
2160 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2163 if (spec->num_channels > 14) {
2164 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2165 for (i = 14; i < spec->num_channels; i++) {
2166 info[i].max_power = MAX_TXPOWER;
2167 info[i].default_power1 =
2168 TXPOWER_FROM_DEV(tx_power[i - 14]);
2172 return 0;
2175 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2177 int retval;
2178 u32 reg;
2181 * Allocate eeprom data.
2183 retval = rt73usb_validate_eeprom(rt2x00dev);
2184 if (retval)
2185 return retval;
2187 retval = rt73usb_init_eeprom(rt2x00dev);
2188 if (retval)
2189 return retval;
2192 * Enable rfkill polling by setting GPIO direction of the
2193 * rfkill switch GPIO pin correctly.
2195 rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
2196 rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2197 rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2200 * Initialize hw specifications.
2202 retval = rt73usb_probe_hw_mode(rt2x00dev);
2203 if (retval)
2204 return retval;
2207 * This device has multiple filters for control frames,
2208 * but has no a separate filter for PS Poll frames.
2210 __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2213 * This device requires firmware.
2215 __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2216 if (!modparam_nohwcrypt)
2217 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2218 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2219 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2222 * Set the rssi offset.
2224 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2226 return 0;
2230 * IEEE80211 stack callback functions.
2232 static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2233 struct ieee80211_vif *vif, u16 queue_idx,
2234 const struct ieee80211_tx_queue_params *params)
2236 struct rt2x00_dev *rt2x00dev = hw->priv;
2237 struct data_queue *queue;
2238 struct rt2x00_field32 field;
2239 int retval;
2240 u32 reg;
2241 u32 offset;
2244 * First pass the configuration through rt2x00lib, that will
2245 * update the queue settings and validate the input. After that
2246 * we are free to update the registers based on the value
2247 * in the queue parameter.
2249 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2250 if (retval)
2251 return retval;
2254 * We only need to perform additional register initialization
2255 * for WMM queues/
2257 if (queue_idx >= 4)
2258 return 0;
2260 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2262 /* Update WMM TXOP register */
2263 offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2264 field.bit_offset = (queue_idx & 1) * 16;
2265 field.bit_mask = 0xffff << field.bit_offset;
2267 rt2x00usb_register_read(rt2x00dev, offset, &reg);
2268 rt2x00_set_field32(&reg, field, queue->txop);
2269 rt2x00usb_register_write(rt2x00dev, offset, reg);
2271 /* Update WMM registers */
2272 field.bit_offset = queue_idx * 4;
2273 field.bit_mask = 0xf << field.bit_offset;
2275 rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2276 rt2x00_set_field32(&reg, field, queue->aifs);
2277 rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2279 rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2280 rt2x00_set_field32(&reg, field, queue->cw_min);
2281 rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2283 rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2284 rt2x00_set_field32(&reg, field, queue->cw_max);
2285 rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2287 return 0;
2290 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2292 struct rt2x00_dev *rt2x00dev = hw->priv;
2293 u64 tsf;
2294 u32 reg;
2296 rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2297 tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2298 rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2299 tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2301 return tsf;
2304 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2305 .tx = rt2x00mac_tx,
2306 .start = rt2x00mac_start,
2307 .stop = rt2x00mac_stop,
2308 .add_interface = rt2x00mac_add_interface,
2309 .remove_interface = rt2x00mac_remove_interface,
2310 .config = rt2x00mac_config,
2311 .configure_filter = rt2x00mac_configure_filter,
2312 .set_tim = rt2x00mac_set_tim,
2313 .set_key = rt2x00mac_set_key,
2314 .sw_scan_start = rt2x00mac_sw_scan_start,
2315 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2316 .get_stats = rt2x00mac_get_stats,
2317 .bss_info_changed = rt2x00mac_bss_info_changed,
2318 .conf_tx = rt73usb_conf_tx,
2319 .get_tsf = rt73usb_get_tsf,
2320 .rfkill_poll = rt2x00mac_rfkill_poll,
2321 .flush = rt2x00mac_flush,
2322 .set_antenna = rt2x00mac_set_antenna,
2323 .get_antenna = rt2x00mac_get_antenna,
2324 .get_ringparam = rt2x00mac_get_ringparam,
2325 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2328 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2329 .probe_hw = rt73usb_probe_hw,
2330 .get_firmware_name = rt73usb_get_firmware_name,
2331 .check_firmware = rt73usb_check_firmware,
2332 .load_firmware = rt73usb_load_firmware,
2333 .initialize = rt2x00usb_initialize,
2334 .uninitialize = rt2x00usb_uninitialize,
2335 .clear_entry = rt2x00usb_clear_entry,
2336 .set_device_state = rt73usb_set_device_state,
2337 .rfkill_poll = rt73usb_rfkill_poll,
2338 .link_stats = rt73usb_link_stats,
2339 .reset_tuner = rt73usb_reset_tuner,
2340 .link_tuner = rt73usb_link_tuner,
2341 .watchdog = rt2x00usb_watchdog,
2342 .start_queue = rt73usb_start_queue,
2343 .kick_queue = rt2x00usb_kick_queue,
2344 .stop_queue = rt73usb_stop_queue,
2345 .flush_queue = rt2x00usb_flush_queue,
2346 .write_tx_desc = rt73usb_write_tx_desc,
2347 .write_beacon = rt73usb_write_beacon,
2348 .clear_beacon = rt73usb_clear_beacon,
2349 .get_tx_data_len = rt73usb_get_tx_data_len,
2350 .fill_rxdone = rt73usb_fill_rxdone,
2351 .config_shared_key = rt73usb_config_shared_key,
2352 .config_pairwise_key = rt73usb_config_pairwise_key,
2353 .config_filter = rt73usb_config_filter,
2354 .config_intf = rt73usb_config_intf,
2355 .config_erp = rt73usb_config_erp,
2356 .config_ant = rt73usb_config_ant,
2357 .config = rt73usb_config,
2360 static void rt73usb_queue_init(struct data_queue *queue)
2362 switch (queue->qid) {
2363 case QID_RX:
2364 queue->limit = 32;
2365 queue->data_size = DATA_FRAME_SIZE;
2366 queue->desc_size = RXD_DESC_SIZE;
2367 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2368 break;
2370 case QID_AC_VO:
2371 case QID_AC_VI:
2372 case QID_AC_BE:
2373 case QID_AC_BK:
2374 queue->limit = 32;
2375 queue->data_size = DATA_FRAME_SIZE;
2376 queue->desc_size = TXD_DESC_SIZE;
2377 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2378 break;
2380 case QID_BEACON:
2381 queue->limit = 4;
2382 queue->data_size = MGMT_FRAME_SIZE;
2383 queue->desc_size = TXINFO_SIZE;
2384 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2385 break;
2387 case QID_ATIM:
2388 /* fallthrough */
2389 default:
2390 BUG();
2391 break;
2395 static const struct rt2x00_ops rt73usb_ops = {
2396 .name = KBUILD_MODNAME,
2397 .max_ap_intf = 4,
2398 .eeprom_size = EEPROM_SIZE,
2399 .rf_size = RF_SIZE,
2400 .tx_queues = NUM_TX_QUEUES,
2401 .queue_init = rt73usb_queue_init,
2402 .lib = &rt73usb_rt2x00_ops,
2403 .hw = &rt73usb_mac80211_ops,
2404 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2405 .debugfs = &rt73usb_rt2x00debug,
2406 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2410 * rt73usb module information.
2412 static struct usb_device_id rt73usb_device_table[] = {
2413 /* AboCom */
2414 { USB_DEVICE(0x07b8, 0xb21b) },
2415 { USB_DEVICE(0x07b8, 0xb21c) },
2416 { USB_DEVICE(0x07b8, 0xb21d) },
2417 { USB_DEVICE(0x07b8, 0xb21e) },
2418 { USB_DEVICE(0x07b8, 0xb21f) },
2419 /* AL */
2420 { USB_DEVICE(0x14b2, 0x3c10) },
2421 /* Amigo */
2422 { USB_DEVICE(0x148f, 0x9021) },
2423 { USB_DEVICE(0x0eb0, 0x9021) },
2424 /* AMIT */
2425 { USB_DEVICE(0x18c5, 0x0002) },
2426 /* Askey */
2427 { USB_DEVICE(0x1690, 0x0722) },
2428 /* ASUS */
2429 { USB_DEVICE(0x0b05, 0x1723) },
2430 { USB_DEVICE(0x0b05, 0x1724) },
2431 /* Belkin */
2432 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2433 { USB_DEVICE(0x050d, 0x705a) },
2434 { USB_DEVICE(0x050d, 0x905b) },
2435 { USB_DEVICE(0x050d, 0x905c) },
2436 /* Billionton */
2437 { USB_DEVICE(0x1631, 0xc019) },
2438 { USB_DEVICE(0x08dd, 0x0120) },
2439 /* Buffalo */
2440 { USB_DEVICE(0x0411, 0x00d8) },
2441 { USB_DEVICE(0x0411, 0x00d9) },
2442 { USB_DEVICE(0x0411, 0x00e6) },
2443 { USB_DEVICE(0x0411, 0x00f4) },
2444 { USB_DEVICE(0x0411, 0x0116) },
2445 { USB_DEVICE(0x0411, 0x0119) },
2446 { USB_DEVICE(0x0411, 0x0137) },
2447 /* CEIVA */
2448 { USB_DEVICE(0x178d, 0x02be) },
2449 /* CNet */
2450 { USB_DEVICE(0x1371, 0x9022) },
2451 { USB_DEVICE(0x1371, 0x9032) },
2452 /* Conceptronic */
2453 { USB_DEVICE(0x14b2, 0x3c22) },
2454 /* Corega */
2455 { USB_DEVICE(0x07aa, 0x002e) },
2456 /* D-Link */
2457 { USB_DEVICE(0x07d1, 0x3c03) },
2458 { USB_DEVICE(0x07d1, 0x3c04) },
2459 { USB_DEVICE(0x07d1, 0x3c06) },
2460 { USB_DEVICE(0x07d1, 0x3c07) },
2461 /* Edimax */
2462 { USB_DEVICE(0x7392, 0x7318) },
2463 { USB_DEVICE(0x7392, 0x7618) },
2464 /* EnGenius */
2465 { USB_DEVICE(0x1740, 0x3701) },
2466 /* Gemtek */
2467 { USB_DEVICE(0x15a9, 0x0004) },
2468 /* Gigabyte */
2469 { USB_DEVICE(0x1044, 0x8008) },
2470 { USB_DEVICE(0x1044, 0x800a) },
2471 /* Huawei-3Com */
2472 { USB_DEVICE(0x1472, 0x0009) },
2473 /* Hercules */
2474 { USB_DEVICE(0x06f8, 0xe002) },
2475 { USB_DEVICE(0x06f8, 0xe010) },
2476 { USB_DEVICE(0x06f8, 0xe020) },
2477 /* Linksys */
2478 { USB_DEVICE(0x13b1, 0x0020) },
2479 { USB_DEVICE(0x13b1, 0x0023) },
2480 { USB_DEVICE(0x13b1, 0x0028) },
2481 /* MSI */
2482 { USB_DEVICE(0x0db0, 0x4600) },
2483 { USB_DEVICE(0x0db0, 0x6877) },
2484 { USB_DEVICE(0x0db0, 0x6874) },
2485 { USB_DEVICE(0x0db0, 0xa861) },
2486 { USB_DEVICE(0x0db0, 0xa874) },
2487 /* Ovislink */
2488 { USB_DEVICE(0x1b75, 0x7318) },
2489 /* Ralink */
2490 { USB_DEVICE(0x04bb, 0x093d) },
2491 { USB_DEVICE(0x148f, 0x2573) },
2492 { USB_DEVICE(0x148f, 0x2671) },
2493 { USB_DEVICE(0x0812, 0x3101) },
2494 /* Qcom */
2495 { USB_DEVICE(0x18e8, 0x6196) },
2496 { USB_DEVICE(0x18e8, 0x6229) },
2497 { USB_DEVICE(0x18e8, 0x6238) },
2498 /* Samsung */
2499 { USB_DEVICE(0x04e8, 0x4471) },
2500 /* Senao */
2501 { USB_DEVICE(0x1740, 0x7100) },
2502 /* Sitecom */
2503 { USB_DEVICE(0x0df6, 0x0024) },
2504 { USB_DEVICE(0x0df6, 0x0027) },
2505 { USB_DEVICE(0x0df6, 0x002f) },
2506 { USB_DEVICE(0x0df6, 0x90ac) },
2507 { USB_DEVICE(0x0df6, 0x9712) },
2508 /* Surecom */
2509 { USB_DEVICE(0x0769, 0x31f3) },
2510 /* Tilgin */
2511 { USB_DEVICE(0x6933, 0x5001) },
2512 /* Philips */
2513 { USB_DEVICE(0x0471, 0x200a) },
2514 /* Planex */
2515 { USB_DEVICE(0x2019, 0xab01) },
2516 { USB_DEVICE(0x2019, 0xab50) },
2517 /* WideTell */
2518 { USB_DEVICE(0x7167, 0x3840) },
2519 /* Zcom */
2520 { USB_DEVICE(0x0cde, 0x001c) },
2521 /* ZyXEL */
2522 { USB_DEVICE(0x0586, 0x3415) },
2523 { 0, }
2526 MODULE_AUTHOR(DRV_PROJECT);
2527 MODULE_VERSION(DRV_VERSION);
2528 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2529 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2530 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2531 MODULE_FIRMWARE(FIRMWARE_RT2571);
2532 MODULE_LICENSE("GPL");
2534 static int rt73usb_probe(struct usb_interface *usb_intf,
2535 const struct usb_device_id *id)
2537 return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2540 static struct usb_driver rt73usb_driver = {
2541 .name = KBUILD_MODNAME,
2542 .id_table = rt73usb_device_table,
2543 .probe = rt73usb_probe,
2544 .disconnect = rt2x00usb_disconnect,
2545 .suspend = rt2x00usb_suspend,
2546 .resume = rt2x00usb_resume,
2547 .reset_resume = rt2x00usb_resume,
2548 .disable_hub_initiated_lpm = 1,
2551 module_usb_driver(rt73usb_driver);