fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / net / wireless / zd1211rw / zd_chip.c
blob73a49b868035ee26b18924ab7d48c06bd967add7
1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 /* This file implements all the hardware specific functions for the ZD1211
21 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
22 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
25 #include <linux/kernel.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
29 #include "zd_def.h"
30 #include "zd_chip.h"
31 #include "zd_mac.h"
32 #include "zd_rf.h"
34 void zd_chip_init(struct zd_chip *chip,
35 struct ieee80211_hw *hw,
36 struct usb_interface *intf)
38 memset(chip, 0, sizeof(*chip));
39 mutex_init(&chip->mutex);
40 zd_usb_init(&chip->usb, hw, intf);
41 zd_rf_init(&chip->rf);
44 void zd_chip_clear(struct zd_chip *chip)
46 ZD_ASSERT(!mutex_is_locked(&chip->mutex));
47 zd_usb_clear(&chip->usb);
48 zd_rf_clear(&chip->rf);
49 mutex_destroy(&chip->mutex);
50 ZD_MEMCLEAR(chip, sizeof(*chip));
53 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
55 u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
56 return scnprintf(buffer, size, "%02x-%02x-%02x",
57 addr[0], addr[1], addr[2]);
60 /* Prints an identifier line, which will support debugging. */
61 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
63 int i = 0;
65 i = scnprintf(buffer, size, "zd1211%s chip ",
66 zd_chip_is_zd1211b(chip) ? "b" : "");
67 i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
68 i += scnprintf(buffer+i, size-i, " ");
69 i += scnprint_mac_oui(chip, buffer+i, size-i);
70 i += scnprintf(buffer+i, size-i, " ");
71 i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
72 i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
73 chip->patch_cck_gain ? 'g' : '-',
74 chip->patch_cr157 ? '7' : '-',
75 chip->patch_6m_band_edge ? '6' : '-',
76 chip->new_phy_layout ? 'N' : '-',
77 chip->al2230s_bit ? 'S' : '-');
78 return i;
81 static void print_id(struct zd_chip *chip)
83 char buffer[80];
85 scnprint_id(chip, buffer, sizeof(buffer));
86 buffer[sizeof(buffer)-1] = 0;
87 dev_info(zd_chip_dev(chip), "%s\n", buffer);
90 static zd_addr_t inc_addr(zd_addr_t addr)
92 u16 a = (u16)addr;
93 /* Control registers use byte addressing, but everything else uses word
94 * addressing. */
95 if ((a & 0xf000) == CR_START)
96 a += 2;
97 else
98 a += 1;
99 return (zd_addr_t)a;
102 /* Read a variable number of 32-bit values. Parameter count is not allowed to
103 * exceed USB_MAX_IOREAD32_COUNT.
105 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
106 unsigned int count)
108 int r;
109 int i;
110 zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
111 u16 v16[USB_MAX_IOREAD32_COUNT * 2];
112 unsigned int count16;
114 if (count > USB_MAX_IOREAD32_COUNT)
115 return -EINVAL;
117 /* Use stack for values and addresses. */
118 count16 = 2 * count;
119 BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
120 BUG_ON(count16 * sizeof(u16) > sizeof(v16));
122 for (i = 0; i < count; i++) {
123 int j = 2*i;
124 /* We read the high word always first. */
125 a16[j] = inc_addr(addr[i]);
126 a16[j+1] = addr[i];
129 r = zd_ioread16v_locked(chip, v16, a16, count16);
130 if (r) {
131 dev_dbg_f(zd_chip_dev(chip),
132 "error: zd_ioread16v_locked. Error number %d\n", r);
133 return r;
136 for (i = 0; i < count; i++) {
137 int j = 2*i;
138 values[i] = (v16[j] << 16) | v16[j+1];
141 return 0;
144 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
145 const struct zd_ioreq32 *ioreqs,
146 unsigned int count)
148 int i, j, r;
149 struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
150 unsigned int count16;
152 /* Use stack for values and addresses. */
154 ZD_ASSERT(mutex_is_locked(&chip->mutex));
156 if (count == 0)
157 return 0;
158 if (count > USB_MAX_IOWRITE32_COUNT)
159 return -EINVAL;
161 count16 = 2 * count;
162 BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
164 for (i = 0; i < count; i++) {
165 j = 2*i;
166 /* We write the high word always first. */
167 ioreqs16[j].value = ioreqs[i].value >> 16;
168 ioreqs16[j].addr = inc_addr(ioreqs[i].addr);
169 ioreqs16[j+1].value = ioreqs[i].value;
170 ioreqs16[j+1].addr = ioreqs[i].addr;
173 r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
174 #ifdef DEBUG
175 if (r) {
176 dev_dbg_f(zd_chip_dev(chip),
177 "error %d in zd_usb_write16v\n", r);
179 #endif /* DEBUG */
180 return r;
183 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
184 unsigned int count)
186 int r;
188 zd_usb_iowrite16v_async_start(&chip->usb);
189 r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
190 if (r) {
191 zd_usb_iowrite16v_async_end(&chip->usb, 0);
192 return r;
194 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
197 int zd_iowrite16a_locked(struct zd_chip *chip,
198 const struct zd_ioreq16 *ioreqs, unsigned int count)
200 int r;
201 unsigned int i, j, t, max;
203 ZD_ASSERT(mutex_is_locked(&chip->mutex));
204 zd_usb_iowrite16v_async_start(&chip->usb);
206 for (i = 0; i < count; i += j + t) {
207 t = 0;
208 max = count-i;
209 if (max > USB_MAX_IOWRITE16_COUNT)
210 max = USB_MAX_IOWRITE16_COUNT;
211 for (j = 0; j < max; j++) {
212 if (!ioreqs[i+j].addr) {
213 t = 1;
214 break;
218 r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
219 if (r) {
220 zd_usb_iowrite16v_async_end(&chip->usb, 0);
221 dev_dbg_f(zd_chip_dev(chip),
222 "error zd_usb_iowrite16v. Error number %d\n",
224 return r;
228 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
231 /* Writes a variable number of 32 bit registers. The functions will split
232 * that in several USB requests. A split can be forced by inserting an IO
233 * request with an zero address field.
235 int zd_iowrite32a_locked(struct zd_chip *chip,
236 const struct zd_ioreq32 *ioreqs, unsigned int count)
238 int r;
239 unsigned int i, j, t, max;
241 zd_usb_iowrite16v_async_start(&chip->usb);
243 for (i = 0; i < count; i += j + t) {
244 t = 0;
245 max = count-i;
246 if (max > USB_MAX_IOWRITE32_COUNT)
247 max = USB_MAX_IOWRITE32_COUNT;
248 for (j = 0; j < max; j++) {
249 if (!ioreqs[i+j].addr) {
250 t = 1;
251 break;
255 r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
256 if (r) {
257 zd_usb_iowrite16v_async_end(&chip->usb, 0);
258 dev_dbg_f(zd_chip_dev(chip),
259 "error _zd_iowrite32v_locked."
260 " Error number %d\n", r);
261 return r;
265 return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
268 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
270 int r;
272 mutex_lock(&chip->mutex);
273 r = zd_ioread16_locked(chip, value, addr);
274 mutex_unlock(&chip->mutex);
275 return r;
278 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
280 int r;
282 mutex_lock(&chip->mutex);
283 r = zd_ioread32_locked(chip, value, addr);
284 mutex_unlock(&chip->mutex);
285 return r;
288 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
290 int r;
292 mutex_lock(&chip->mutex);
293 r = zd_iowrite16_locked(chip, value, addr);
294 mutex_unlock(&chip->mutex);
295 return r;
298 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
300 int r;
302 mutex_lock(&chip->mutex);
303 r = zd_iowrite32_locked(chip, value, addr);
304 mutex_unlock(&chip->mutex);
305 return r;
308 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
309 u32 *values, unsigned int count)
311 int r;
313 mutex_lock(&chip->mutex);
314 r = zd_ioread32v_locked(chip, values, addresses, count);
315 mutex_unlock(&chip->mutex);
316 return r;
319 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
320 unsigned int count)
322 int r;
324 mutex_lock(&chip->mutex);
325 r = zd_iowrite32a_locked(chip, ioreqs, count);
326 mutex_unlock(&chip->mutex);
327 return r;
330 static int read_pod(struct zd_chip *chip, u8 *rf_type)
332 int r;
333 u32 value;
335 ZD_ASSERT(mutex_is_locked(&chip->mutex));
336 r = zd_ioread32_locked(chip, &value, E2P_POD);
337 if (r)
338 goto error;
339 dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
341 /* FIXME: AL2230 handling (Bit 7 in POD) */
342 *rf_type = value & 0x0f;
343 chip->pa_type = (value >> 16) & 0x0f;
344 chip->patch_cck_gain = (value >> 8) & 0x1;
345 chip->patch_cr157 = (value >> 13) & 0x1;
346 chip->patch_6m_band_edge = (value >> 21) & 0x1;
347 chip->new_phy_layout = (value >> 31) & 0x1;
348 chip->al2230s_bit = (value >> 7) & 0x1;
349 chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
350 chip->supports_tx_led = 1;
351 if (value & (1 << 24)) { /* LED scenario */
352 if (value & (1 << 29))
353 chip->supports_tx_led = 0;
356 dev_dbg_f(zd_chip_dev(chip),
357 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
358 "patch 6M %d new PHY %d link LED%d tx led %d\n",
359 zd_rf_name(*rf_type), *rf_type,
360 chip->pa_type, chip->patch_cck_gain,
361 chip->patch_cr157, chip->patch_6m_band_edge,
362 chip->new_phy_layout,
363 chip->link_led == LED1 ? 1 : 2,
364 chip->supports_tx_led);
365 return 0;
366 error:
367 *rf_type = 0;
368 chip->pa_type = 0;
369 chip->patch_cck_gain = 0;
370 chip->patch_cr157 = 0;
371 chip->patch_6m_band_edge = 0;
372 chip->new_phy_layout = 0;
373 return r;
376 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
377 const struct zd_ioreq32 *in_reqs,
378 const char *type)
380 int r;
381 struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
383 if (mac_addr) {
384 reqs[0].value = (mac_addr[3] << 24)
385 | (mac_addr[2] << 16)
386 | (mac_addr[1] << 8)
387 | mac_addr[0];
388 reqs[1].value = (mac_addr[5] << 8)
389 | mac_addr[4];
390 dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
391 } else {
392 dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
395 mutex_lock(&chip->mutex);
396 r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
397 mutex_unlock(&chip->mutex);
398 return r;
401 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
402 * CR_MAC_ADDR_P2 must be overwritten
404 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
406 static const struct zd_ioreq32 reqs[2] = {
407 [0] = { .addr = CR_MAC_ADDR_P1 },
408 [1] = { .addr = CR_MAC_ADDR_P2 },
411 return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
414 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
416 static const struct zd_ioreq32 reqs[2] = {
417 [0] = { .addr = CR_BSSID_P1 },
418 [1] = { .addr = CR_BSSID_P2 },
421 return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
424 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
426 int r;
427 u32 value;
429 mutex_lock(&chip->mutex);
430 r = zd_ioread32_locked(chip, &value, E2P_SUBID);
431 mutex_unlock(&chip->mutex);
432 if (r)
433 return r;
435 *regdomain = value >> 16;
436 dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
438 return 0;
441 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
442 zd_addr_t e2p_addr, u32 guard)
444 int r;
445 int i;
446 u32 v;
448 ZD_ASSERT(mutex_is_locked(&chip->mutex));
449 for (i = 0;;) {
450 r = zd_ioread32_locked(chip, &v,
451 (zd_addr_t)((u16)e2p_addr+i/2));
452 if (r)
453 return r;
454 v -= guard;
455 if (i+4 < count) {
456 values[i++] = v;
457 values[i++] = v >> 8;
458 values[i++] = v >> 16;
459 values[i++] = v >> 24;
460 continue;
462 for (;i < count; i++)
463 values[i] = v >> (8*(i%3));
464 return 0;
468 static int read_pwr_cal_values(struct zd_chip *chip)
470 return read_values(chip, chip->pwr_cal_values,
471 E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
475 static int read_pwr_int_values(struct zd_chip *chip)
477 return read_values(chip, chip->pwr_int_values,
478 E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
479 E2P_PWR_INT_GUARD);
482 static int read_ofdm_cal_values(struct zd_chip *chip)
484 int r;
485 int i;
486 static const zd_addr_t addresses[] = {
487 E2P_36M_CAL_VALUE1,
488 E2P_48M_CAL_VALUE1,
489 E2P_54M_CAL_VALUE1,
492 for (i = 0; i < 3; i++) {
493 r = read_values(chip, chip->ofdm_cal_values[i],
494 E2P_CHANNEL_COUNT, addresses[i], 0);
495 if (r)
496 return r;
498 return 0;
501 static int read_cal_int_tables(struct zd_chip *chip)
503 int r;
505 r = read_pwr_cal_values(chip);
506 if (r)
507 return r;
508 r = read_pwr_int_values(chip);
509 if (r)
510 return r;
511 r = read_ofdm_cal_values(chip);
512 if (r)
513 return r;
514 return 0;
517 /* phy means physical registers */
518 int zd_chip_lock_phy_regs(struct zd_chip *chip)
520 int r;
521 u32 tmp;
523 ZD_ASSERT(mutex_is_locked(&chip->mutex));
524 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
525 if (r) {
526 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
527 return r;
530 tmp &= ~UNLOCK_PHY_REGS;
532 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
533 if (r)
534 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
535 return r;
538 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
540 int r;
541 u32 tmp;
543 ZD_ASSERT(mutex_is_locked(&chip->mutex));
544 r = zd_ioread32_locked(chip, &tmp, CR_REG1);
545 if (r) {
546 dev_err(zd_chip_dev(chip),
547 "error ioread32(CR_REG1): %d\n", r);
548 return r;
551 tmp |= UNLOCK_PHY_REGS;
553 r = zd_iowrite32_locked(chip, tmp, CR_REG1);
554 if (r)
555 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
556 return r;
559 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
560 static int patch_cr157(struct zd_chip *chip)
562 int r;
563 u16 value;
565 if (!chip->patch_cr157)
566 return 0;
568 r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
569 if (r)
570 return r;
572 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
573 return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
577 * 6M band edge can be optionally overwritten for certain RF's
578 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
579 * bit (for AL2230, AL2230S)
581 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
583 ZD_ASSERT(mutex_is_locked(&chip->mutex));
584 if (!chip->patch_6m_band_edge)
585 return 0;
587 return zd_rf_patch_6m_band_edge(&chip->rf, channel);
590 /* Generic implementation of 6M band edge patching, used by most RFs via
591 * zd_rf_generic_patch_6m() */
592 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
594 struct zd_ioreq16 ioreqs[] = {
595 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
596 { ZD_CR47, 0x1e },
599 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
600 if (channel == 1 || channel == 11)
601 ioreqs[0].value = 0x12;
603 dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
604 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
607 static int zd1211_hw_reset_phy(struct zd_chip *chip)
609 static const struct zd_ioreq16 ioreqs[] = {
610 { ZD_CR0, 0x0a }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
611 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xa0 },
612 { ZD_CR10, 0x81 }, { ZD_CR11, 0x00 }, { ZD_CR12, 0x7f },
613 { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 }, { ZD_CR15, 0x3d },
614 { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e }, { ZD_CR18, 0x0a },
615 { ZD_CR19, 0x48 }, { ZD_CR20, 0x0c }, { ZD_CR21, 0x0c },
616 { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 }, { ZD_CR24, 0x14 },
617 { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 }, { ZD_CR27, 0x19 },
618 { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 }, { ZD_CR30, 0x4b },
619 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
620 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
621 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
622 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
623 { ZD_CR43, 0x10 }, { ZD_CR44, 0x12 }, { ZD_CR46, 0xff },
624 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
625 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
626 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
627 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
628 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
629 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
630 { ZD_CR79, 0x68 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
631 { ZD_CR82, 0x00 }, { ZD_CR83, 0x00 }, { ZD_CR84, 0x00 },
632 { ZD_CR85, 0x02 }, { ZD_CR86, 0x00 }, { ZD_CR87, 0x00 },
633 { ZD_CR88, 0xff }, { ZD_CR89, 0xfc }, { ZD_CR90, 0x00 },
634 { ZD_CR91, 0x00 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x08 },
635 { ZD_CR94, 0x00 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0xff },
636 { ZD_CR97, 0xe7 }, { ZD_CR98, 0x00 }, { ZD_CR99, 0x00 },
637 { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
638 { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
639 { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
640 { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
641 { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
642 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
643 { },
644 { ZD_CR5, 0x00 }, { ZD_CR6, 0x00 }, { ZD_CR7, 0x00 },
645 { ZD_CR8, 0x00 }, { ZD_CR9, 0x20 }, { ZD_CR12, 0xf0 },
646 { ZD_CR20, 0x0e }, { ZD_CR21, 0x0e }, { ZD_CR27, 0x10 },
647 { ZD_CR44, 0x33 }, { ZD_CR47, 0x1E }, { ZD_CR83, 0x24 },
648 { ZD_CR84, 0x04 }, { ZD_CR85, 0x00 }, { ZD_CR86, 0x0C },
649 { ZD_CR87, 0x12 }, { ZD_CR88, 0x0C }, { ZD_CR89, 0x00 },
650 { ZD_CR90, 0x10 }, { ZD_CR91, 0x08 }, { ZD_CR93, 0x00 },
651 { ZD_CR94, 0x01 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0x50 },
652 { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 }, { ZD_CR101, 0x13 },
653 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
654 { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
655 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
656 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
657 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
658 { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
659 { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
660 { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
661 { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
662 { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
663 { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
664 { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
665 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
666 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
667 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
668 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
669 /* Note: ZD_CR204 must lead the ZD_CR203 */
670 { ZD_CR204, 0x7d },
671 { },
672 { ZD_CR203, 0x30 },
675 int r, t;
677 dev_dbg_f(zd_chip_dev(chip), "\n");
679 r = zd_chip_lock_phy_regs(chip);
680 if (r)
681 goto out;
683 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
684 if (r)
685 goto unlock;
687 r = patch_cr157(chip);
688 unlock:
689 t = zd_chip_unlock_phy_regs(chip);
690 if (t && !r)
691 r = t;
692 out:
693 return r;
696 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
698 static const struct zd_ioreq16 ioreqs[] = {
699 { ZD_CR0, 0x14 }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
700 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xe0 },
701 { ZD_CR10, 0x81 },
702 /* power control { { ZD_CR11, 1 << 6 }, */
703 { ZD_CR11, 0x00 },
704 { ZD_CR12, 0xf0 }, { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 },
705 { ZD_CR15, 0x3d }, { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e },
706 { ZD_CR18, 0x0a }, { ZD_CR19, 0x48 },
707 { ZD_CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
708 { ZD_CR21, 0x0e }, { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 },
709 { ZD_CR24, 0x14 }, { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 },
710 { ZD_CR27, 0x10 }, { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 },
711 { ZD_CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
712 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
713 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
714 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
715 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
716 { ZD_CR43, 0x10 }, { ZD_CR44, 0x33 }, { ZD_CR46, 0xff },
717 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
718 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
719 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
720 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
721 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
722 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
723 { ZD_CR79, 0xf0 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
724 { ZD_CR82, 0x00 }, { ZD_CR83, 0x24 }, { ZD_CR84, 0x04 },
725 { ZD_CR85, 0x00 }, { ZD_CR86, 0x0c }, { ZD_CR87, 0x12 },
726 { ZD_CR88, 0x0c }, { ZD_CR89, 0x00 }, { ZD_CR90, 0x58 },
727 { ZD_CR91, 0x04 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x00 },
728 { ZD_CR94, 0x01 },
729 { ZD_CR95, 0x20 }, /* ZD1211B */
730 { ZD_CR96, 0x50 }, { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 },
731 { ZD_CR99, 0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
732 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
733 { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
734 { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
735 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
736 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
737 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
738 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
739 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
740 { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
741 { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
742 { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
743 { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
744 { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
745 { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
746 { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
747 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
748 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
749 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
750 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
751 /* Note: ZD_CR204 must lead the ZD_CR203 */
752 { ZD_CR204, 0x7d },
754 { ZD_CR203, 0x30 },
757 int r, t;
759 dev_dbg_f(zd_chip_dev(chip), "\n");
761 r = zd_chip_lock_phy_regs(chip);
762 if (r)
763 goto out;
765 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
766 t = zd_chip_unlock_phy_regs(chip);
767 if (t && !r)
768 r = t;
769 out:
770 return r;
773 static int hw_reset_phy(struct zd_chip *chip)
775 return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
776 zd1211_hw_reset_phy(chip);
779 static int zd1211_hw_init_hmac(struct zd_chip *chip)
781 static const struct zd_ioreq32 ioreqs[] = {
782 { CR_ZD1211_RETRY_MAX, ZD1211_RETRY_COUNT },
783 { CR_RX_THRESHOLD, 0x000c0640 },
786 dev_dbg_f(zd_chip_dev(chip), "\n");
787 ZD_ASSERT(mutex_is_locked(&chip->mutex));
788 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
791 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
793 static const struct zd_ioreq32 ioreqs[] = {
794 { CR_ZD1211B_RETRY_MAX, ZD1211B_RETRY_COUNT },
795 { CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f },
796 { CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f },
797 { CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f },
798 { CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f },
799 { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
800 { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
801 { CR_ZD1211B_TXOP, 0x01800824 },
802 { CR_RX_THRESHOLD, 0x000c0eff, },
805 dev_dbg_f(zd_chip_dev(chip), "\n");
806 ZD_ASSERT(mutex_is_locked(&chip->mutex));
807 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
810 static int hw_init_hmac(struct zd_chip *chip)
812 int r;
813 static const struct zd_ioreq32 ioreqs[] = {
814 { CR_ACK_TIMEOUT_EXT, 0x20 },
815 { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
816 { CR_SNIFFER_ON, 0 },
817 { CR_RX_FILTER, STA_RX_FILTER },
818 { CR_GROUP_HASH_P1, 0x00 },
819 { CR_GROUP_HASH_P2, 0x80000000 },
820 { CR_REG1, 0xa4 },
821 { CR_ADDA_PWR_DWN, 0x7f },
822 { CR_BCN_PLCP_CFG, 0x00f00401 },
823 { CR_PHY_DELAY, 0x00 },
824 { CR_ACK_TIMEOUT_EXT, 0x80 },
825 { CR_ADDA_PWR_DWN, 0x00 },
826 { CR_ACK_TIME_80211, 0x100 },
827 { CR_RX_PE_DELAY, 0x70 },
828 { CR_PS_CTRL, 0x10000000 },
829 { CR_RTS_CTS_RATE, 0x02030203 },
830 { CR_AFTER_PNP, 0x1 },
831 { CR_WEP_PROTECT, 0x114 },
832 { CR_IFS_VALUE, IFS_VALUE_DEFAULT },
833 { CR_CAM_MODE, MODE_AP_WDS},
836 ZD_ASSERT(mutex_is_locked(&chip->mutex));
837 r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
838 if (r)
839 return r;
841 return zd_chip_is_zd1211b(chip) ?
842 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
845 struct aw_pt_bi {
846 u32 atim_wnd_period;
847 u32 pre_tbtt;
848 u32 beacon_interval;
851 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
853 int r;
854 static const zd_addr_t aw_pt_bi_addr[] =
855 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
856 u32 values[3];
858 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
859 ARRAY_SIZE(aw_pt_bi_addr));
860 if (r) {
861 memset(s, 0, sizeof(*s));
862 return r;
865 s->atim_wnd_period = values[0];
866 s->pre_tbtt = values[1];
867 s->beacon_interval = values[2];
868 return 0;
871 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
873 struct zd_ioreq32 reqs[3];
874 u16 b_interval = s->beacon_interval & 0xffff;
876 if (b_interval <= 5)
877 b_interval = 5;
878 if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
879 s->pre_tbtt = b_interval - 1;
880 if (s->atim_wnd_period >= s->pre_tbtt)
881 s->atim_wnd_period = s->pre_tbtt - 1;
883 reqs[0].addr = CR_ATIM_WND_PERIOD;
884 reqs[0].value = s->atim_wnd_period;
885 reqs[1].addr = CR_PRE_TBTT;
886 reqs[1].value = s->pre_tbtt;
887 reqs[2].addr = CR_BCN_INTERVAL;
888 reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
890 return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
894 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
895 u8 dtim_period, int type)
897 int r;
898 struct aw_pt_bi s;
899 u32 b_interval, mode_flag;
901 ZD_ASSERT(mutex_is_locked(&chip->mutex));
903 if (interval > 0) {
904 switch (type) {
905 case NL80211_IFTYPE_ADHOC:
906 case NL80211_IFTYPE_MESH_POINT:
907 mode_flag = BCN_MODE_IBSS;
908 break;
909 case NL80211_IFTYPE_AP:
910 mode_flag = BCN_MODE_AP;
911 break;
912 default:
913 mode_flag = 0;
914 break;
916 } else {
917 dtim_period = 0;
918 mode_flag = 0;
921 b_interval = mode_flag | (dtim_period << 16) | interval;
923 r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
924 if (r)
925 return r;
926 r = get_aw_pt_bi(chip, &s);
927 if (r)
928 return r;
929 return set_aw_pt_bi(chip, &s);
932 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
933 int type)
935 int r;
937 mutex_lock(&chip->mutex);
938 r = set_beacon_interval(chip, interval, dtim_period, type);
939 mutex_unlock(&chip->mutex);
940 return r;
943 static int hw_init(struct zd_chip *chip)
945 int r;
947 dev_dbg_f(zd_chip_dev(chip), "\n");
948 ZD_ASSERT(mutex_is_locked(&chip->mutex));
949 r = hw_reset_phy(chip);
950 if (r)
951 return r;
953 r = hw_init_hmac(chip);
954 if (r)
955 return r;
957 return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
960 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
962 return (zd_addr_t)((u16)chip->fw_regs_base + offset);
965 #ifdef DEBUG
966 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
967 const char *addr_string)
969 int r;
970 u32 value;
972 r = zd_ioread32_locked(chip, &value, addr);
973 if (r) {
974 dev_dbg_f(zd_chip_dev(chip),
975 "error reading %s. Error number %d\n", addr_string, r);
976 return r;
979 dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
980 addr_string, (unsigned int)value);
981 return 0;
984 static int test_init(struct zd_chip *chip)
986 int r;
988 r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
989 if (r)
990 return r;
991 r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
992 if (r)
993 return r;
994 return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
997 static void dump_fw_registers(struct zd_chip *chip)
999 const zd_addr_t addr[4] = {
1000 fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
1001 fw_reg_addr(chip, FW_REG_USB_SPEED),
1002 fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
1003 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1006 int r;
1007 u16 values[4];
1009 r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
1010 ARRAY_SIZE(addr));
1011 if (r) {
1012 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1014 return;
1017 dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1018 dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1019 dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1020 dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1022 #endif /* DEBUG */
1024 static int print_fw_version(struct zd_chip *chip)
1026 struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1027 int r;
1028 u16 version;
1030 r = zd_ioread16_locked(chip, &version,
1031 fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1032 if (r)
1033 return r;
1035 dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1037 snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1038 "%04hx", version);
1040 return 0;
1043 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1045 u32 rates;
1046 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1047 /* This sets the mandatory rates, which only depend from the standard
1048 * that the device is supporting. Until further notice we should try
1049 * to support 802.11g also for full speed USB.
1051 if (!gmode)
1052 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1053 else
1054 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1055 CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1057 return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1060 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1061 int preamble)
1063 u32 value = 0;
1065 dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1066 value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1067 value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1069 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1070 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1071 value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1072 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1073 value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1075 return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1078 int zd_chip_enable_hwint(struct zd_chip *chip)
1080 int r;
1082 mutex_lock(&chip->mutex);
1083 r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1084 mutex_unlock(&chip->mutex);
1085 return r;
1088 static int disable_hwint(struct zd_chip *chip)
1090 return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1093 int zd_chip_disable_hwint(struct zd_chip *chip)
1095 int r;
1097 mutex_lock(&chip->mutex);
1098 r = disable_hwint(chip);
1099 mutex_unlock(&chip->mutex);
1100 return r;
1103 static int read_fw_regs_offset(struct zd_chip *chip)
1105 int r;
1107 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1108 r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1109 FWRAW_REGS_ADDR);
1110 if (r)
1111 return r;
1112 dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1113 (u16)chip->fw_regs_base);
1115 return 0;
1118 /* Read mac address using pre-firmware interface */
1119 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1121 dev_dbg_f(zd_chip_dev(chip), "\n");
1122 return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1123 ETH_ALEN);
1126 int zd_chip_init_hw(struct zd_chip *chip)
1128 int r;
1129 u8 rf_type;
1131 dev_dbg_f(zd_chip_dev(chip), "\n");
1133 mutex_lock(&chip->mutex);
1135 #ifdef DEBUG
1136 r = test_init(chip);
1137 if (r)
1138 goto out;
1139 #endif
1140 r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1141 if (r)
1142 goto out;
1144 r = read_fw_regs_offset(chip);
1145 if (r)
1146 goto out;
1148 /* GPI is always disabled, also in the other driver.
1150 r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1151 if (r)
1152 goto out;
1153 r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1154 if (r)
1155 goto out;
1156 /* Currently we support IEEE 802.11g for full and high speed USB.
1157 * It might be discussed, whether we should support pure b mode for
1158 * full speed USB.
1160 r = set_mandatory_rates(chip, 1);
1161 if (r)
1162 goto out;
1163 /* Disabling interrupts is certainly a smart thing here.
1165 r = disable_hwint(chip);
1166 if (r)
1167 goto out;
1168 r = read_pod(chip, &rf_type);
1169 if (r)
1170 goto out;
1171 r = hw_init(chip);
1172 if (r)
1173 goto out;
1174 r = zd_rf_init_hw(&chip->rf, rf_type);
1175 if (r)
1176 goto out;
1178 r = print_fw_version(chip);
1179 if (r)
1180 goto out;
1182 #ifdef DEBUG
1183 dump_fw_registers(chip);
1184 r = test_init(chip);
1185 if (r)
1186 goto out;
1187 #endif /* DEBUG */
1189 r = read_cal_int_tables(chip);
1190 if (r)
1191 goto out;
1193 print_id(chip);
1194 out:
1195 mutex_unlock(&chip->mutex);
1196 return r;
1199 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1201 u8 value = chip->pwr_int_values[channel - 1];
1202 return zd_iowrite16_locked(chip, value, ZD_CR31);
1205 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1207 u8 value = chip->pwr_cal_values[channel-1];
1208 return zd_iowrite16_locked(chip, value, ZD_CR68);
1211 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1213 struct zd_ioreq16 ioreqs[3];
1215 ioreqs[0].addr = ZD_CR67;
1216 ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1217 ioreqs[1].addr = ZD_CR66;
1218 ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1219 ioreqs[2].addr = ZD_CR65;
1220 ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1222 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1225 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1226 u8 channel)
1228 int r;
1230 if (!zd_rf_should_update_pwr_int(&chip->rf))
1231 return 0;
1233 r = update_pwr_int(chip, channel);
1234 if (r)
1235 return r;
1236 if (zd_chip_is_zd1211b(chip)) {
1237 static const struct zd_ioreq16 ioreqs[] = {
1238 { ZD_CR69, 0x28 },
1240 { ZD_CR69, 0x2a },
1243 r = update_ofdm_cal(chip, channel);
1244 if (r)
1245 return r;
1246 r = update_pwr_cal(chip, channel);
1247 if (r)
1248 return r;
1249 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1250 if (r)
1251 return r;
1254 return 0;
1257 /* The CCK baseband gain can be optionally patched by the EEPROM */
1258 static int patch_cck_gain(struct zd_chip *chip)
1260 int r;
1261 u32 value;
1263 if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1264 return 0;
1266 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1267 r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1268 if (r)
1269 return r;
1270 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1271 return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1274 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1276 int r, t;
1278 mutex_lock(&chip->mutex);
1279 r = zd_chip_lock_phy_regs(chip);
1280 if (r)
1281 goto out;
1282 r = zd_rf_set_channel(&chip->rf, channel);
1283 if (r)
1284 goto unlock;
1285 r = update_channel_integration_and_calibration(chip, channel);
1286 if (r)
1287 goto unlock;
1288 r = patch_cck_gain(chip);
1289 if (r)
1290 goto unlock;
1291 r = patch_6m_band_edge(chip, channel);
1292 if (r)
1293 goto unlock;
1294 r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1295 unlock:
1296 t = zd_chip_unlock_phy_regs(chip);
1297 if (t && !r)
1298 r = t;
1299 out:
1300 mutex_unlock(&chip->mutex);
1301 return r;
1304 u8 zd_chip_get_channel(struct zd_chip *chip)
1306 u8 channel;
1308 mutex_lock(&chip->mutex);
1309 channel = chip->rf.channel;
1310 mutex_unlock(&chip->mutex);
1311 return channel;
1314 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1316 const zd_addr_t a[] = {
1317 fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1318 CR_LED,
1321 int r;
1322 u16 v[ARRAY_SIZE(a)];
1323 struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1324 [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1325 [1] = { CR_LED },
1327 u16 other_led;
1329 mutex_lock(&chip->mutex);
1330 r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1331 if (r)
1332 goto out;
1334 other_led = chip->link_led == LED1 ? LED2 : LED1;
1336 switch (status) {
1337 case ZD_LED_OFF:
1338 ioreqs[0].value = FW_LINK_OFF;
1339 ioreqs[1].value = v[1] & ~(LED1|LED2);
1340 break;
1341 case ZD_LED_SCANNING:
1342 ioreqs[0].value = FW_LINK_OFF;
1343 ioreqs[1].value = v[1] & ~other_led;
1344 if (get_seconds() % 3 == 0) {
1345 ioreqs[1].value &= ~chip->link_led;
1346 } else {
1347 ioreqs[1].value |= chip->link_led;
1349 break;
1350 case ZD_LED_ASSOCIATED:
1351 ioreqs[0].value = FW_LINK_TX;
1352 ioreqs[1].value = v[1] & ~other_led;
1353 ioreqs[1].value |= chip->link_led;
1354 break;
1355 default:
1356 r = -EINVAL;
1357 goto out;
1360 if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1361 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1362 if (r)
1363 goto out;
1365 r = 0;
1366 out:
1367 mutex_unlock(&chip->mutex);
1368 return r;
1371 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1373 int r;
1375 if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1376 return -EINVAL;
1378 mutex_lock(&chip->mutex);
1379 r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1380 mutex_unlock(&chip->mutex);
1381 return r;
1384 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1386 return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1390 * zd_rx_rate - report zd-rate
1391 * @rx_frame - received frame
1392 * @rx_status - rx_status as given by the device
1394 * This function converts the rate as encoded in the received packet to the
1395 * zd-rate, we are using on other places in the driver.
1397 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1399 u8 zd_rate;
1400 if (status->frame_status & ZD_RX_OFDM) {
1401 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1402 } else {
1403 switch (zd_cck_plcp_header_signal(rx_frame)) {
1404 case ZD_CCK_PLCP_SIGNAL_1M:
1405 zd_rate = ZD_CCK_RATE_1M;
1406 break;
1407 case ZD_CCK_PLCP_SIGNAL_2M:
1408 zd_rate = ZD_CCK_RATE_2M;
1409 break;
1410 case ZD_CCK_PLCP_SIGNAL_5M5:
1411 zd_rate = ZD_CCK_RATE_5_5M;
1412 break;
1413 case ZD_CCK_PLCP_SIGNAL_11M:
1414 zd_rate = ZD_CCK_RATE_11M;
1415 break;
1416 default:
1417 zd_rate = 0;
1421 return zd_rate;
1424 int zd_chip_switch_radio_on(struct zd_chip *chip)
1426 int r;
1428 mutex_lock(&chip->mutex);
1429 r = zd_switch_radio_on(&chip->rf);
1430 mutex_unlock(&chip->mutex);
1431 return r;
1434 int zd_chip_switch_radio_off(struct zd_chip *chip)
1436 int r;
1438 mutex_lock(&chip->mutex);
1439 r = zd_switch_radio_off(&chip->rf);
1440 mutex_unlock(&chip->mutex);
1441 return r;
1444 int zd_chip_enable_int(struct zd_chip *chip)
1446 int r;
1448 mutex_lock(&chip->mutex);
1449 r = zd_usb_enable_int(&chip->usb);
1450 mutex_unlock(&chip->mutex);
1451 return r;
1454 void zd_chip_disable_int(struct zd_chip *chip)
1456 mutex_lock(&chip->mutex);
1457 zd_usb_disable_int(&chip->usb);
1458 mutex_unlock(&chip->mutex);
1460 /* cancel pending interrupt work */
1461 cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1464 int zd_chip_enable_rxtx(struct zd_chip *chip)
1466 int r;
1468 mutex_lock(&chip->mutex);
1469 zd_usb_enable_tx(&chip->usb);
1470 r = zd_usb_enable_rx(&chip->usb);
1471 zd_tx_watchdog_enable(&chip->usb);
1472 mutex_unlock(&chip->mutex);
1473 return r;
1476 void zd_chip_disable_rxtx(struct zd_chip *chip)
1478 mutex_lock(&chip->mutex);
1479 zd_tx_watchdog_disable(&chip->usb);
1480 zd_usb_disable_rx(&chip->usb);
1481 zd_usb_disable_tx(&chip->usb);
1482 mutex_unlock(&chip->mutex);
1485 int zd_rfwritev_locked(struct zd_chip *chip,
1486 const u32* values, unsigned int count, u8 bits)
1488 int r;
1489 unsigned int i;
1491 for (i = 0; i < count; i++) {
1492 r = zd_rfwrite_locked(chip, values[i], bits);
1493 if (r)
1494 return r;
1497 return 0;
1501 * We can optionally program the RF directly through CR regs, if supported by
1502 * the hardware. This is much faster than the older method.
1504 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1506 const struct zd_ioreq16 ioreqs[] = {
1507 { ZD_CR244, (value >> 16) & 0xff },
1508 { ZD_CR243, (value >> 8) & 0xff },
1509 { ZD_CR242, value & 0xff },
1511 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1512 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1515 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1516 const u32 *values, unsigned int count)
1518 int r;
1519 unsigned int i;
1521 for (i = 0; i < count; i++) {
1522 r = zd_rfwrite_cr_locked(chip, values[i]);
1523 if (r)
1524 return r;
1527 return 0;
1530 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1531 struct zd_mc_hash *hash)
1533 const struct zd_ioreq32 ioreqs[] = {
1534 { CR_GROUP_HASH_P1, hash->low },
1535 { CR_GROUP_HASH_P2, hash->high },
1538 return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1541 u64 zd_chip_get_tsf(struct zd_chip *chip)
1543 int r;
1544 static const zd_addr_t aw_pt_bi_addr[] =
1545 { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1546 u32 values[2];
1547 u64 tsf;
1549 mutex_lock(&chip->mutex);
1550 r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1551 ARRAY_SIZE(aw_pt_bi_addr));
1552 mutex_unlock(&chip->mutex);
1553 if (r)
1554 return 0;
1556 tsf = values[1];
1557 tsf = (tsf << 32) | values[0];
1559 return tsf;