1 /* ZD1211 USB-WLAN driver for Linux
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 /* This file implements all the hardware specific functions for the ZD1211
21 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
22 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
25 #include <linux/kernel.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
34 void zd_chip_init(struct zd_chip
*chip
,
35 struct ieee80211_hw
*hw
,
36 struct usb_interface
*intf
)
38 memset(chip
, 0, sizeof(*chip
));
39 mutex_init(&chip
->mutex
);
40 zd_usb_init(&chip
->usb
, hw
, intf
);
41 zd_rf_init(&chip
->rf
);
44 void zd_chip_clear(struct zd_chip
*chip
)
46 ZD_ASSERT(!mutex_is_locked(&chip
->mutex
));
47 zd_usb_clear(&chip
->usb
);
48 zd_rf_clear(&chip
->rf
);
49 mutex_destroy(&chip
->mutex
);
50 ZD_MEMCLEAR(chip
, sizeof(*chip
));
53 static int scnprint_mac_oui(struct zd_chip
*chip
, char *buffer
, size_t size
)
55 u8
*addr
= zd_mac_get_perm_addr(zd_chip_to_mac(chip
));
56 return scnprintf(buffer
, size
, "%02x-%02x-%02x",
57 addr
[0], addr
[1], addr
[2]);
60 /* Prints an identifier line, which will support debugging. */
61 static int scnprint_id(struct zd_chip
*chip
, char *buffer
, size_t size
)
65 i
= scnprintf(buffer
, size
, "zd1211%s chip ",
66 zd_chip_is_zd1211b(chip
) ? "b" : "");
67 i
+= zd_usb_scnprint_id(&chip
->usb
, buffer
+i
, size
-i
);
68 i
+= scnprintf(buffer
+i
, size
-i
, " ");
69 i
+= scnprint_mac_oui(chip
, buffer
+i
, size
-i
);
70 i
+= scnprintf(buffer
+i
, size
-i
, " ");
71 i
+= zd_rf_scnprint_id(&chip
->rf
, buffer
+i
, size
-i
);
72 i
+= scnprintf(buffer
+i
, size
-i
, " pa%1x %c%c%c%c%c", chip
->pa_type
,
73 chip
->patch_cck_gain
? 'g' : '-',
74 chip
->patch_cr157
? '7' : '-',
75 chip
->patch_6m_band_edge
? '6' : '-',
76 chip
->new_phy_layout
? 'N' : '-',
77 chip
->al2230s_bit
? 'S' : '-');
81 static void print_id(struct zd_chip
*chip
)
85 scnprint_id(chip
, buffer
, sizeof(buffer
));
86 buffer
[sizeof(buffer
)-1] = 0;
87 dev_info(zd_chip_dev(chip
), "%s\n", buffer
);
90 static zd_addr_t
inc_addr(zd_addr_t addr
)
93 /* Control registers use byte addressing, but everything else uses word
95 if ((a
& 0xf000) == CR_START
)
102 /* Read a variable number of 32-bit values. Parameter count is not allowed to
103 * exceed USB_MAX_IOREAD32_COUNT.
105 int zd_ioread32v_locked(struct zd_chip
*chip
, u32
*values
, const zd_addr_t
*addr
,
110 zd_addr_t a16
[USB_MAX_IOREAD32_COUNT
* 2];
111 u16 v16
[USB_MAX_IOREAD32_COUNT
* 2];
112 unsigned int count16
;
114 if (count
> USB_MAX_IOREAD32_COUNT
)
117 /* Use stack for values and addresses. */
119 BUG_ON(count16
* sizeof(zd_addr_t
) > sizeof(a16
));
120 BUG_ON(count16
* sizeof(u16
) > sizeof(v16
));
122 for (i
= 0; i
< count
; i
++) {
124 /* We read the high word always first. */
125 a16
[j
] = inc_addr(addr
[i
]);
129 r
= zd_ioread16v_locked(chip
, v16
, a16
, count16
);
131 dev_dbg_f(zd_chip_dev(chip
),
132 "error: zd_ioread16v_locked. Error number %d\n", r
);
136 for (i
= 0; i
< count
; i
++) {
138 values
[i
] = (v16
[j
] << 16) | v16
[j
+1];
144 static int _zd_iowrite32v_async_locked(struct zd_chip
*chip
,
145 const struct zd_ioreq32
*ioreqs
,
149 struct zd_ioreq16 ioreqs16
[USB_MAX_IOWRITE32_COUNT
* 2];
150 unsigned int count16
;
152 /* Use stack for values and addresses. */
154 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
158 if (count
> USB_MAX_IOWRITE32_COUNT
)
162 BUG_ON(count16
* sizeof(struct zd_ioreq16
) > sizeof(ioreqs16
));
164 for (i
= 0; i
< count
; i
++) {
166 /* We write the high word always first. */
167 ioreqs16
[j
].value
= ioreqs
[i
].value
>> 16;
168 ioreqs16
[j
].addr
= inc_addr(ioreqs
[i
].addr
);
169 ioreqs16
[j
+1].value
= ioreqs
[i
].value
;
170 ioreqs16
[j
+1].addr
= ioreqs
[i
].addr
;
173 r
= zd_usb_iowrite16v_async(&chip
->usb
, ioreqs16
, count16
);
176 dev_dbg_f(zd_chip_dev(chip
),
177 "error %d in zd_usb_write16v\n", r
);
183 int _zd_iowrite32v_locked(struct zd_chip
*chip
, const struct zd_ioreq32
*ioreqs
,
188 zd_usb_iowrite16v_async_start(&chip
->usb
);
189 r
= _zd_iowrite32v_async_locked(chip
, ioreqs
, count
);
191 zd_usb_iowrite16v_async_end(&chip
->usb
, 0);
194 return zd_usb_iowrite16v_async_end(&chip
->usb
, 50 /* ms */);
197 int zd_iowrite16a_locked(struct zd_chip
*chip
,
198 const struct zd_ioreq16
*ioreqs
, unsigned int count
)
201 unsigned int i
, j
, t
, max
;
203 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
204 zd_usb_iowrite16v_async_start(&chip
->usb
);
206 for (i
= 0; i
< count
; i
+= j
+ t
) {
209 if (max
> USB_MAX_IOWRITE16_COUNT
)
210 max
= USB_MAX_IOWRITE16_COUNT
;
211 for (j
= 0; j
< max
; j
++) {
212 if (!ioreqs
[i
+j
].addr
) {
218 r
= zd_usb_iowrite16v_async(&chip
->usb
, &ioreqs
[i
], j
);
220 zd_usb_iowrite16v_async_end(&chip
->usb
, 0);
221 dev_dbg_f(zd_chip_dev(chip
),
222 "error zd_usb_iowrite16v. Error number %d\n",
228 return zd_usb_iowrite16v_async_end(&chip
->usb
, 50 /* ms */);
231 /* Writes a variable number of 32 bit registers. The functions will split
232 * that in several USB requests. A split can be forced by inserting an IO
233 * request with an zero address field.
235 int zd_iowrite32a_locked(struct zd_chip
*chip
,
236 const struct zd_ioreq32
*ioreqs
, unsigned int count
)
239 unsigned int i
, j
, t
, max
;
241 zd_usb_iowrite16v_async_start(&chip
->usb
);
243 for (i
= 0; i
< count
; i
+= j
+ t
) {
246 if (max
> USB_MAX_IOWRITE32_COUNT
)
247 max
= USB_MAX_IOWRITE32_COUNT
;
248 for (j
= 0; j
< max
; j
++) {
249 if (!ioreqs
[i
+j
].addr
) {
255 r
= _zd_iowrite32v_async_locked(chip
, &ioreqs
[i
], j
);
257 zd_usb_iowrite16v_async_end(&chip
->usb
, 0);
258 dev_dbg_f(zd_chip_dev(chip
),
259 "error _zd_iowrite32v_locked."
260 " Error number %d\n", r
);
265 return zd_usb_iowrite16v_async_end(&chip
->usb
, 50 /* ms */);
268 int zd_ioread16(struct zd_chip
*chip
, zd_addr_t addr
, u16
*value
)
272 mutex_lock(&chip
->mutex
);
273 r
= zd_ioread16_locked(chip
, value
, addr
);
274 mutex_unlock(&chip
->mutex
);
278 int zd_ioread32(struct zd_chip
*chip
, zd_addr_t addr
, u32
*value
)
282 mutex_lock(&chip
->mutex
);
283 r
= zd_ioread32_locked(chip
, value
, addr
);
284 mutex_unlock(&chip
->mutex
);
288 int zd_iowrite16(struct zd_chip
*chip
, zd_addr_t addr
, u16 value
)
292 mutex_lock(&chip
->mutex
);
293 r
= zd_iowrite16_locked(chip
, value
, addr
);
294 mutex_unlock(&chip
->mutex
);
298 int zd_iowrite32(struct zd_chip
*chip
, zd_addr_t addr
, u32 value
)
302 mutex_lock(&chip
->mutex
);
303 r
= zd_iowrite32_locked(chip
, value
, addr
);
304 mutex_unlock(&chip
->mutex
);
308 int zd_ioread32v(struct zd_chip
*chip
, const zd_addr_t
*addresses
,
309 u32
*values
, unsigned int count
)
313 mutex_lock(&chip
->mutex
);
314 r
= zd_ioread32v_locked(chip
, values
, addresses
, count
);
315 mutex_unlock(&chip
->mutex
);
319 int zd_iowrite32a(struct zd_chip
*chip
, const struct zd_ioreq32
*ioreqs
,
324 mutex_lock(&chip
->mutex
);
325 r
= zd_iowrite32a_locked(chip
, ioreqs
, count
);
326 mutex_unlock(&chip
->mutex
);
330 static int read_pod(struct zd_chip
*chip
, u8
*rf_type
)
335 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
336 r
= zd_ioread32_locked(chip
, &value
, E2P_POD
);
339 dev_dbg_f(zd_chip_dev(chip
), "E2P_POD %#010x\n", value
);
341 /* FIXME: AL2230 handling (Bit 7 in POD) */
342 *rf_type
= value
& 0x0f;
343 chip
->pa_type
= (value
>> 16) & 0x0f;
344 chip
->patch_cck_gain
= (value
>> 8) & 0x1;
345 chip
->patch_cr157
= (value
>> 13) & 0x1;
346 chip
->patch_6m_band_edge
= (value
>> 21) & 0x1;
347 chip
->new_phy_layout
= (value
>> 31) & 0x1;
348 chip
->al2230s_bit
= (value
>> 7) & 0x1;
349 chip
->link_led
= ((value
>> 4) & 1) ? LED1
: LED2
;
350 chip
->supports_tx_led
= 1;
351 if (value
& (1 << 24)) { /* LED scenario */
352 if (value
& (1 << 29))
353 chip
->supports_tx_led
= 0;
356 dev_dbg_f(zd_chip_dev(chip
),
357 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
358 "patch 6M %d new PHY %d link LED%d tx led %d\n",
359 zd_rf_name(*rf_type
), *rf_type
,
360 chip
->pa_type
, chip
->patch_cck_gain
,
361 chip
->patch_cr157
, chip
->patch_6m_band_edge
,
362 chip
->new_phy_layout
,
363 chip
->link_led
== LED1
? 1 : 2,
364 chip
->supports_tx_led
);
369 chip
->patch_cck_gain
= 0;
370 chip
->patch_cr157
= 0;
371 chip
->patch_6m_band_edge
= 0;
372 chip
->new_phy_layout
= 0;
376 static int zd_write_mac_addr_common(struct zd_chip
*chip
, const u8
*mac_addr
,
377 const struct zd_ioreq32
*in_reqs
,
381 struct zd_ioreq32 reqs
[2] = {in_reqs
[0], in_reqs
[1]};
384 reqs
[0].value
= (mac_addr
[3] << 24)
385 | (mac_addr
[2] << 16)
388 reqs
[1].value
= (mac_addr
[5] << 8)
390 dev_dbg_f(zd_chip_dev(chip
), "%s addr %pM\n", type
, mac_addr
);
392 dev_dbg_f(zd_chip_dev(chip
), "set NULL %s\n", type
);
395 mutex_lock(&chip
->mutex
);
396 r
= zd_iowrite32a_locked(chip
, reqs
, ARRAY_SIZE(reqs
));
397 mutex_unlock(&chip
->mutex
);
401 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
402 * CR_MAC_ADDR_P2 must be overwritten
404 int zd_write_mac_addr(struct zd_chip
*chip
, const u8
*mac_addr
)
406 static const struct zd_ioreq32 reqs
[2] = {
407 [0] = { .addr
= CR_MAC_ADDR_P1
},
408 [1] = { .addr
= CR_MAC_ADDR_P2
},
411 return zd_write_mac_addr_common(chip
, mac_addr
, reqs
, "mac");
414 int zd_write_bssid(struct zd_chip
*chip
, const u8
*bssid
)
416 static const struct zd_ioreq32 reqs
[2] = {
417 [0] = { .addr
= CR_BSSID_P1
},
418 [1] = { .addr
= CR_BSSID_P2
},
421 return zd_write_mac_addr_common(chip
, bssid
, reqs
, "bssid");
424 int zd_read_regdomain(struct zd_chip
*chip
, u8
*regdomain
)
429 mutex_lock(&chip
->mutex
);
430 r
= zd_ioread32_locked(chip
, &value
, E2P_SUBID
);
431 mutex_unlock(&chip
->mutex
);
435 *regdomain
= value
>> 16;
436 dev_dbg_f(zd_chip_dev(chip
), "regdomain: %#04x\n", *regdomain
);
441 static int read_values(struct zd_chip
*chip
, u8
*values
, size_t count
,
442 zd_addr_t e2p_addr
, u32 guard
)
448 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
450 r
= zd_ioread32_locked(chip
, &v
,
451 (zd_addr_t
)((u16
)e2p_addr
+i
/2));
457 values
[i
++] = v
>> 8;
458 values
[i
++] = v
>> 16;
459 values
[i
++] = v
>> 24;
462 for (;i
< count
; i
++)
463 values
[i
] = v
>> (8*(i
%3));
468 static int read_pwr_cal_values(struct zd_chip
*chip
)
470 return read_values(chip
, chip
->pwr_cal_values
,
471 E2P_CHANNEL_COUNT
, E2P_PWR_CAL_VALUE1
,
475 static int read_pwr_int_values(struct zd_chip
*chip
)
477 return read_values(chip
, chip
->pwr_int_values
,
478 E2P_CHANNEL_COUNT
, E2P_PWR_INT_VALUE1
,
482 static int read_ofdm_cal_values(struct zd_chip
*chip
)
486 static const zd_addr_t addresses
[] = {
492 for (i
= 0; i
< 3; i
++) {
493 r
= read_values(chip
, chip
->ofdm_cal_values
[i
],
494 E2P_CHANNEL_COUNT
, addresses
[i
], 0);
501 static int read_cal_int_tables(struct zd_chip
*chip
)
505 r
= read_pwr_cal_values(chip
);
508 r
= read_pwr_int_values(chip
);
511 r
= read_ofdm_cal_values(chip
);
517 /* phy means physical registers */
518 int zd_chip_lock_phy_regs(struct zd_chip
*chip
)
523 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
524 r
= zd_ioread32_locked(chip
, &tmp
, CR_REG1
);
526 dev_err(zd_chip_dev(chip
), "error ioread32(CR_REG1): %d\n", r
);
530 tmp
&= ~UNLOCK_PHY_REGS
;
532 r
= zd_iowrite32_locked(chip
, tmp
, CR_REG1
);
534 dev_err(zd_chip_dev(chip
), "error iowrite32(CR_REG1): %d\n", r
);
538 int zd_chip_unlock_phy_regs(struct zd_chip
*chip
)
543 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
544 r
= zd_ioread32_locked(chip
, &tmp
, CR_REG1
);
546 dev_err(zd_chip_dev(chip
),
547 "error ioread32(CR_REG1): %d\n", r
);
551 tmp
|= UNLOCK_PHY_REGS
;
553 r
= zd_iowrite32_locked(chip
, tmp
, CR_REG1
);
555 dev_err(zd_chip_dev(chip
), "error iowrite32(CR_REG1): %d\n", r
);
559 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
560 static int patch_cr157(struct zd_chip
*chip
)
565 if (!chip
->patch_cr157
)
568 r
= zd_ioread16_locked(chip
, &value
, E2P_PHY_REG
);
572 dev_dbg_f(zd_chip_dev(chip
), "patching value %x\n", value
>> 8);
573 return zd_iowrite32_locked(chip
, value
>> 8, ZD_CR157
);
577 * 6M band edge can be optionally overwritten for certain RF's
578 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
579 * bit (for AL2230, AL2230S)
581 static int patch_6m_band_edge(struct zd_chip
*chip
, u8 channel
)
583 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
584 if (!chip
->patch_6m_band_edge
)
587 return zd_rf_patch_6m_band_edge(&chip
->rf
, channel
);
590 /* Generic implementation of 6M band edge patching, used by most RFs via
591 * zd_rf_generic_patch_6m() */
592 int zd_chip_generic_patch_6m_band(struct zd_chip
*chip
, int channel
)
594 struct zd_ioreq16 ioreqs
[] = {
595 { ZD_CR128
, 0x14 }, { ZD_CR129
, 0x12 }, { ZD_CR130
, 0x10 },
599 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
600 if (channel
== 1 || channel
== 11)
601 ioreqs
[0].value
= 0x12;
603 dev_dbg_f(zd_chip_dev(chip
), "patching for channel %d\n", channel
);
604 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
607 static int zd1211_hw_reset_phy(struct zd_chip
*chip
)
609 static const struct zd_ioreq16 ioreqs
[] = {
610 { ZD_CR0
, 0x0a }, { ZD_CR1
, 0x06 }, { ZD_CR2
, 0x26 },
611 { ZD_CR3
, 0x38 }, { ZD_CR4
, 0x80 }, { ZD_CR9
, 0xa0 },
612 { ZD_CR10
, 0x81 }, { ZD_CR11
, 0x00 }, { ZD_CR12
, 0x7f },
613 { ZD_CR13
, 0x8c }, { ZD_CR14
, 0x80 }, { ZD_CR15
, 0x3d },
614 { ZD_CR16
, 0x20 }, { ZD_CR17
, 0x1e }, { ZD_CR18
, 0x0a },
615 { ZD_CR19
, 0x48 }, { ZD_CR20
, 0x0c }, { ZD_CR21
, 0x0c },
616 { ZD_CR22
, 0x23 }, { ZD_CR23
, 0x90 }, { ZD_CR24
, 0x14 },
617 { ZD_CR25
, 0x40 }, { ZD_CR26
, 0x10 }, { ZD_CR27
, 0x19 },
618 { ZD_CR28
, 0x7f }, { ZD_CR29
, 0x80 }, { ZD_CR30
, 0x4b },
619 { ZD_CR31
, 0x60 }, { ZD_CR32
, 0x43 }, { ZD_CR33
, 0x08 },
620 { ZD_CR34
, 0x06 }, { ZD_CR35
, 0x0a }, { ZD_CR36
, 0x00 },
621 { ZD_CR37
, 0x00 }, { ZD_CR38
, 0x38 }, { ZD_CR39
, 0x0c },
622 { ZD_CR40
, 0x84 }, { ZD_CR41
, 0x2a }, { ZD_CR42
, 0x80 },
623 { ZD_CR43
, 0x10 }, { ZD_CR44
, 0x12 }, { ZD_CR46
, 0xff },
624 { ZD_CR47
, 0x1E }, { ZD_CR48
, 0x26 }, { ZD_CR49
, 0x5b },
625 { ZD_CR64
, 0xd0 }, { ZD_CR65
, 0x04 }, { ZD_CR66
, 0x58 },
626 { ZD_CR67
, 0xc9 }, { ZD_CR68
, 0x88 }, { ZD_CR69
, 0x41 },
627 { ZD_CR70
, 0x23 }, { ZD_CR71
, 0x10 }, { ZD_CR72
, 0xff },
628 { ZD_CR73
, 0x32 }, { ZD_CR74
, 0x30 }, { ZD_CR75
, 0x65 },
629 { ZD_CR76
, 0x41 }, { ZD_CR77
, 0x1b }, { ZD_CR78
, 0x30 },
630 { ZD_CR79
, 0x68 }, { ZD_CR80
, 0x64 }, { ZD_CR81
, 0x64 },
631 { ZD_CR82
, 0x00 }, { ZD_CR83
, 0x00 }, { ZD_CR84
, 0x00 },
632 { ZD_CR85
, 0x02 }, { ZD_CR86
, 0x00 }, { ZD_CR87
, 0x00 },
633 { ZD_CR88
, 0xff }, { ZD_CR89
, 0xfc }, { ZD_CR90
, 0x00 },
634 { ZD_CR91
, 0x00 }, { ZD_CR92
, 0x00 }, { ZD_CR93
, 0x08 },
635 { ZD_CR94
, 0x00 }, { ZD_CR95
, 0x00 }, { ZD_CR96
, 0xff },
636 { ZD_CR97
, 0xe7 }, { ZD_CR98
, 0x00 }, { ZD_CR99
, 0x00 },
637 { ZD_CR100
, 0x00 }, { ZD_CR101
, 0xae }, { ZD_CR102
, 0x02 },
638 { ZD_CR103
, 0x00 }, { ZD_CR104
, 0x03 }, { ZD_CR105
, 0x65 },
639 { ZD_CR106
, 0x04 }, { ZD_CR107
, 0x00 }, { ZD_CR108
, 0x0a },
640 { ZD_CR109
, 0xaa }, { ZD_CR110
, 0xaa }, { ZD_CR111
, 0x25 },
641 { ZD_CR112
, 0x25 }, { ZD_CR113
, 0x00 }, { ZD_CR119
, 0x1e },
642 { ZD_CR125
, 0x90 }, { ZD_CR126
, 0x00 }, { ZD_CR127
, 0x00 },
644 { ZD_CR5
, 0x00 }, { ZD_CR6
, 0x00 }, { ZD_CR7
, 0x00 },
645 { ZD_CR8
, 0x00 }, { ZD_CR9
, 0x20 }, { ZD_CR12
, 0xf0 },
646 { ZD_CR20
, 0x0e }, { ZD_CR21
, 0x0e }, { ZD_CR27
, 0x10 },
647 { ZD_CR44
, 0x33 }, { ZD_CR47
, 0x1E }, { ZD_CR83
, 0x24 },
648 { ZD_CR84
, 0x04 }, { ZD_CR85
, 0x00 }, { ZD_CR86
, 0x0C },
649 { ZD_CR87
, 0x12 }, { ZD_CR88
, 0x0C }, { ZD_CR89
, 0x00 },
650 { ZD_CR90
, 0x10 }, { ZD_CR91
, 0x08 }, { ZD_CR93
, 0x00 },
651 { ZD_CR94
, 0x01 }, { ZD_CR95
, 0x00 }, { ZD_CR96
, 0x50 },
652 { ZD_CR97
, 0x37 }, { ZD_CR98
, 0x35 }, { ZD_CR101
, 0x13 },
653 { ZD_CR102
, 0x27 }, { ZD_CR103
, 0x27 }, { ZD_CR104
, 0x18 },
654 { ZD_CR105
, 0x12 }, { ZD_CR109
, 0x27 }, { ZD_CR110
, 0x27 },
655 { ZD_CR111
, 0x27 }, { ZD_CR112
, 0x27 }, { ZD_CR113
, 0x27 },
656 { ZD_CR114
, 0x27 }, { ZD_CR115
, 0x26 }, { ZD_CR116
, 0x24 },
657 { ZD_CR117
, 0xfc }, { ZD_CR118
, 0xfa }, { ZD_CR120
, 0x4f },
658 { ZD_CR125
, 0xaa }, { ZD_CR127
, 0x03 }, { ZD_CR128
, 0x14 },
659 { ZD_CR129
, 0x12 }, { ZD_CR130
, 0x10 }, { ZD_CR131
, 0x0C },
660 { ZD_CR136
, 0xdf }, { ZD_CR137
, 0x40 }, { ZD_CR138
, 0xa0 },
661 { ZD_CR139
, 0xb0 }, { ZD_CR140
, 0x99 }, { ZD_CR141
, 0x82 },
662 { ZD_CR142
, 0x54 }, { ZD_CR143
, 0x1c }, { ZD_CR144
, 0x6c },
663 { ZD_CR147
, 0x07 }, { ZD_CR148
, 0x4c }, { ZD_CR149
, 0x50 },
664 { ZD_CR150
, 0x0e }, { ZD_CR151
, 0x18 }, { ZD_CR160
, 0xfe },
665 { ZD_CR161
, 0xee }, { ZD_CR162
, 0xaa }, { ZD_CR163
, 0xfa },
666 { ZD_CR164
, 0xfa }, { ZD_CR165
, 0xea }, { ZD_CR166
, 0xbe },
667 { ZD_CR167
, 0xbe }, { ZD_CR168
, 0x6a }, { ZD_CR169
, 0xba },
668 { ZD_CR170
, 0xba }, { ZD_CR171
, 0xba },
669 /* Note: ZD_CR204 must lead the ZD_CR203 */
677 dev_dbg_f(zd_chip_dev(chip
), "\n");
679 r
= zd_chip_lock_phy_regs(chip
);
683 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
687 r
= patch_cr157(chip
);
689 t
= zd_chip_unlock_phy_regs(chip
);
696 static int zd1211b_hw_reset_phy(struct zd_chip
*chip
)
698 static const struct zd_ioreq16 ioreqs
[] = {
699 { ZD_CR0
, 0x14 }, { ZD_CR1
, 0x06 }, { ZD_CR2
, 0x26 },
700 { ZD_CR3
, 0x38 }, { ZD_CR4
, 0x80 }, { ZD_CR9
, 0xe0 },
702 /* power control { { ZD_CR11, 1 << 6 }, */
704 { ZD_CR12
, 0xf0 }, { ZD_CR13
, 0x8c }, { ZD_CR14
, 0x80 },
705 { ZD_CR15
, 0x3d }, { ZD_CR16
, 0x20 }, { ZD_CR17
, 0x1e },
706 { ZD_CR18
, 0x0a }, { ZD_CR19
, 0x48 },
707 { ZD_CR20
, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
708 { ZD_CR21
, 0x0e }, { ZD_CR22
, 0x23 }, { ZD_CR23
, 0x90 },
709 { ZD_CR24
, 0x14 }, { ZD_CR25
, 0x40 }, { ZD_CR26
, 0x10 },
710 { ZD_CR27
, 0x10 }, { ZD_CR28
, 0x7f }, { ZD_CR29
, 0x80 },
711 { ZD_CR30
, 0x4b }, /* ASIC/FWT, no jointly decoder */
712 { ZD_CR31
, 0x60 }, { ZD_CR32
, 0x43 }, { ZD_CR33
, 0x08 },
713 { ZD_CR34
, 0x06 }, { ZD_CR35
, 0x0a }, { ZD_CR36
, 0x00 },
714 { ZD_CR37
, 0x00 }, { ZD_CR38
, 0x38 }, { ZD_CR39
, 0x0c },
715 { ZD_CR40
, 0x84 }, { ZD_CR41
, 0x2a }, { ZD_CR42
, 0x80 },
716 { ZD_CR43
, 0x10 }, { ZD_CR44
, 0x33 }, { ZD_CR46
, 0xff },
717 { ZD_CR47
, 0x1E }, { ZD_CR48
, 0x26 }, { ZD_CR49
, 0x5b },
718 { ZD_CR64
, 0xd0 }, { ZD_CR65
, 0x04 }, { ZD_CR66
, 0x58 },
719 { ZD_CR67
, 0xc9 }, { ZD_CR68
, 0x88 }, { ZD_CR69
, 0x41 },
720 { ZD_CR70
, 0x23 }, { ZD_CR71
, 0x10 }, { ZD_CR72
, 0xff },
721 { ZD_CR73
, 0x32 }, { ZD_CR74
, 0x30 }, { ZD_CR75
, 0x65 },
722 { ZD_CR76
, 0x41 }, { ZD_CR77
, 0x1b }, { ZD_CR78
, 0x30 },
723 { ZD_CR79
, 0xf0 }, { ZD_CR80
, 0x64 }, { ZD_CR81
, 0x64 },
724 { ZD_CR82
, 0x00 }, { ZD_CR83
, 0x24 }, { ZD_CR84
, 0x04 },
725 { ZD_CR85
, 0x00 }, { ZD_CR86
, 0x0c }, { ZD_CR87
, 0x12 },
726 { ZD_CR88
, 0x0c }, { ZD_CR89
, 0x00 }, { ZD_CR90
, 0x58 },
727 { ZD_CR91
, 0x04 }, { ZD_CR92
, 0x00 }, { ZD_CR93
, 0x00 },
729 { ZD_CR95
, 0x20 }, /* ZD1211B */
730 { ZD_CR96
, 0x50 }, { ZD_CR97
, 0x37 }, { ZD_CR98
, 0x35 },
731 { ZD_CR99
, 0x00 }, { ZD_CR100
, 0x01 }, { ZD_CR101
, 0x13 },
732 { ZD_CR102
, 0x27 }, { ZD_CR103
, 0x27 }, { ZD_CR104
, 0x18 },
733 { ZD_CR105
, 0x12 }, { ZD_CR106
, 0x04 }, { ZD_CR107
, 0x00 },
734 { ZD_CR108
, 0x0a }, { ZD_CR109
, 0x27 }, { ZD_CR110
, 0x27 },
735 { ZD_CR111
, 0x27 }, { ZD_CR112
, 0x27 }, { ZD_CR113
, 0x27 },
736 { ZD_CR114
, 0x27 }, { ZD_CR115
, 0x26 }, { ZD_CR116
, 0x24 },
737 { ZD_CR117
, 0xfc }, { ZD_CR118
, 0xfa }, { ZD_CR119
, 0x1e },
738 { ZD_CR125
, 0x90 }, { ZD_CR126
, 0x00 }, { ZD_CR127
, 0x00 },
739 { ZD_CR128
, 0x14 }, { ZD_CR129
, 0x12 }, { ZD_CR130
, 0x10 },
740 { ZD_CR131
, 0x0c }, { ZD_CR136
, 0xdf }, { ZD_CR137
, 0xa0 },
741 { ZD_CR138
, 0xa8 }, { ZD_CR139
, 0xb4 }, { ZD_CR140
, 0x98 },
742 { ZD_CR141
, 0x82 }, { ZD_CR142
, 0x53 }, { ZD_CR143
, 0x1c },
743 { ZD_CR144
, 0x6c }, { ZD_CR147
, 0x07 }, { ZD_CR148
, 0x40 },
744 { ZD_CR149
, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
745 { ZD_CR150
, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
746 { ZD_CR151
, 0x18 }, { ZD_CR159
, 0x70 }, { ZD_CR160
, 0xfe },
747 { ZD_CR161
, 0xee }, { ZD_CR162
, 0xaa }, { ZD_CR163
, 0xfa },
748 { ZD_CR164
, 0xfa }, { ZD_CR165
, 0xea }, { ZD_CR166
, 0xbe },
749 { ZD_CR167
, 0xbe }, { ZD_CR168
, 0x6a }, { ZD_CR169
, 0xba },
750 { ZD_CR170
, 0xba }, { ZD_CR171
, 0xba },
751 /* Note: ZD_CR204 must lead the ZD_CR203 */
759 dev_dbg_f(zd_chip_dev(chip
), "\n");
761 r
= zd_chip_lock_phy_regs(chip
);
765 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
766 t
= zd_chip_unlock_phy_regs(chip
);
773 static int hw_reset_phy(struct zd_chip
*chip
)
775 return zd_chip_is_zd1211b(chip
) ? zd1211b_hw_reset_phy(chip
) :
776 zd1211_hw_reset_phy(chip
);
779 static int zd1211_hw_init_hmac(struct zd_chip
*chip
)
781 static const struct zd_ioreq32 ioreqs
[] = {
782 { CR_ZD1211_RETRY_MAX
, ZD1211_RETRY_COUNT
},
783 { CR_RX_THRESHOLD
, 0x000c0640 },
786 dev_dbg_f(zd_chip_dev(chip
), "\n");
787 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
788 return zd_iowrite32a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
791 static int zd1211b_hw_init_hmac(struct zd_chip
*chip
)
793 static const struct zd_ioreq32 ioreqs
[] = {
794 { CR_ZD1211B_RETRY_MAX
, ZD1211B_RETRY_COUNT
},
795 { CR_ZD1211B_CWIN_MAX_MIN_AC0
, 0x007f003f },
796 { CR_ZD1211B_CWIN_MAX_MIN_AC1
, 0x007f003f },
797 { CR_ZD1211B_CWIN_MAX_MIN_AC2
, 0x003f001f },
798 { CR_ZD1211B_CWIN_MAX_MIN_AC3
, 0x001f000f },
799 { CR_ZD1211B_AIFS_CTL1
, 0x00280028 },
800 { CR_ZD1211B_AIFS_CTL2
, 0x008C003C },
801 { CR_ZD1211B_TXOP
, 0x01800824 },
802 { CR_RX_THRESHOLD
, 0x000c0eff, },
805 dev_dbg_f(zd_chip_dev(chip
), "\n");
806 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
807 return zd_iowrite32a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
810 static int hw_init_hmac(struct zd_chip
*chip
)
813 static const struct zd_ioreq32 ioreqs
[] = {
814 { CR_ACK_TIMEOUT_EXT
, 0x20 },
815 { CR_ADDA_MBIAS_WARMTIME
, 0x30000808 },
816 { CR_SNIFFER_ON
, 0 },
817 { CR_RX_FILTER
, STA_RX_FILTER
},
818 { CR_GROUP_HASH_P1
, 0x00 },
819 { CR_GROUP_HASH_P2
, 0x80000000 },
821 { CR_ADDA_PWR_DWN
, 0x7f },
822 { CR_BCN_PLCP_CFG
, 0x00f00401 },
823 { CR_PHY_DELAY
, 0x00 },
824 { CR_ACK_TIMEOUT_EXT
, 0x80 },
825 { CR_ADDA_PWR_DWN
, 0x00 },
826 { CR_ACK_TIME_80211
, 0x100 },
827 { CR_RX_PE_DELAY
, 0x70 },
828 { CR_PS_CTRL
, 0x10000000 },
829 { CR_RTS_CTS_RATE
, 0x02030203 },
830 { CR_AFTER_PNP
, 0x1 },
831 { CR_WEP_PROTECT
, 0x114 },
832 { CR_IFS_VALUE
, IFS_VALUE_DEFAULT
},
833 { CR_CAM_MODE
, MODE_AP_WDS
},
836 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
837 r
= zd_iowrite32a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
841 return zd_chip_is_zd1211b(chip
) ?
842 zd1211b_hw_init_hmac(chip
) : zd1211_hw_init_hmac(chip
);
851 static int get_aw_pt_bi(struct zd_chip
*chip
, struct aw_pt_bi
*s
)
854 static const zd_addr_t aw_pt_bi_addr
[] =
855 { CR_ATIM_WND_PERIOD
, CR_PRE_TBTT
, CR_BCN_INTERVAL
};
858 r
= zd_ioread32v_locked(chip
, values
, (const zd_addr_t
*)aw_pt_bi_addr
,
859 ARRAY_SIZE(aw_pt_bi_addr
));
861 memset(s
, 0, sizeof(*s
));
865 s
->atim_wnd_period
= values
[0];
866 s
->pre_tbtt
= values
[1];
867 s
->beacon_interval
= values
[2];
871 static int set_aw_pt_bi(struct zd_chip
*chip
, struct aw_pt_bi
*s
)
873 struct zd_ioreq32 reqs
[3];
874 u16 b_interval
= s
->beacon_interval
& 0xffff;
878 if (s
->pre_tbtt
< 4 || s
->pre_tbtt
>= b_interval
)
879 s
->pre_tbtt
= b_interval
- 1;
880 if (s
->atim_wnd_period
>= s
->pre_tbtt
)
881 s
->atim_wnd_period
= s
->pre_tbtt
- 1;
883 reqs
[0].addr
= CR_ATIM_WND_PERIOD
;
884 reqs
[0].value
= s
->atim_wnd_period
;
885 reqs
[1].addr
= CR_PRE_TBTT
;
886 reqs
[1].value
= s
->pre_tbtt
;
887 reqs
[2].addr
= CR_BCN_INTERVAL
;
888 reqs
[2].value
= (s
->beacon_interval
& ~0xffff) | b_interval
;
890 return zd_iowrite32a_locked(chip
, reqs
, ARRAY_SIZE(reqs
));
894 static int set_beacon_interval(struct zd_chip
*chip
, u16 interval
,
895 u8 dtim_period
, int type
)
899 u32 b_interval
, mode_flag
;
901 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
905 case NL80211_IFTYPE_ADHOC
:
906 case NL80211_IFTYPE_MESH_POINT
:
907 mode_flag
= BCN_MODE_IBSS
;
909 case NL80211_IFTYPE_AP
:
910 mode_flag
= BCN_MODE_AP
;
921 b_interval
= mode_flag
| (dtim_period
<< 16) | interval
;
923 r
= zd_iowrite32_locked(chip
, b_interval
, CR_BCN_INTERVAL
);
926 r
= get_aw_pt_bi(chip
, &s
);
929 return set_aw_pt_bi(chip
, &s
);
932 int zd_set_beacon_interval(struct zd_chip
*chip
, u16 interval
, u8 dtim_period
,
937 mutex_lock(&chip
->mutex
);
938 r
= set_beacon_interval(chip
, interval
, dtim_period
, type
);
939 mutex_unlock(&chip
->mutex
);
943 static int hw_init(struct zd_chip
*chip
)
947 dev_dbg_f(zd_chip_dev(chip
), "\n");
948 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
949 r
= hw_reset_phy(chip
);
953 r
= hw_init_hmac(chip
);
957 return set_beacon_interval(chip
, 100, 0, NL80211_IFTYPE_UNSPECIFIED
);
960 static zd_addr_t
fw_reg_addr(struct zd_chip
*chip
, u16 offset
)
962 return (zd_addr_t
)((u16
)chip
->fw_regs_base
+ offset
);
966 static int dump_cr(struct zd_chip
*chip
, const zd_addr_t addr
,
967 const char *addr_string
)
972 r
= zd_ioread32_locked(chip
, &value
, addr
);
974 dev_dbg_f(zd_chip_dev(chip
),
975 "error reading %s. Error number %d\n", addr_string
, r
);
979 dev_dbg_f(zd_chip_dev(chip
), "%s %#010x\n",
980 addr_string
, (unsigned int)value
);
984 static int test_init(struct zd_chip
*chip
)
988 r
= dump_cr(chip
, CR_AFTER_PNP
, "CR_AFTER_PNP");
991 r
= dump_cr(chip
, CR_GPI_EN
, "CR_GPI_EN");
994 return dump_cr(chip
, CR_INTERRUPT
, "CR_INTERRUPT");
997 static void dump_fw_registers(struct zd_chip
*chip
)
999 const zd_addr_t addr
[4] = {
1000 fw_reg_addr(chip
, FW_REG_FIRMWARE_VER
),
1001 fw_reg_addr(chip
, FW_REG_USB_SPEED
),
1002 fw_reg_addr(chip
, FW_REG_FIX_TX_RATE
),
1003 fw_reg_addr(chip
, FW_REG_LED_LINK_STATUS
),
1009 r
= zd_ioread16v_locked(chip
, values
, (const zd_addr_t
*)addr
,
1012 dev_dbg_f(zd_chip_dev(chip
), "error %d zd_ioread16v_locked\n",
1017 dev_dbg_f(zd_chip_dev(chip
), "FW_FIRMWARE_VER %#06hx\n", values
[0]);
1018 dev_dbg_f(zd_chip_dev(chip
), "FW_USB_SPEED %#06hx\n", values
[1]);
1019 dev_dbg_f(zd_chip_dev(chip
), "FW_FIX_TX_RATE %#06hx\n", values
[2]);
1020 dev_dbg_f(zd_chip_dev(chip
), "FW_LINK_STATUS %#06hx\n", values
[3]);
1024 static int print_fw_version(struct zd_chip
*chip
)
1026 struct wiphy
*wiphy
= zd_chip_to_mac(chip
)->hw
->wiphy
;
1030 r
= zd_ioread16_locked(chip
, &version
,
1031 fw_reg_addr(chip
, FW_REG_FIRMWARE_VER
));
1035 dev_info(zd_chip_dev(chip
),"firmware version %04hx\n", version
);
1037 snprintf(wiphy
->fw_version
, sizeof(wiphy
->fw_version
),
1043 static int set_mandatory_rates(struct zd_chip
*chip
, int gmode
)
1046 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1047 /* This sets the mandatory rates, which only depend from the standard
1048 * that the device is supporting. Until further notice we should try
1049 * to support 802.11g also for full speed USB.
1052 rates
= CR_RATE_1M
|CR_RATE_2M
|CR_RATE_5_5M
|CR_RATE_11M
;
1054 rates
= CR_RATE_1M
|CR_RATE_2M
|CR_RATE_5_5M
|CR_RATE_11M
|
1055 CR_RATE_6M
|CR_RATE_12M
|CR_RATE_24M
;
1057 return zd_iowrite32_locked(chip
, rates
, CR_MANDATORY_RATE_TBL
);
1060 int zd_chip_set_rts_cts_rate_locked(struct zd_chip
*chip
,
1065 dev_dbg_f(zd_chip_dev(chip
), "preamble=%x\n", preamble
);
1066 value
|= preamble
<< RTSCTS_SH_RTS_PMB_TYPE
;
1067 value
|= preamble
<< RTSCTS_SH_CTS_PMB_TYPE
;
1069 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1070 value
|= ZD_PURE_RATE(ZD_CCK_RATE_11M
) << RTSCTS_SH_RTS_RATE
;
1071 value
|= ZD_RX_CCK
<< RTSCTS_SH_RTS_MOD_TYPE
;
1072 value
|= ZD_PURE_RATE(ZD_CCK_RATE_11M
) << RTSCTS_SH_CTS_RATE
;
1073 value
|= ZD_RX_CCK
<< RTSCTS_SH_CTS_MOD_TYPE
;
1075 return zd_iowrite32_locked(chip
, value
, CR_RTS_CTS_RATE
);
1078 int zd_chip_enable_hwint(struct zd_chip
*chip
)
1082 mutex_lock(&chip
->mutex
);
1083 r
= zd_iowrite32_locked(chip
, HWINT_ENABLED
, CR_INTERRUPT
);
1084 mutex_unlock(&chip
->mutex
);
1088 static int disable_hwint(struct zd_chip
*chip
)
1090 return zd_iowrite32_locked(chip
, HWINT_DISABLED
, CR_INTERRUPT
);
1093 int zd_chip_disable_hwint(struct zd_chip
*chip
)
1097 mutex_lock(&chip
->mutex
);
1098 r
= disable_hwint(chip
);
1099 mutex_unlock(&chip
->mutex
);
1103 static int read_fw_regs_offset(struct zd_chip
*chip
)
1107 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1108 r
= zd_ioread16_locked(chip
, (u16
*)&chip
->fw_regs_base
,
1112 dev_dbg_f(zd_chip_dev(chip
), "fw_regs_base: %#06hx\n",
1113 (u16
)chip
->fw_regs_base
);
1118 /* Read mac address using pre-firmware interface */
1119 int zd_chip_read_mac_addr_fw(struct zd_chip
*chip
, u8
*addr
)
1121 dev_dbg_f(zd_chip_dev(chip
), "\n");
1122 return zd_usb_read_fw(&chip
->usb
, E2P_MAC_ADDR_P1
, addr
,
1126 int zd_chip_init_hw(struct zd_chip
*chip
)
1131 dev_dbg_f(zd_chip_dev(chip
), "\n");
1133 mutex_lock(&chip
->mutex
);
1136 r
= test_init(chip
);
1140 r
= zd_iowrite32_locked(chip
, 1, CR_AFTER_PNP
);
1144 r
= read_fw_regs_offset(chip
);
1148 /* GPI is always disabled, also in the other driver.
1150 r
= zd_iowrite32_locked(chip
, 0, CR_GPI_EN
);
1153 r
= zd_iowrite32_locked(chip
, CWIN_SIZE
, CR_CWMIN_CWMAX
);
1156 /* Currently we support IEEE 802.11g for full and high speed USB.
1157 * It might be discussed, whether we should support pure b mode for
1160 r
= set_mandatory_rates(chip
, 1);
1163 /* Disabling interrupts is certainly a smart thing here.
1165 r
= disable_hwint(chip
);
1168 r
= read_pod(chip
, &rf_type
);
1174 r
= zd_rf_init_hw(&chip
->rf
, rf_type
);
1178 r
= print_fw_version(chip
);
1183 dump_fw_registers(chip
);
1184 r
= test_init(chip
);
1189 r
= read_cal_int_tables(chip
);
1195 mutex_unlock(&chip
->mutex
);
1199 static int update_pwr_int(struct zd_chip
*chip
, u8 channel
)
1201 u8 value
= chip
->pwr_int_values
[channel
- 1];
1202 return zd_iowrite16_locked(chip
, value
, ZD_CR31
);
1205 static int update_pwr_cal(struct zd_chip
*chip
, u8 channel
)
1207 u8 value
= chip
->pwr_cal_values
[channel
-1];
1208 return zd_iowrite16_locked(chip
, value
, ZD_CR68
);
1211 static int update_ofdm_cal(struct zd_chip
*chip
, u8 channel
)
1213 struct zd_ioreq16 ioreqs
[3];
1215 ioreqs
[0].addr
= ZD_CR67
;
1216 ioreqs
[0].value
= chip
->ofdm_cal_values
[OFDM_36M_INDEX
][channel
-1];
1217 ioreqs
[1].addr
= ZD_CR66
;
1218 ioreqs
[1].value
= chip
->ofdm_cal_values
[OFDM_48M_INDEX
][channel
-1];
1219 ioreqs
[2].addr
= ZD_CR65
;
1220 ioreqs
[2].value
= chip
->ofdm_cal_values
[OFDM_54M_INDEX
][channel
-1];
1222 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1225 static int update_channel_integration_and_calibration(struct zd_chip
*chip
,
1230 if (!zd_rf_should_update_pwr_int(&chip
->rf
))
1233 r
= update_pwr_int(chip
, channel
);
1236 if (zd_chip_is_zd1211b(chip
)) {
1237 static const struct zd_ioreq16 ioreqs
[] = {
1243 r
= update_ofdm_cal(chip
, channel
);
1246 r
= update_pwr_cal(chip
, channel
);
1249 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1257 /* The CCK baseband gain can be optionally patched by the EEPROM */
1258 static int patch_cck_gain(struct zd_chip
*chip
)
1263 if (!chip
->patch_cck_gain
|| !zd_rf_should_patch_cck_gain(&chip
->rf
))
1266 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1267 r
= zd_ioread32_locked(chip
, &value
, E2P_PHY_REG
);
1270 dev_dbg_f(zd_chip_dev(chip
), "patching value %x\n", value
& 0xff);
1271 return zd_iowrite16_locked(chip
, value
& 0xff, ZD_CR47
);
1274 int zd_chip_set_channel(struct zd_chip
*chip
, u8 channel
)
1278 mutex_lock(&chip
->mutex
);
1279 r
= zd_chip_lock_phy_regs(chip
);
1282 r
= zd_rf_set_channel(&chip
->rf
, channel
);
1285 r
= update_channel_integration_and_calibration(chip
, channel
);
1288 r
= patch_cck_gain(chip
);
1291 r
= patch_6m_band_edge(chip
, channel
);
1294 r
= zd_iowrite32_locked(chip
, 0, CR_CONFIG_PHILIPS
);
1296 t
= zd_chip_unlock_phy_regs(chip
);
1300 mutex_unlock(&chip
->mutex
);
1304 u8
zd_chip_get_channel(struct zd_chip
*chip
)
1308 mutex_lock(&chip
->mutex
);
1309 channel
= chip
->rf
.channel
;
1310 mutex_unlock(&chip
->mutex
);
1314 int zd_chip_control_leds(struct zd_chip
*chip
, enum led_status status
)
1316 const zd_addr_t a
[] = {
1317 fw_reg_addr(chip
, FW_REG_LED_LINK_STATUS
),
1322 u16 v
[ARRAY_SIZE(a
)];
1323 struct zd_ioreq16 ioreqs
[ARRAY_SIZE(a
)] = {
1324 [0] = { fw_reg_addr(chip
, FW_REG_LED_LINK_STATUS
) },
1329 mutex_lock(&chip
->mutex
);
1330 r
= zd_ioread16v_locked(chip
, v
, (const zd_addr_t
*)a
, ARRAY_SIZE(a
));
1334 other_led
= chip
->link_led
== LED1
? LED2
: LED1
;
1338 ioreqs
[0].value
= FW_LINK_OFF
;
1339 ioreqs
[1].value
= v
[1] & ~(LED1
|LED2
);
1341 case ZD_LED_SCANNING
:
1342 ioreqs
[0].value
= FW_LINK_OFF
;
1343 ioreqs
[1].value
= v
[1] & ~other_led
;
1344 if (get_seconds() % 3 == 0) {
1345 ioreqs
[1].value
&= ~chip
->link_led
;
1347 ioreqs
[1].value
|= chip
->link_led
;
1350 case ZD_LED_ASSOCIATED
:
1351 ioreqs
[0].value
= FW_LINK_TX
;
1352 ioreqs
[1].value
= v
[1] & ~other_led
;
1353 ioreqs
[1].value
|= chip
->link_led
;
1360 if (v
[0] != ioreqs
[0].value
|| v
[1] != ioreqs
[1].value
) {
1361 r
= zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1367 mutex_unlock(&chip
->mutex
);
1371 int zd_chip_set_basic_rates(struct zd_chip
*chip
, u16 cr_rates
)
1375 if (cr_rates
& ~(CR_RATES_80211B
|CR_RATES_80211G
))
1378 mutex_lock(&chip
->mutex
);
1379 r
= zd_iowrite32_locked(chip
, cr_rates
, CR_BASIC_RATE_TBL
);
1380 mutex_unlock(&chip
->mutex
);
1384 static inline u8
zd_rate_from_ofdm_plcp_header(const void *rx_frame
)
1386 return ZD_OFDM
| zd_ofdm_plcp_header_rate(rx_frame
);
1390 * zd_rx_rate - report zd-rate
1391 * @rx_frame - received frame
1392 * @rx_status - rx_status as given by the device
1394 * This function converts the rate as encoded in the received packet to the
1395 * zd-rate, we are using on other places in the driver.
1397 u8
zd_rx_rate(const void *rx_frame
, const struct rx_status
*status
)
1400 if (status
->frame_status
& ZD_RX_OFDM
) {
1401 zd_rate
= zd_rate_from_ofdm_plcp_header(rx_frame
);
1403 switch (zd_cck_plcp_header_signal(rx_frame
)) {
1404 case ZD_CCK_PLCP_SIGNAL_1M
:
1405 zd_rate
= ZD_CCK_RATE_1M
;
1407 case ZD_CCK_PLCP_SIGNAL_2M
:
1408 zd_rate
= ZD_CCK_RATE_2M
;
1410 case ZD_CCK_PLCP_SIGNAL_5M5
:
1411 zd_rate
= ZD_CCK_RATE_5_5M
;
1413 case ZD_CCK_PLCP_SIGNAL_11M
:
1414 zd_rate
= ZD_CCK_RATE_11M
;
1424 int zd_chip_switch_radio_on(struct zd_chip
*chip
)
1428 mutex_lock(&chip
->mutex
);
1429 r
= zd_switch_radio_on(&chip
->rf
);
1430 mutex_unlock(&chip
->mutex
);
1434 int zd_chip_switch_radio_off(struct zd_chip
*chip
)
1438 mutex_lock(&chip
->mutex
);
1439 r
= zd_switch_radio_off(&chip
->rf
);
1440 mutex_unlock(&chip
->mutex
);
1444 int zd_chip_enable_int(struct zd_chip
*chip
)
1448 mutex_lock(&chip
->mutex
);
1449 r
= zd_usb_enable_int(&chip
->usb
);
1450 mutex_unlock(&chip
->mutex
);
1454 void zd_chip_disable_int(struct zd_chip
*chip
)
1456 mutex_lock(&chip
->mutex
);
1457 zd_usb_disable_int(&chip
->usb
);
1458 mutex_unlock(&chip
->mutex
);
1460 /* cancel pending interrupt work */
1461 cancel_work_sync(&zd_chip_to_mac(chip
)->process_intr
);
1464 int zd_chip_enable_rxtx(struct zd_chip
*chip
)
1468 mutex_lock(&chip
->mutex
);
1469 zd_usb_enable_tx(&chip
->usb
);
1470 r
= zd_usb_enable_rx(&chip
->usb
);
1471 zd_tx_watchdog_enable(&chip
->usb
);
1472 mutex_unlock(&chip
->mutex
);
1476 void zd_chip_disable_rxtx(struct zd_chip
*chip
)
1478 mutex_lock(&chip
->mutex
);
1479 zd_tx_watchdog_disable(&chip
->usb
);
1480 zd_usb_disable_rx(&chip
->usb
);
1481 zd_usb_disable_tx(&chip
->usb
);
1482 mutex_unlock(&chip
->mutex
);
1485 int zd_rfwritev_locked(struct zd_chip
*chip
,
1486 const u32
* values
, unsigned int count
, u8 bits
)
1491 for (i
= 0; i
< count
; i
++) {
1492 r
= zd_rfwrite_locked(chip
, values
[i
], bits
);
1501 * We can optionally program the RF directly through CR regs, if supported by
1502 * the hardware. This is much faster than the older method.
1504 int zd_rfwrite_cr_locked(struct zd_chip
*chip
, u32 value
)
1506 const struct zd_ioreq16 ioreqs
[] = {
1507 { ZD_CR244
, (value
>> 16) & 0xff },
1508 { ZD_CR243
, (value
>> 8) & 0xff },
1509 { ZD_CR242
, value
& 0xff },
1511 ZD_ASSERT(mutex_is_locked(&chip
->mutex
));
1512 return zd_iowrite16a_locked(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1515 int zd_rfwritev_cr_locked(struct zd_chip
*chip
,
1516 const u32
*values
, unsigned int count
)
1521 for (i
= 0; i
< count
; i
++) {
1522 r
= zd_rfwrite_cr_locked(chip
, values
[i
]);
1530 int zd_chip_set_multicast_hash(struct zd_chip
*chip
,
1531 struct zd_mc_hash
*hash
)
1533 const struct zd_ioreq32 ioreqs
[] = {
1534 { CR_GROUP_HASH_P1
, hash
->low
},
1535 { CR_GROUP_HASH_P2
, hash
->high
},
1538 return zd_iowrite32a(chip
, ioreqs
, ARRAY_SIZE(ioreqs
));
1541 u64
zd_chip_get_tsf(struct zd_chip
*chip
)
1544 static const zd_addr_t aw_pt_bi_addr
[] =
1545 { CR_TSF_LOW_PART
, CR_TSF_HIGH_PART
};
1549 mutex_lock(&chip
->mutex
);
1550 r
= zd_ioread32v_locked(chip
, values
, (const zd_addr_t
*)aw_pt_bi_addr
,
1551 ARRAY_SIZE(aw_pt_bi_addr
));
1552 mutex_unlock(&chip
->mutex
);
1557 tsf
= (tsf
<< 32) | values
[0];