fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / scsi / aacraid / aachba.c
blob681434e2dfe9b77a4da7487cdc9e9f8e2a293715
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <linux/module.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
44 #include "aacraid.h"
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
48 #define INQD_PDT_PROC 0x03 /* Processor device */
49 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
50 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
51 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
52 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
54 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
55 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
58 * Sense codes
61 #define SENCODE_NO_SENSE 0x00
62 #define SENCODE_END_OF_DATA 0x00
63 #define SENCODE_BECOMING_READY 0x04
64 #define SENCODE_INIT_CMD_REQUIRED 0x04
65 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
66 #define SENCODE_INVALID_COMMAND 0x20
67 #define SENCODE_LBA_OUT_OF_RANGE 0x21
68 #define SENCODE_INVALID_CDB_FIELD 0x24
69 #define SENCODE_LUN_NOT_SUPPORTED 0x25
70 #define SENCODE_INVALID_PARAM_FIELD 0x26
71 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
72 #define SENCODE_PARAM_VALUE_INVALID 0x26
73 #define SENCODE_RESET_OCCURRED 0x29
74 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
75 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
76 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
77 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
78 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
79 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
80 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
81 #define SENCODE_OVERLAPPED_COMMAND 0x4E
84 * Additional sense codes
87 #define ASENCODE_NO_SENSE 0x00
88 #define ASENCODE_END_OF_DATA 0x05
89 #define ASENCODE_BECOMING_READY 0x01
90 #define ASENCODE_INIT_CMD_REQUIRED 0x02
91 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
92 #define ASENCODE_INVALID_COMMAND 0x00
93 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
94 #define ASENCODE_INVALID_CDB_FIELD 0x00
95 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
96 #define ASENCODE_INVALID_PARAM_FIELD 0x00
97 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
98 #define ASENCODE_PARAM_VALUE_INVALID 0x02
99 #define ASENCODE_RESET_OCCURRED 0x00
100 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
101 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
102 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
103 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
104 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
105 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
106 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
107 #define ASENCODE_OVERLAPPED_COMMAND 0x00
109 #define BYTE0(x) (unsigned char)(x)
110 #define BYTE1(x) (unsigned char)((x) >> 8)
111 #define BYTE2(x) (unsigned char)((x) >> 16)
112 #define BYTE3(x) (unsigned char)((x) >> 24)
114 /*------------------------------------------------------------------------------
115 * S T R U C T S / T Y P E D E F S
116 *----------------------------------------------------------------------------*/
117 /* SCSI inquiry data */
118 struct inquiry_data {
119 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
120 u8 inqd_dtq; /* RMB | Device Type Qualifier */
121 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
122 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
123 u8 inqd_len; /* Additional length (n-4) */
124 u8 inqd_pad1[2];/* Reserved - must be zero */
125 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
126 u8 inqd_vid[8]; /* Vendor ID */
127 u8 inqd_pid[16];/* Product ID */
128 u8 inqd_prl[4]; /* Product Revision Level */
132 * M O D U L E G L O B A L S
135 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
136 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
137 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
138 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
139 struct aac_raw_io2 *rio2, int sg_max);
140 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
141 int pages, int nseg, int nseg_new);
142 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
143 #ifdef AAC_DETAILED_STATUS_INFO
144 static char *aac_get_status_string(u32 status);
145 #endif
148 * Non dasd selection is handled entirely in aachba now
151 static int nondasd = -1;
152 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
153 static int dacmode = -1;
154 int aac_msi;
155 int aac_commit = -1;
156 int startup_timeout = 180;
157 int aif_timeout = 120;
158 int aac_sync_mode; /* Only Sync. transfer - disabled */
159 int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
161 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
163 " 0=off, 1=on");
164 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
165 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
166 " 0=off, 1=on");
167 module_param(nondasd, int, S_IRUGO|S_IWUSR);
168 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
169 " 0=off, 1=on");
170 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
171 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
172 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
173 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
174 "\tbit 2 - Disable only if Battery is protecting Cache");
175 module_param(dacmode, int, S_IRUGO|S_IWUSR);
176 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
177 " 0=off, 1=on");
178 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
179 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
180 " adapter for foreign arrays.\n"
181 "This is typically needed in systems that do not have a BIOS."
182 " 0=off, 1=on");
183 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
184 MODULE_PARM_DESC(msi, "IRQ handling."
185 " 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
186 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
187 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
188 " adapter to have it's kernel up and\n"
189 "running. This is typically adjusted for large systems that do not"
190 " have a BIOS.");
191 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
192 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
193 " applications to pick up AIFs before\n"
194 "deregistering them. This is typically adjusted for heavily burdened"
195 " systems.");
197 int numacb = -1;
198 module_param(numacb, int, S_IRUGO|S_IWUSR);
199 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
200 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
201 " to use suggestion from Firmware.");
203 int acbsize = -1;
204 module_param(acbsize, int, S_IRUGO|S_IWUSR);
205 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
206 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
207 " suggestion from Firmware.");
209 int update_interval = 30 * 60;
210 module_param(update_interval, int, S_IRUGO|S_IWUSR);
211 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
212 " updates issued to adapter.");
214 int check_interval = 24 * 60 * 60;
215 module_param(check_interval, int, S_IRUGO|S_IWUSR);
216 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
217 " checks.");
219 int aac_check_reset = 1;
220 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
221 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
222 " adapter. a value of -1 forces the reset to adapters programmed to"
223 " ignore it.");
225 int expose_physicals = -1;
226 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
227 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
228 " -1=protect 0=off, 1=on");
230 int aac_reset_devices;
231 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
232 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
234 int aac_wwn = 1;
235 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
236 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
237 "\t0 - Disable\n"
238 "\t1 - Array Meta Data Signature (default)\n"
239 "\t2 - Adapter Serial Number");
242 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
243 struct fib *fibptr) {
244 struct scsi_device *device;
246 if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
247 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
248 aac_fib_complete(fibptr);
249 aac_fib_free(fibptr);
250 return 0;
252 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
253 device = scsicmd->device;
254 if (unlikely(!device || !scsi_device_online(device))) {
255 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
256 aac_fib_complete(fibptr);
257 aac_fib_free(fibptr);
258 return 0;
260 return 1;
264 * aac_get_config_status - check the adapter configuration
265 * @common: adapter to query
267 * Query config status, and commit the configuration if needed.
269 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
271 int status = 0;
272 struct fib * fibptr;
274 if (!(fibptr = aac_fib_alloc(dev)))
275 return -ENOMEM;
277 aac_fib_init(fibptr);
279 struct aac_get_config_status *dinfo;
280 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
282 dinfo->command = cpu_to_le32(VM_ContainerConfig);
283 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
284 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
287 status = aac_fib_send(ContainerCommand,
288 fibptr,
289 sizeof (struct aac_get_config_status),
290 FsaNormal,
291 1, 1,
292 NULL, NULL);
293 if (status < 0) {
294 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
295 } else {
296 struct aac_get_config_status_resp *reply
297 = (struct aac_get_config_status_resp *) fib_data(fibptr);
298 dprintk((KERN_WARNING
299 "aac_get_config_status: response=%d status=%d action=%d\n",
300 le32_to_cpu(reply->response),
301 le32_to_cpu(reply->status),
302 le32_to_cpu(reply->data.action)));
303 if ((le32_to_cpu(reply->response) != ST_OK) ||
304 (le32_to_cpu(reply->status) != CT_OK) ||
305 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
306 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
307 status = -EINVAL;
310 /* Do not set XferState to zero unless receives a response from F/W */
311 if (status >= 0)
312 aac_fib_complete(fibptr);
314 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
315 if (status >= 0) {
316 if ((aac_commit == 1) || commit_flag) {
317 struct aac_commit_config * dinfo;
318 aac_fib_init(fibptr);
319 dinfo = (struct aac_commit_config *) fib_data(fibptr);
321 dinfo->command = cpu_to_le32(VM_ContainerConfig);
322 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
324 status = aac_fib_send(ContainerCommand,
325 fibptr,
326 sizeof (struct aac_commit_config),
327 FsaNormal,
328 1, 1,
329 NULL, NULL);
330 /* Do not set XferState to zero unless
331 * receives a response from F/W */
332 if (status >= 0)
333 aac_fib_complete(fibptr);
334 } else if (aac_commit == 0) {
335 printk(KERN_WARNING
336 "aac_get_config_status: Foreign device configurations are being ignored\n");
339 /* FIB should be freed only after getting the response from the F/W */
340 if (status != -ERESTARTSYS)
341 aac_fib_free(fibptr);
342 return status;
345 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
347 char inq_data;
348 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
349 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
350 inq_data &= 0xdf;
351 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
356 * aac_get_containers - list containers
357 * @common: adapter to probe
359 * Make a list of all containers on this controller
361 int aac_get_containers(struct aac_dev *dev)
363 struct fsa_dev_info *fsa_dev_ptr;
364 u32 index;
365 int status = 0;
366 struct fib * fibptr;
367 struct aac_get_container_count *dinfo;
368 struct aac_get_container_count_resp *dresp;
369 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
371 if (!(fibptr = aac_fib_alloc(dev)))
372 return -ENOMEM;
374 aac_fib_init(fibptr);
375 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
376 dinfo->command = cpu_to_le32(VM_ContainerConfig);
377 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
379 status = aac_fib_send(ContainerCommand,
380 fibptr,
381 sizeof (struct aac_get_container_count),
382 FsaNormal,
383 1, 1,
384 NULL, NULL);
385 if (status >= 0) {
386 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
387 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
388 aac_fib_complete(fibptr);
390 /* FIB should be freed only after getting the response from the F/W */
391 if (status != -ERESTARTSYS)
392 aac_fib_free(fibptr);
394 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
395 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
396 fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
397 GFP_KERNEL);
398 if (!fsa_dev_ptr)
399 return -ENOMEM;
401 dev->fsa_dev = fsa_dev_ptr;
402 dev->maximum_num_containers = maximum_num_containers;
404 for (index = 0; index < dev->maximum_num_containers; ) {
405 fsa_dev_ptr[index].devname[0] = '\0';
407 status = aac_probe_container(dev, index);
409 if (status < 0) {
410 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
411 break;
415 * If there are no more containers, then stop asking.
417 if (++index >= status)
418 break;
420 return status;
423 static void get_container_name_callback(void *context, struct fib * fibptr)
425 struct aac_get_name_resp * get_name_reply;
426 struct scsi_cmnd * scsicmd;
428 scsicmd = (struct scsi_cmnd *) context;
430 if (!aac_valid_context(scsicmd, fibptr))
431 return;
433 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
434 BUG_ON(fibptr == NULL);
436 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
437 /* Failure is irrelevant, using default value instead */
438 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
439 && (get_name_reply->data[0] != '\0')) {
440 char *sp = get_name_reply->data;
441 sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
442 while (*sp == ' ')
443 ++sp;
444 if (*sp) {
445 struct inquiry_data inq;
446 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
447 int count = sizeof(d);
448 char *dp = d;
449 do {
450 *dp++ = (*sp) ? *sp++ : ' ';
451 } while (--count > 0);
453 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
454 memcpy(inq.inqd_pid, d, sizeof(d));
455 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
459 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
461 aac_fib_complete(fibptr);
462 aac_fib_free(fibptr);
463 scsicmd->scsi_done(scsicmd);
467 * aac_get_container_name - get container name, none blocking.
469 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
471 int status;
472 struct aac_get_name *dinfo;
473 struct fib * cmd_fibcontext;
474 struct aac_dev * dev;
476 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
478 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
479 return -ENOMEM;
481 aac_fib_init(cmd_fibcontext);
482 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
484 dinfo->command = cpu_to_le32(VM_ContainerConfig);
485 dinfo->type = cpu_to_le32(CT_READ_NAME);
486 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
487 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
489 status = aac_fib_send(ContainerCommand,
490 cmd_fibcontext,
491 sizeof (struct aac_get_name),
492 FsaNormal,
493 0, 1,
494 (fib_callback)get_container_name_callback,
495 (void *) scsicmd);
498 * Check that the command queued to the controller
500 if (status == -EINPROGRESS) {
501 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
502 return 0;
505 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
506 aac_fib_complete(cmd_fibcontext);
507 aac_fib_free(cmd_fibcontext);
508 return -1;
511 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
513 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
515 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
516 return aac_scsi_cmd(scsicmd);
518 scsicmd->result = DID_NO_CONNECT << 16;
519 scsicmd->scsi_done(scsicmd);
520 return 0;
523 static void _aac_probe_container2(void * context, struct fib * fibptr)
525 struct fsa_dev_info *fsa_dev_ptr;
526 int (*callback)(struct scsi_cmnd *);
527 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
530 if (!aac_valid_context(scsicmd, fibptr))
531 return;
533 scsicmd->SCp.Status = 0;
534 fsa_dev_ptr = fibptr->dev->fsa_dev;
535 if (fsa_dev_ptr) {
536 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
537 fsa_dev_ptr += scmd_id(scsicmd);
539 if ((le32_to_cpu(dresp->status) == ST_OK) &&
540 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
541 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
542 fsa_dev_ptr->valid = 1;
543 /* sense_key holds the current state of the spin-up */
544 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
545 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
546 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
547 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
548 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
549 fsa_dev_ptr->size
550 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
551 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
552 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
554 if ((fsa_dev_ptr->valid & 1) == 0)
555 fsa_dev_ptr->valid = 0;
556 scsicmd->SCp.Status = le32_to_cpu(dresp->count);
558 aac_fib_complete(fibptr);
559 aac_fib_free(fibptr);
560 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
561 scsicmd->SCp.ptr = NULL;
562 (*callback)(scsicmd);
563 return;
566 static void _aac_probe_container1(void * context, struct fib * fibptr)
568 struct scsi_cmnd * scsicmd;
569 struct aac_mount * dresp;
570 struct aac_query_mount *dinfo;
571 int status;
573 dresp = (struct aac_mount *) fib_data(fibptr);
574 dresp->mnt[0].capacityhigh = 0;
575 if ((le32_to_cpu(dresp->status) != ST_OK) ||
576 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
577 _aac_probe_container2(context, fibptr);
578 return;
580 scsicmd = (struct scsi_cmnd *) context;
582 if (!aac_valid_context(scsicmd, fibptr))
583 return;
585 aac_fib_init(fibptr);
587 dinfo = (struct aac_query_mount *)fib_data(fibptr);
589 dinfo->command = cpu_to_le32(VM_NameServe64);
590 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
591 dinfo->type = cpu_to_le32(FT_FILESYS);
593 status = aac_fib_send(ContainerCommand,
594 fibptr,
595 sizeof(struct aac_query_mount),
596 FsaNormal,
597 0, 1,
598 _aac_probe_container2,
599 (void *) scsicmd);
601 * Check that the command queued to the controller
603 if (status == -EINPROGRESS)
604 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
605 else if (status < 0) {
606 /* Inherit results from VM_NameServe, if any */
607 dresp->status = cpu_to_le32(ST_OK);
608 _aac_probe_container2(context, fibptr);
612 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
614 struct fib * fibptr;
615 int status = -ENOMEM;
617 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
618 struct aac_query_mount *dinfo;
620 aac_fib_init(fibptr);
622 dinfo = (struct aac_query_mount *)fib_data(fibptr);
624 dinfo->command = cpu_to_le32(VM_NameServe);
625 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
626 dinfo->type = cpu_to_le32(FT_FILESYS);
627 scsicmd->SCp.ptr = (char *)callback;
629 status = aac_fib_send(ContainerCommand,
630 fibptr,
631 sizeof(struct aac_query_mount),
632 FsaNormal,
633 0, 1,
634 _aac_probe_container1,
635 (void *) scsicmd);
637 * Check that the command queued to the controller
639 if (status == -EINPROGRESS) {
640 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
641 return 0;
643 if (status < 0) {
644 scsicmd->SCp.ptr = NULL;
645 aac_fib_complete(fibptr);
646 aac_fib_free(fibptr);
649 if (status < 0) {
650 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
651 if (fsa_dev_ptr) {
652 fsa_dev_ptr += scmd_id(scsicmd);
653 if ((fsa_dev_ptr->valid & 1) == 0) {
654 fsa_dev_ptr->valid = 0;
655 return (*callback)(scsicmd);
659 return status;
663 * aac_probe_container - query a logical volume
664 * @dev: device to query
665 * @cid: container identifier
667 * Queries the controller about the given volume. The volume information
668 * is updated in the struct fsa_dev_info structure rather than returned.
670 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
672 scsicmd->device = NULL;
673 return 0;
676 int aac_probe_container(struct aac_dev *dev, int cid)
678 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
679 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
680 int status;
682 if (!scsicmd || !scsidev) {
683 kfree(scsicmd);
684 kfree(scsidev);
685 return -ENOMEM;
687 scsicmd->list.next = NULL;
688 scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
690 scsicmd->device = scsidev;
691 scsidev->sdev_state = 0;
692 scsidev->id = cid;
693 scsidev->host = dev->scsi_host_ptr;
695 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
696 while (scsicmd->device == scsidev)
697 schedule();
698 kfree(scsidev);
699 status = scsicmd->SCp.Status;
700 kfree(scsicmd);
701 return status;
704 /* Local Structure to set SCSI inquiry data strings */
705 struct scsi_inq {
706 char vid[8]; /* Vendor ID */
707 char pid[16]; /* Product ID */
708 char prl[4]; /* Product Revision Level */
712 * InqStrCopy - string merge
713 * @a: string to copy from
714 * @b: string to copy to
716 * Copy a String from one location to another
717 * without copying \0
720 static void inqstrcpy(char *a, char *b)
723 while (*a != (char)0)
724 *b++ = *a++;
727 static char *container_types[] = {
728 "None",
729 "Volume",
730 "Mirror",
731 "Stripe",
732 "RAID5",
733 "SSRW",
734 "SSRO",
735 "Morph",
736 "Legacy",
737 "RAID4",
738 "RAID10",
739 "RAID00",
740 "V-MIRRORS",
741 "PSEUDO R4",
742 "RAID50",
743 "RAID5D",
744 "RAID5D0",
745 "RAID1E",
746 "RAID6",
747 "RAID60",
748 "Unknown"
751 char * get_container_type(unsigned tindex)
753 if (tindex >= ARRAY_SIZE(container_types))
754 tindex = ARRAY_SIZE(container_types) - 1;
755 return container_types[tindex];
758 /* Function: setinqstr
760 * Arguments: [1] pointer to void [1] int
762 * Purpose: Sets SCSI inquiry data strings for vendor, product
763 * and revision level. Allows strings to be set in platform dependent
764 * files instead of in OS dependent driver source.
767 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
769 struct scsi_inq *str;
771 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
772 memset(str, ' ', sizeof(*str));
774 if (dev->supplement_adapter_info.AdapterTypeText[0]) {
775 char * cp = dev->supplement_adapter_info.AdapterTypeText;
776 int c;
777 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
778 inqstrcpy("SMC", str->vid);
779 else {
780 c = sizeof(str->vid);
781 while (*cp && *cp != ' ' && --c)
782 ++cp;
783 c = *cp;
784 *cp = '\0';
785 inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
786 str->vid);
787 *cp = c;
788 while (*cp && *cp != ' ')
789 ++cp;
791 while (*cp == ' ')
792 ++cp;
793 /* last six chars reserved for vol type */
794 c = 0;
795 if (strlen(cp) > sizeof(str->pid)) {
796 c = cp[sizeof(str->pid)];
797 cp[sizeof(str->pid)] = '\0';
799 inqstrcpy (cp, str->pid);
800 if (c)
801 cp[sizeof(str->pid)] = c;
802 } else {
803 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
805 inqstrcpy (mp->vname, str->vid);
806 /* last six chars reserved for vol type */
807 inqstrcpy (mp->model, str->pid);
810 if (tindex < ARRAY_SIZE(container_types)){
811 char *findit = str->pid;
813 for ( ; *findit != ' '; findit++); /* walk till we find a space */
814 /* RAID is superfluous in the context of a RAID device */
815 if (memcmp(findit-4, "RAID", 4) == 0)
816 *(findit -= 4) = ' ';
817 if (((findit - str->pid) + strlen(container_types[tindex]))
818 < (sizeof(str->pid) + sizeof(str->prl)))
819 inqstrcpy (container_types[tindex], findit + 1);
821 inqstrcpy ("V1.0", str->prl);
824 static void get_container_serial_callback(void *context, struct fib * fibptr)
826 struct aac_get_serial_resp * get_serial_reply;
827 struct scsi_cmnd * scsicmd;
829 BUG_ON(fibptr == NULL);
831 scsicmd = (struct scsi_cmnd *) context;
832 if (!aac_valid_context(scsicmd, fibptr))
833 return;
835 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
836 /* Failure is irrelevant, using default value instead */
837 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
838 char sp[13];
839 /* EVPD bit set */
840 sp[0] = INQD_PDT_DA;
841 sp[1] = scsicmd->cmnd[2];
842 sp[2] = 0;
843 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
844 le32_to_cpu(get_serial_reply->uid));
845 scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
848 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
850 aac_fib_complete(fibptr);
851 aac_fib_free(fibptr);
852 scsicmd->scsi_done(scsicmd);
856 * aac_get_container_serial - get container serial, none blocking.
858 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
860 int status;
861 struct aac_get_serial *dinfo;
862 struct fib * cmd_fibcontext;
863 struct aac_dev * dev;
865 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
867 if (!(cmd_fibcontext = aac_fib_alloc(dev)))
868 return -ENOMEM;
870 aac_fib_init(cmd_fibcontext);
871 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
873 dinfo->command = cpu_to_le32(VM_ContainerConfig);
874 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
875 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
877 status = aac_fib_send(ContainerCommand,
878 cmd_fibcontext,
879 sizeof (struct aac_get_serial),
880 FsaNormal,
881 0, 1,
882 (fib_callback) get_container_serial_callback,
883 (void *) scsicmd);
886 * Check that the command queued to the controller
888 if (status == -EINPROGRESS) {
889 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
890 return 0;
893 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
894 aac_fib_complete(cmd_fibcontext);
895 aac_fib_free(cmd_fibcontext);
896 return -1;
899 /* Function: setinqserial
901 * Arguments: [1] pointer to void [1] int
903 * Purpose: Sets SCSI Unit Serial number.
904 * This is a fake. We should read a proper
905 * serial number from the container. <SuSE>But
906 * without docs it's quite hard to do it :-)
907 * So this will have to do in the meantime.</SuSE>
910 static int setinqserial(struct aac_dev *dev, void *data, int cid)
913 * This breaks array migration.
915 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
916 le32_to_cpu(dev->adapter_info.serial[0]), cid);
919 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
920 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
922 u8 *sense_buf = (u8 *)sense_data;
923 /* Sense data valid, err code 70h */
924 sense_buf[0] = 0x70; /* No info field */
925 sense_buf[1] = 0; /* Segment number, always zero */
927 sense_buf[2] = sense_key; /* Sense key */
929 sense_buf[12] = sense_code; /* Additional sense code */
930 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
932 if (sense_key == ILLEGAL_REQUEST) {
933 sense_buf[7] = 10; /* Additional sense length */
935 sense_buf[15] = bit_pointer;
936 /* Illegal parameter is in the parameter block */
937 if (sense_code == SENCODE_INVALID_CDB_FIELD)
938 sense_buf[15] |= 0xc0;/* Std sense key specific field */
939 /* Illegal parameter is in the CDB block */
940 sense_buf[16] = field_pointer >> 8; /* MSB */
941 sense_buf[17] = field_pointer; /* LSB */
942 } else
943 sense_buf[7] = 6; /* Additional sense length */
946 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
948 if (lba & 0xffffffff00000000LL) {
949 int cid = scmd_id(cmd);
950 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
951 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
952 SAM_STAT_CHECK_CONDITION;
953 set_sense(&dev->fsa_dev[cid].sense_data,
954 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
955 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
956 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
957 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
958 SCSI_SENSE_BUFFERSIZE));
959 cmd->scsi_done(cmd);
960 return 1;
962 return 0;
965 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
967 return 0;
970 static void io_callback(void *context, struct fib * fibptr);
972 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
974 struct aac_dev *dev = fib->dev;
975 u16 fibsize, command;
976 long ret;
978 aac_fib_init(fib);
979 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
980 struct aac_raw_io2 *readcmd2;
981 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
982 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
983 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
984 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
985 readcmd2->byteCount = cpu_to_le32(count<<9);
986 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
987 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
988 ret = aac_build_sgraw2(cmd, readcmd2,
989 dev->scsi_host_ptr->sg_tablesize);
990 if (ret < 0)
991 return ret;
992 command = ContainerRawIo2;
993 fibsize = sizeof(struct aac_raw_io2) +
994 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
995 } else {
996 struct aac_raw_io *readcmd;
997 readcmd = (struct aac_raw_io *) fib_data(fib);
998 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
999 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1000 readcmd->count = cpu_to_le32(count<<9);
1001 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1002 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1003 readcmd->bpTotal = 0;
1004 readcmd->bpComplete = 0;
1005 ret = aac_build_sgraw(cmd, &readcmd->sg);
1006 if (ret < 0)
1007 return ret;
1008 command = ContainerRawIo;
1009 fibsize = sizeof(struct aac_raw_io) +
1010 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1013 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1015 * Now send the Fib to the adapter
1017 return aac_fib_send(command,
1018 fib,
1019 fibsize,
1020 FsaNormal,
1021 0, 1,
1022 (fib_callback) io_callback,
1023 (void *) cmd);
1026 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1028 u16 fibsize;
1029 struct aac_read64 *readcmd;
1030 long ret;
1032 aac_fib_init(fib);
1033 readcmd = (struct aac_read64 *) fib_data(fib);
1034 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1035 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1036 readcmd->sector_count = cpu_to_le16(count);
1037 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1038 readcmd->pad = 0;
1039 readcmd->flags = 0;
1041 ret = aac_build_sg64(cmd, &readcmd->sg);
1042 if (ret < 0)
1043 return ret;
1044 fibsize = sizeof(struct aac_read64) +
1045 ((le32_to_cpu(readcmd->sg.count) - 1) *
1046 sizeof (struct sgentry64));
1047 BUG_ON (fibsize > (fib->dev->max_fib_size -
1048 sizeof(struct aac_fibhdr)));
1050 * Now send the Fib to the adapter
1052 return aac_fib_send(ContainerCommand64,
1053 fib,
1054 fibsize,
1055 FsaNormal,
1056 0, 1,
1057 (fib_callback) io_callback,
1058 (void *) cmd);
1061 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1063 u16 fibsize;
1064 struct aac_read *readcmd;
1065 long ret;
1067 aac_fib_init(fib);
1068 readcmd = (struct aac_read *) fib_data(fib);
1069 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1070 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1071 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1072 readcmd->count = cpu_to_le32(count * 512);
1074 ret = aac_build_sg(cmd, &readcmd->sg);
1075 if (ret < 0)
1076 return ret;
1077 fibsize = sizeof(struct aac_read) +
1078 ((le32_to_cpu(readcmd->sg.count) - 1) *
1079 sizeof (struct sgentry));
1080 BUG_ON (fibsize > (fib->dev->max_fib_size -
1081 sizeof(struct aac_fibhdr)));
1083 * Now send the Fib to the adapter
1085 return aac_fib_send(ContainerCommand,
1086 fib,
1087 fibsize,
1088 FsaNormal,
1089 0, 1,
1090 (fib_callback) io_callback,
1091 (void *) cmd);
1094 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1096 struct aac_dev *dev = fib->dev;
1097 u16 fibsize, command;
1098 long ret;
1100 aac_fib_init(fib);
1101 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
1102 struct aac_raw_io2 *writecmd2;
1103 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1104 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1105 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1106 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1107 writecmd2->byteCount = cpu_to_le32(count<<9);
1108 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1109 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1110 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1111 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1112 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1113 ret = aac_build_sgraw2(cmd, writecmd2,
1114 dev->scsi_host_ptr->sg_tablesize);
1115 if (ret < 0)
1116 return ret;
1117 command = ContainerRawIo2;
1118 fibsize = sizeof(struct aac_raw_io2) +
1119 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1120 } else {
1121 struct aac_raw_io *writecmd;
1122 writecmd = (struct aac_raw_io *) fib_data(fib);
1123 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1124 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1125 writecmd->count = cpu_to_le32(count<<9);
1126 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1127 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1128 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1129 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1130 cpu_to_le16(RIO_TYPE_WRITE);
1131 writecmd->bpTotal = 0;
1132 writecmd->bpComplete = 0;
1133 ret = aac_build_sgraw(cmd, &writecmd->sg);
1134 if (ret < 0)
1135 return ret;
1136 command = ContainerRawIo;
1137 fibsize = sizeof(struct aac_raw_io) +
1138 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1141 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1143 * Now send the Fib to the adapter
1145 return aac_fib_send(command,
1146 fib,
1147 fibsize,
1148 FsaNormal,
1149 0, 1,
1150 (fib_callback) io_callback,
1151 (void *) cmd);
1154 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1156 u16 fibsize;
1157 struct aac_write64 *writecmd;
1158 long ret;
1160 aac_fib_init(fib);
1161 writecmd = (struct aac_write64 *) fib_data(fib);
1162 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1163 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1164 writecmd->sector_count = cpu_to_le16(count);
1165 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1166 writecmd->pad = 0;
1167 writecmd->flags = 0;
1169 ret = aac_build_sg64(cmd, &writecmd->sg);
1170 if (ret < 0)
1171 return ret;
1172 fibsize = sizeof(struct aac_write64) +
1173 ((le32_to_cpu(writecmd->sg.count) - 1) *
1174 sizeof (struct sgentry64));
1175 BUG_ON (fibsize > (fib->dev->max_fib_size -
1176 sizeof(struct aac_fibhdr)));
1178 * Now send the Fib to the adapter
1180 return aac_fib_send(ContainerCommand64,
1181 fib,
1182 fibsize,
1183 FsaNormal,
1184 0, 1,
1185 (fib_callback) io_callback,
1186 (void *) cmd);
1189 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1191 u16 fibsize;
1192 struct aac_write *writecmd;
1193 long ret;
1195 aac_fib_init(fib);
1196 writecmd = (struct aac_write *) fib_data(fib);
1197 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1198 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1199 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1200 writecmd->count = cpu_to_le32(count * 512);
1201 writecmd->sg.count = cpu_to_le32(1);
1202 /* ->stable is not used - it did mean which type of write */
1204 ret = aac_build_sg(cmd, &writecmd->sg);
1205 if (ret < 0)
1206 return ret;
1207 fibsize = sizeof(struct aac_write) +
1208 ((le32_to_cpu(writecmd->sg.count) - 1) *
1209 sizeof (struct sgentry));
1210 BUG_ON (fibsize > (fib->dev->max_fib_size -
1211 sizeof(struct aac_fibhdr)));
1213 * Now send the Fib to the adapter
1215 return aac_fib_send(ContainerCommand,
1216 fib,
1217 fibsize,
1218 FsaNormal,
1219 0, 1,
1220 (fib_callback) io_callback,
1221 (void *) cmd);
1224 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1226 struct aac_srb * srbcmd;
1227 u32 flag;
1228 u32 timeout;
1230 aac_fib_init(fib);
1231 switch(cmd->sc_data_direction){
1232 case DMA_TO_DEVICE:
1233 flag = SRB_DataOut;
1234 break;
1235 case DMA_BIDIRECTIONAL:
1236 flag = SRB_DataIn | SRB_DataOut;
1237 break;
1238 case DMA_FROM_DEVICE:
1239 flag = SRB_DataIn;
1240 break;
1241 case DMA_NONE:
1242 default: /* shuts up some versions of gcc */
1243 flag = SRB_NoDataXfer;
1244 break;
1247 srbcmd = (struct aac_srb*) fib_data(fib);
1248 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1249 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1250 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1251 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1252 srbcmd->flags = cpu_to_le32(flag);
1253 timeout = cmd->request->timeout/HZ;
1254 if (timeout == 0)
1255 timeout = 1;
1256 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1257 srbcmd->retry_limit = 0; /* Obsolete parameter */
1258 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1259 return srbcmd;
1262 static void aac_srb_callback(void *context, struct fib * fibptr);
1264 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1266 u16 fibsize;
1267 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1268 long ret;
1270 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1271 if (ret < 0)
1272 return ret;
1273 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1275 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1276 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1278 * Build Scatter/Gather list
1280 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1281 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1282 sizeof (struct sgentry64));
1283 BUG_ON (fibsize > (fib->dev->max_fib_size -
1284 sizeof(struct aac_fibhdr)));
1287 * Now send the Fib to the adapter
1289 return aac_fib_send(ScsiPortCommand64, fib,
1290 fibsize, FsaNormal, 0, 1,
1291 (fib_callback) aac_srb_callback,
1292 (void *) cmd);
1295 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1297 u16 fibsize;
1298 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1299 long ret;
1301 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1302 if (ret < 0)
1303 return ret;
1304 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1306 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1307 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1309 * Build Scatter/Gather list
1311 fibsize = sizeof (struct aac_srb) +
1312 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1313 sizeof (struct sgentry));
1314 BUG_ON (fibsize > (fib->dev->max_fib_size -
1315 sizeof(struct aac_fibhdr)));
1318 * Now send the Fib to the adapter
1320 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1321 (fib_callback) aac_srb_callback, (void *) cmd);
1324 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1326 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1327 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1328 return FAILED;
1329 return aac_scsi_32(fib, cmd);
1332 int aac_get_adapter_info(struct aac_dev* dev)
1334 struct fib* fibptr;
1335 int rcode;
1336 u32 tmp;
1337 struct aac_adapter_info *info;
1338 struct aac_bus_info *command;
1339 struct aac_bus_info_response *bus_info;
1341 if (!(fibptr = aac_fib_alloc(dev)))
1342 return -ENOMEM;
1344 aac_fib_init(fibptr);
1345 info = (struct aac_adapter_info *) fib_data(fibptr);
1346 memset(info,0,sizeof(*info));
1348 rcode = aac_fib_send(RequestAdapterInfo,
1349 fibptr,
1350 sizeof(*info),
1351 FsaNormal,
1352 -1, 1, /* First `interrupt' command uses special wait */
1353 NULL,
1354 NULL);
1356 if (rcode < 0) {
1357 /* FIB should be freed only after
1358 * getting the response from the F/W */
1359 if (rcode != -ERESTARTSYS) {
1360 aac_fib_complete(fibptr);
1361 aac_fib_free(fibptr);
1363 return rcode;
1365 memcpy(&dev->adapter_info, info, sizeof(*info));
1367 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1368 struct aac_supplement_adapter_info * sinfo;
1370 aac_fib_init(fibptr);
1372 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1374 memset(sinfo,0,sizeof(*sinfo));
1376 rcode = aac_fib_send(RequestSupplementAdapterInfo,
1377 fibptr,
1378 sizeof(*sinfo),
1379 FsaNormal,
1380 1, 1,
1381 NULL,
1382 NULL);
1384 if (rcode >= 0)
1385 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1386 if (rcode == -ERESTARTSYS) {
1387 fibptr = aac_fib_alloc(dev);
1388 if (!fibptr)
1389 return -ENOMEM;
1396 * GetBusInfo
1399 aac_fib_init(fibptr);
1401 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1403 memset(bus_info, 0, sizeof(*bus_info));
1405 command = (struct aac_bus_info *)bus_info;
1407 command->Command = cpu_to_le32(VM_Ioctl);
1408 command->ObjType = cpu_to_le32(FT_DRIVE);
1409 command->MethodId = cpu_to_le32(1);
1410 command->CtlCmd = cpu_to_le32(GetBusInfo);
1412 rcode = aac_fib_send(ContainerCommand,
1413 fibptr,
1414 sizeof (*bus_info),
1415 FsaNormal,
1416 1, 1,
1417 NULL, NULL);
1419 /* reasoned default */
1420 dev->maximum_num_physicals = 16;
1421 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1422 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1423 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1426 if (!dev->in_reset) {
1427 char buffer[16];
1428 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1429 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1430 dev->name,
1431 dev->id,
1432 tmp>>24,
1433 (tmp>>16)&0xff,
1434 tmp&0xff,
1435 le32_to_cpu(dev->adapter_info.kernelbuild),
1436 (int)sizeof(dev->supplement_adapter_info.BuildDate),
1437 dev->supplement_adapter_info.BuildDate);
1438 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1439 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1440 dev->name, dev->id,
1441 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1442 le32_to_cpu(dev->adapter_info.monitorbuild));
1443 tmp = le32_to_cpu(dev->adapter_info.biosrev);
1444 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1445 dev->name, dev->id,
1446 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1447 le32_to_cpu(dev->adapter_info.biosbuild));
1448 buffer[0] = '\0';
1449 if (aac_get_serial_number(
1450 shost_to_class(dev->scsi_host_ptr), buffer))
1451 printk(KERN_INFO "%s%d: serial %s",
1452 dev->name, dev->id, buffer);
1453 if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1454 printk(KERN_INFO "%s%d: TSID %.*s\n",
1455 dev->name, dev->id,
1456 (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1457 dev->supplement_adapter_info.VpdInfo.Tsid);
1459 if (!aac_check_reset || ((aac_check_reset == 1) &&
1460 (dev->supplement_adapter_info.SupportedOptions2 &
1461 AAC_OPTION_IGNORE_RESET))) {
1462 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1463 dev->name, dev->id);
1467 dev->cache_protected = 0;
1468 dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1469 AAC_FEATURE_JBOD) != 0);
1470 dev->nondasd_support = 0;
1471 dev->raid_scsi_mode = 0;
1472 if(dev->adapter_info.options & AAC_OPT_NONDASD)
1473 dev->nondasd_support = 1;
1476 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1477 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1478 * force nondasd support on. If we decide to allow the non-dasd flag
1479 * additional changes changes will have to be made to support
1480 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
1481 * changed to support the new dev->raid_scsi_mode flag instead of
1482 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1483 * function aac_detect will have to be modified where it sets up the
1484 * max number of channels based on the aac->nondasd_support flag only.
1486 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1487 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1488 dev->nondasd_support = 1;
1489 dev->raid_scsi_mode = 1;
1491 if (dev->raid_scsi_mode != 0)
1492 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1493 dev->name, dev->id);
1495 if (nondasd != -1)
1496 dev->nondasd_support = (nondasd!=0);
1497 if (dev->nondasd_support && !dev->in_reset)
1498 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1500 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1501 dev->needs_dac = 1;
1502 dev->dac_support = 0;
1503 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1504 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1505 if (!dev->in_reset)
1506 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1507 dev->name, dev->id);
1508 dev->dac_support = 1;
1511 if(dacmode != -1) {
1512 dev->dac_support = (dacmode!=0);
1515 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1516 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
1517 & AAC_QUIRK_SCSI_32)) {
1518 dev->nondasd_support = 0;
1519 dev->jbod = 0;
1520 expose_physicals = 0;
1523 if(dev->dac_support != 0) {
1524 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1525 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1526 if (!dev->in_reset)
1527 printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1528 dev->name, dev->id);
1529 } else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1530 !pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1531 printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1532 dev->name, dev->id);
1533 dev->dac_support = 0;
1534 } else {
1535 printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1536 dev->name, dev->id);
1537 rcode = -ENOMEM;
1541 * Deal with configuring for the individualized limits of each packet
1542 * interface.
1544 dev->a_ops.adapter_scsi = (dev->dac_support)
1545 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1546 ? aac_scsi_32_64
1547 : aac_scsi_64)
1548 : aac_scsi_32;
1549 if (dev->raw_io_interface) {
1550 dev->a_ops.adapter_bounds = (dev->raw_io_64)
1551 ? aac_bounds_64
1552 : aac_bounds_32;
1553 dev->a_ops.adapter_read = aac_read_raw_io;
1554 dev->a_ops.adapter_write = aac_write_raw_io;
1555 } else {
1556 dev->a_ops.adapter_bounds = aac_bounds_32;
1557 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1558 sizeof(struct aac_fibhdr) -
1559 sizeof(struct aac_write) + sizeof(struct sgentry)) /
1560 sizeof(struct sgentry);
1561 if (dev->dac_support) {
1562 dev->a_ops.adapter_read = aac_read_block64;
1563 dev->a_ops.adapter_write = aac_write_block64;
1565 * 38 scatter gather elements
1567 dev->scsi_host_ptr->sg_tablesize =
1568 (dev->max_fib_size -
1569 sizeof(struct aac_fibhdr) -
1570 sizeof(struct aac_write64) +
1571 sizeof(struct sgentry64)) /
1572 sizeof(struct sgentry64);
1573 } else {
1574 dev->a_ops.adapter_read = aac_read_block;
1575 dev->a_ops.adapter_write = aac_write_block;
1577 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1578 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1580 * Worst case size that could cause sg overflow when
1581 * we break up SG elements that are larger than 64KB.
1582 * Would be nice if we could tell the SCSI layer what
1583 * the maximum SG element size can be. Worst case is
1584 * (sg_tablesize-1) 4KB elements with one 64KB
1585 * element.
1586 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
1588 dev->scsi_host_ptr->max_sectors =
1589 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1592 /* FIB should be freed only after getting the response from the F/W */
1593 if (rcode != -ERESTARTSYS) {
1594 aac_fib_complete(fibptr);
1595 aac_fib_free(fibptr);
1598 return rcode;
1602 static void io_callback(void *context, struct fib * fibptr)
1604 struct aac_dev *dev;
1605 struct aac_read_reply *readreply;
1606 struct scsi_cmnd *scsicmd;
1607 u32 cid;
1609 scsicmd = (struct scsi_cmnd *) context;
1611 if (!aac_valid_context(scsicmd, fibptr))
1612 return;
1614 dev = fibptr->dev;
1615 cid = scmd_id(scsicmd);
1617 if (nblank(dprintk(x))) {
1618 u64 lba;
1619 switch (scsicmd->cmnd[0]) {
1620 case WRITE_6:
1621 case READ_6:
1622 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1623 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1624 break;
1625 case WRITE_16:
1626 case READ_16:
1627 lba = ((u64)scsicmd->cmnd[2] << 56) |
1628 ((u64)scsicmd->cmnd[3] << 48) |
1629 ((u64)scsicmd->cmnd[4] << 40) |
1630 ((u64)scsicmd->cmnd[5] << 32) |
1631 ((u64)scsicmd->cmnd[6] << 24) |
1632 (scsicmd->cmnd[7] << 16) |
1633 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1634 break;
1635 case WRITE_12:
1636 case READ_12:
1637 lba = ((u64)scsicmd->cmnd[2] << 24) |
1638 (scsicmd->cmnd[3] << 16) |
1639 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1640 break;
1641 default:
1642 lba = ((u64)scsicmd->cmnd[2] << 24) |
1643 (scsicmd->cmnd[3] << 16) |
1644 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1645 break;
1647 printk(KERN_DEBUG
1648 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1649 smp_processor_id(), (unsigned long long)lba, jiffies);
1652 BUG_ON(fibptr == NULL);
1654 scsi_dma_unmap(scsicmd);
1656 readreply = (struct aac_read_reply *)fib_data(fibptr);
1657 switch (le32_to_cpu(readreply->status)) {
1658 case ST_OK:
1659 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1660 SAM_STAT_GOOD;
1661 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1662 break;
1663 case ST_NOT_READY:
1664 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1665 SAM_STAT_CHECK_CONDITION;
1666 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1667 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1668 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1669 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1670 SCSI_SENSE_BUFFERSIZE));
1671 break;
1672 default:
1673 #ifdef AAC_DETAILED_STATUS_INFO
1674 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1675 le32_to_cpu(readreply->status));
1676 #endif
1677 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1678 SAM_STAT_CHECK_CONDITION;
1679 set_sense(&dev->fsa_dev[cid].sense_data,
1680 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1681 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1682 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1683 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1684 SCSI_SENSE_BUFFERSIZE));
1685 break;
1687 aac_fib_complete(fibptr);
1688 aac_fib_free(fibptr);
1690 scsicmd->scsi_done(scsicmd);
1693 static int aac_read(struct scsi_cmnd * scsicmd)
1695 u64 lba;
1696 u32 count;
1697 int status;
1698 struct aac_dev *dev;
1699 struct fib * cmd_fibcontext;
1700 int cid;
1702 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1704 * Get block address and transfer length
1706 switch (scsicmd->cmnd[0]) {
1707 case READ_6:
1708 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1710 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1711 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1712 count = scsicmd->cmnd[4];
1714 if (count == 0)
1715 count = 256;
1716 break;
1717 case READ_16:
1718 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1720 lba = ((u64)scsicmd->cmnd[2] << 56) |
1721 ((u64)scsicmd->cmnd[3] << 48) |
1722 ((u64)scsicmd->cmnd[4] << 40) |
1723 ((u64)scsicmd->cmnd[5] << 32) |
1724 ((u64)scsicmd->cmnd[6] << 24) |
1725 (scsicmd->cmnd[7] << 16) |
1726 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1727 count = (scsicmd->cmnd[10] << 24) |
1728 (scsicmd->cmnd[11] << 16) |
1729 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1730 break;
1731 case READ_12:
1732 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1734 lba = ((u64)scsicmd->cmnd[2] << 24) |
1735 (scsicmd->cmnd[3] << 16) |
1736 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1737 count = (scsicmd->cmnd[6] << 24) |
1738 (scsicmd->cmnd[7] << 16) |
1739 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1740 break;
1741 default:
1742 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1744 lba = ((u64)scsicmd->cmnd[2] << 24) |
1745 (scsicmd->cmnd[3] << 16) |
1746 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1747 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1748 break;
1751 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1752 cid = scmd_id(scsicmd);
1753 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1754 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1755 SAM_STAT_CHECK_CONDITION;
1756 set_sense(&dev->fsa_dev[cid].sense_data,
1757 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1758 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1759 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1760 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1761 SCSI_SENSE_BUFFERSIZE));
1762 scsicmd->scsi_done(scsicmd);
1763 return 1;
1766 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1767 smp_processor_id(), (unsigned long long)lba, jiffies));
1768 if (aac_adapter_bounds(dev,scsicmd,lba))
1769 return 0;
1771 * Alocate and initialize a Fib
1773 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1774 printk(KERN_WARNING "aac_read: fib allocation failed\n");
1775 return -1;
1778 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1781 * Check that the command queued to the controller
1783 if (status == -EINPROGRESS) {
1784 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1785 return 0;
1788 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1790 * For some reason, the Fib didn't queue, return QUEUE_FULL
1792 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1793 scsicmd->scsi_done(scsicmd);
1794 aac_fib_complete(cmd_fibcontext);
1795 aac_fib_free(cmd_fibcontext);
1796 return 0;
1799 static int aac_write(struct scsi_cmnd * scsicmd)
1801 u64 lba;
1802 u32 count;
1803 int fua;
1804 int status;
1805 struct aac_dev *dev;
1806 struct fib * cmd_fibcontext;
1807 int cid;
1809 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1811 * Get block address and transfer length
1813 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
1815 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1816 count = scsicmd->cmnd[4];
1817 if (count == 0)
1818 count = 256;
1819 fua = 0;
1820 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1821 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1823 lba = ((u64)scsicmd->cmnd[2] << 56) |
1824 ((u64)scsicmd->cmnd[3] << 48) |
1825 ((u64)scsicmd->cmnd[4] << 40) |
1826 ((u64)scsicmd->cmnd[5] << 32) |
1827 ((u64)scsicmd->cmnd[6] << 24) |
1828 (scsicmd->cmnd[7] << 16) |
1829 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1830 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1831 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1832 fua = scsicmd->cmnd[1] & 0x8;
1833 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1834 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1836 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1837 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1838 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1839 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1840 fua = scsicmd->cmnd[1] & 0x8;
1841 } else {
1842 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1843 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1844 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1845 fua = scsicmd->cmnd[1] & 0x8;
1848 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1849 cid = scmd_id(scsicmd);
1850 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1851 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1852 SAM_STAT_CHECK_CONDITION;
1853 set_sense(&dev->fsa_dev[cid].sense_data,
1854 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1855 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1856 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1857 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1858 SCSI_SENSE_BUFFERSIZE));
1859 scsicmd->scsi_done(scsicmd);
1860 return 1;
1863 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1864 smp_processor_id(), (unsigned long long)lba, jiffies));
1865 if (aac_adapter_bounds(dev,scsicmd,lba))
1866 return 0;
1868 * Allocate and initialize a Fib then setup a BlockWrite command
1870 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1871 /* FIB temporarily unavailable,not catastrophic failure */
1873 /* scsicmd->result = DID_ERROR << 16;
1874 * scsicmd->scsi_done(scsicmd);
1875 * return 0;
1877 printk(KERN_WARNING "aac_write: fib allocation failed\n");
1878 return -1;
1881 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1884 * Check that the command queued to the controller
1886 if (status == -EINPROGRESS) {
1887 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1888 return 0;
1891 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1893 * For some reason, the Fib didn't queue, return QUEUE_FULL
1895 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1896 scsicmd->scsi_done(scsicmd);
1898 aac_fib_complete(cmd_fibcontext);
1899 aac_fib_free(cmd_fibcontext);
1900 return 0;
1903 static void synchronize_callback(void *context, struct fib *fibptr)
1905 struct aac_synchronize_reply *synchronizereply;
1906 struct scsi_cmnd *cmd;
1908 cmd = context;
1910 if (!aac_valid_context(cmd, fibptr))
1911 return;
1913 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1914 smp_processor_id(), jiffies));
1915 BUG_ON(fibptr == NULL);
1918 synchronizereply = fib_data(fibptr);
1919 if (le32_to_cpu(synchronizereply->status) == CT_OK)
1920 cmd->result = DID_OK << 16 |
1921 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1922 else {
1923 struct scsi_device *sdev = cmd->device;
1924 struct aac_dev *dev = fibptr->dev;
1925 u32 cid = sdev_id(sdev);
1926 printk(KERN_WARNING
1927 "synchronize_callback: synchronize failed, status = %d\n",
1928 le32_to_cpu(synchronizereply->status));
1929 cmd->result = DID_OK << 16 |
1930 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1931 set_sense(&dev->fsa_dev[cid].sense_data,
1932 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1933 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1934 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1935 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1936 SCSI_SENSE_BUFFERSIZE));
1939 aac_fib_complete(fibptr);
1940 aac_fib_free(fibptr);
1941 cmd->scsi_done(cmd);
1944 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1946 int status;
1947 struct fib *cmd_fibcontext;
1948 struct aac_synchronize *synchronizecmd;
1949 struct scsi_cmnd *cmd;
1950 struct scsi_device *sdev = scsicmd->device;
1951 int active = 0;
1952 struct aac_dev *aac;
1953 u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1954 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1955 u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1956 unsigned long flags;
1959 * Wait for all outstanding queued commands to complete to this
1960 * specific target (block).
1962 spin_lock_irqsave(&sdev->list_lock, flags);
1963 list_for_each_entry(cmd, &sdev->cmd_list, list)
1964 if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1965 u64 cmnd_lba;
1966 u32 cmnd_count;
1968 if (cmd->cmnd[0] == WRITE_6) {
1969 cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1970 (cmd->cmnd[2] << 8) |
1971 cmd->cmnd[3];
1972 cmnd_count = cmd->cmnd[4];
1973 if (cmnd_count == 0)
1974 cmnd_count = 256;
1975 } else if (cmd->cmnd[0] == WRITE_16) {
1976 cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1977 ((u64)cmd->cmnd[3] << 48) |
1978 ((u64)cmd->cmnd[4] << 40) |
1979 ((u64)cmd->cmnd[5] << 32) |
1980 ((u64)cmd->cmnd[6] << 24) |
1981 (cmd->cmnd[7] << 16) |
1982 (cmd->cmnd[8] << 8) |
1983 cmd->cmnd[9];
1984 cmnd_count = (cmd->cmnd[10] << 24) |
1985 (cmd->cmnd[11] << 16) |
1986 (cmd->cmnd[12] << 8) |
1987 cmd->cmnd[13];
1988 } else if (cmd->cmnd[0] == WRITE_12) {
1989 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1990 (cmd->cmnd[3] << 16) |
1991 (cmd->cmnd[4] << 8) |
1992 cmd->cmnd[5];
1993 cmnd_count = (cmd->cmnd[6] << 24) |
1994 (cmd->cmnd[7] << 16) |
1995 (cmd->cmnd[8] << 8) |
1996 cmd->cmnd[9];
1997 } else if (cmd->cmnd[0] == WRITE_10) {
1998 cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1999 (cmd->cmnd[3] << 16) |
2000 (cmd->cmnd[4] << 8) |
2001 cmd->cmnd[5];
2002 cmnd_count = (cmd->cmnd[7] << 8) |
2003 cmd->cmnd[8];
2004 } else
2005 continue;
2006 if (((cmnd_lba + cmnd_count) < lba) ||
2007 (count && ((lba + count) < cmnd_lba)))
2008 continue;
2009 ++active;
2010 break;
2013 spin_unlock_irqrestore(&sdev->list_lock, flags);
2016 * Yield the processor (requeue for later)
2018 if (active)
2019 return SCSI_MLQUEUE_DEVICE_BUSY;
2021 aac = (struct aac_dev *)sdev->host->hostdata;
2022 if (aac->in_reset)
2023 return SCSI_MLQUEUE_HOST_BUSY;
2026 * Allocate and initialize a Fib
2028 if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2029 return SCSI_MLQUEUE_HOST_BUSY;
2031 aac_fib_init(cmd_fibcontext);
2033 synchronizecmd = fib_data(cmd_fibcontext);
2034 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2035 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2036 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2037 synchronizecmd->count =
2038 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2041 * Now send the Fib to the adapter
2043 status = aac_fib_send(ContainerCommand,
2044 cmd_fibcontext,
2045 sizeof(struct aac_synchronize),
2046 FsaNormal,
2047 0, 1,
2048 (fib_callback)synchronize_callback,
2049 (void *)scsicmd);
2052 * Check that the command queued to the controller
2054 if (status == -EINPROGRESS) {
2055 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2056 return 0;
2059 printk(KERN_WARNING
2060 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2061 aac_fib_complete(cmd_fibcontext);
2062 aac_fib_free(cmd_fibcontext);
2063 return SCSI_MLQUEUE_HOST_BUSY;
2066 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2068 struct scsi_cmnd *scsicmd = context;
2070 if (!aac_valid_context(scsicmd, fibptr))
2071 return;
2073 BUG_ON(fibptr == NULL);
2075 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2077 aac_fib_complete(fibptr);
2078 aac_fib_free(fibptr);
2079 scsicmd->scsi_done(scsicmd);
2082 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2084 int status;
2085 struct fib *cmd_fibcontext;
2086 struct aac_power_management *pmcmd;
2087 struct scsi_device *sdev = scsicmd->device;
2088 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2090 if (!(aac->supplement_adapter_info.SupportedOptions2 &
2091 AAC_OPTION_POWER_MANAGEMENT)) {
2092 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2093 SAM_STAT_GOOD;
2094 scsicmd->scsi_done(scsicmd);
2095 return 0;
2098 if (aac->in_reset)
2099 return SCSI_MLQUEUE_HOST_BUSY;
2102 * Allocate and initialize a Fib
2104 cmd_fibcontext = aac_fib_alloc(aac);
2105 if (!cmd_fibcontext)
2106 return SCSI_MLQUEUE_HOST_BUSY;
2108 aac_fib_init(cmd_fibcontext);
2110 pmcmd = fib_data(cmd_fibcontext);
2111 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2112 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2113 /* Eject bit ignored, not relevant */
2114 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2115 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2116 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2117 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2118 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2121 * Now send the Fib to the adapter
2123 status = aac_fib_send(ContainerCommand,
2124 cmd_fibcontext,
2125 sizeof(struct aac_power_management),
2126 FsaNormal,
2127 0, 1,
2128 (fib_callback)aac_start_stop_callback,
2129 (void *)scsicmd);
2132 * Check that the command queued to the controller
2134 if (status == -EINPROGRESS) {
2135 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2136 return 0;
2139 aac_fib_complete(cmd_fibcontext);
2140 aac_fib_free(cmd_fibcontext);
2141 return SCSI_MLQUEUE_HOST_BUSY;
2145 * aac_scsi_cmd() - Process SCSI command
2146 * @scsicmd: SCSI command block
2148 * Emulate a SCSI command and queue the required request for the
2149 * aacraid firmware.
2152 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2154 u32 cid;
2155 struct Scsi_Host *host = scsicmd->device->host;
2156 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2157 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2159 if (fsa_dev_ptr == NULL)
2160 return -1;
2162 * If the bus, id or lun is out of range, return fail
2163 * Test does not apply to ID 16, the pseudo id for the controller
2164 * itself.
2166 cid = scmd_id(scsicmd);
2167 if (cid != host->this_id) {
2168 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2169 if((cid >= dev->maximum_num_containers) ||
2170 (scsicmd->device->lun != 0)) {
2171 scsicmd->result = DID_NO_CONNECT << 16;
2172 scsicmd->scsi_done(scsicmd);
2173 return 0;
2177 * If the target container doesn't exist, it may have
2178 * been newly created
2180 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2181 (fsa_dev_ptr[cid].sense_data.sense_key ==
2182 NOT_READY)) {
2183 switch (scsicmd->cmnd[0]) {
2184 case SERVICE_ACTION_IN:
2185 if (!(dev->raw_io_interface) ||
2186 !(dev->raw_io_64) ||
2187 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2188 break;
2189 case INQUIRY:
2190 case READ_CAPACITY:
2191 case TEST_UNIT_READY:
2192 if (dev->in_reset)
2193 return -1;
2194 return _aac_probe_container(scsicmd,
2195 aac_probe_container_callback2);
2196 default:
2197 break;
2200 } else { /* check for physical non-dasd devices */
2201 if (dev->nondasd_support || expose_physicals ||
2202 dev->jbod) {
2203 if (dev->in_reset)
2204 return -1;
2205 return aac_send_srb_fib(scsicmd);
2206 } else {
2207 scsicmd->result = DID_NO_CONNECT << 16;
2208 scsicmd->scsi_done(scsicmd);
2209 return 0;
2214 * else Command for the controller itself
2216 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2217 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2219 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2220 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2221 set_sense(&dev->fsa_dev[cid].sense_data,
2222 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2223 ASENCODE_INVALID_COMMAND, 0, 0);
2224 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2225 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2226 SCSI_SENSE_BUFFERSIZE));
2227 scsicmd->scsi_done(scsicmd);
2228 return 0;
2232 /* Handle commands here that don't really require going out to the adapter */
2233 switch (scsicmd->cmnd[0]) {
2234 case INQUIRY:
2236 struct inquiry_data inq_data;
2238 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2239 memset(&inq_data, 0, sizeof (struct inquiry_data));
2241 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2242 char *arr = (char *)&inq_data;
2244 /* EVPD bit set */
2245 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2246 INQD_PDT_PROC : INQD_PDT_DA;
2247 if (scsicmd->cmnd[2] == 0) {
2248 /* supported vital product data pages */
2249 arr[3] = 2;
2250 arr[4] = 0x0;
2251 arr[5] = 0x80;
2252 arr[1] = scsicmd->cmnd[2];
2253 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2254 sizeof(inq_data));
2255 scsicmd->result = DID_OK << 16 |
2256 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2257 } else if (scsicmd->cmnd[2] == 0x80) {
2258 /* unit serial number page */
2259 arr[3] = setinqserial(dev, &arr[4],
2260 scmd_id(scsicmd));
2261 arr[1] = scsicmd->cmnd[2];
2262 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2263 sizeof(inq_data));
2264 if (aac_wwn != 2)
2265 return aac_get_container_serial(
2266 scsicmd);
2267 /* SLES 10 SP1 special */
2268 scsicmd->result = DID_OK << 16 |
2269 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2270 } else {
2271 /* vpd page not implemented */
2272 scsicmd->result = DID_OK << 16 |
2273 COMMAND_COMPLETE << 8 |
2274 SAM_STAT_CHECK_CONDITION;
2275 set_sense(&dev->fsa_dev[cid].sense_data,
2276 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2277 ASENCODE_NO_SENSE, 7, 2);
2278 memcpy(scsicmd->sense_buffer,
2279 &dev->fsa_dev[cid].sense_data,
2280 min_t(size_t,
2281 sizeof(dev->fsa_dev[cid].sense_data),
2282 SCSI_SENSE_BUFFERSIZE));
2284 scsicmd->scsi_done(scsicmd);
2285 return 0;
2287 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2288 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2289 inq_data.inqd_len = 31;
2290 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2291 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2293 * Set the Vendor, Product, and Revision Level
2294 * see: <vendor>.c i.e. aac.c
2296 if (cid == host->this_id) {
2297 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2298 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2299 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2300 sizeof(inq_data));
2301 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2302 scsicmd->scsi_done(scsicmd);
2303 return 0;
2305 if (dev->in_reset)
2306 return -1;
2307 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2308 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2309 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2310 return aac_get_container_name(scsicmd);
2312 case SERVICE_ACTION_IN:
2313 if (!(dev->raw_io_interface) ||
2314 !(dev->raw_io_64) ||
2315 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2316 break;
2318 u64 capacity;
2319 char cp[13];
2320 unsigned int alloc_len;
2322 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2323 capacity = fsa_dev_ptr[cid].size - 1;
2324 cp[0] = (capacity >> 56) & 0xff;
2325 cp[1] = (capacity >> 48) & 0xff;
2326 cp[2] = (capacity >> 40) & 0xff;
2327 cp[3] = (capacity >> 32) & 0xff;
2328 cp[4] = (capacity >> 24) & 0xff;
2329 cp[5] = (capacity >> 16) & 0xff;
2330 cp[6] = (capacity >> 8) & 0xff;
2331 cp[7] = (capacity >> 0) & 0xff;
2332 cp[8] = 0;
2333 cp[9] = 0;
2334 cp[10] = 2;
2335 cp[11] = 0;
2336 cp[12] = 0;
2338 alloc_len = ((scsicmd->cmnd[10] << 24)
2339 + (scsicmd->cmnd[11] << 16)
2340 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2342 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2343 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2344 if (alloc_len < scsi_bufflen(scsicmd))
2345 scsi_set_resid(scsicmd,
2346 scsi_bufflen(scsicmd) - alloc_len);
2348 /* Do not cache partition table for arrays */
2349 scsicmd->device->removable = 1;
2351 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2352 scsicmd->scsi_done(scsicmd);
2354 return 0;
2357 case READ_CAPACITY:
2359 u32 capacity;
2360 char cp[8];
2362 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2363 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2364 capacity = fsa_dev_ptr[cid].size - 1;
2365 else
2366 capacity = (u32)-1;
2368 cp[0] = (capacity >> 24) & 0xff;
2369 cp[1] = (capacity >> 16) & 0xff;
2370 cp[2] = (capacity >> 8) & 0xff;
2371 cp[3] = (capacity >> 0) & 0xff;
2372 cp[4] = 0;
2373 cp[5] = 0;
2374 cp[6] = 2;
2375 cp[7] = 0;
2376 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2377 /* Do not cache partition table for arrays */
2378 scsicmd->device->removable = 1;
2379 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2380 SAM_STAT_GOOD;
2381 scsicmd->scsi_done(scsicmd);
2383 return 0;
2386 case MODE_SENSE:
2388 char mode_buf[7];
2389 int mode_buf_length = 4;
2391 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2392 mode_buf[0] = 3; /* Mode data length */
2393 mode_buf[1] = 0; /* Medium type - default */
2394 mode_buf[2] = 0; /* Device-specific param,
2395 bit 8: 0/1 = write enabled/protected
2396 bit 4: 0/1 = FUA enabled */
2397 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2398 mode_buf[2] = 0x10;
2399 mode_buf[3] = 0; /* Block descriptor length */
2400 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2401 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2402 mode_buf[0] = 6;
2403 mode_buf[4] = 8;
2404 mode_buf[5] = 1;
2405 mode_buf[6] = ((aac_cache & 6) == 2)
2406 ? 0 : 0x04; /* WCE */
2407 mode_buf_length = 7;
2408 if (mode_buf_length > scsicmd->cmnd[4])
2409 mode_buf_length = scsicmd->cmnd[4];
2411 scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2412 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2413 scsicmd->scsi_done(scsicmd);
2415 return 0;
2417 case MODE_SENSE_10:
2419 char mode_buf[11];
2420 int mode_buf_length = 8;
2422 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2423 mode_buf[0] = 0; /* Mode data length (MSB) */
2424 mode_buf[1] = 6; /* Mode data length (LSB) */
2425 mode_buf[2] = 0; /* Medium type - default */
2426 mode_buf[3] = 0; /* Device-specific param,
2427 bit 8: 0/1 = write enabled/protected
2428 bit 4: 0/1 = FUA enabled */
2429 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2430 mode_buf[3] = 0x10;
2431 mode_buf[4] = 0; /* reserved */
2432 mode_buf[5] = 0; /* reserved */
2433 mode_buf[6] = 0; /* Block descriptor length (MSB) */
2434 mode_buf[7] = 0; /* Block descriptor length (LSB) */
2435 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2436 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2437 mode_buf[1] = 9;
2438 mode_buf[8] = 8;
2439 mode_buf[9] = 1;
2440 mode_buf[10] = ((aac_cache & 6) == 2)
2441 ? 0 : 0x04; /* WCE */
2442 mode_buf_length = 11;
2443 if (mode_buf_length > scsicmd->cmnd[8])
2444 mode_buf_length = scsicmd->cmnd[8];
2446 scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2448 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2449 scsicmd->scsi_done(scsicmd);
2451 return 0;
2453 case REQUEST_SENSE:
2454 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2455 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2456 memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2457 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2458 scsicmd->scsi_done(scsicmd);
2459 return 0;
2461 case ALLOW_MEDIUM_REMOVAL:
2462 dprintk((KERN_DEBUG "LOCK command.\n"));
2463 if (scsicmd->cmnd[4])
2464 fsa_dev_ptr[cid].locked = 1;
2465 else
2466 fsa_dev_ptr[cid].locked = 0;
2468 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2469 scsicmd->scsi_done(scsicmd);
2470 return 0;
2472 * These commands are all No-Ops
2474 case TEST_UNIT_READY:
2475 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2476 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2477 SAM_STAT_CHECK_CONDITION;
2478 set_sense(&dev->fsa_dev[cid].sense_data,
2479 NOT_READY, SENCODE_BECOMING_READY,
2480 ASENCODE_BECOMING_READY, 0, 0);
2481 memcpy(scsicmd->sense_buffer,
2482 &dev->fsa_dev[cid].sense_data,
2483 min_t(size_t,
2484 sizeof(dev->fsa_dev[cid].sense_data),
2485 SCSI_SENSE_BUFFERSIZE));
2486 scsicmd->scsi_done(scsicmd);
2487 return 0;
2489 /* FALLTHRU */
2490 case RESERVE:
2491 case RELEASE:
2492 case REZERO_UNIT:
2493 case REASSIGN_BLOCKS:
2494 case SEEK_10:
2495 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2496 scsicmd->scsi_done(scsicmd);
2497 return 0;
2499 case START_STOP:
2500 return aac_start_stop(scsicmd);
2503 switch (scsicmd->cmnd[0])
2505 case READ_6:
2506 case READ_10:
2507 case READ_12:
2508 case READ_16:
2509 if (dev->in_reset)
2510 return -1;
2512 * Hack to keep track of ordinal number of the device that
2513 * corresponds to a container. Needed to convert
2514 * containers to /dev/sd device names
2517 if (scsicmd->request->rq_disk)
2518 strlcpy(fsa_dev_ptr[cid].devname,
2519 scsicmd->request->rq_disk->disk_name,
2520 min(sizeof(fsa_dev_ptr[cid].devname),
2521 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2523 return aac_read(scsicmd);
2525 case WRITE_6:
2526 case WRITE_10:
2527 case WRITE_12:
2528 case WRITE_16:
2529 if (dev->in_reset)
2530 return -1;
2531 return aac_write(scsicmd);
2533 case SYNCHRONIZE_CACHE:
2534 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2535 scsicmd->result = DID_OK << 16 |
2536 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2537 scsicmd->scsi_done(scsicmd);
2538 return 0;
2540 /* Issue FIB to tell Firmware to flush it's cache */
2541 if ((aac_cache & 6) != 2)
2542 return aac_synchronize(scsicmd);
2543 /* FALLTHRU */
2544 default:
2546 * Unhandled commands
2548 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2549 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2550 set_sense(&dev->fsa_dev[cid].sense_data,
2551 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2552 ASENCODE_INVALID_COMMAND, 0, 0);
2553 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2554 min_t(size_t,
2555 sizeof(dev->fsa_dev[cid].sense_data),
2556 SCSI_SENSE_BUFFERSIZE));
2557 scsicmd->scsi_done(scsicmd);
2558 return 0;
2562 static int query_disk(struct aac_dev *dev, void __user *arg)
2564 struct aac_query_disk qd;
2565 struct fsa_dev_info *fsa_dev_ptr;
2567 fsa_dev_ptr = dev->fsa_dev;
2568 if (!fsa_dev_ptr)
2569 return -EBUSY;
2570 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2571 return -EFAULT;
2572 if (qd.cnum == -1)
2573 qd.cnum = qd.id;
2574 else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2576 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2577 return -EINVAL;
2578 qd.instance = dev->scsi_host_ptr->host_no;
2579 qd.bus = 0;
2580 qd.id = CONTAINER_TO_ID(qd.cnum);
2581 qd.lun = CONTAINER_TO_LUN(qd.cnum);
2583 else return -EINVAL;
2585 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2586 qd.locked = fsa_dev_ptr[qd.cnum].locked;
2587 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2589 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2590 qd.unmapped = 1;
2591 else
2592 qd.unmapped = 0;
2594 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2595 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2597 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2598 return -EFAULT;
2599 return 0;
2602 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2604 struct aac_delete_disk dd;
2605 struct fsa_dev_info *fsa_dev_ptr;
2607 fsa_dev_ptr = dev->fsa_dev;
2608 if (!fsa_dev_ptr)
2609 return -EBUSY;
2611 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2612 return -EFAULT;
2614 if (dd.cnum >= dev->maximum_num_containers)
2615 return -EINVAL;
2617 * Mark this container as being deleted.
2619 fsa_dev_ptr[dd.cnum].deleted = 1;
2621 * Mark the container as no longer valid
2623 fsa_dev_ptr[dd.cnum].valid = 0;
2624 return 0;
2627 static int delete_disk(struct aac_dev *dev, void __user *arg)
2629 struct aac_delete_disk dd;
2630 struct fsa_dev_info *fsa_dev_ptr;
2632 fsa_dev_ptr = dev->fsa_dev;
2633 if (!fsa_dev_ptr)
2634 return -EBUSY;
2636 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2637 return -EFAULT;
2639 if (dd.cnum >= dev->maximum_num_containers)
2640 return -EINVAL;
2642 * If the container is locked, it can not be deleted by the API.
2644 if (fsa_dev_ptr[dd.cnum].locked)
2645 return -EBUSY;
2646 else {
2648 * Mark the container as no longer being valid.
2650 fsa_dev_ptr[dd.cnum].valid = 0;
2651 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2652 return 0;
2656 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2658 switch (cmd) {
2659 case FSACTL_QUERY_DISK:
2660 return query_disk(dev, arg);
2661 case FSACTL_DELETE_DISK:
2662 return delete_disk(dev, arg);
2663 case FSACTL_FORCE_DELETE_DISK:
2664 return force_delete_disk(dev, arg);
2665 case FSACTL_GET_CONTAINERS:
2666 return aac_get_containers(dev);
2667 default:
2668 return -ENOTTY;
2674 * aac_srb_callback
2675 * @context: the context set in the fib - here it is scsi cmd
2676 * @fibptr: pointer to the fib
2678 * Handles the completion of a scsi command to a non dasd device
2682 static void aac_srb_callback(void *context, struct fib * fibptr)
2684 struct aac_dev *dev;
2685 struct aac_srb_reply *srbreply;
2686 struct scsi_cmnd *scsicmd;
2688 scsicmd = (struct scsi_cmnd *) context;
2690 if (!aac_valid_context(scsicmd, fibptr))
2691 return;
2693 BUG_ON(fibptr == NULL);
2695 dev = fibptr->dev;
2697 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2699 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
2701 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
2702 /* fast response */
2703 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
2704 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
2705 } else {
2707 * Calculate resid for sg
2709 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2710 - le32_to_cpu(srbreply->data_xfer_length));
2713 scsi_dma_unmap(scsicmd);
2715 /* expose physical device if expose_physicald flag is on */
2716 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
2717 && expose_physicals > 0)
2718 aac_expose_phy_device(scsicmd);
2721 * First check the fib status
2724 if (le32_to_cpu(srbreply->status) != ST_OK){
2725 int len;
2726 printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2727 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2728 SCSI_SENSE_BUFFERSIZE);
2729 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2730 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2734 * Next check the srb status
2736 switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2737 case SRB_STATUS_ERROR_RECOVERY:
2738 case SRB_STATUS_PENDING:
2739 case SRB_STATUS_SUCCESS:
2740 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2741 break;
2742 case SRB_STATUS_DATA_OVERRUN:
2743 switch(scsicmd->cmnd[0]){
2744 case READ_6:
2745 case WRITE_6:
2746 case READ_10:
2747 case WRITE_10:
2748 case READ_12:
2749 case WRITE_12:
2750 case READ_16:
2751 case WRITE_16:
2752 if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2753 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2754 } else {
2755 printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2757 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2758 break;
2759 case INQUIRY: {
2760 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2761 break;
2763 default:
2764 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2765 break;
2767 break;
2768 case SRB_STATUS_ABORTED:
2769 scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2770 break;
2771 case SRB_STATUS_ABORT_FAILED:
2772 // Not sure about this one - but assuming the hba was trying to abort for some reason
2773 scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2774 break;
2775 case SRB_STATUS_PARITY_ERROR:
2776 scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2777 break;
2778 case SRB_STATUS_NO_DEVICE:
2779 case SRB_STATUS_INVALID_PATH_ID:
2780 case SRB_STATUS_INVALID_TARGET_ID:
2781 case SRB_STATUS_INVALID_LUN:
2782 case SRB_STATUS_SELECTION_TIMEOUT:
2783 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2784 break;
2786 case SRB_STATUS_COMMAND_TIMEOUT:
2787 case SRB_STATUS_TIMEOUT:
2788 scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2789 break;
2791 case SRB_STATUS_BUSY:
2792 scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2793 break;
2795 case SRB_STATUS_BUS_RESET:
2796 scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2797 break;
2799 case SRB_STATUS_MESSAGE_REJECTED:
2800 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2801 break;
2802 case SRB_STATUS_REQUEST_FLUSHED:
2803 case SRB_STATUS_ERROR:
2804 case SRB_STATUS_INVALID_REQUEST:
2805 case SRB_STATUS_REQUEST_SENSE_FAILED:
2806 case SRB_STATUS_NO_HBA:
2807 case SRB_STATUS_UNEXPECTED_BUS_FREE:
2808 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2809 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2810 case SRB_STATUS_DELAYED_RETRY:
2811 case SRB_STATUS_BAD_FUNCTION:
2812 case SRB_STATUS_NOT_STARTED:
2813 case SRB_STATUS_NOT_IN_USE:
2814 case SRB_STATUS_FORCE_ABORT:
2815 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2816 default:
2817 #ifdef AAC_DETAILED_STATUS_INFO
2818 printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2819 le32_to_cpu(srbreply->srb_status) & 0x3F,
2820 aac_get_status_string(
2821 le32_to_cpu(srbreply->srb_status) & 0x3F),
2822 scsicmd->cmnd[0],
2823 le32_to_cpu(srbreply->scsi_status));
2824 #endif
2825 if ((scsicmd->cmnd[0] == ATA_12)
2826 || (scsicmd->cmnd[0] == ATA_16)) {
2827 if (scsicmd->cmnd[2] & (0x01 << 5)) {
2828 scsicmd->result = DID_OK << 16
2829 | COMMAND_COMPLETE << 8;
2830 break;
2831 } else {
2832 scsicmd->result = DID_ERROR << 16
2833 | COMMAND_COMPLETE << 8;
2834 break;
2836 } else {
2837 scsicmd->result = DID_ERROR << 16
2838 | COMMAND_COMPLETE << 8;
2839 break;
2842 if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2843 int len;
2844 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2845 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2846 SCSI_SENSE_BUFFERSIZE);
2847 #ifdef AAC_DETAILED_STATUS_INFO
2848 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2849 le32_to_cpu(srbreply->status), len);
2850 #endif
2851 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2854 * OR in the scsi status (already shifted up a bit)
2856 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2858 aac_fib_complete(fibptr);
2859 aac_fib_free(fibptr);
2860 scsicmd->scsi_done(scsicmd);
2865 * aac_send_scb_fib
2866 * @scsicmd: the scsi command block
2868 * This routine will form a FIB and fill in the aac_srb from the
2869 * scsicmd passed in.
2872 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2874 struct fib* cmd_fibcontext;
2875 struct aac_dev* dev;
2876 int status;
2878 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2879 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2880 scsicmd->device->lun > 7) {
2881 scsicmd->result = DID_NO_CONNECT << 16;
2882 scsicmd->scsi_done(scsicmd);
2883 return 0;
2887 * Allocate and initialize a Fib then setup a BlockWrite command
2889 if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2890 return -1;
2892 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2895 * Check that the command queued to the controller
2897 if (status == -EINPROGRESS) {
2898 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2899 return 0;
2902 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2903 aac_fib_complete(cmd_fibcontext);
2904 aac_fib_free(cmd_fibcontext);
2906 return -1;
2909 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
2911 struct aac_dev *dev;
2912 unsigned long byte_count = 0;
2913 int nseg;
2915 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2916 // Get rid of old data
2917 psg->count = 0;
2918 psg->sg[0].addr = 0;
2919 psg->sg[0].count = 0;
2921 nseg = scsi_dma_map(scsicmd);
2922 if (nseg < 0)
2923 return nseg;
2924 if (nseg) {
2925 struct scatterlist *sg;
2926 int i;
2928 psg->count = cpu_to_le32(nseg);
2930 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2931 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2932 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2933 byte_count += sg_dma_len(sg);
2935 /* hba wants the size to be exact */
2936 if (byte_count > scsi_bufflen(scsicmd)) {
2937 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2938 (byte_count - scsi_bufflen(scsicmd));
2939 psg->sg[i-1].count = cpu_to_le32(temp);
2940 byte_count = scsi_bufflen(scsicmd);
2942 /* Check for command underflow */
2943 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2944 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2945 byte_count, scsicmd->underflow);
2948 return byte_count;
2952 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
2954 struct aac_dev *dev;
2955 unsigned long byte_count = 0;
2956 u64 addr;
2957 int nseg;
2959 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2960 // Get rid of old data
2961 psg->count = 0;
2962 psg->sg[0].addr[0] = 0;
2963 psg->sg[0].addr[1] = 0;
2964 psg->sg[0].count = 0;
2966 nseg = scsi_dma_map(scsicmd);
2967 if (nseg < 0)
2968 return nseg;
2969 if (nseg) {
2970 struct scatterlist *sg;
2971 int i;
2973 scsi_for_each_sg(scsicmd, sg, nseg, i) {
2974 int count = sg_dma_len(sg);
2975 addr = sg_dma_address(sg);
2976 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2977 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2978 psg->sg[i].count = cpu_to_le32(count);
2979 byte_count += count;
2981 psg->count = cpu_to_le32(nseg);
2982 /* hba wants the size to be exact */
2983 if (byte_count > scsi_bufflen(scsicmd)) {
2984 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2985 (byte_count - scsi_bufflen(scsicmd));
2986 psg->sg[i-1].count = cpu_to_le32(temp);
2987 byte_count = scsi_bufflen(scsicmd);
2989 /* Check for command underflow */
2990 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2991 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2992 byte_count, scsicmd->underflow);
2995 return byte_count;
2998 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3000 unsigned long byte_count = 0;
3001 int nseg;
3003 // Get rid of old data
3004 psg->count = 0;
3005 psg->sg[0].next = 0;
3006 psg->sg[0].prev = 0;
3007 psg->sg[0].addr[0] = 0;
3008 psg->sg[0].addr[1] = 0;
3009 psg->sg[0].count = 0;
3010 psg->sg[0].flags = 0;
3012 nseg = scsi_dma_map(scsicmd);
3013 if (nseg < 0)
3014 return nseg;
3015 if (nseg) {
3016 struct scatterlist *sg;
3017 int i;
3019 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3020 int count = sg_dma_len(sg);
3021 u64 addr = sg_dma_address(sg);
3022 psg->sg[i].next = 0;
3023 psg->sg[i].prev = 0;
3024 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3025 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3026 psg->sg[i].count = cpu_to_le32(count);
3027 psg->sg[i].flags = 0;
3028 byte_count += count;
3030 psg->count = cpu_to_le32(nseg);
3031 /* hba wants the size to be exact */
3032 if (byte_count > scsi_bufflen(scsicmd)) {
3033 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3034 (byte_count - scsi_bufflen(scsicmd));
3035 psg->sg[i-1].count = cpu_to_le32(temp);
3036 byte_count = scsi_bufflen(scsicmd);
3038 /* Check for command underflow */
3039 if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3040 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3041 byte_count, scsicmd->underflow);
3044 return byte_count;
3047 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3048 struct aac_raw_io2 *rio2, int sg_max)
3050 unsigned long byte_count = 0;
3051 int nseg;
3053 nseg = scsi_dma_map(scsicmd);
3054 if (nseg < 0)
3055 return nseg;
3056 if (nseg) {
3057 struct scatterlist *sg;
3058 int i, conformable = 0;
3059 u32 min_size = PAGE_SIZE, cur_size;
3061 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3062 int count = sg_dma_len(sg);
3063 u64 addr = sg_dma_address(sg);
3065 BUG_ON(i >= sg_max);
3066 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3067 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3068 cur_size = cpu_to_le32(count);
3069 rio2->sge[i].length = cur_size;
3070 rio2->sge[i].flags = 0;
3071 if (i == 0) {
3072 conformable = 1;
3073 rio2->sgeFirstSize = cur_size;
3074 } else if (i == 1) {
3075 rio2->sgeNominalSize = cur_size;
3076 min_size = cur_size;
3077 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3078 conformable = 0;
3079 if (cur_size < min_size)
3080 min_size = cur_size;
3082 byte_count += count;
3085 /* hba wants the size to be exact */
3086 if (byte_count > scsi_bufflen(scsicmd)) {
3087 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3088 (byte_count - scsi_bufflen(scsicmd));
3089 rio2->sge[i-1].length = cpu_to_le32(temp);
3090 byte_count = scsi_bufflen(scsicmd);
3093 rio2->sgeCnt = cpu_to_le32(nseg);
3094 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3095 /* not conformable: evaluate required sg elements */
3096 if (!conformable) {
3097 int j, nseg_new = nseg, err_found;
3098 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3099 err_found = 0;
3100 nseg_new = 2;
3101 for (j = 1; j < nseg - 1; ++j) {
3102 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3103 err_found = 1;
3104 break;
3106 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3108 if (!err_found)
3109 break;
3111 if (i > 0 && nseg_new <= sg_max)
3112 aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3113 } else
3114 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3116 /* Check for command underflow */
3117 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3118 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3119 byte_count, scsicmd->underflow);
3123 return byte_count;
3126 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3128 struct sge_ieee1212 *sge;
3129 int i, j, pos;
3130 u32 addr_low;
3132 if (aac_convert_sgl == 0)
3133 return 0;
3135 sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3136 if (sge == NULL)
3137 return -1;
3139 for (i = 1, pos = 1; i < nseg-1; ++i) {
3140 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3141 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3142 sge[pos].addrLow = addr_low;
3143 sge[pos].addrHigh = rio2->sge[i].addrHigh;
3144 if (addr_low < rio2->sge[i].addrLow)
3145 sge[pos].addrHigh++;
3146 sge[pos].length = pages * PAGE_SIZE;
3147 sge[pos].flags = 0;
3148 pos++;
3151 sge[pos] = rio2->sge[nseg-1];
3152 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3154 kfree(sge);
3155 rio2->sgeCnt = cpu_to_le32(nseg_new);
3156 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3157 rio2->sgeNominalSize = pages * PAGE_SIZE;
3158 return 0;
3161 #ifdef AAC_DETAILED_STATUS_INFO
3163 struct aac_srb_status_info {
3164 u32 status;
3165 char *str;
3169 static struct aac_srb_status_info srb_status_info[] = {
3170 { SRB_STATUS_PENDING, "Pending Status"},
3171 { SRB_STATUS_SUCCESS, "Success"},
3172 { SRB_STATUS_ABORTED, "Aborted Command"},
3173 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
3174 { SRB_STATUS_ERROR, "Error Event"},
3175 { SRB_STATUS_BUSY, "Device Busy"},
3176 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
3177 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
3178 { SRB_STATUS_NO_DEVICE, "No Device"},
3179 { SRB_STATUS_TIMEOUT, "Timeout"},
3180 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
3181 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
3182 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
3183 { SRB_STATUS_BUS_RESET, "Bus Reset"},
3184 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
3185 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
3186 { SRB_STATUS_NO_HBA, "No HBA"},
3187 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
3188 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
3189 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
3190 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
3191 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
3192 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
3193 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
3194 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
3195 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
3196 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
3197 { SRB_STATUS_NOT_STARTED, "Not Started"},
3198 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
3199 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
3200 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
3201 { 0xff, "Unknown Error"}
3204 char *aac_get_status_string(u32 status)
3206 int i;
3208 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
3209 if (srb_status_info[i].status == status)
3210 return srb_status_info[i].str;
3212 return "Bad Status Code";
3215 #endif