fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / scsi / aacraid / dpcsup.c
blobd81b2810f0f7d507fc86fa536d24309a83147316
1 /*
2 * Adaptec AAC series RAID controller driver
3 * (c) Copyright 2001 Red Hat Inc.
5 * based on the old aacraid driver that is..
6 * Adaptec aacraid device driver for Linux.
8 * Copyright (c) 2000-2010 Adaptec, Inc.
9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; see the file COPYING. If not, write to
23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Module Name:
26 * dpcsup.c
28 * Abstract: All DPC processing routines for the cyclone board occur here.
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/slab.h>
38 #include <linux/completion.h>
39 #include <linux/blkdev.h>
40 #include <linux/semaphore.h>
42 #include "aacraid.h"
44 /**
45 * aac_response_normal - Handle command replies
46 * @q: Queue to read from
48 * This DPC routine will be run when the adapter interrupts us to let us
49 * know there is a response on our normal priority queue. We will pull off
50 * all QE there are and wake up all the waiters before exiting. We will
51 * take a spinlock out on the queue before operating on it.
54 unsigned int aac_response_normal(struct aac_queue * q)
56 struct aac_dev * dev = q->dev;
57 struct aac_entry *entry;
58 struct hw_fib * hwfib;
59 struct fib * fib;
60 int consumed = 0;
61 unsigned long flags, mflags;
63 spin_lock_irqsave(q->lock, flags);
65 * Keep pulling response QEs off the response queue and waking
66 * up the waiters until there are no more QEs. We then return
67 * back to the system. If no response was requesed we just
68 * deallocate the Fib here and continue.
70 while(aac_consumer_get(dev, q, &entry))
72 int fast;
73 u32 index = le32_to_cpu(entry->addr);
74 fast = index & 0x01;
75 fib = &dev->fibs[index >> 2];
76 hwfib = fib->hw_fib_va;
78 aac_consumer_free(dev, q, HostNormRespQueue);
80 * Remove this fib from the Outstanding I/O queue.
81 * But only if it has not already been timed out.
83 * If the fib has been timed out already, then just
84 * continue. The caller has already been notified that
85 * the fib timed out.
87 dev->queues->queue[AdapNormCmdQueue].numpending--;
89 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
90 spin_unlock_irqrestore(q->lock, flags);
91 aac_fib_complete(fib);
92 aac_fib_free(fib);
93 spin_lock_irqsave(q->lock, flags);
94 continue;
96 spin_unlock_irqrestore(q->lock, flags);
98 if (fast) {
100 * Doctor the fib
102 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
103 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
104 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
107 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
109 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
111 __le32 *pstatus = (__le32 *)hwfib->data;
112 if (*pstatus & cpu_to_le32(0xffff0000))
113 *pstatus = cpu_to_le32(ST_OK);
115 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
117 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
118 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
119 else
120 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
122 * NOTE: we cannot touch the fib after this
123 * call, because it may have been deallocated.
125 fib->flags &= FIB_CONTEXT_FLAG_FASTRESP;
126 fib->callback(fib->callback_data, fib);
127 } else {
128 unsigned long flagv;
129 spin_lock_irqsave(&fib->event_lock, flagv);
130 if (!fib->done) {
131 fib->done = 1;
132 up(&fib->event_wait);
134 spin_unlock_irqrestore(&fib->event_lock, flagv);
136 spin_lock_irqsave(&dev->manage_lock, mflags);
137 dev->management_fib_count--;
138 spin_unlock_irqrestore(&dev->manage_lock, mflags);
140 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
141 if (fib->done == 2) {
142 spin_lock_irqsave(&fib->event_lock, flagv);
143 fib->done = 0;
144 spin_unlock_irqrestore(&fib->event_lock, flagv);
145 aac_fib_complete(fib);
146 aac_fib_free(fib);
149 consumed++;
150 spin_lock_irqsave(q->lock, flags);
153 if (consumed > aac_config.peak_fibs)
154 aac_config.peak_fibs = consumed;
155 if (consumed == 0)
156 aac_config.zero_fibs++;
158 spin_unlock_irqrestore(q->lock, flags);
159 return 0;
164 * aac_command_normal - handle commands
165 * @q: queue to process
167 * This DPC routine will be queued when the adapter interrupts us to
168 * let us know there is a command on our normal priority queue. We will
169 * pull off all QE there are and wake up all the waiters before exiting.
170 * We will take a spinlock out on the queue before operating on it.
173 unsigned int aac_command_normal(struct aac_queue *q)
175 struct aac_dev * dev = q->dev;
176 struct aac_entry *entry;
177 unsigned long flags;
179 spin_lock_irqsave(q->lock, flags);
182 * Keep pulling response QEs off the response queue and waking
183 * up the waiters until there are no more QEs. We then return
184 * back to the system.
186 while(aac_consumer_get(dev, q, &entry))
188 struct fib fibctx;
189 struct hw_fib * hw_fib;
190 u32 index;
191 struct fib *fib = &fibctx;
193 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
194 hw_fib = &dev->aif_base_va[index];
197 * Allocate a FIB at all costs. For non queued stuff
198 * we can just use the stack so we are happy. We need
199 * a fib object in order to manage the linked lists
201 if (dev->aif_thread)
202 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
203 fib = &fibctx;
205 memset(fib, 0, sizeof(struct fib));
206 INIT_LIST_HEAD(&fib->fiblink);
207 fib->type = FSAFS_NTC_FIB_CONTEXT;
208 fib->size = sizeof(struct fib);
209 fib->hw_fib_va = hw_fib;
210 fib->data = hw_fib->data;
211 fib->dev = dev;
214 if (dev->aif_thread && fib != &fibctx) {
215 list_add_tail(&fib->fiblink, &q->cmdq);
216 aac_consumer_free(dev, q, HostNormCmdQueue);
217 wake_up_interruptible(&q->cmdready);
218 } else {
219 aac_consumer_free(dev, q, HostNormCmdQueue);
220 spin_unlock_irqrestore(q->lock, flags);
222 * Set the status of this FIB
224 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
225 aac_fib_adapter_complete(fib, sizeof(u32));
226 spin_lock_irqsave(q->lock, flags);
229 spin_unlock_irqrestore(q->lock, flags);
230 return 0;
235 * aac_aif_callback
236 * @context: the context set in the fib - here it is scsi cmd
237 * @fibptr: pointer to the fib
239 * Handles the AIFs - new method (SRC)
243 static void aac_aif_callback(void *context, struct fib * fibptr)
245 struct fib *fibctx;
246 struct aac_dev *dev;
247 struct aac_aifcmd *cmd;
248 int status;
250 fibctx = (struct fib *)context;
251 BUG_ON(fibptr == NULL);
252 dev = fibptr->dev;
254 if (fibptr->hw_fib_va->header.XferState &
255 cpu_to_le32(NoMoreAifDataAvailable)) {
256 aac_fib_complete(fibptr);
257 aac_fib_free(fibptr);
258 return;
261 aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
263 aac_fib_init(fibctx);
264 cmd = (struct aac_aifcmd *) fib_data(fibctx);
265 cmd->command = cpu_to_le32(AifReqEvent);
267 status = aac_fib_send(AifRequest,
268 fibctx,
269 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
270 FsaNormal,
271 0, 1,
272 (fib_callback)aac_aif_callback, fibctx);
277 * aac_intr_normal - Handle command replies
278 * @dev: Device
279 * @index: completion reference
281 * This DPC routine will be run when the adapter interrupts us to let us
282 * know there is a response on our normal priority queue. We will pull off
283 * all QE there are and wake up all the waiters before exiting.
285 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index,
286 int isAif, int isFastResponse, struct hw_fib *aif_fib)
288 unsigned long mflags;
289 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
290 if (isAif == 1) { /* AIF - common */
291 struct hw_fib * hw_fib;
292 struct fib * fib;
293 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
294 unsigned long flags;
297 * Allocate a FIB. For non queued stuff we can just use
298 * the stack so we are happy. We need a fib object in order to
299 * manage the linked lists.
301 if ((!dev->aif_thread)
302 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
303 return 1;
304 if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
305 kfree (fib);
306 return 1;
308 if (aif_fib != NULL) {
309 memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
310 } else {
311 memcpy(hw_fib,
312 (struct hw_fib *)(((uintptr_t)(dev->regs.sa)) +
313 index), sizeof(struct hw_fib));
315 INIT_LIST_HEAD(&fib->fiblink);
316 fib->type = FSAFS_NTC_FIB_CONTEXT;
317 fib->size = sizeof(struct fib);
318 fib->hw_fib_va = hw_fib;
319 fib->data = hw_fib->data;
320 fib->dev = dev;
322 spin_lock_irqsave(q->lock, flags);
323 list_add_tail(&fib->fiblink, &q->cmdq);
324 wake_up_interruptible(&q->cmdready);
325 spin_unlock_irqrestore(q->lock, flags);
326 return 1;
327 } else if (isAif == 2) { /* AIF - new (SRC) */
328 struct fib *fibctx;
329 struct aac_aifcmd *cmd;
331 fibctx = aac_fib_alloc(dev);
332 if (!fibctx)
333 return 1;
334 aac_fib_init(fibctx);
336 cmd = (struct aac_aifcmd *) fib_data(fibctx);
337 cmd->command = cpu_to_le32(AifReqEvent);
339 return aac_fib_send(AifRequest,
340 fibctx,
341 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
342 FsaNormal,
343 0, 1,
344 (fib_callback)aac_aif_callback, fibctx);
345 } else {
346 struct fib *fib = &dev->fibs[index];
347 struct hw_fib * hwfib = fib->hw_fib_va;
350 * Remove this fib from the Outstanding I/O queue.
351 * But only if it has not already been timed out.
353 * If the fib has been timed out already, then just
354 * continue. The caller has already been notified that
355 * the fib timed out.
357 dev->queues->queue[AdapNormCmdQueue].numpending--;
359 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
360 aac_fib_complete(fib);
361 aac_fib_free(fib);
362 return 0;
365 if (isFastResponse) {
367 * Doctor the fib
369 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
370 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
371 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
374 FIB_COUNTER_INCREMENT(aac_config.FibRecved);
376 if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
378 __le32 *pstatus = (__le32 *)hwfib->data;
379 if (*pstatus & cpu_to_le32(0xffff0000))
380 *pstatus = cpu_to_le32(ST_OK);
382 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
384 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
385 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
386 else
387 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
389 * NOTE: we cannot touch the fib after this
390 * call, because it may have been deallocated.
392 fib->flags &= FIB_CONTEXT_FLAG_FASTRESP;
393 fib->callback(fib->callback_data, fib);
394 } else {
395 unsigned long flagv;
396 dprintk((KERN_INFO "event_wait up\n"));
397 spin_lock_irqsave(&fib->event_lock, flagv);
398 if (!fib->done) {
399 fib->done = 1;
400 up(&fib->event_wait);
402 spin_unlock_irqrestore(&fib->event_lock, flagv);
404 spin_lock_irqsave(&dev->manage_lock, mflags);
405 dev->management_fib_count--;
406 spin_unlock_irqrestore(&dev->manage_lock, mflags);
408 FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
409 if (fib->done == 2) {
410 spin_lock_irqsave(&fib->event_lock, flagv);
411 fib->done = 0;
412 spin_unlock_irqrestore(&fib->event_lock, flagv);
413 aac_fib_complete(fib);
414 aac_fib_free(fib);
418 return 0;