fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / scsi / esas2r / esas2r_ioctl.c
blobd89a0277a8e189f02af169c0d3476267dc8dc135
1 /*
2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c
3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
5 * Copyright (c) 2001-2013 ATTO Technology, Inc.
6 * (mailto:linuxdrivers@attotech.com)
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * NO WARRANTY
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
41 * USA.
44 #include "esas2r.h"
47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we
48 * allocate a DMA-able memory area to communicate with the firmware. In
49 * order to prevent continually allocating and freeing consistent memory,
50 * we will allocate a global buffer the first time we need it and re-use
51 * it for subsequent ioctl calls that require it.
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61 struct esas2r_request *,
62 struct esas2r_sg_context *,
63 void *);
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65 struct esas2r_request *, void *);
67 struct esas2r_buffered_ioctl {
68 struct esas2r_adapter *a;
69 void *ioctl;
70 u32 length;
71 u32 control_code;
72 u32 offset;
73 BUFFERED_IOCTL_CALLBACK
74 callback;
75 void *context;
76 BUFFERED_IOCTL_DONE_CALLBACK
77 done_callback;
78 void *done_context;
82 static void complete_fm_api_req(struct esas2r_adapter *a,
83 struct esas2r_request *rq)
85 a->fm_api_command_done = 1;
86 wake_up_interruptible(&a->fm_api_waiter);
89 /* Callbacks for building scatter/gather lists for FM API requests */
90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93 int offset = sgc->cur_offset - a->save_offset;
95 (*addr) = a->firmware.phys + offset;
96 return a->firmware.orig_len - offset;
99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102 int offset = sgc->cur_offset - a->save_offset;
104 (*addr) = a->firmware.header_buff_phys + offset;
105 return sizeof(struct esas2r_flash_img) - offset;
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
111 struct esas2r_request *rq;
113 if (down_interruptible(&a->fm_api_semaphore)) {
114 fi->status = FI_STAT_BUSY;
115 return;
118 rq = esas2r_alloc_request(a);
119 if (rq == NULL) {
120 up(&a->fm_api_semaphore);
121 fi->status = FI_STAT_BUSY;
122 return;
125 if (fi == &a->firmware.header) {
126 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
127 (size_t)sizeof(
128 struct
129 esas2r_flash_img),
130 (dma_addr_t *)&a->
131 firmware.
132 header_buff_phys,
133 GFP_KERNEL);
135 if (a->firmware.header_buff == NULL) {
136 esas2r_debug("failed to allocate header buffer!");
137 fi->status = FI_STAT_BUSY;
138 return;
141 memcpy(a->firmware.header_buff, fi,
142 sizeof(struct esas2r_flash_img));
143 a->save_offset = a->firmware.header_buff;
144 a->fm_api_sgc.get_phys_addr =
145 (PGETPHYSADDR)get_physaddr_fm_api_header;
146 } else {
147 a->save_offset = (u8 *)fi;
148 a->fm_api_sgc.get_phys_addr =
149 (PGETPHYSADDR)get_physaddr_fm_api;
152 rq->comp_cb = complete_fm_api_req;
153 a->fm_api_command_done = 0;
154 a->fm_api_sgc.cur_offset = a->save_offset;
156 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
157 &a->fm_api_sgc))
158 goto all_done;
160 /* Now wait around for it to complete. */
161 while (!a->fm_api_command_done)
162 wait_event_interruptible(a->fm_api_waiter,
163 a->fm_api_command_done);
164 all_done:
165 if (fi == &a->firmware.header) {
166 memcpy(fi, a->firmware.header_buff,
167 sizeof(struct esas2r_flash_img));
169 dma_free_coherent(&a->pcid->dev,
170 (size_t)sizeof(struct esas2r_flash_img),
171 a->firmware.header_buff,
172 (dma_addr_t)a->firmware.header_buff_phys);
175 up(&a->fm_api_semaphore);
176 esas2r_free_request(a, (struct esas2r_request *)rq);
177 return;
181 static void complete_nvr_req(struct esas2r_adapter *a,
182 struct esas2r_request *rq)
184 a->nvram_command_done = 1;
185 wake_up_interruptible(&a->nvram_waiter);
188 /* Callback for building scatter/gather lists for buffered ioctls */
189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190 u64 *addr)
192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
194 (*addr) = esas2r_buffered_ioctl_addr + offset;
195 return esas2r_buffered_ioctl_size - offset;
198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199 struct esas2r_request *rq)
201 a->buffered_ioctl_done = 1;
202 wake_up_interruptible(&a->buffered_ioctl_waiter);
205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
207 struct esas2r_adapter *a = bi->a;
208 struct esas2r_request *rq;
209 struct esas2r_sg_context sgc;
210 u8 result = IOCTL_SUCCESS;
212 if (down_interruptible(&buffered_ioctl_semaphore))
213 return IOCTL_OUT_OF_RESOURCES;
215 /* allocate a buffer or use the existing buffer. */
216 if (esas2r_buffered_ioctl) {
217 if (esas2r_buffered_ioctl_size < bi->length) {
218 /* free the too-small buffer and get a new one */
219 dma_free_coherent(&a->pcid->dev,
220 (size_t)esas2r_buffered_ioctl_size,
221 esas2r_buffered_ioctl,
222 esas2r_buffered_ioctl_addr);
224 goto allocate_buffer;
226 } else {
227 allocate_buffer:
228 esas2r_buffered_ioctl_size = bi->length;
229 esas2r_buffered_ioctl_pcid = a->pcid;
230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231 (size_t)
232 esas2r_buffered_ioctl_size,
234 esas2r_buffered_ioctl_addr,
235 GFP_KERNEL);
238 if (!esas2r_buffered_ioctl) {
239 esas2r_log(ESAS2R_LOG_CRIT,
240 "could not allocate %d bytes of consistent memory "
241 "for a buffered ioctl!",
242 bi->length);
244 esas2r_debug("buffered ioctl alloc failure");
245 result = IOCTL_OUT_OF_RESOURCES;
246 goto exit_cleanly;
249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
251 rq = esas2r_alloc_request(a);
252 if (rq == NULL) {
253 esas2r_log(ESAS2R_LOG_CRIT,
254 "could not allocate an internal request");
256 result = IOCTL_OUT_OF_RESOURCES;
257 esas2r_debug("buffered ioctl - no requests");
258 goto exit_cleanly;
261 a->buffered_ioctl_done = 0;
262 rq->comp_cb = complete_buffered_ioctl_req;
263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265 sgc.length = esas2r_buffered_ioctl_size;
267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268 /* completed immediately, no need to wait */
269 a->buffered_ioctl_done = 0;
270 goto free_andexit_cleanly;
273 /* now wait around for it to complete. */
274 while (!a->buffered_ioctl_done)
275 wait_event_interruptible(a->buffered_ioctl_waiter,
276 a->buffered_ioctl_done);
278 free_andexit_cleanly:
279 if (result == IOCTL_SUCCESS && bi->done_callback)
280 (*bi->done_callback)(a, rq, bi->done_context);
282 esas2r_free_request(a, rq);
284 exit_cleanly:
285 if (result == IOCTL_SUCCESS)
286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
288 up(&buffered_ioctl_semaphore);
289 return result;
292 /* SMP ioctl support */
293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294 struct esas2r_request *rq,
295 struct esas2r_sg_context *sgc, void *context)
297 struct atto_ioctl_smp *si =
298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
303 if (!esas2r_build_sg_list(a, rq, sgc)) {
304 si->status = ATTO_STS_OUT_OF_RSRC;
305 return false;
308 esas2r_start_request(a, rq);
309 return true;
312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
314 struct esas2r_buffered_ioctl bi;
316 memset(&bi, 0, sizeof(bi));
318 bi.a = a;
319 bi.ioctl = si;
320 bi.length = sizeof(struct atto_ioctl_smp)
321 + le32_to_cpu(si->req_length)
322 + le32_to_cpu(si->rsp_length);
323 bi.offset = 0;
324 bi.callback = smp_ioctl_callback;
325 return handle_buffered_ioctl(&bi);
329 /* CSMI ioctl support */
330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331 struct esas2r_request *rq)
333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
336 /* Now call the original completion callback. */
337 (*rq->aux_req_cb)(a, rq);
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342 union atto_ioctl_csmi *ci,
343 struct esas2r_request *rq,
344 struct esas2r_sg_context *sgc,
345 u32 ctrl_code,
346 u16 target_id)
348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
350 if (test_bit(AF_DEGRADED_MODE, &a->flags))
351 return false;
353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356 ioctl->csmi.target_id = cpu_to_le16(target_id);
357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
360 * Always usurp the completion callback since the interrupt callback
361 * mechanism may be used.
363 rq->aux_req_cx = ci;
364 rq->aux_req_cb = rq->comp_cb;
365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
367 if (!esas2r_build_sg_list(a, rq, sgc))
368 return false;
370 esas2r_start_request(a, rq);
371 return true;
374 static bool check_lun(struct scsi_lun lun)
376 bool result;
378 result = ((lun.scsi_lun[7] == 0) &&
379 (lun.scsi_lun[6] == 0) &&
380 (lun.scsi_lun[5] == 0) &&
381 (lun.scsi_lun[4] == 0) &&
382 (lun.scsi_lun[3] == 0) &&
383 (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385 (lun.scsi_lun[0] == 0));
387 return result;
390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391 struct esas2r_request *rq,
392 struct esas2r_sg_context *sgc, void *context)
394 struct atto_csmi *ci = (struct atto_csmi *)context;
395 union atto_ioctl_csmi *ioctl_csmi =
396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397 u8 path = 0;
398 u8 tid = 0;
399 u8 lun = 0;
400 u32 sts = CSMI_STS_SUCCESS;
401 struct esas2r_target *t;
402 unsigned long flags;
404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
407 path = gda->path_id;
408 tid = gda->target_id;
409 lun = gda->lun;
410 } else if (ci->control_code == CSMI_CC_TASK_MGT) {
411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
413 path = tm->path_id;
414 tid = tm->target_id;
415 lun = tm->lun;
418 if (path > 0) {
419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420 CSMI_STS_INV_PARAM);
421 return false;
424 rq->target_id = tid;
425 rq->vrq->scsi.flags |= cpu_to_le32(lun);
427 switch (ci->control_code) {
428 case CSMI_CC_GET_DRVR_INFO:
430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
432 strcpy(gdi->description, esas2r_get_model_name(a));
433 gdi->csmi_major_rev = CSMI_MAJOR_REV;
434 gdi->csmi_minor_rev = CSMI_MINOR_REV;
435 break;
438 case CSMI_CC_GET_CNTLR_CFG:
440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
442 gcc->base_io_addr = 0;
443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444 &gcc->base_memaddr_lo);
445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446 &gcc->base_memaddr_hi);
447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448 a->pcid->subsystem_vendor);
449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452 gcc->pci_addr.bus_num = a->pcid->bus->number;
453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464 gcc->bios_build_rev = LOWORD(a->flash_ver);
466 if (test_bit(AF2_THUNDERLINK, &a->flags2))
467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468 | CSMI_CNTLRF_SATA_HBA;
469 else
470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471 | CSMI_CNTLRF_SATA_RAID;
473 gcc->rrom_major_rev = 0;
474 gcc->rrom_minor_rev = 0;
475 gcc->rrom_build_rev = 0;
476 gcc->rrom_release_rev = 0;
477 gcc->rrom_biosmajor_rev = 0;
478 gcc->rrom_biosminor_rev = 0;
479 gcc->rrom_biosbuild_rev = 0;
480 gcc->rrom_biosrelease_rev = 0;
481 break;
484 case CSMI_CC_GET_CNTLR_STS:
486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
488 if (test_bit(AF_DEGRADED_MODE, &a->flags))
489 gcs->status = CSMI_CNTLR_STS_FAILED;
490 else
491 gcs->status = CSMI_CNTLR_STS_GOOD;
493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494 break;
497 case CSMI_CC_FW_DOWNLOAD:
498 case CSMI_CC_GET_RAID_INFO:
499 case CSMI_CC_GET_RAID_CFG:
501 sts = CSMI_STS_BAD_CTRL_CODE;
502 break;
504 case CSMI_CC_SMP_PASSTHRU:
505 case CSMI_CC_SSP_PASSTHRU:
506 case CSMI_CC_STP_PASSTHRU:
507 case CSMI_CC_GET_PHY_INFO:
508 case CSMI_CC_SET_PHY_INFO:
509 case CSMI_CC_GET_LINK_ERRORS:
510 case CSMI_CC_GET_SATA_SIG:
511 case CSMI_CC_GET_CONN_INFO:
512 case CSMI_CC_PHY_CTRL:
514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515 ci->control_code,
516 ESAS2R_TARG_ID_INV)) {
517 sts = CSMI_STS_FAILED;
518 break;
521 return true;
523 case CSMI_CC_GET_SCSI_ADDR:
525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
527 struct scsi_lun lun;
529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
531 if (!check_lun(lun)) {
532 sts = CSMI_STS_NO_SCSI_ADDR;
533 break;
536 /* make sure the device is present */
537 spin_lock_irqsave(&a->mem_lock, flags);
538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539 spin_unlock_irqrestore(&a->mem_lock, flags);
541 if (t == NULL) {
542 sts = CSMI_STS_NO_SCSI_ADDR;
543 break;
546 gsa->host_index = 0xFF;
547 gsa->lun = gsa->sas_lun[1];
548 rq->target_id = esas2r_targ_get_id(t, a);
549 break;
552 case CSMI_CC_GET_DEV_ADDR:
554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
556 /* make sure the target is present */
557 t = a->targetdb + rq->target_id;
559 if (t >= a->targetdb_end
560 || t->target_state != TS_PRESENT
561 || t->sas_addr == 0) {
562 sts = CSMI_STS_NO_DEV_ADDR;
563 break;
566 /* fill in the result */
567 *(u64 *)gda->sas_addr = t->sas_addr;
568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570 break;
573 case CSMI_CC_TASK_MGT:
575 /* make sure the target is present */
576 t = a->targetdb + rq->target_id;
578 if (t >= a->targetdb_end
579 || t->target_state != TS_PRESENT
580 || !(t->flags & TF_PASS_THRU)) {
581 sts = CSMI_STS_NO_DEV_ADDR;
582 break;
585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586 ci->control_code,
587 t->phys_targ_id)) {
588 sts = CSMI_STS_FAILED;
589 break;
592 return true;
594 default:
596 sts = CSMI_STS_BAD_CTRL_CODE;
597 break;
600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
602 return false;
606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607 struct esas2r_request *rq, void *context)
609 struct atto_csmi *ci = (struct atto_csmi *)context;
610 union atto_ioctl_csmi *ioctl_csmi =
611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
613 switch (ci->control_code) {
614 case CSMI_CC_GET_DRVR_INFO:
616 struct atto_csmi_get_driver_info *gdi =
617 &ioctl_csmi->drvr_info;
619 strcpy(gdi->name, ESAS2R_VERSION_STR);
621 gdi->major_rev = ESAS2R_MAJOR_REV;
622 gdi->minor_rev = ESAS2R_MINOR_REV;
623 gdi->build_rev = 0;
624 gdi->release_rev = 0;
625 break;
628 case CSMI_CC_GET_SCSI_ADDR:
630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633 CSMI_STS_SUCCESS) {
634 gsa->target_id = rq->target_id;
635 gsa->path_id = 0;
638 break;
642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
648 struct esas2r_buffered_ioctl bi;
650 memset(&bi, 0, sizeof(bi));
652 bi.a = a;
653 bi.ioctl = &ci->data;
654 bi.length = sizeof(union atto_ioctl_csmi);
655 bi.offset = 0;
656 bi.callback = csmi_ioctl_callback;
657 bi.context = ci;
658 bi.done_callback = csmi_ioctl_done_callback;
659 bi.done_context = ci;
661 return handle_buffered_ioctl(&bi);
664 /* ATTO HBA ioctl support */
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668 struct atto_ioctl *hi,
669 struct esas2r_request *rq,
670 struct esas2r_sg_context *sgc)
672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
676 if (!esas2r_build_sg_list(a, rq, sgc)) {
677 hi->status = ATTO_STS_OUT_OF_RSRC;
679 return false;
682 esas2r_start_request(a, rq);
684 return true;
687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688 struct esas2r_request *rq)
690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692 u8 sts = ATTO_SPT_RS_FAILED;
694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695 spt->sense_length = rq->sense_len;
696 spt->residual_length =
697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
699 switch (rq->req_stat) {
700 case RS_SUCCESS:
701 case RS_SCSI_ERROR:
702 sts = ATTO_SPT_RS_SUCCESS;
703 break;
704 case RS_UNDERRUN:
705 sts = ATTO_SPT_RS_UNDERRUN;
706 break;
707 case RS_OVERRUN:
708 sts = ATTO_SPT_RS_OVERRUN;
709 break;
710 case RS_SEL:
711 case RS_SEL2:
712 sts = ATTO_SPT_RS_NO_DEVICE;
713 break;
714 case RS_NO_LUN:
715 sts = ATTO_SPT_RS_NO_LUN;
716 break;
717 case RS_TIMEOUT:
718 sts = ATTO_SPT_RS_TIMEOUT;
719 break;
720 case RS_DEGRADED:
721 sts = ATTO_SPT_RS_DEGRADED;
722 break;
723 case RS_BUSY:
724 sts = ATTO_SPT_RS_BUSY;
725 break;
726 case RS_ABORTED:
727 sts = ATTO_SPT_RS_ABORTED;
728 break;
729 case RS_RESET:
730 sts = ATTO_SPT_RS_BUS_RESET;
731 break;
734 spt->req_status = sts;
736 /* Update the target ID to the next one present. */
737 spt->target_id =
738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
740 /* Done, call the completion callback. */
741 (*rq->aux_req_cb)(a, rq);
744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745 struct esas2r_request *rq,
746 struct esas2r_sg_context *sgc,
747 void *context)
749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
751 hi->status = ATTO_STS_SUCCESS;
753 switch (hi->function) {
754 case ATTO_FUNC_GET_ADAP_INFO:
756 u8 *class_code = (u8 *)&a->pcid->class;
758 struct atto_hba_get_adapter_info *gai =
759 &hi->data.get_adap_info;
760 int pcie_cap_reg;
762 if (hi->flags & HBAF_TUNNEL) {
763 hi->status = ATTO_STS_UNSUPPORTED;
764 break;
767 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
768 hi->status = ATTO_STS_INV_VERSION;
769 hi->version = ATTO_VER_GET_ADAP_INFO0;
770 break;
773 memset(gai, 0, sizeof(*gai));
775 gai->pci.vendor_id = a->pcid->vendor;
776 gai->pci.device_id = a->pcid->device;
777 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
778 gai->pci.ss_device_id = a->pcid->subsystem_device;
779 gai->pci.class_code[0] = class_code[0];
780 gai->pci.class_code[1] = class_code[1];
781 gai->pci.class_code[2] = class_code[2];
782 gai->pci.rev_id = a->pcid->revision;
783 gai->pci.bus_num = a->pcid->bus->number;
784 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
785 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
787 pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
788 if (pcie_cap_reg) {
789 u16 stat;
790 u32 caps;
792 pci_read_config_word(a->pcid,
793 pcie_cap_reg + PCI_EXP_LNKSTA,
794 &stat);
795 pci_read_config_dword(a->pcid,
796 pcie_cap_reg + PCI_EXP_LNKCAP,
797 &caps);
799 gai->pci.link_speed_curr =
800 (u8)(stat & PCI_EXP_LNKSTA_CLS);
801 gai->pci.link_speed_max =
802 (u8)(caps & PCI_EXP_LNKCAP_SLS);
803 gai->pci.link_width_curr =
804 (u8)((stat & PCI_EXP_LNKSTA_NLW)
805 >> PCI_EXP_LNKSTA_NLW_SHIFT);
806 gai->pci.link_width_max =
807 (u8)((caps & PCI_EXP_LNKCAP_MLW)
808 >> 4);
811 gai->pci.msi_vector_cnt = 1;
813 if (a->pcid->msix_enabled)
814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
815 else if (a->pcid->msi_enabled)
816 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
817 else
818 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
820 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
822 if (test_bit(AF2_THUNDERLINK, &a->flags2))
823 gai->adap_type = ATTO_GAI_AT_TLSASHBA;
825 if (test_bit(AF_DEGRADED_MODE, &a->flags))
826 gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
828 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
829 ATTO_GAI_AF_DEVADDR_SUPP;
831 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
832 || a->pcid->subsystem_device == ATTO_ESAS_R608
833 || a->pcid->subsystem_device == ATTO_ESAS_R644
834 || a->pcid->subsystem_device == ATTO_TSSC_3808E)
835 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
837 gai->num_ports = ESAS2R_NUM_PHYS;
838 gai->num_phys = ESAS2R_NUM_PHYS;
840 strcpy(gai->firmware_rev, a->fw_rev);
841 strcpy(gai->flash_rev, a->flash_rev);
842 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
843 strcpy(gai->model_name, esas2r_get_model_name(a));
845 gai->num_targets = ESAS2R_MAX_TARGETS;
847 gai->num_busses = 1;
848 gai->num_targsper_bus = gai->num_targets;
849 gai->num_lunsper_targ = 256;
851 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
852 || a->pcid->subsystem_device == ATTO_ESAS_R60F)
853 gai->num_connectors = 4;
854 else
855 gai->num_connectors = 2;
857 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
859 gai->num_targets_backend = a->num_targets_backend;
861 gai->tunnel_flags = a->ioctl_tunnel
862 & (ATTO_GAI_TF_MEM_RW
863 | ATTO_GAI_TF_TRACE
864 | ATTO_GAI_TF_SCSI_PASS_THRU
865 | ATTO_GAI_TF_GET_DEV_ADDR
866 | ATTO_GAI_TF_PHY_CTRL
867 | ATTO_GAI_TF_CONN_CTRL
868 | ATTO_GAI_TF_GET_DEV_INFO);
869 break;
872 case ATTO_FUNC_GET_ADAP_ADDR:
874 struct atto_hba_get_adapter_address *gaa =
875 &hi->data.get_adap_addr;
877 if (hi->flags & HBAF_TUNNEL) {
878 hi->status = ATTO_STS_UNSUPPORTED;
879 break;
882 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
883 hi->status = ATTO_STS_INV_VERSION;
884 hi->version = ATTO_VER_GET_ADAP_ADDR0;
885 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
886 || gaa->addr_type == ATTO_GAA_AT_NODE) {
887 if (gaa->addr_type == ATTO_GAA_AT_PORT
888 && gaa->port_id >= ESAS2R_NUM_PHYS) {
889 hi->status = ATTO_STS_NOT_APPL;
890 } else {
891 memcpy((u64 *)gaa->address,
892 &a->nvram->sas_addr[0], sizeof(u64));
893 gaa->addr_len = sizeof(u64);
895 } else {
896 hi->status = ATTO_STS_INV_PARAM;
899 break;
902 case ATTO_FUNC_MEM_RW:
904 if (hi->flags & HBAF_TUNNEL) {
905 if (hba_ioctl_tunnel(a, hi, rq, sgc))
906 return true;
908 break;
911 hi->status = ATTO_STS_UNSUPPORTED;
913 break;
916 case ATTO_FUNC_TRACE:
918 struct atto_hba_trace *trc = &hi->data.trace;
920 if (hi->flags & HBAF_TUNNEL) {
921 if (hba_ioctl_tunnel(a, hi, rq, sgc))
922 return true;
924 break;
927 if (hi->version > ATTO_VER_TRACE1) {
928 hi->status = ATTO_STS_INV_VERSION;
929 hi->version = ATTO_VER_TRACE1;
930 break;
933 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
934 && hi->version >= ATTO_VER_TRACE1) {
935 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
936 u32 len = hi->data_length;
937 u32 offset = trc->current_offset;
938 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
940 /* Size is zero if a core dump isn't present */
941 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
942 total_len = 0;
944 if (len > total_len)
945 len = total_len;
947 if (offset >= total_len
948 || offset + len > total_len
949 || len == 0) {
950 hi->status = ATTO_STS_INV_PARAM;
951 break;
954 memcpy(trc + 1,
955 a->fw_coredump_buff + offset,
956 len);
958 hi->data_length = len;
959 } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
960 memset(a->fw_coredump_buff, 0,
961 ESAS2R_FWCOREDUMP_SZ);
963 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
964 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
965 hi->status = ATTO_STS_UNSUPPORTED;
966 break;
969 /* Always return all the info we can. */
970 trc->trace_mask = 0;
971 trc->current_offset = 0;
972 trc->total_length = ESAS2R_FWCOREDUMP_SZ;
974 /* Return zero length buffer if core dump not present */
975 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
976 trc->total_length = 0;
977 } else {
978 hi->status = ATTO_STS_UNSUPPORTED;
981 break;
984 case ATTO_FUNC_SCSI_PASS_THRU:
986 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
987 struct scsi_lun lun;
989 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
991 if (hi->flags & HBAF_TUNNEL) {
992 if (hba_ioctl_tunnel(a, hi, rq, sgc))
993 return true;
995 break;
998 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
999 hi->status = ATTO_STS_INV_VERSION;
1000 hi->version = ATTO_VER_SCSI_PASS_THRU0;
1001 break;
1004 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1005 hi->status = ATTO_STS_INV_PARAM;
1006 break;
1009 esas2r_sgc_init(sgc, a, rq, NULL);
1011 sgc->length = hi->data_length;
1012 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1013 + sizeof(struct atto_hba_scsi_pass_thru);
1015 /* Finish request initialization */
1016 rq->target_id = (u16)spt->target_id;
1017 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1018 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1019 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1020 rq->sense_len = spt->sense_length;
1021 rq->sense_buf = (u8 *)spt->sense_data;
1022 /* NOTE: we ignore spt->timeout */
1025 * always usurp the completion callback since the interrupt
1026 * callback mechanism may be used.
1029 rq->aux_req_cx = hi;
1030 rq->aux_req_cb = rq->comp_cb;
1031 rq->comp_cb = scsi_passthru_comp_cb;
1033 if (spt->flags & ATTO_SPTF_DATA_IN) {
1034 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1035 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1036 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1037 } else {
1038 if (sgc->length) {
1039 hi->status = ATTO_STS_INV_PARAM;
1040 break;
1044 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1045 rq->vrq->scsi.flags |=
1046 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1047 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1048 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1051 if (!esas2r_build_sg_list(a, rq, sgc)) {
1052 hi->status = ATTO_STS_OUT_OF_RSRC;
1053 break;
1056 esas2r_start_request(a, rq);
1058 return true;
1061 case ATTO_FUNC_GET_DEV_ADDR:
1063 struct atto_hba_get_device_address *gda =
1064 &hi->data.get_dev_addr;
1065 struct esas2r_target *t;
1067 if (hi->flags & HBAF_TUNNEL) {
1068 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1069 return true;
1071 break;
1074 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1075 hi->status = ATTO_STS_INV_VERSION;
1076 hi->version = ATTO_VER_GET_DEV_ADDR0;
1077 break;
1080 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1081 hi->status = ATTO_STS_INV_PARAM;
1082 break;
1085 t = a->targetdb + (u16)gda->target_id;
1087 if (t->target_state != TS_PRESENT) {
1088 hi->status = ATTO_STS_FAILED;
1089 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1090 if (t->sas_addr == 0) {
1091 hi->status = ATTO_STS_UNSUPPORTED;
1092 } else {
1093 *(u64 *)gda->address = t->sas_addr;
1095 gda->addr_len = sizeof(u64);
1097 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1098 hi->status = ATTO_STS_NOT_APPL;
1099 } else {
1100 hi->status = ATTO_STS_INV_PARAM;
1103 /* update the target ID to the next one present. */
1105 gda->target_id =
1106 esas2r_targ_db_find_next_present(a,
1107 (u16)gda->target_id);
1108 break;
1111 case ATTO_FUNC_PHY_CTRL:
1112 case ATTO_FUNC_CONN_CTRL:
1114 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1115 return true;
1117 break;
1120 case ATTO_FUNC_ADAP_CTRL:
1122 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1124 if (hi->flags & HBAF_TUNNEL) {
1125 hi->status = ATTO_STS_UNSUPPORTED;
1126 break;
1129 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1130 hi->status = ATTO_STS_INV_VERSION;
1131 hi->version = ATTO_VER_ADAP_CTRL0;
1132 break;
1135 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1136 esas2r_reset_adapter(a);
1137 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1138 hi->status = ATTO_STS_UNSUPPORTED;
1139 break;
1142 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1143 ac->adap_state = ATTO_AC_AS_RST_SCHED;
1144 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1145 ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1146 else if (test_bit(AF_DISC_PENDING, &a->flags))
1147 ac->adap_state = ATTO_AC_AS_RST_DISC;
1148 else if (test_bit(AF_DISABLED, &a->flags))
1149 ac->adap_state = ATTO_AC_AS_DISABLED;
1150 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1151 ac->adap_state = ATTO_AC_AS_DEGRADED;
1152 else
1153 ac->adap_state = ATTO_AC_AS_OK;
1155 break;
1158 case ATTO_FUNC_GET_DEV_INFO:
1160 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1161 struct esas2r_target *t;
1163 if (hi->flags & HBAF_TUNNEL) {
1164 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1165 return true;
1167 break;
1170 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1171 hi->status = ATTO_STS_INV_VERSION;
1172 hi->version = ATTO_VER_GET_DEV_INFO0;
1173 break;
1176 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1177 hi->status = ATTO_STS_INV_PARAM;
1178 break;
1181 t = a->targetdb + (u16)gdi->target_id;
1183 /* update the target ID to the next one present. */
1185 gdi->target_id =
1186 esas2r_targ_db_find_next_present(a,
1187 (u16)gdi->target_id);
1189 if (t->target_state != TS_PRESENT) {
1190 hi->status = ATTO_STS_FAILED;
1191 break;
1194 hi->status = ATTO_STS_UNSUPPORTED;
1195 break;
1198 default:
1200 hi->status = ATTO_STS_INV_FUNC;
1201 break;
1204 return false;
1207 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1208 struct esas2r_request *rq, void *context)
1210 struct atto_ioctl *ioctl_hba =
1211 (struct atto_ioctl *)esas2r_buffered_ioctl;
1213 esas2r_debug("hba_ioctl_done_callback %d", a->index);
1215 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1216 struct atto_hba_get_adapter_info *gai =
1217 &ioctl_hba->data.get_adap_info;
1219 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1221 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1222 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1224 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1225 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1227 gai->num_busses = 1;
1228 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1229 gai->num_lunsper_targ = 1;
1233 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1234 struct atto_ioctl *ioctl_hba)
1236 struct esas2r_buffered_ioctl bi;
1238 memset(&bi, 0, sizeof(bi));
1240 bi.a = a;
1241 bi.ioctl = ioctl_hba;
1242 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1243 bi.callback = hba_ioctl_callback;
1244 bi.context = NULL;
1245 bi.done_callback = hba_ioctl_done_callback;
1246 bi.done_context = NULL;
1247 bi.offset = 0;
1249 return handle_buffered_ioctl(&bi);
1253 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1254 struct esas2r_sas_nvram *data)
1256 int result = 0;
1258 a->nvram_command_done = 0;
1259 rq->comp_cb = complete_nvr_req;
1261 if (esas2r_nvram_write(a, rq, data)) {
1262 /* now wait around for it to complete. */
1263 while (!a->nvram_command_done)
1264 wait_event_interruptible(a->nvram_waiter,
1265 a->nvram_command_done);
1268 /* done, check the status. */
1269 if (rq->req_stat == RS_SUCCESS)
1270 result = 1;
1272 return result;
1276 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1277 int esas2r_ioctl_handler(void *hostdata, int cmd, void __user *arg)
1279 struct atto_express_ioctl *ioctl = NULL;
1280 struct esas2r_adapter *a;
1281 struct esas2r_request *rq;
1282 u16 code;
1283 int err;
1285 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1287 if ((arg == NULL)
1288 || (cmd < EXPRESS_IOCTL_MIN)
1289 || (cmd > EXPRESS_IOCTL_MAX))
1290 return -ENOTSUPP;
1292 if (!access_ok(VERIFY_WRITE, arg, sizeof(struct atto_express_ioctl))) {
1293 esas2r_log(ESAS2R_LOG_WARN,
1294 "ioctl_handler access_ok failed for cmd %d, "
1295 "address %p", cmd,
1296 arg);
1297 return -EFAULT;
1300 /* allocate a kernel memory buffer for the IOCTL data */
1301 ioctl = kzalloc(sizeof(struct atto_express_ioctl), GFP_KERNEL);
1302 if (ioctl == NULL) {
1303 esas2r_log(ESAS2R_LOG_WARN,
1304 "ioctl_handler kzalloc failed for %d bytes",
1305 sizeof(struct atto_express_ioctl));
1306 return -ENOMEM;
1309 err = __copy_from_user(ioctl, arg, sizeof(struct atto_express_ioctl));
1310 if (err != 0) {
1311 esas2r_log(ESAS2R_LOG_WARN,
1312 "copy_from_user didn't copy everything (err %d, cmd %d)",
1313 err,
1314 cmd);
1315 kfree(ioctl);
1317 return -EFAULT;
1320 /* verify the signature */
1322 if (memcmp(ioctl->header.signature,
1323 EXPRESS_IOCTL_SIGNATURE,
1324 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1325 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1326 kfree(ioctl);
1328 return -ENOTSUPP;
1331 /* assume success */
1333 ioctl->header.return_code = IOCTL_SUCCESS;
1334 err = 0;
1337 * handle EXPRESS_IOCTL_GET_CHANNELS
1338 * without paying attention to channel
1341 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1342 int i = 0, k = 0;
1344 ioctl->data.chanlist.num_channels = 0;
1346 while (i < MAX_ADAPTERS) {
1347 if (esas2r_adapters[i]) {
1348 ioctl->data.chanlist.num_channels++;
1349 ioctl->data.chanlist.channel[k] = i;
1350 k++;
1352 i++;
1355 goto ioctl_done;
1358 /* get the channel */
1360 if (ioctl->header.channel == 0xFF) {
1361 a = (struct esas2r_adapter *)hostdata;
1362 } else {
1363 a = esas2r_adapters[ioctl->header.channel];
1364 if (ioctl->header.channel >= MAX_ADAPTERS || (a == NULL)) {
1365 ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1366 esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1367 kfree(ioctl);
1369 return -ENOTSUPP;
1373 switch (cmd) {
1374 case EXPRESS_IOCTL_RW_FIRMWARE:
1376 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1377 err = esas2r_write_fw(a,
1378 (char *)ioctl->data.fwrw.image,
1380 sizeof(struct
1381 atto_express_ioctl));
1383 if (err >= 0) {
1384 err = esas2r_read_fw(a,
1385 (char *)ioctl->data.fwrw.
1386 image,
1388 sizeof(struct
1389 atto_express_ioctl));
1391 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1392 err = esas2r_write_fs(a,
1393 (char *)ioctl->data.fwrw.image,
1395 sizeof(struct
1396 atto_express_ioctl));
1398 if (err >= 0) {
1399 err = esas2r_read_fs(a,
1400 (char *)ioctl->data.fwrw.
1401 image,
1403 sizeof(struct
1404 atto_express_ioctl));
1406 } else {
1407 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1410 break;
1412 case EXPRESS_IOCTL_READ_PARAMS:
1414 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1415 sizeof(struct esas2r_sas_nvram));
1416 ioctl->data.prw.code = 1;
1417 break;
1419 case EXPRESS_IOCTL_WRITE_PARAMS:
1421 rq = esas2r_alloc_request(a);
1422 if (rq == NULL) {
1423 up(&a->nvram_semaphore);
1424 ioctl->data.prw.code = 0;
1425 break;
1428 code = esas2r_write_params(a, rq,
1429 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1430 ioctl->data.prw.code = code;
1432 esas2r_free_request(a, rq);
1434 break;
1436 case EXPRESS_IOCTL_DEFAULT_PARAMS:
1438 esas2r_nvram_get_defaults(a,
1439 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1440 ioctl->data.prw.code = 1;
1441 break;
1443 case EXPRESS_IOCTL_CHAN_INFO:
1445 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1446 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1447 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1448 ioctl->data.chaninfo.device_id = a->pcid->device;
1449 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1450 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1451 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1452 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1453 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1454 ioctl->data.chaninfo.core_rev = 0;
1455 ioctl->data.chaninfo.host_no = a->host->host_no;
1456 ioctl->data.chaninfo.hbaapi_rev = 0;
1457 break;
1459 case EXPRESS_IOCTL_SMP:
1460 ioctl->header.return_code = handle_smp_ioctl(a,
1461 &ioctl->data.
1462 ioctl_smp);
1463 break;
1465 case EXPRESS_CSMI:
1466 ioctl->header.return_code =
1467 handle_csmi_ioctl(a, &ioctl->data.csmi);
1468 break;
1470 case EXPRESS_IOCTL_HBA:
1471 ioctl->header.return_code = handle_hba_ioctl(a,
1472 &ioctl->data.
1473 ioctl_hba);
1474 break;
1476 case EXPRESS_IOCTL_VDA:
1477 err = esas2r_write_vda(a,
1478 (char *)&ioctl->data.ioctl_vda,
1480 sizeof(struct atto_ioctl_vda) +
1481 ioctl->data.ioctl_vda.data_length);
1483 if (err >= 0) {
1484 err = esas2r_read_vda(a,
1485 (char *)&ioctl->data.ioctl_vda,
1487 sizeof(struct atto_ioctl_vda) +
1488 ioctl->data.ioctl_vda.data_length);
1494 break;
1496 case EXPRESS_IOCTL_GET_MOD_INFO:
1498 ioctl->data.modinfo.adapter = a;
1499 ioctl->data.modinfo.pci_dev = a->pcid;
1500 ioctl->data.modinfo.scsi_host = a->host;
1501 ioctl->data.modinfo.host_no = a->host->host_no;
1503 break;
1505 default:
1506 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1507 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1510 ioctl_done:
1512 if (err < 0) {
1513 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %d", err,
1514 cmd);
1516 switch (err) {
1517 case -ENOMEM:
1518 case -EBUSY:
1519 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1520 break;
1522 case -ENOSYS:
1523 case -EINVAL:
1524 ioctl->header.return_code = IOCTL_INVALID_PARAM;
1525 break;
1528 ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1531 /* Always copy the buffer back, if only to pick up the status */
1532 err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1533 if (err != 0) {
1534 esas2r_log(ESAS2R_LOG_WARN,
1535 "ioctl_handler copy_to_user didn't copy "
1536 "everything (err %d, cmd %d)", err,
1537 cmd);
1538 kfree(ioctl);
1540 return -EFAULT;
1543 kfree(ioctl);
1545 return 0;
1548 int esas2r_ioctl(struct scsi_device *sd, int cmd, void __user *arg)
1550 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1553 static void free_fw_buffers(struct esas2r_adapter *a)
1555 if (a->firmware.data) {
1556 dma_free_coherent(&a->pcid->dev,
1557 (size_t)a->firmware.orig_len,
1558 a->firmware.data,
1559 (dma_addr_t)a->firmware.phys);
1561 a->firmware.data = NULL;
1565 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1567 free_fw_buffers(a);
1569 a->firmware.orig_len = length;
1571 a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1572 (size_t)length,
1573 (dma_addr_t *)&a->firmware.
1574 phys,
1575 GFP_KERNEL);
1577 if (!a->firmware.data) {
1578 esas2r_debug("buffer alloc failed!");
1579 return 0;
1582 return 1;
1585 /* Handle a call to read firmware. */
1586 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1588 esas2r_trace_enter();
1589 /* if the cached header is a status, simply copy it over and return. */
1590 if (a->firmware.state == FW_STATUS_ST) {
1591 int size = min_t(int, count, sizeof(a->firmware.header));
1592 esas2r_trace_exit();
1593 memcpy(buf, &a->firmware.header, size);
1594 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1595 return size;
1599 * if the cached header is a command, do it if at
1600 * offset 0, otherwise copy the pieces.
1603 if (a->firmware.state == FW_COMMAND_ST) {
1604 u32 length = a->firmware.header.length;
1605 esas2r_trace_exit();
1607 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1608 length,
1609 off);
1611 if (off == 0) {
1612 if (a->firmware.header.action == FI_ACT_UP) {
1613 if (!allocate_fw_buffers(a, length))
1614 return -ENOMEM;
1617 /* copy header over */
1619 memcpy(a->firmware.data,
1620 &a->firmware.header,
1621 sizeof(a->firmware.header));
1623 do_fm_api(a,
1624 (struct esas2r_flash_img *)a->firmware.data);
1625 } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1626 int size =
1627 min((int)count,
1628 (int)sizeof(a->firmware.header));
1629 do_fm_api(a, &a->firmware.header);
1630 memcpy(buf, &a->firmware.header, size);
1631 esas2r_debug("FI_ACT_UPSZ size %d", size);
1632 return size;
1633 } else {
1634 esas2r_debug("invalid action %d",
1635 a->firmware.header.action);
1636 return -ENOSYS;
1640 if (count + off > length)
1641 count = length - off;
1643 if (count < 0)
1644 return 0;
1646 if (!a->firmware.data) {
1647 esas2r_debug(
1648 "read: nonzero offset but no buffer available!");
1649 return -ENOMEM;
1652 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1653 count,
1654 length);
1656 memcpy(buf, &a->firmware.data[off], count);
1658 /* when done, release the buffer */
1660 if (length <= off + count) {
1661 esas2r_debug("esas2r_read_fw: freeing buffer!");
1663 free_fw_buffers(a);
1666 return count;
1669 esas2r_trace_exit();
1670 esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1671 a->firmware.state);
1673 return -EINVAL;
1676 /* Handle a call to write firmware. */
1677 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1678 int count)
1680 u32 length;
1682 if (off == 0) {
1683 struct esas2r_flash_img *header =
1684 (struct esas2r_flash_img *)buf;
1686 /* assume version 0 flash image */
1688 int min_size = sizeof(struct esas2r_flash_img_v0);
1690 a->firmware.state = FW_INVALID_ST;
1692 /* validate the version field first */
1694 if (count < 4
1695 || header->fi_version > FI_VERSION_1) {
1696 esas2r_debug(
1697 "esas2r_write_fw: short header or invalid version");
1698 return -EINVAL;
1701 /* See if its a version 1 flash image */
1703 if (header->fi_version == FI_VERSION_1)
1704 min_size = sizeof(struct esas2r_flash_img);
1706 /* If this is the start, the header must be full and valid. */
1707 if (count < min_size) {
1708 esas2r_debug("esas2r_write_fw: short header, aborting");
1709 return -EINVAL;
1712 /* Make sure the size is reasonable. */
1713 length = header->length;
1715 if (length > 1024 * 1024) {
1716 esas2r_debug(
1717 "esas2r_write_fw: hosed, length %d fi_version %d",
1718 length, header->fi_version);
1719 return -EINVAL;
1723 * If this is a write command, allocate memory because
1724 * we have to cache everything. otherwise, just cache
1725 * the header, because the read op will do the command.
1728 if (header->action == FI_ACT_DOWN) {
1729 if (!allocate_fw_buffers(a, length))
1730 return -ENOMEM;
1733 * Store the command, so there is context on subsequent
1734 * calls.
1736 memcpy(&a->firmware.header,
1737 buf,
1738 sizeof(*header));
1739 } else if (header->action == FI_ACT_UP
1740 || header->action == FI_ACT_UPSZ) {
1741 /* Save the command, result will be picked up on read */
1742 memcpy(&a->firmware.header,
1743 buf,
1744 sizeof(*header));
1746 a->firmware.state = FW_COMMAND_ST;
1748 esas2r_debug(
1749 "esas2r_write_fw: COMMAND, count %d, action %d ",
1750 count, header->action);
1753 * Pretend we took the whole buffer,
1754 * so we don't get bothered again.
1757 return count;
1758 } else {
1759 esas2r_debug("esas2r_write_fw: invalid action %d ",
1760 a->firmware.header.action);
1761 return -ENOSYS;
1763 } else {
1764 length = a->firmware.header.length;
1768 * We only get here on a download command, regardless of offset.
1769 * the chunks written by the system need to be cached, and when
1770 * the final one arrives, issue the fmapi command.
1773 if (off + count > length)
1774 count = length - off;
1776 if (count > 0) {
1777 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1778 count,
1779 length);
1782 * On a full upload, the system tries sending the whole buffer.
1783 * there's nothing to do with it, so just drop it here, before
1784 * trying to copy over into unallocated memory!
1786 if (a->firmware.header.action == FI_ACT_UP)
1787 return count;
1789 if (!a->firmware.data) {
1790 esas2r_debug(
1791 "write: nonzero offset but no buffer available!");
1792 return -ENOMEM;
1795 memcpy(&a->firmware.data[off], buf, count);
1797 if (length == off + count) {
1798 do_fm_api(a,
1799 (struct esas2r_flash_img *)a->firmware.data);
1802 * Now copy the header result to be picked up by the
1803 * next read
1805 memcpy(&a->firmware.header,
1806 a->firmware.data,
1807 sizeof(a->firmware.header));
1809 a->firmware.state = FW_STATUS_ST;
1811 esas2r_debug("write completed");
1814 * Since the system has the data buffered, the only way
1815 * this can leak is if a root user writes a program
1816 * that writes a shorter buffer than it claims, and the
1817 * copyin fails.
1819 free_fw_buffers(a);
1823 return count;
1826 /* Callback for the completion of a VDA request. */
1827 static void vda_complete_req(struct esas2r_adapter *a,
1828 struct esas2r_request *rq)
1830 a->vda_command_done = 1;
1831 wake_up_interruptible(&a->vda_waiter);
1834 /* Scatter/gather callback for VDA requests */
1835 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1837 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1838 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1840 (*addr) = a->ppvda_buffer + offset;
1841 return VDA_MAX_BUFFER_SIZE - offset;
1844 /* Handle a call to read a VDA command. */
1845 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1847 if (!a->vda_buffer)
1848 return -ENOMEM;
1850 if (off == 0) {
1851 struct esas2r_request *rq;
1852 struct atto_ioctl_vda *vi =
1853 (struct atto_ioctl_vda *)a->vda_buffer;
1854 struct esas2r_sg_context sgc;
1855 bool wait_for_completion;
1858 * Presumeably, someone has already written to the vda_buffer,
1859 * and now they are reading the node the response, so now we
1860 * will actually issue the request to the chip and reply.
1863 /* allocate a request */
1864 rq = esas2r_alloc_request(a);
1865 if (rq == NULL) {
1866 esas2r_debug("esas2r_read_vda: out of requestss");
1867 return -EBUSY;
1870 rq->comp_cb = vda_complete_req;
1872 sgc.first_req = rq;
1873 sgc.adapter = a;
1874 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1875 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1877 a->vda_command_done = 0;
1879 wait_for_completion =
1880 esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1882 if (wait_for_completion) {
1883 /* now wait around for it to complete. */
1885 while (!a->vda_command_done)
1886 wait_event_interruptible(a->vda_waiter,
1887 a->vda_command_done);
1890 esas2r_free_request(a, (struct esas2r_request *)rq);
1893 if (off > VDA_MAX_BUFFER_SIZE)
1894 return 0;
1896 if (count + off > VDA_MAX_BUFFER_SIZE)
1897 count = VDA_MAX_BUFFER_SIZE - off;
1899 if (count < 0)
1900 return 0;
1902 memcpy(buf, a->vda_buffer + off, count);
1904 return count;
1907 /* Handle a call to write a VDA command. */
1908 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1909 int count)
1912 * allocate memory for it, if not already done. once allocated,
1913 * we will keep it around until the driver is unloaded.
1916 if (!a->vda_buffer) {
1917 dma_addr_t dma_addr;
1918 a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1919 (size_t)
1920 VDA_MAX_BUFFER_SIZE,
1921 &dma_addr,
1922 GFP_KERNEL);
1924 a->ppvda_buffer = dma_addr;
1927 if (!a->vda_buffer)
1928 return -ENOMEM;
1930 if (off > VDA_MAX_BUFFER_SIZE)
1931 return 0;
1933 if (count + off > VDA_MAX_BUFFER_SIZE)
1934 count = VDA_MAX_BUFFER_SIZE - off;
1936 if (count < 1)
1937 return 0;
1939 memcpy(a->vda_buffer + off, buf, count);
1941 return count;
1944 /* Callback for the completion of an FS_API request.*/
1945 static void fs_api_complete_req(struct esas2r_adapter *a,
1946 struct esas2r_request *rq)
1948 a->fs_api_command_done = 1;
1950 wake_up_interruptible(&a->fs_api_waiter);
1953 /* Scatter/gather callback for VDA requests */
1954 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1956 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1957 struct esas2r_ioctl_fs *fs =
1958 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1959 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1961 (*addr) = a->ppfs_api_buffer + offset;
1963 return a->fs_api_buffer_size - offset;
1966 /* Handle a call to read firmware via FS_API. */
1967 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1969 if (!a->fs_api_buffer)
1970 return -ENOMEM;
1972 if (off == 0) {
1973 struct esas2r_request *rq;
1974 struct esas2r_sg_context sgc;
1975 struct esas2r_ioctl_fs *fs =
1976 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1978 /* If another flash request is already in progress, return. */
1979 if (down_interruptible(&a->fs_api_semaphore)) {
1980 busy:
1981 fs->status = ATTO_STS_OUT_OF_RSRC;
1982 return -EBUSY;
1986 * Presumeably, someone has already written to the
1987 * fs_api_buffer, and now they are reading the node the
1988 * response, so now we will actually issue the request to the
1989 * chip and reply. Allocate a request
1992 rq = esas2r_alloc_request(a);
1993 if (rq == NULL) {
1994 esas2r_debug("esas2r_read_fs: out of requests");
1995 up(&a->fs_api_semaphore);
1996 goto busy;
1999 rq->comp_cb = fs_api_complete_req;
2001 /* Set up the SGCONTEXT for to build the s/g table */
2003 sgc.cur_offset = fs->data;
2004 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
2006 a->fs_api_command_done = 0;
2008 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
2009 if (fs->status == ATTO_STS_OUT_OF_RSRC)
2010 count = -EBUSY;
2012 goto dont_wait;
2015 /* Now wait around for it to complete. */
2017 while (!a->fs_api_command_done)
2018 wait_event_interruptible(a->fs_api_waiter,
2019 a->fs_api_command_done);
2021 dont_wait:
2022 /* Free the request and keep going */
2023 up(&a->fs_api_semaphore);
2024 esas2r_free_request(a, (struct esas2r_request *)rq);
2026 /* Pick up possible error code from above */
2027 if (count < 0)
2028 return count;
2031 if (off > a->fs_api_buffer_size)
2032 return 0;
2034 if (count + off > a->fs_api_buffer_size)
2035 count = a->fs_api_buffer_size - off;
2037 if (count < 0)
2038 return 0;
2040 memcpy(buf, a->fs_api_buffer + off, count);
2042 return count;
2045 /* Handle a call to write firmware via FS_API. */
2046 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2047 int count)
2049 if (off == 0) {
2050 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2051 u32 length = fs->command.length + offsetof(
2052 struct esas2r_ioctl_fs,
2053 data);
2056 * Special case, for BEGIN commands, the length field
2057 * is lying to us, so just get enough for the header.
2060 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2061 length = offsetof(struct esas2r_ioctl_fs, data);
2064 * Beginning a command. We assume we'll get at least
2065 * enough in the first write so we can look at the
2066 * header and see how much we need to alloc.
2069 if (count < offsetof(struct esas2r_ioctl_fs, data))
2070 return -EINVAL;
2072 /* Allocate a buffer or use the existing buffer. */
2073 if (a->fs_api_buffer) {
2074 if (a->fs_api_buffer_size < length) {
2075 /* Free too-small buffer and get a new one */
2076 dma_free_coherent(&a->pcid->dev,
2077 (size_t)a->fs_api_buffer_size,
2078 a->fs_api_buffer,
2079 (dma_addr_t)a->ppfs_api_buffer);
2081 goto re_allocate_buffer;
2083 } else {
2084 re_allocate_buffer:
2085 a->fs_api_buffer_size = length;
2087 a->fs_api_buffer = (u8 *)dma_alloc_coherent(
2088 &a->pcid->dev,
2089 (size_t)a->fs_api_buffer_size,
2090 (dma_addr_t *)&a->ppfs_api_buffer,
2091 GFP_KERNEL);
2095 if (!a->fs_api_buffer)
2096 return -ENOMEM;
2098 if (off > a->fs_api_buffer_size)
2099 return 0;
2101 if (count + off > a->fs_api_buffer_size)
2102 count = a->fs_api_buffer_size - off;
2104 if (count < 1)
2105 return 0;
2107 memcpy(a->fs_api_buffer + off, buf, count);
2109 return count;