fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
blob0cf4f7000f94db8439fb99490ddeaa26f86d0fdd
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2013 LSI Corporation
7 * (mailto:DL-MPTFusionLinux@lsi.com)
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version 2
12 * of the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * NO WARRANTY
20 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
21 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
22 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
23 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
24 * solely responsible for determining the appropriateness of using and
25 * distributing the Program and assumes all risks associated with its
26 * exercise of rights under this Agreement, including but not limited to
27 * the risks and costs of program errors, damage to or loss of data,
28 * programs or equipment, and unavailability or interruption of operations.
30 * DISCLAIMER OF LIABILITY
31 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
32 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
34 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
35 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
37 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
42 * USA.
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/errno.h>
48 #include <linux/init.h>
49 #include <linux/slab.h>
50 #include <linux/types.h>
51 #include <linux/pci.h>
52 #include <linux/kdev_t.h>
53 #include <linux/blkdev.h>
54 #include <linux/delay.h>
55 #include <linux/interrupt.h>
56 #include <linux/dma-mapping.h>
57 #include <linux/io.h>
58 #include <linux/time.h>
59 #include <linux/kthread.h>
60 #include <linux/aer.h>
63 #include "mpt3sas_base.h"
65 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
68 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70 /* maximum controller queue depth */
71 #define MAX_HBA_QUEUE_DEPTH 30000
72 #define MAX_CHAIN_DEPTH 100000
73 static int max_queue_depth = -1;
74 module_param(max_queue_depth, int, 0);
75 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77 static int max_sgl_entries = -1;
78 module_param(max_sgl_entries, int, 0);
79 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81 static int msix_disable = -1;
82 module_param(msix_disable, int, 0);
83 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85 static int max_msix_vectors = 8;
86 module_param(max_msix_vectors, int, 0);
87 MODULE_PARM_DESC(max_msix_vectors,
88 " max msix vectors - (default=8)");
90 static int mpt3sas_fwfault_debug;
91 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
92 " enable detection of firmware fault and halt firmware - (default=0)");
95 /**
96 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
99 static int
100 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
102 int ret = param_set_int(val, kp);
103 struct MPT3SAS_ADAPTER *ioc;
105 if (ret)
106 return ret;
108 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
109 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
110 ioc->fwfault_debug = mpt3sas_fwfault_debug;
111 return 0;
113 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
114 param_get_int, &mpt3sas_fwfault_debug, 0644);
117 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
118 * @arg: input argument, used to derive ioc
120 * Return 0 if controller is removed from pci subsystem.
121 * Return -1 for other case.
123 static int mpt3sas_remove_dead_ioc_func(void *arg)
125 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
126 struct pci_dev *pdev;
128 if ((ioc == NULL))
129 return -1;
131 pdev = ioc->pdev;
132 if ((pdev == NULL))
133 return -1;
134 pci_stop_and_remove_bus_device_locked(pdev);
135 return 0;
139 * _base_fault_reset_work - workq handling ioc fault conditions
140 * @work: input argument, used to derive ioc
141 * Context: sleep.
143 * Return nothing.
145 static void
146 _base_fault_reset_work(struct work_struct *work)
148 struct MPT3SAS_ADAPTER *ioc =
149 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
150 unsigned long flags;
151 u32 doorbell;
152 int rc;
153 struct task_struct *p;
156 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
157 if (ioc->shost_recovery)
158 goto rearm_timer;
159 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
161 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
162 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
163 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
164 ioc->name);
167 * Call _scsih_flush_pending_cmds callback so that we flush all
168 * pending commands back to OS. This call is required to aovid
169 * deadlock at block layer. Dead IOC will fail to do diag reset,
170 * and this call is safe since dead ioc will never return any
171 * command back from HW.
173 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
175 * Set remove_host flag early since kernel thread will
176 * take some time to execute.
178 ioc->remove_host = 1;
179 /*Remove the Dead Host */
180 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
181 "mpt3sas_dead_ioc_%d", ioc->id);
182 if (IS_ERR(p))
183 pr_err(MPT3SAS_FMT
184 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
185 ioc->name, __func__);
186 else
187 pr_err(MPT3SAS_FMT
188 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
189 ioc->name, __func__);
190 return; /* don't rearm timer */
193 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
194 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
195 FORCE_BIG_HAMMER);
196 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
197 __func__, (rc == 0) ? "success" : "failed");
198 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
199 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
200 mpt3sas_base_fault_info(ioc, doorbell &
201 MPI2_DOORBELL_DATA_MASK);
202 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
203 MPI2_IOC_STATE_OPERATIONAL)
204 return; /* don't rearm timer */
207 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
208 rearm_timer:
209 if (ioc->fault_reset_work_q)
210 queue_delayed_work(ioc->fault_reset_work_q,
211 &ioc->fault_reset_work,
212 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
213 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
217 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
218 * @ioc: per adapter object
219 * Context: sleep.
221 * Return nothing.
223 void
224 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
226 unsigned long flags;
228 if (ioc->fault_reset_work_q)
229 return;
231 /* initialize fault polling */
233 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
234 snprintf(ioc->fault_reset_work_q_name,
235 sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
236 ioc->fault_reset_work_q =
237 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
238 if (!ioc->fault_reset_work_q) {
239 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
240 ioc->name, __func__, __LINE__);
241 return;
243 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
244 if (ioc->fault_reset_work_q)
245 queue_delayed_work(ioc->fault_reset_work_q,
246 &ioc->fault_reset_work,
247 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
248 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
252 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
253 * @ioc: per adapter object
254 * Context: sleep.
256 * Return nothing.
258 void
259 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
261 unsigned long flags;
262 struct workqueue_struct *wq;
264 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
265 wq = ioc->fault_reset_work_q;
266 ioc->fault_reset_work_q = NULL;
267 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
268 if (wq) {
269 if (!cancel_delayed_work(&ioc->fault_reset_work))
270 flush_workqueue(wq);
271 destroy_workqueue(wq);
276 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
277 * @ioc: per adapter object
278 * @fault_code: fault code
280 * Return nothing.
282 void
283 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
285 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
286 ioc->name, fault_code);
290 * mpt3sas_halt_firmware - halt's mpt controller firmware
291 * @ioc: per adapter object
293 * For debugging timeout related issues. Writing 0xCOFFEE00
294 * to the doorbell register will halt controller firmware. With
295 * the purpose to stop both driver and firmware, the enduser can
296 * obtain a ring buffer from controller UART.
298 void
299 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
301 u32 doorbell;
303 if (!ioc->fwfault_debug)
304 return;
306 dump_stack();
308 doorbell = readl(&ioc->chip->Doorbell);
309 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
310 mpt3sas_base_fault_info(ioc , doorbell);
311 else {
312 writel(0xC0FFEE00, &ioc->chip->Doorbell);
313 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
314 ioc->name);
317 if (ioc->fwfault_debug == 2)
318 for (;;)
320 else
321 panic("panic in %s\n", __func__);
324 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
326 * _base_sas_ioc_info - verbose translation of the ioc status
327 * @ioc: per adapter object
328 * @mpi_reply: reply mf payload returned from firmware
329 * @request_hdr: request mf
331 * Return nothing.
333 static void
334 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
335 MPI2RequestHeader_t *request_hdr)
337 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
338 MPI2_IOCSTATUS_MASK;
339 char *desc = NULL;
340 u16 frame_sz;
341 char *func_str = NULL;
343 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
344 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
345 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
346 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
347 return;
349 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
350 return;
352 switch (ioc_status) {
354 /****************************************************************************
355 * Common IOCStatus values for all replies
356 ****************************************************************************/
358 case MPI2_IOCSTATUS_INVALID_FUNCTION:
359 desc = "invalid function";
360 break;
361 case MPI2_IOCSTATUS_BUSY:
362 desc = "busy";
363 break;
364 case MPI2_IOCSTATUS_INVALID_SGL:
365 desc = "invalid sgl";
366 break;
367 case MPI2_IOCSTATUS_INTERNAL_ERROR:
368 desc = "internal error";
369 break;
370 case MPI2_IOCSTATUS_INVALID_VPID:
371 desc = "invalid vpid";
372 break;
373 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
374 desc = "insufficient resources";
375 break;
376 case MPI2_IOCSTATUS_INVALID_FIELD:
377 desc = "invalid field";
378 break;
379 case MPI2_IOCSTATUS_INVALID_STATE:
380 desc = "invalid state";
381 break;
382 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
383 desc = "op state not supported";
384 break;
386 /****************************************************************************
387 * Config IOCStatus values
388 ****************************************************************************/
390 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
391 desc = "config invalid action";
392 break;
393 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
394 desc = "config invalid type";
395 break;
396 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
397 desc = "config invalid page";
398 break;
399 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
400 desc = "config invalid data";
401 break;
402 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
403 desc = "config no defaults";
404 break;
405 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
406 desc = "config cant commit";
407 break;
409 /****************************************************************************
410 * SCSI IO Reply
411 ****************************************************************************/
413 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
414 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
415 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
416 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
417 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
418 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
419 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
420 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
421 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
422 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
423 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
424 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
425 break;
427 /****************************************************************************
428 * For use by SCSI Initiator and SCSI Target end-to-end data protection
429 ****************************************************************************/
431 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
432 desc = "eedp guard error";
433 break;
434 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
435 desc = "eedp ref tag error";
436 break;
437 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
438 desc = "eedp app tag error";
439 break;
441 /****************************************************************************
442 * SCSI Target values
443 ****************************************************************************/
445 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
446 desc = "target invalid io index";
447 break;
448 case MPI2_IOCSTATUS_TARGET_ABORTED:
449 desc = "target aborted";
450 break;
451 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
452 desc = "target no conn retryable";
453 break;
454 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
455 desc = "target no connection";
456 break;
457 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
458 desc = "target xfer count mismatch";
459 break;
460 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
461 desc = "target data offset error";
462 break;
463 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
464 desc = "target too much write data";
465 break;
466 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
467 desc = "target iu too short";
468 break;
469 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
470 desc = "target ack nak timeout";
471 break;
472 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
473 desc = "target nak received";
474 break;
476 /****************************************************************************
477 * Serial Attached SCSI values
478 ****************************************************************************/
480 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
481 desc = "smp request failed";
482 break;
483 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
484 desc = "smp data overrun";
485 break;
487 /****************************************************************************
488 * Diagnostic Buffer Post / Diagnostic Release values
489 ****************************************************************************/
491 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
492 desc = "diagnostic released";
493 break;
494 default:
495 break;
498 if (!desc)
499 return;
501 switch (request_hdr->Function) {
502 case MPI2_FUNCTION_CONFIG:
503 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
504 func_str = "config_page";
505 break;
506 case MPI2_FUNCTION_SCSI_TASK_MGMT:
507 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
508 func_str = "task_mgmt";
509 break;
510 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
511 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
512 func_str = "sas_iounit_ctl";
513 break;
514 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
515 frame_sz = sizeof(Mpi2SepRequest_t);
516 func_str = "enclosure";
517 break;
518 case MPI2_FUNCTION_IOC_INIT:
519 frame_sz = sizeof(Mpi2IOCInitRequest_t);
520 func_str = "ioc_init";
521 break;
522 case MPI2_FUNCTION_PORT_ENABLE:
523 frame_sz = sizeof(Mpi2PortEnableRequest_t);
524 func_str = "port_enable";
525 break;
526 case MPI2_FUNCTION_SMP_PASSTHROUGH:
527 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
528 func_str = "smp_passthru";
529 break;
530 default:
531 frame_sz = 32;
532 func_str = "unknown";
533 break;
536 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
537 ioc->name, desc, ioc_status, request_hdr, func_str);
539 _debug_dump_mf(request_hdr, frame_sz/4);
543 * _base_display_event_data - verbose translation of firmware asyn events
544 * @ioc: per adapter object
545 * @mpi_reply: reply mf payload returned from firmware
547 * Return nothing.
549 static void
550 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
551 Mpi2EventNotificationReply_t *mpi_reply)
553 char *desc = NULL;
554 u16 event;
556 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
557 return;
559 event = le16_to_cpu(mpi_reply->Event);
561 switch (event) {
562 case MPI2_EVENT_LOG_DATA:
563 desc = "Log Data";
564 break;
565 case MPI2_EVENT_STATE_CHANGE:
566 desc = "Status Change";
567 break;
568 case MPI2_EVENT_HARD_RESET_RECEIVED:
569 desc = "Hard Reset Received";
570 break;
571 case MPI2_EVENT_EVENT_CHANGE:
572 desc = "Event Change";
573 break;
574 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
575 desc = "Device Status Change";
576 break;
577 case MPI2_EVENT_IR_OPERATION_STATUS:
578 desc = "IR Operation Status";
579 break;
580 case MPI2_EVENT_SAS_DISCOVERY:
582 Mpi2EventDataSasDiscovery_t *event_data =
583 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
584 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
585 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
586 "start" : "stop");
587 if (event_data->DiscoveryStatus)
588 pr_info("discovery_status(0x%08x)",
589 le32_to_cpu(event_data->DiscoveryStatus));
590 pr_info("\n");
591 return;
593 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
594 desc = "SAS Broadcast Primitive";
595 break;
596 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
597 desc = "SAS Init Device Status Change";
598 break;
599 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
600 desc = "SAS Init Table Overflow";
601 break;
602 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
603 desc = "SAS Topology Change List";
604 break;
605 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
606 desc = "SAS Enclosure Device Status Change";
607 break;
608 case MPI2_EVENT_IR_VOLUME:
609 desc = "IR Volume";
610 break;
611 case MPI2_EVENT_IR_PHYSICAL_DISK:
612 desc = "IR Physical Disk";
613 break;
614 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
615 desc = "IR Configuration Change List";
616 break;
617 case MPI2_EVENT_LOG_ENTRY_ADDED:
618 desc = "Log Entry Added";
619 break;
622 if (!desc)
623 return;
625 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
627 #endif
630 * _base_sas_log_info - verbose translation of firmware log info
631 * @ioc: per adapter object
632 * @log_info: log info
634 * Return nothing.
636 static void
637 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
639 union loginfo_type {
640 u32 loginfo;
641 struct {
642 u32 subcode:16;
643 u32 code:8;
644 u32 originator:4;
645 u32 bus_type:4;
646 } dw;
648 union loginfo_type sas_loginfo;
649 char *originator_str = NULL;
651 sas_loginfo.loginfo = log_info;
652 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
653 return;
655 /* each nexus loss loginfo */
656 if (log_info == 0x31170000)
657 return;
659 /* eat the loginfos associated with task aborts */
660 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
661 0x31140000 || log_info == 0x31130000))
662 return;
664 switch (sas_loginfo.dw.originator) {
665 case 0:
666 originator_str = "IOP";
667 break;
668 case 1:
669 originator_str = "PL";
670 break;
671 case 2:
672 originator_str = "IR";
673 break;
676 pr_warn(MPT3SAS_FMT
677 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
678 ioc->name, log_info,
679 originator_str, sas_loginfo.dw.code,
680 sas_loginfo.dw.subcode);
684 * _base_display_reply_info -
685 * @ioc: per adapter object
686 * @smid: system request message index
687 * @msix_index: MSIX table index supplied by the OS
688 * @reply: reply message frame(lower 32bit addr)
690 * Return nothing.
692 static void
693 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
694 u32 reply)
696 MPI2DefaultReply_t *mpi_reply;
697 u16 ioc_status;
698 u32 loginfo = 0;
700 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
701 if (unlikely(!mpi_reply)) {
702 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
703 ioc->name, __FILE__, __LINE__, __func__);
704 return;
706 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
707 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
708 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
709 (ioc->logging_level & MPT_DEBUG_REPLY)) {
710 _base_sas_ioc_info(ioc , mpi_reply,
711 mpt3sas_base_get_msg_frame(ioc, smid));
713 #endif
714 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
715 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
716 _base_sas_log_info(ioc, loginfo);
719 if (ioc_status || loginfo) {
720 ioc_status &= MPI2_IOCSTATUS_MASK;
721 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
726 * mpt3sas_base_done - base internal command completion routine
727 * @ioc: per adapter object
728 * @smid: system request message index
729 * @msix_index: MSIX table index supplied by the OS
730 * @reply: reply message frame(lower 32bit addr)
732 * Return 1 meaning mf should be freed from _base_interrupt
733 * 0 means the mf is freed from this function.
736 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
737 u32 reply)
739 MPI2DefaultReply_t *mpi_reply;
741 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
742 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
743 return 1;
745 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
746 return 1;
748 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
749 if (mpi_reply) {
750 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
751 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
753 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
755 complete(&ioc->base_cmds.done);
756 return 1;
760 * _base_async_event - main callback handler for firmware asyn events
761 * @ioc: per adapter object
762 * @msix_index: MSIX table index supplied by the OS
763 * @reply: reply message frame(lower 32bit addr)
765 * Return 1 meaning mf should be freed from _base_interrupt
766 * 0 means the mf is freed from this function.
768 static u8
769 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
771 Mpi2EventNotificationReply_t *mpi_reply;
772 Mpi2EventAckRequest_t *ack_request;
773 u16 smid;
775 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
776 if (!mpi_reply)
777 return 1;
778 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
779 return 1;
780 #ifdef CONFIG_SCSI_MPT3SAS_LOGGING
781 _base_display_event_data(ioc, mpi_reply);
782 #endif
783 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
784 goto out;
785 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
786 if (!smid) {
787 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
788 ioc->name, __func__);
789 goto out;
792 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
793 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
794 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
795 ack_request->Event = mpi_reply->Event;
796 ack_request->EventContext = mpi_reply->EventContext;
797 ack_request->VF_ID = 0; /* TODO */
798 ack_request->VP_ID = 0;
799 mpt3sas_base_put_smid_default(ioc, smid);
801 out:
803 /* scsih callback handler */
804 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
806 /* ctl callback handler */
807 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
809 return 1;
813 * _base_get_cb_idx - obtain the callback index
814 * @ioc: per adapter object
815 * @smid: system request message index
817 * Return callback index.
819 static u8
820 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
822 int i;
823 u8 cb_idx;
825 if (smid < ioc->hi_priority_smid) {
826 i = smid - 1;
827 cb_idx = ioc->scsi_lookup[i].cb_idx;
828 } else if (smid < ioc->internal_smid) {
829 i = smid - ioc->hi_priority_smid;
830 cb_idx = ioc->hpr_lookup[i].cb_idx;
831 } else if (smid <= ioc->hba_queue_depth) {
832 i = smid - ioc->internal_smid;
833 cb_idx = ioc->internal_lookup[i].cb_idx;
834 } else
835 cb_idx = 0xFF;
836 return cb_idx;
840 * _base_mask_interrupts - disable interrupts
841 * @ioc: per adapter object
843 * Disabling ResetIRQ, Reply and Doorbell Interrupts
845 * Return nothing.
847 static void
848 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
850 u32 him_register;
852 ioc->mask_interrupts = 1;
853 him_register = readl(&ioc->chip->HostInterruptMask);
854 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
855 writel(him_register, &ioc->chip->HostInterruptMask);
856 readl(&ioc->chip->HostInterruptMask);
860 * _base_unmask_interrupts - enable interrupts
861 * @ioc: per adapter object
863 * Enabling only Reply Interrupts
865 * Return nothing.
867 static void
868 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
870 u32 him_register;
872 him_register = readl(&ioc->chip->HostInterruptMask);
873 him_register &= ~MPI2_HIM_RIM;
874 writel(him_register, &ioc->chip->HostInterruptMask);
875 ioc->mask_interrupts = 0;
878 union reply_descriptor {
879 u64 word;
880 struct {
881 u32 low;
882 u32 high;
883 } u;
887 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
888 * @irq: irq number (not used)
889 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
890 * @r: pt_regs pointer (not used)
892 * Return IRQ_HANDLE if processed, else IRQ_NONE.
894 static irqreturn_t
895 _base_interrupt(int irq, void *bus_id)
897 struct adapter_reply_queue *reply_q = bus_id;
898 union reply_descriptor rd;
899 u32 completed_cmds;
900 u8 request_desript_type;
901 u16 smid;
902 u8 cb_idx;
903 u32 reply;
904 u8 msix_index = reply_q->msix_index;
905 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
906 Mpi2ReplyDescriptorsUnion_t *rpf;
907 u8 rc;
909 if (ioc->mask_interrupts)
910 return IRQ_NONE;
912 if (!atomic_add_unless(&reply_q->busy, 1, 1))
913 return IRQ_NONE;
915 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
916 request_desript_type = rpf->Default.ReplyFlags
917 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
918 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
919 atomic_dec(&reply_q->busy);
920 return IRQ_NONE;
923 completed_cmds = 0;
924 cb_idx = 0xFF;
925 do {
926 rd.word = le64_to_cpu(rpf->Words);
927 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
928 goto out;
929 reply = 0;
930 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
931 if (request_desript_type ==
932 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
933 request_desript_type ==
934 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
935 cb_idx = _base_get_cb_idx(ioc, smid);
936 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
937 (likely(mpt_callbacks[cb_idx] != NULL))) {
938 rc = mpt_callbacks[cb_idx](ioc, smid,
939 msix_index, 0);
940 if (rc)
941 mpt3sas_base_free_smid(ioc, smid);
943 } else if (request_desript_type ==
944 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
945 reply = le32_to_cpu(
946 rpf->AddressReply.ReplyFrameAddress);
947 if (reply > ioc->reply_dma_max_address ||
948 reply < ioc->reply_dma_min_address)
949 reply = 0;
950 if (smid) {
951 cb_idx = _base_get_cb_idx(ioc, smid);
952 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
953 (likely(mpt_callbacks[cb_idx] != NULL))) {
954 rc = mpt_callbacks[cb_idx](ioc, smid,
955 msix_index, reply);
956 if (reply)
957 _base_display_reply_info(ioc,
958 smid, msix_index, reply);
959 if (rc)
960 mpt3sas_base_free_smid(ioc,
961 smid);
963 } else {
964 _base_async_event(ioc, msix_index, reply);
967 /* reply free queue handling */
968 if (reply) {
969 ioc->reply_free_host_index =
970 (ioc->reply_free_host_index ==
971 (ioc->reply_free_queue_depth - 1)) ?
972 0 : ioc->reply_free_host_index + 1;
973 ioc->reply_free[ioc->reply_free_host_index] =
974 cpu_to_le32(reply);
975 wmb();
976 writel(ioc->reply_free_host_index,
977 &ioc->chip->ReplyFreeHostIndex);
981 rpf->Words = cpu_to_le64(ULLONG_MAX);
982 reply_q->reply_post_host_index =
983 (reply_q->reply_post_host_index ==
984 (ioc->reply_post_queue_depth - 1)) ? 0 :
985 reply_q->reply_post_host_index + 1;
986 request_desript_type =
987 reply_q->reply_post_free[reply_q->reply_post_host_index].
988 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
989 completed_cmds++;
990 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
991 goto out;
992 if (!reply_q->reply_post_host_index)
993 rpf = reply_q->reply_post_free;
994 else
995 rpf++;
996 } while (1);
998 out:
1000 if (!completed_cmds) {
1001 atomic_dec(&reply_q->busy);
1002 return IRQ_NONE;
1005 wmb();
1006 writel(reply_q->reply_post_host_index | (msix_index <<
1007 MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1008 atomic_dec(&reply_q->busy);
1009 return IRQ_HANDLED;
1013 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1014 * @ioc: per adapter object
1017 static inline int
1018 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1020 return (ioc->facts.IOCCapabilities &
1021 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1025 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1026 * @ioc: per adapter object
1027 * Context: ISR conext
1029 * Called when a Task Management request has completed. We want
1030 * to flush the other reply queues so all the outstanding IO has been
1031 * completed back to OS before we process the TM completetion.
1033 * Return nothing.
1035 void
1036 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1038 struct adapter_reply_queue *reply_q;
1040 /* If MSIX capability is turned off
1041 * then multi-queues are not enabled
1043 if (!_base_is_controller_msix_enabled(ioc))
1044 return;
1046 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1047 if (ioc->shost_recovery)
1048 return;
1049 /* TMs are on msix_index == 0 */
1050 if (reply_q->msix_index == 0)
1051 continue;
1052 _base_interrupt(reply_q->vector, (void *)reply_q);
1057 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1058 * @cb_idx: callback index
1060 * Return nothing.
1062 void
1063 mpt3sas_base_release_callback_handler(u8 cb_idx)
1065 mpt_callbacks[cb_idx] = NULL;
1069 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1070 * @cb_func: callback function
1072 * Returns cb_func.
1075 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1077 u8 cb_idx;
1079 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1080 if (mpt_callbacks[cb_idx] == NULL)
1081 break;
1083 mpt_callbacks[cb_idx] = cb_func;
1084 return cb_idx;
1088 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1090 * Return nothing.
1092 void
1093 mpt3sas_base_initialize_callback_handler(void)
1095 u8 cb_idx;
1097 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1098 mpt3sas_base_release_callback_handler(cb_idx);
1103 * _base_build_zero_len_sge - build zero length sg entry
1104 * @ioc: per adapter object
1105 * @paddr: virtual address for SGE
1107 * Create a zero length scatter gather entry to insure the IOCs hardware has
1108 * something to use if the target device goes brain dead and tries
1109 * to send data even when none is asked for.
1111 * Return nothing.
1113 static void
1114 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1116 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1117 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1118 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1119 MPI2_SGE_FLAGS_SHIFT);
1120 ioc->base_add_sg_single(paddr, flags_length, -1);
1124 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1125 * @paddr: virtual address for SGE
1126 * @flags_length: SGE flags and data transfer length
1127 * @dma_addr: Physical address
1129 * Return nothing.
1131 static void
1132 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1134 Mpi2SGESimple32_t *sgel = paddr;
1136 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1137 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1138 sgel->FlagsLength = cpu_to_le32(flags_length);
1139 sgel->Address = cpu_to_le32(dma_addr);
1144 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1145 * @paddr: virtual address for SGE
1146 * @flags_length: SGE flags and data transfer length
1147 * @dma_addr: Physical address
1149 * Return nothing.
1151 static void
1152 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1154 Mpi2SGESimple64_t *sgel = paddr;
1156 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1157 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1158 sgel->FlagsLength = cpu_to_le32(flags_length);
1159 sgel->Address = cpu_to_le64(dma_addr);
1163 * _base_get_chain_buffer_tracker - obtain chain tracker
1164 * @ioc: per adapter object
1165 * @smid: smid associated to an IO request
1167 * Returns chain tracker(from ioc->free_chain_list)
1169 static struct chain_tracker *
1170 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1172 struct chain_tracker *chain_req;
1173 unsigned long flags;
1175 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1176 if (list_empty(&ioc->free_chain_list)) {
1177 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1178 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1179 "chain buffers not available\n", ioc->name));
1180 return NULL;
1182 chain_req = list_entry(ioc->free_chain_list.next,
1183 struct chain_tracker, tracker_list);
1184 list_del_init(&chain_req->tracker_list);
1185 list_add_tail(&chain_req->tracker_list,
1186 &ioc->scsi_lookup[smid - 1].chain_list);
1187 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1188 return chain_req;
1193 * _base_build_sg - build generic sg
1194 * @ioc: per adapter object
1195 * @psge: virtual address for SGE
1196 * @data_out_dma: physical address for WRITES
1197 * @data_out_sz: data xfer size for WRITES
1198 * @data_in_dma: physical address for READS
1199 * @data_in_sz: data xfer size for READS
1201 * Return nothing.
1203 static void
1204 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1205 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1206 size_t data_in_sz)
1208 u32 sgl_flags;
1210 if (!data_out_sz && !data_in_sz) {
1211 _base_build_zero_len_sge(ioc, psge);
1212 return;
1215 if (data_out_sz && data_in_sz) {
1216 /* WRITE sgel first */
1217 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1218 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1219 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1220 ioc->base_add_sg_single(psge, sgl_flags |
1221 data_out_sz, data_out_dma);
1223 /* incr sgel */
1224 psge += ioc->sge_size;
1226 /* READ sgel last */
1227 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1228 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1229 MPI2_SGE_FLAGS_END_OF_LIST);
1230 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1231 ioc->base_add_sg_single(psge, sgl_flags |
1232 data_in_sz, data_in_dma);
1233 } else if (data_out_sz) /* WRITE */ {
1234 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1235 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1236 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1237 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1238 ioc->base_add_sg_single(psge, sgl_flags |
1239 data_out_sz, data_out_dma);
1240 } else if (data_in_sz) /* READ */ {
1241 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1242 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1243 MPI2_SGE_FLAGS_END_OF_LIST);
1244 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1245 ioc->base_add_sg_single(psge, sgl_flags |
1246 data_in_sz, data_in_dma);
1250 /* IEEE format sgls */
1253 * _base_add_sg_single_ieee - add sg element for IEEE format
1254 * @paddr: virtual address for SGE
1255 * @flags: SGE flags
1256 * @chain_offset: number of 128 byte elements from start of segment
1257 * @length: data transfer length
1258 * @dma_addr: Physical address
1260 * Return nothing.
1262 static void
1263 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1264 dma_addr_t dma_addr)
1266 Mpi25IeeeSgeChain64_t *sgel = paddr;
1268 sgel->Flags = flags;
1269 sgel->NextChainOffset = chain_offset;
1270 sgel->Length = cpu_to_le32(length);
1271 sgel->Address = cpu_to_le64(dma_addr);
1275 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1276 * @ioc: per adapter object
1277 * @paddr: virtual address for SGE
1279 * Create a zero length scatter gather entry to insure the IOCs hardware has
1280 * something to use if the target device goes brain dead and tries
1281 * to send data even when none is asked for.
1283 * Return nothing.
1285 static void
1286 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1288 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1289 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1290 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1291 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1295 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1296 * @ioc: per adapter object
1297 * @scmd: scsi command
1298 * @smid: system request message index
1299 * Context: none.
1301 * The main routine that builds scatter gather table from a given
1302 * scsi request sent via the .queuecommand main handler.
1304 * Returns 0 success, anything else error
1306 static int
1307 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1308 struct scsi_cmnd *scmd, u16 smid)
1310 Mpi2SCSIIORequest_t *mpi_request;
1311 dma_addr_t chain_dma;
1312 struct scatterlist *sg_scmd;
1313 void *sg_local, *chain;
1314 u32 chain_offset;
1315 u32 chain_length;
1316 int sges_left;
1317 u32 sges_in_segment;
1318 u8 simple_sgl_flags;
1319 u8 simple_sgl_flags_last;
1320 u8 chain_sgl_flags;
1321 struct chain_tracker *chain_req;
1323 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1325 /* init scatter gather flags */
1326 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1327 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1328 simple_sgl_flags_last = simple_sgl_flags |
1329 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1330 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1331 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1333 sg_scmd = scsi_sglist(scmd);
1334 sges_left = scsi_dma_map(scmd);
1335 if (!sges_left) {
1336 sdev_printk(KERN_ERR, scmd->device,
1337 "pci_map_sg failed: request for %d bytes!\n",
1338 scsi_bufflen(scmd));
1339 return -ENOMEM;
1342 sg_local = &mpi_request->SGL;
1343 sges_in_segment = (ioc->request_sz -
1344 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1345 if (sges_left <= sges_in_segment)
1346 goto fill_in_last_segment;
1348 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1349 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1351 /* fill in main message segment when there is a chain following */
1352 while (sges_in_segment > 1) {
1353 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1354 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1355 sg_scmd = sg_next(sg_scmd);
1356 sg_local += ioc->sge_size_ieee;
1357 sges_left--;
1358 sges_in_segment--;
1361 /* initializing the pointers */
1362 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1363 if (!chain_req)
1364 return -1;
1365 chain = chain_req->chain_buffer;
1366 chain_dma = chain_req->chain_buffer_dma;
1367 do {
1368 sges_in_segment = (sges_left <=
1369 ioc->max_sges_in_chain_message) ? sges_left :
1370 ioc->max_sges_in_chain_message;
1371 chain_offset = (sges_left == sges_in_segment) ?
1372 0 : sges_in_segment;
1373 chain_length = sges_in_segment * ioc->sge_size_ieee;
1374 if (chain_offset)
1375 chain_length += ioc->sge_size_ieee;
1376 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1377 chain_offset, chain_length, chain_dma);
1379 sg_local = chain;
1380 if (!chain_offset)
1381 goto fill_in_last_segment;
1383 /* fill in chain segments */
1384 while (sges_in_segment) {
1385 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1386 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1387 sg_scmd = sg_next(sg_scmd);
1388 sg_local += ioc->sge_size_ieee;
1389 sges_left--;
1390 sges_in_segment--;
1393 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1394 if (!chain_req)
1395 return -1;
1396 chain = chain_req->chain_buffer;
1397 chain_dma = chain_req->chain_buffer_dma;
1398 } while (1);
1401 fill_in_last_segment:
1403 /* fill the last segment */
1404 while (sges_left) {
1405 if (sges_left == 1)
1406 _base_add_sg_single_ieee(sg_local,
1407 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1408 sg_dma_address(sg_scmd));
1409 else
1410 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1411 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1412 sg_scmd = sg_next(sg_scmd);
1413 sg_local += ioc->sge_size_ieee;
1414 sges_left--;
1417 return 0;
1421 * _base_build_sg_ieee - build generic sg for IEEE format
1422 * @ioc: per adapter object
1423 * @psge: virtual address for SGE
1424 * @data_out_dma: physical address for WRITES
1425 * @data_out_sz: data xfer size for WRITES
1426 * @data_in_dma: physical address for READS
1427 * @data_in_sz: data xfer size for READS
1429 * Return nothing.
1431 static void
1432 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1433 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1434 size_t data_in_sz)
1436 u8 sgl_flags;
1438 if (!data_out_sz && !data_in_sz) {
1439 _base_build_zero_len_sge_ieee(ioc, psge);
1440 return;
1443 if (data_out_sz && data_in_sz) {
1444 /* WRITE sgel first */
1445 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1446 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1447 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1448 data_out_dma);
1450 /* incr sgel */
1451 psge += ioc->sge_size_ieee;
1453 /* READ sgel last */
1454 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1455 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1456 data_in_dma);
1457 } else if (data_out_sz) /* WRITE */ {
1458 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1459 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1460 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1461 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1462 data_out_dma);
1463 } else if (data_in_sz) /* READ */ {
1464 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1465 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1466 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1467 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1468 data_in_dma);
1472 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1475 * _base_config_dma_addressing - set dma addressing
1476 * @ioc: per adapter object
1477 * @pdev: PCI device struct
1479 * Returns 0 for success, non-zero for failure.
1481 static int
1482 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1484 struct sysinfo s;
1485 char *desc = NULL;
1487 if (sizeof(dma_addr_t) > 4) {
1488 const uint64_t required_mask =
1489 dma_get_required_mask(&pdev->dev);
1490 if ((required_mask > DMA_BIT_MASK(32)) &&
1491 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1492 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1493 ioc->base_add_sg_single = &_base_add_sg_single_64;
1494 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1495 desc = "64";
1496 goto out;
1500 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1501 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1502 ioc->base_add_sg_single = &_base_add_sg_single_32;
1503 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1504 desc = "32";
1505 } else
1506 return -ENODEV;
1508 out:
1509 si_meminfo(&s);
1510 pr_info(MPT3SAS_FMT
1511 "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1512 ioc->name, desc, convert_to_kb(s.totalram));
1514 return 0;
1518 * _base_check_enable_msix - checks MSIX capabable.
1519 * @ioc: per adapter object
1521 * Check to see if card is capable of MSIX, and set number
1522 * of available msix vectors
1524 static int
1525 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1527 int base;
1528 u16 message_control;
1530 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1531 if (!base) {
1532 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1533 ioc->name));
1534 return -EINVAL;
1537 /* get msix vector count */
1539 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1540 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1541 if (ioc->msix_vector_count > 8)
1542 ioc->msix_vector_count = 8;
1543 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1544 "msix is supported, vector_count(%d)\n",
1545 ioc->name, ioc->msix_vector_count));
1546 return 0;
1550 * _base_free_irq - free irq
1551 * @ioc: per adapter object
1553 * Freeing respective reply_queue from the list.
1555 static void
1556 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1558 struct adapter_reply_queue *reply_q, *next;
1560 if (list_empty(&ioc->reply_queue_list))
1561 return;
1563 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1564 list_del(&reply_q->list);
1565 synchronize_irq(reply_q->vector);
1566 free_irq(reply_q->vector, reply_q);
1567 kfree(reply_q);
1572 * _base_request_irq - request irq
1573 * @ioc: per adapter object
1574 * @index: msix index into vector table
1575 * @vector: irq vector
1577 * Inserting respective reply_queue into the list.
1579 static int
1580 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1582 struct adapter_reply_queue *reply_q;
1583 int r;
1585 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1586 if (!reply_q) {
1587 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1588 ioc->name, (int)sizeof(struct adapter_reply_queue));
1589 return -ENOMEM;
1591 reply_q->ioc = ioc;
1592 reply_q->msix_index = index;
1593 reply_q->vector = vector;
1594 atomic_set(&reply_q->busy, 0);
1595 if (ioc->msix_enable)
1596 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1597 MPT3SAS_DRIVER_NAME, ioc->id, index);
1598 else
1599 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1600 MPT3SAS_DRIVER_NAME, ioc->id);
1601 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1602 reply_q);
1603 if (r) {
1604 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1605 reply_q->name, vector);
1606 kfree(reply_q);
1607 return -EBUSY;
1610 INIT_LIST_HEAD(&reply_q->list);
1611 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1612 return 0;
1616 * _base_assign_reply_queues - assigning msix index for each cpu
1617 * @ioc: per adapter object
1619 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1621 * It would nice if we could call irq_set_affinity, however it is not
1622 * an exported symbol
1624 static void
1625 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1627 struct adapter_reply_queue *reply_q;
1628 int cpu_id;
1629 int cpu_grouping, loop, grouping, grouping_mod;
1630 int reply_queue;
1632 if (!_base_is_controller_msix_enabled(ioc))
1633 return;
1635 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1637 /* NUMA Hardware bug workaround - drop to less reply queues */
1638 if (ioc->reply_queue_count > ioc->facts.MaxMSIxVectors) {
1639 ioc->reply_queue_count = ioc->facts.MaxMSIxVectors;
1640 reply_queue = 0;
1641 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1642 reply_q->msix_index = reply_queue;
1643 if (++reply_queue == ioc->reply_queue_count)
1644 reply_queue = 0;
1648 /* when there are more cpus than available msix vectors,
1649 * then group cpus togeather on same irq
1651 if (ioc->cpu_count > ioc->msix_vector_count) {
1652 grouping = ioc->cpu_count / ioc->msix_vector_count;
1653 grouping_mod = ioc->cpu_count % ioc->msix_vector_count;
1654 if (grouping < 2 || (grouping == 2 && !grouping_mod))
1655 cpu_grouping = 2;
1656 else if (grouping < 4 || (grouping == 4 && !grouping_mod))
1657 cpu_grouping = 4;
1658 else if (grouping < 8 || (grouping == 8 && !grouping_mod))
1659 cpu_grouping = 8;
1660 else
1661 cpu_grouping = 16;
1662 } else
1663 cpu_grouping = 0;
1665 loop = 0;
1666 reply_q = list_entry(ioc->reply_queue_list.next,
1667 struct adapter_reply_queue, list);
1668 for_each_online_cpu(cpu_id) {
1669 if (!cpu_grouping) {
1670 ioc->cpu_msix_table[cpu_id] = reply_q->msix_index;
1671 reply_q = list_entry(reply_q->list.next,
1672 struct adapter_reply_queue, list);
1673 } else {
1674 if (loop < cpu_grouping) {
1675 ioc->cpu_msix_table[cpu_id] =
1676 reply_q->msix_index;
1677 loop++;
1678 } else {
1679 reply_q = list_entry(reply_q->list.next,
1680 struct adapter_reply_queue, list);
1681 ioc->cpu_msix_table[cpu_id] =
1682 reply_q->msix_index;
1683 loop = 1;
1690 * _base_disable_msix - disables msix
1691 * @ioc: per adapter object
1694 static void
1695 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1697 if (!ioc->msix_enable)
1698 return;
1699 pci_disable_msix(ioc->pdev);
1700 ioc->msix_enable = 0;
1704 * _base_enable_msix - enables msix, failback to io_apic
1705 * @ioc: per adapter object
1708 static int
1709 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1711 struct msix_entry *entries, *a;
1712 int r;
1713 int i;
1714 u8 try_msix = 0;
1716 if (msix_disable == -1 || msix_disable == 0)
1717 try_msix = 1;
1719 if (!try_msix)
1720 goto try_ioapic;
1722 if (_base_check_enable_msix(ioc) != 0)
1723 goto try_ioapic;
1725 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1726 ioc->msix_vector_count);
1728 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1729 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1730 ioc->cpu_count, max_msix_vectors);
1732 if (max_msix_vectors > 0) {
1733 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1734 ioc->reply_queue_count);
1735 ioc->msix_vector_count = ioc->reply_queue_count;
1738 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1739 GFP_KERNEL);
1740 if (!entries) {
1741 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1742 "kcalloc failed @ at %s:%d/%s() !!!\n",
1743 ioc->name, __FILE__, __LINE__, __func__));
1744 goto try_ioapic;
1747 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1748 a->entry = i;
1750 r = pci_enable_msix(ioc->pdev, entries, ioc->reply_queue_count);
1751 if (r) {
1752 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1753 "pci_enable_msix failed (r=%d) !!!\n",
1754 ioc->name, r));
1755 kfree(entries);
1756 goto try_ioapic;
1759 ioc->msix_enable = 1;
1760 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1761 r = _base_request_irq(ioc, i, a->vector);
1762 if (r) {
1763 _base_free_irq(ioc);
1764 _base_disable_msix(ioc);
1765 kfree(entries);
1766 goto try_ioapic;
1770 kfree(entries);
1771 return 0;
1773 /* failback to io_apic interrupt routing */
1774 try_ioapic:
1776 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1778 return r;
1782 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1783 * @ioc: per adapter object
1785 * Returns 0 for success, non-zero for failure.
1788 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1790 struct pci_dev *pdev = ioc->pdev;
1791 u32 memap_sz;
1792 u32 pio_sz;
1793 int i, r = 0;
1794 u64 pio_chip = 0;
1795 u64 chip_phys = 0;
1796 struct adapter_reply_queue *reply_q;
1798 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1799 ioc->name, __func__));
1801 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1802 if (pci_enable_device_mem(pdev)) {
1803 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1804 ioc->name);
1805 ioc->bars = 0;
1806 return -ENODEV;
1810 if (pci_request_selected_regions(pdev, ioc->bars,
1811 MPT3SAS_DRIVER_NAME)) {
1812 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1813 ioc->name);
1814 ioc->bars = 0;
1815 r = -ENODEV;
1816 goto out_fail;
1819 /* AER (Advanced Error Reporting) hooks */
1820 pci_enable_pcie_error_reporting(pdev);
1822 pci_set_master(pdev);
1825 if (_base_config_dma_addressing(ioc, pdev) != 0) {
1826 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1827 ioc->name, pci_name(pdev));
1828 r = -ENODEV;
1829 goto out_fail;
1832 for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1833 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1834 if (pio_sz)
1835 continue;
1836 pio_chip = (u64)pci_resource_start(pdev, i);
1837 pio_sz = pci_resource_len(pdev, i);
1838 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1839 if (memap_sz)
1840 continue;
1841 ioc->chip_phys = pci_resource_start(pdev, i);
1842 chip_phys = (u64)ioc->chip_phys;
1843 memap_sz = pci_resource_len(pdev, i);
1844 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1845 if (ioc->chip == NULL) {
1846 pr_err(MPT3SAS_FMT "unable to map adapter memory!\n",
1847 ioc->name);
1848 r = -EINVAL;
1849 goto out_fail;
1854 _base_mask_interrupts(ioc);
1855 r = _base_enable_msix(ioc);
1856 if (r)
1857 goto out_fail;
1859 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1860 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1861 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1862 "IO-APIC enabled"), reply_q->vector);
1864 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1865 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1866 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1867 ioc->name, (unsigned long long)pio_chip, pio_sz);
1869 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
1870 pci_save_state(pdev);
1871 return 0;
1873 out_fail:
1874 if (ioc->chip_phys)
1875 iounmap(ioc->chip);
1876 ioc->chip_phys = 0;
1877 pci_release_selected_regions(ioc->pdev, ioc->bars);
1878 pci_disable_pcie_error_reporting(pdev);
1879 pci_disable_device(pdev);
1880 return r;
1884 * mpt3sas_base_get_msg_frame - obtain request mf pointer
1885 * @ioc: per adapter object
1886 * @smid: system request message index(smid zero is invalid)
1888 * Returns virt pointer to message frame.
1890 void *
1891 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1893 return (void *)(ioc->request + (smid * ioc->request_sz));
1897 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1898 * @ioc: per adapter object
1899 * @smid: system request message index
1901 * Returns virt pointer to sense buffer.
1903 void *
1904 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1906 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1910 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
1911 * @ioc: per adapter object
1912 * @smid: system request message index
1914 * Returns phys pointer to the low 32bit address of the sense buffer.
1916 __le32
1917 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1919 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
1920 SCSI_SENSE_BUFFERSIZE));
1924 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
1925 * @ioc: per adapter object
1926 * @phys_addr: lower 32 physical addr of the reply
1928 * Converts 32bit lower physical addr into a virt address.
1930 void *
1931 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
1933 if (!phys_addr)
1934 return NULL;
1935 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1939 * mpt3sas_base_get_smid - obtain a free smid from internal queue
1940 * @ioc: per adapter object
1941 * @cb_idx: callback index
1943 * Returns smid (zero is invalid)
1946 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
1948 unsigned long flags;
1949 struct request_tracker *request;
1950 u16 smid;
1952 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1953 if (list_empty(&ioc->internal_free_list)) {
1954 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1955 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1956 ioc->name, __func__);
1957 return 0;
1960 request = list_entry(ioc->internal_free_list.next,
1961 struct request_tracker, tracker_list);
1962 request->cb_idx = cb_idx;
1963 smid = request->smid;
1964 list_del(&request->tracker_list);
1965 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1966 return smid;
1970 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1971 * @ioc: per adapter object
1972 * @cb_idx: callback index
1973 * @scmd: pointer to scsi command object
1975 * Returns smid (zero is invalid)
1978 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
1979 struct scsi_cmnd *scmd)
1981 unsigned long flags;
1982 struct scsiio_tracker *request;
1983 u16 smid;
1985 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1986 if (list_empty(&ioc->free_list)) {
1987 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1988 pr_err(MPT3SAS_FMT "%s: smid not available\n",
1989 ioc->name, __func__);
1990 return 0;
1993 request = list_entry(ioc->free_list.next,
1994 struct scsiio_tracker, tracker_list);
1995 request->scmd = scmd;
1996 request->cb_idx = cb_idx;
1997 smid = request->smid;
1998 list_del(&request->tracker_list);
1999 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2000 return smid;
2004 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2005 * @ioc: per adapter object
2006 * @cb_idx: callback index
2008 * Returns smid (zero is invalid)
2011 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2013 unsigned long flags;
2014 struct request_tracker *request;
2015 u16 smid;
2017 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2018 if (list_empty(&ioc->hpr_free_list)) {
2019 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2020 return 0;
2023 request = list_entry(ioc->hpr_free_list.next,
2024 struct request_tracker, tracker_list);
2025 request->cb_idx = cb_idx;
2026 smid = request->smid;
2027 list_del(&request->tracker_list);
2028 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2029 return smid;
2033 * mpt3sas_base_free_smid - put smid back on free_list
2034 * @ioc: per adapter object
2035 * @smid: system request message index
2037 * Return nothing.
2039 void
2040 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2042 unsigned long flags;
2043 int i;
2044 struct chain_tracker *chain_req, *next;
2046 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2047 if (smid < ioc->hi_priority_smid) {
2048 /* scsiio queue */
2049 i = smid - 1;
2050 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2051 list_for_each_entry_safe(chain_req, next,
2052 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2053 list_del_init(&chain_req->tracker_list);
2054 list_add(&chain_req->tracker_list,
2055 &ioc->free_chain_list);
2058 ioc->scsi_lookup[i].cb_idx = 0xFF;
2059 ioc->scsi_lookup[i].scmd = NULL;
2060 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2061 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2064 * See _wait_for_commands_to_complete() call with regards
2065 * to this code.
2067 if (ioc->shost_recovery && ioc->pending_io_count) {
2068 if (ioc->pending_io_count == 1)
2069 wake_up(&ioc->reset_wq);
2070 ioc->pending_io_count--;
2072 return;
2073 } else if (smid < ioc->internal_smid) {
2074 /* hi-priority */
2075 i = smid - ioc->hi_priority_smid;
2076 ioc->hpr_lookup[i].cb_idx = 0xFF;
2077 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2078 } else if (smid <= ioc->hba_queue_depth) {
2079 /* internal queue */
2080 i = smid - ioc->internal_smid;
2081 ioc->internal_lookup[i].cb_idx = 0xFF;
2082 list_add(&ioc->internal_lookup[i].tracker_list,
2083 &ioc->internal_free_list);
2085 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2089 * _base_writeq - 64 bit write to MMIO
2090 * @ioc: per adapter object
2091 * @b: data payload
2092 * @addr: address in MMIO space
2093 * @writeq_lock: spin lock
2095 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2096 * care of 32 bit environment where its not quarenteed to send the entire word
2097 * in one transfer.
2099 #if defined(writeq) && defined(CONFIG_64BIT)
2100 static inline void
2101 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2103 writeq(cpu_to_le64(b), addr);
2105 #else
2106 static inline void
2107 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2109 unsigned long flags;
2110 __u64 data_out = cpu_to_le64(b);
2112 spin_lock_irqsave(writeq_lock, flags);
2113 writel((u32)(data_out), addr);
2114 writel((u32)(data_out >> 32), (addr + 4));
2115 spin_unlock_irqrestore(writeq_lock, flags);
2117 #endif
2119 static inline u8
2120 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2122 return ioc->cpu_msix_table[raw_smp_processor_id()];
2126 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2127 * @ioc: per adapter object
2128 * @smid: system request message index
2129 * @handle: device handle
2131 * Return nothing.
2133 void
2134 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2136 Mpi2RequestDescriptorUnion_t descriptor;
2137 u64 *request = (u64 *)&descriptor;
2140 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2141 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2142 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2143 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2144 descriptor.SCSIIO.LMID = 0;
2145 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2146 &ioc->scsi_lookup_lock);
2150 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2151 * @ioc: per adapter object
2152 * @smid: system request message index
2153 * @handle: device handle
2155 * Return nothing.
2157 void
2158 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2159 u16 handle)
2161 Mpi2RequestDescriptorUnion_t descriptor;
2162 u64 *request = (u64 *)&descriptor;
2164 descriptor.SCSIIO.RequestFlags =
2165 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2166 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2167 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2168 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2169 descriptor.SCSIIO.LMID = 0;
2170 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2171 &ioc->scsi_lookup_lock);
2175 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2176 * @ioc: per adapter object
2177 * @smid: system request message index
2179 * Return nothing.
2181 void
2182 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2184 Mpi2RequestDescriptorUnion_t descriptor;
2185 u64 *request = (u64 *)&descriptor;
2187 descriptor.HighPriority.RequestFlags =
2188 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2189 descriptor.HighPriority.MSIxIndex = 0;
2190 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2191 descriptor.HighPriority.LMID = 0;
2192 descriptor.HighPriority.Reserved1 = 0;
2193 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2194 &ioc->scsi_lookup_lock);
2198 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2199 * @ioc: per adapter object
2200 * @smid: system request message index
2202 * Return nothing.
2204 void
2205 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2207 Mpi2RequestDescriptorUnion_t descriptor;
2208 u64 *request = (u64 *)&descriptor;
2210 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2211 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2212 descriptor.Default.SMID = cpu_to_le16(smid);
2213 descriptor.Default.LMID = 0;
2214 descriptor.Default.DescriptorTypeDependent = 0;
2215 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2216 &ioc->scsi_lookup_lock);
2222 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2223 * @ioc: per adapter object
2225 * Return nothing.
2227 static void
2228 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2230 int i = 0;
2231 char desc[16];
2232 u32 iounit_pg1_flags;
2233 u32 bios_version;
2235 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2236 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2237 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2238 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2239 ioc->name, desc,
2240 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2241 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2242 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2243 ioc->facts.FWVersion.Word & 0x000000FF,
2244 ioc->pdev->revision,
2245 (bios_version & 0xFF000000) >> 24,
2246 (bios_version & 0x00FF0000) >> 16,
2247 (bios_version & 0x0000FF00) >> 8,
2248 bios_version & 0x000000FF);
2250 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2252 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2253 pr_info("Initiator");
2254 i++;
2257 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2258 pr_info("%sTarget", i ? "," : "");
2259 i++;
2262 i = 0;
2263 pr_info("), ");
2264 pr_info("Capabilities=(");
2266 if (ioc->facts.IOCCapabilities &
2267 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2268 pr_info("Raid");
2269 i++;
2272 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2273 pr_info("%sTLR", i ? "," : "");
2274 i++;
2277 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2278 pr_info("%sMulticast", i ? "," : "");
2279 i++;
2282 if (ioc->facts.IOCCapabilities &
2283 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2284 pr_info("%sBIDI Target", i ? "," : "");
2285 i++;
2288 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2289 pr_info("%sEEDP", i ? "," : "");
2290 i++;
2293 if (ioc->facts.IOCCapabilities &
2294 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2295 pr_info("%sSnapshot Buffer", i ? "," : "");
2296 i++;
2299 if (ioc->facts.IOCCapabilities &
2300 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2301 pr_info("%sDiag Trace Buffer", i ? "," : "");
2302 i++;
2305 if (ioc->facts.IOCCapabilities &
2306 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2307 pr_info("%sDiag Extended Buffer", i ? "," : "");
2308 i++;
2311 if (ioc->facts.IOCCapabilities &
2312 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2313 pr_info("%sTask Set Full", i ? "," : "");
2314 i++;
2317 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2318 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2319 pr_info("%sNCQ", i ? "," : "");
2320 i++;
2323 pr_info(")\n");
2327 * mpt3sas_base_update_missing_delay - change the missing delay timers
2328 * @ioc: per adapter object
2329 * @device_missing_delay: amount of time till device is reported missing
2330 * @io_missing_delay: interval IO is returned when there is a missing device
2332 * Return nothing.
2334 * Passed on the command line, this function will modify the device missing
2335 * delay, as well as the io missing delay. This should be called at driver
2336 * load time.
2338 void
2339 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2340 u16 device_missing_delay, u8 io_missing_delay)
2342 u16 dmd, dmd_new, dmd_orignal;
2343 u8 io_missing_delay_original;
2344 u16 sz;
2345 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2346 Mpi2ConfigReply_t mpi_reply;
2347 u8 num_phys = 0;
2348 u16 ioc_status;
2350 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2351 if (!num_phys)
2352 return;
2354 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2355 sizeof(Mpi2SasIOUnit1PhyData_t));
2356 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2357 if (!sas_iounit_pg1) {
2358 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2359 ioc->name, __FILE__, __LINE__, __func__);
2360 goto out;
2362 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2363 sas_iounit_pg1, sz))) {
2364 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2365 ioc->name, __FILE__, __LINE__, __func__);
2366 goto out;
2368 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2369 MPI2_IOCSTATUS_MASK;
2370 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2371 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2372 ioc->name, __FILE__, __LINE__, __func__);
2373 goto out;
2376 /* device missing delay */
2377 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2378 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2379 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2380 else
2381 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2382 dmd_orignal = dmd;
2383 if (device_missing_delay > 0x7F) {
2384 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2385 device_missing_delay;
2386 dmd = dmd / 16;
2387 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2388 } else
2389 dmd = device_missing_delay;
2390 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2392 /* io missing delay */
2393 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2394 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2396 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2397 sz)) {
2398 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2399 dmd_new = (dmd &
2400 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2401 else
2402 dmd_new =
2403 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2404 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2405 ioc->name, dmd_orignal, dmd_new);
2406 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2407 ioc->name, io_missing_delay_original,
2408 io_missing_delay);
2409 ioc->device_missing_delay = dmd_new;
2410 ioc->io_missing_delay = io_missing_delay;
2413 out:
2414 kfree(sas_iounit_pg1);
2417 * _base_static_config_pages - static start of day config pages
2418 * @ioc: per adapter object
2420 * Return nothing.
2422 static void
2423 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2425 Mpi2ConfigReply_t mpi_reply;
2426 u32 iounit_pg1_flags;
2428 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2429 if (ioc->ir_firmware)
2430 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2431 &ioc->manu_pg10);
2434 * Ensure correct T10 PI operation if vendor left EEDPTagMode
2435 * flag unset in NVDATA.
2437 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2438 if (ioc->manu_pg11.EEDPTagMode == 0) {
2439 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2440 ioc->name);
2441 ioc->manu_pg11.EEDPTagMode &= ~0x3;
2442 ioc->manu_pg11.EEDPTagMode |= 0x1;
2443 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2444 &ioc->manu_pg11);
2447 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2448 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2449 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2450 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2451 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2452 _base_display_ioc_capabilities(ioc);
2455 * Enable task_set_full handling in iounit_pg1 when the
2456 * facts capabilities indicate that its supported.
2458 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2459 if ((ioc->facts.IOCCapabilities &
2460 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2461 iounit_pg1_flags &=
2462 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2463 else
2464 iounit_pg1_flags |=
2465 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2466 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2467 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2471 * _base_release_memory_pools - release memory
2472 * @ioc: per adapter object
2474 * Free memory allocated from _base_allocate_memory_pools.
2476 * Return nothing.
2478 static void
2479 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2481 int i;
2483 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2484 __func__));
2486 if (ioc->request) {
2487 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2488 ioc->request, ioc->request_dma);
2489 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2490 "request_pool(0x%p): free\n",
2491 ioc->name, ioc->request));
2492 ioc->request = NULL;
2495 if (ioc->sense) {
2496 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2497 if (ioc->sense_dma_pool)
2498 pci_pool_destroy(ioc->sense_dma_pool);
2499 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2500 "sense_pool(0x%p): free\n",
2501 ioc->name, ioc->sense));
2502 ioc->sense = NULL;
2505 if (ioc->reply) {
2506 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2507 if (ioc->reply_dma_pool)
2508 pci_pool_destroy(ioc->reply_dma_pool);
2509 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2510 "reply_pool(0x%p): free\n",
2511 ioc->name, ioc->reply));
2512 ioc->reply = NULL;
2515 if (ioc->reply_free) {
2516 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2517 ioc->reply_free_dma);
2518 if (ioc->reply_free_dma_pool)
2519 pci_pool_destroy(ioc->reply_free_dma_pool);
2520 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2521 "reply_free_pool(0x%p): free\n",
2522 ioc->name, ioc->reply_free));
2523 ioc->reply_free = NULL;
2526 if (ioc->reply_post_free) {
2527 pci_pool_free(ioc->reply_post_free_dma_pool,
2528 ioc->reply_post_free, ioc->reply_post_free_dma);
2529 if (ioc->reply_post_free_dma_pool)
2530 pci_pool_destroy(ioc->reply_post_free_dma_pool);
2531 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2532 "reply_post_free_pool(0x%p): free\n", ioc->name,
2533 ioc->reply_post_free));
2534 ioc->reply_post_free = NULL;
2537 if (ioc->config_page) {
2538 dexitprintk(ioc, pr_info(MPT3SAS_FMT
2539 "config_page(0x%p): free\n", ioc->name,
2540 ioc->config_page));
2541 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2542 ioc->config_page, ioc->config_page_dma);
2545 if (ioc->scsi_lookup) {
2546 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2547 ioc->scsi_lookup = NULL;
2549 kfree(ioc->hpr_lookup);
2550 kfree(ioc->internal_lookup);
2551 if (ioc->chain_lookup) {
2552 for (i = 0; i < ioc->chain_depth; i++) {
2553 if (ioc->chain_lookup[i].chain_buffer)
2554 pci_pool_free(ioc->chain_dma_pool,
2555 ioc->chain_lookup[i].chain_buffer,
2556 ioc->chain_lookup[i].chain_buffer_dma);
2558 if (ioc->chain_dma_pool)
2559 pci_pool_destroy(ioc->chain_dma_pool);
2560 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2561 ioc->chain_lookup = NULL;
2566 * _base_allocate_memory_pools - allocate start of day memory pools
2567 * @ioc: per adapter object
2568 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2570 * Returns 0 success, anything else error
2572 static int
2573 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
2575 struct mpt3sas_facts *facts;
2576 u16 max_sge_elements;
2577 u16 chains_needed_per_io;
2578 u32 sz, total_sz, reply_post_free_sz;
2579 u32 retry_sz;
2580 u16 max_request_credit;
2581 unsigned short sg_tablesize;
2582 u16 sge_size;
2583 int i;
2585 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2586 __func__));
2589 retry_sz = 0;
2590 facts = &ioc->facts;
2592 /* command line tunables for max sgl entries */
2593 if (max_sgl_entries != -1)
2594 sg_tablesize = max_sgl_entries;
2595 else
2596 sg_tablesize = MPT3SAS_SG_DEPTH;
2598 if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2599 sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2600 else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS)
2601 sg_tablesize = MPT3SAS_MAX_PHYS_SEGMENTS;
2602 ioc->shost->sg_tablesize = sg_tablesize;
2604 ioc->hi_priority_depth = facts->HighPriorityCredit;
2605 ioc->internal_depth = ioc->hi_priority_depth + (5);
2606 /* command line tunables for max controller queue depth */
2607 if (max_queue_depth != -1 && max_queue_depth != 0) {
2608 max_request_credit = min_t(u16, max_queue_depth +
2609 ioc->hi_priority_depth + ioc->internal_depth,
2610 facts->RequestCredit);
2611 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2612 max_request_credit = MAX_HBA_QUEUE_DEPTH;
2613 } else
2614 max_request_credit = min_t(u16, facts->RequestCredit,
2615 MAX_HBA_QUEUE_DEPTH);
2617 ioc->hba_queue_depth = max_request_credit;
2619 /* request frame size */
2620 ioc->request_sz = facts->IOCRequestFrameSize * 4;
2622 /* reply frame size */
2623 ioc->reply_sz = facts->ReplyFrameSize * 4;
2625 /* calculate the max scatter element size */
2626 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2628 retry_allocation:
2629 total_sz = 0;
2630 /* calculate number of sg elements left over in the 1st frame */
2631 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2632 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2633 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2635 /* now do the same for a chain buffer */
2636 max_sge_elements = ioc->request_sz - sge_size;
2637 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2640 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2642 chains_needed_per_io = ((ioc->shost->sg_tablesize -
2643 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2644 + 1;
2645 if (chains_needed_per_io > facts->MaxChainDepth) {
2646 chains_needed_per_io = facts->MaxChainDepth;
2647 ioc->shost->sg_tablesize = min_t(u16,
2648 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2649 * chains_needed_per_io), ioc->shost->sg_tablesize);
2651 ioc->chains_needed_per_io = chains_needed_per_io;
2653 /* reply free queue sizing - taking into account for 64 FW events */
2654 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2656 /* calculate reply descriptor post queue depth */
2657 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2658 ioc->reply_free_queue_depth + 1 ;
2659 /* align the reply post queue on the next 16 count boundary */
2660 if (ioc->reply_post_queue_depth % 16)
2661 ioc->reply_post_queue_depth += 16 -
2662 (ioc->reply_post_queue_depth % 16);
2665 if (ioc->reply_post_queue_depth >
2666 facts->MaxReplyDescriptorPostQueueDepth) {
2667 ioc->reply_post_queue_depth =
2668 facts->MaxReplyDescriptorPostQueueDepth -
2669 (facts->MaxReplyDescriptorPostQueueDepth % 16);
2670 ioc->hba_queue_depth =
2671 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
2672 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2675 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2676 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2677 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2678 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2679 ioc->chains_needed_per_io));
2681 ioc->scsiio_depth = ioc->hba_queue_depth -
2682 ioc->hi_priority_depth - ioc->internal_depth;
2684 /* set the scsi host can_queue depth
2685 * with some internal commands that could be outstanding
2687 ioc->shost->can_queue = ioc->scsiio_depth;
2688 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2689 "scsi host: can_queue depth (%d)\n",
2690 ioc->name, ioc->shost->can_queue));
2693 /* contiguous pool for request and chains, 16 byte align, one extra "
2694 * "frame for smid=0
2696 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2697 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2699 /* hi-priority queue */
2700 sz += (ioc->hi_priority_depth * ioc->request_sz);
2702 /* internal queue */
2703 sz += (ioc->internal_depth * ioc->request_sz);
2705 ioc->request_dma_sz = sz;
2706 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2707 if (!ioc->request) {
2708 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2709 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2710 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2711 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2712 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
2713 goto out;
2714 retry_sz += 64;
2715 ioc->hba_queue_depth = max_request_credit - retry_sz;
2716 goto retry_allocation;
2719 if (retry_sz)
2720 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2721 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2722 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2723 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2725 /* hi-priority queue */
2726 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2727 ioc->request_sz);
2728 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2729 ioc->request_sz);
2731 /* internal queue */
2732 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2733 ioc->request_sz);
2734 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2735 ioc->request_sz);
2737 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2738 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2739 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2740 (ioc->hba_queue_depth * ioc->request_sz)/1024));
2742 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
2743 ioc->name, (unsigned long long) ioc->request_dma));
2744 total_sz += sz;
2746 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2747 ioc->scsi_lookup_pages = get_order(sz);
2748 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2749 GFP_KERNEL, ioc->scsi_lookup_pages);
2750 if (!ioc->scsi_lookup) {
2751 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
2752 ioc->name, (int)sz);
2753 goto out;
2756 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
2757 ioc->name, ioc->request, ioc->scsiio_depth));
2759 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2760 sz = ioc->chain_depth * sizeof(struct chain_tracker);
2761 ioc->chain_pages = get_order(sz);
2762 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2763 GFP_KERNEL, ioc->chain_pages);
2764 if (!ioc->chain_lookup) {
2765 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
2766 ioc->name);
2767 goto out;
2769 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2770 ioc->request_sz, 16, 0);
2771 if (!ioc->chain_dma_pool) {
2772 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
2773 ioc->name);
2774 goto out;
2776 for (i = 0; i < ioc->chain_depth; i++) {
2777 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2778 ioc->chain_dma_pool , GFP_KERNEL,
2779 &ioc->chain_lookup[i].chain_buffer_dma);
2780 if (!ioc->chain_lookup[i].chain_buffer) {
2781 ioc->chain_depth = i;
2782 goto chain_done;
2784 total_sz += ioc->request_sz;
2786 chain_done:
2787 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2788 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
2789 ioc->name, ioc->chain_depth, ioc->request_sz,
2790 ((ioc->chain_depth * ioc->request_sz))/1024));
2792 /* initialize hi-priority queue smid's */
2793 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2794 sizeof(struct request_tracker), GFP_KERNEL);
2795 if (!ioc->hpr_lookup) {
2796 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
2797 ioc->name);
2798 goto out;
2800 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2801 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2802 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
2803 ioc->name, ioc->hi_priority,
2804 ioc->hi_priority_depth, ioc->hi_priority_smid));
2806 /* initialize internal queue smid's */
2807 ioc->internal_lookup = kcalloc(ioc->internal_depth,
2808 sizeof(struct request_tracker), GFP_KERNEL);
2809 if (!ioc->internal_lookup) {
2810 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
2811 ioc->name);
2812 goto out;
2814 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2815 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2816 "internal(0x%p): depth(%d), start smid(%d)\n",
2817 ioc->name, ioc->internal,
2818 ioc->internal_depth, ioc->internal_smid));
2820 /* sense buffers, 4 byte align */
2821 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2822 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2824 if (!ioc->sense_dma_pool) {
2825 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
2826 ioc->name);
2827 goto out;
2829 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2830 &ioc->sense_dma);
2831 if (!ioc->sense) {
2832 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
2833 ioc->name);
2834 goto out;
2836 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2837 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2838 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2839 SCSI_SENSE_BUFFERSIZE, sz/1024));
2840 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
2841 ioc->name, (unsigned long long)ioc->sense_dma));
2842 total_sz += sz;
2844 /* reply pool, 4 byte align */
2845 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2846 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
2848 if (!ioc->reply_dma_pool) {
2849 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
2850 ioc->name);
2851 goto out;
2853 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
2854 &ioc->reply_dma);
2855 if (!ioc->reply) {
2856 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
2857 ioc->name);
2858 goto out;
2860 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
2861 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
2862 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2863 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2864 ioc->name, ioc->reply,
2865 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
2866 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
2867 ioc->name, (unsigned long long)ioc->reply_dma));
2868 total_sz += sz;
2870 /* reply free queue, 16 byte align */
2871 sz = ioc->reply_free_queue_depth * 4;
2872 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
2873 ioc->pdev, sz, 16, 0);
2874 if (!ioc->reply_free_dma_pool) {
2875 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
2876 ioc->name);
2877 goto out;
2879 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
2880 &ioc->reply_free_dma);
2881 if (!ioc->reply_free) {
2882 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
2883 ioc->name);
2884 goto out;
2886 memset(ioc->reply_free, 0, sz);
2887 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
2888 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
2889 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
2890 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2891 "reply_free_dma (0x%llx)\n",
2892 ioc->name, (unsigned long long)ioc->reply_free_dma));
2893 total_sz += sz;
2895 /* reply post queue, 16 byte align */
2896 reply_post_free_sz = ioc->reply_post_queue_depth *
2897 sizeof(Mpi2DefaultReplyDescriptor_t);
2898 if (_base_is_controller_msix_enabled(ioc))
2899 sz = reply_post_free_sz * ioc->reply_queue_count;
2900 else
2901 sz = reply_post_free_sz;
2902 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2903 ioc->pdev, sz, 16, 0);
2904 if (!ioc->reply_post_free_dma_pool) {
2905 pr_err(MPT3SAS_FMT
2906 "reply_post_free pool: pci_pool_create failed\n",
2907 ioc->name);
2908 goto out;
2910 ioc->reply_post_free = pci_pool_alloc(ioc->reply_post_free_dma_pool ,
2911 GFP_KERNEL, &ioc->reply_post_free_dma);
2912 if (!ioc->reply_post_free) {
2913 pr_err(MPT3SAS_FMT
2914 "reply_post_free pool: pci_pool_alloc failed\n",
2915 ioc->name);
2916 goto out;
2918 memset(ioc->reply_post_free, 0, sz);
2919 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply post free pool" \
2920 "(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
2921 ioc->name, ioc->reply_post_free, ioc->reply_post_queue_depth, 8,
2922 sz/1024));
2923 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2924 "reply_post_free_dma = (0x%llx)\n",
2925 ioc->name, (unsigned long long)
2926 ioc->reply_post_free_dma));
2927 total_sz += sz;
2929 ioc->config_page_sz = 512;
2930 ioc->config_page = pci_alloc_consistent(ioc->pdev,
2931 ioc->config_page_sz, &ioc->config_page_dma);
2932 if (!ioc->config_page) {
2933 pr_err(MPT3SAS_FMT
2934 "config page: pci_pool_alloc failed\n",
2935 ioc->name);
2936 goto out;
2938 dinitprintk(ioc, pr_info(MPT3SAS_FMT
2939 "config page(0x%p): size(%d)\n",
2940 ioc->name, ioc->config_page, ioc->config_page_sz));
2941 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
2942 ioc->name, (unsigned long long)ioc->config_page_dma));
2943 total_sz += ioc->config_page_sz;
2945 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
2946 ioc->name, total_sz/1024);
2947 pr_info(MPT3SAS_FMT
2948 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
2949 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
2950 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
2951 ioc->name, ioc->shost->sg_tablesize);
2952 return 0;
2954 out:
2955 return -ENOMEM;
2959 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
2960 * @ioc: Pointer to MPT_ADAPTER structure
2961 * @cooked: Request raw or cooked IOC state
2963 * Returns all IOC Doorbell register bits if cooked==0, else just the
2964 * Doorbell bits in MPI_IOC_STATE_MASK.
2967 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
2969 u32 s, sc;
2971 s = readl(&ioc->chip->Doorbell);
2972 sc = s & MPI2_IOC_STATE_MASK;
2973 return cooked ? sc : s;
2977 * _base_wait_on_iocstate - waiting on a particular ioc state
2978 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
2979 * @timeout: timeout in second
2980 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2982 * Returns 0 for success, non-zero for failure.
2984 static int
2985 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
2986 int sleep_flag)
2988 u32 count, cntdn;
2989 u32 current_state;
2991 count = 0;
2992 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
2993 do {
2994 current_state = mpt3sas_base_get_iocstate(ioc, 1);
2995 if (current_state == ioc_state)
2996 return 0;
2997 if (count && current_state == MPI2_IOC_STATE_FAULT)
2998 break;
2999 if (sleep_flag == CAN_SLEEP)
3000 usleep_range(1000, 1500);
3001 else
3002 udelay(500);
3003 count++;
3004 } while (--cntdn);
3006 return current_state;
3010 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3011 * a write to the doorbell)
3012 * @ioc: per adapter object
3013 * @timeout: timeout in second
3014 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3016 * Returns 0 for success, non-zero for failure.
3018 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3020 static int
3021 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3022 int sleep_flag)
3024 u32 cntdn, count;
3025 u32 int_status;
3027 count = 0;
3028 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3029 do {
3030 int_status = readl(&ioc->chip->HostInterruptStatus);
3031 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3032 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3033 "%s: successful count(%d), timeout(%d)\n",
3034 ioc->name, __func__, count, timeout));
3035 return 0;
3037 if (sleep_flag == CAN_SLEEP)
3038 usleep_range(1000, 1500);
3039 else
3040 udelay(500);
3041 count++;
3042 } while (--cntdn);
3044 pr_err(MPT3SAS_FMT
3045 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3046 ioc->name, __func__, count, int_status);
3047 return -EFAULT;
3051 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3052 * @ioc: per adapter object
3053 * @timeout: timeout in second
3054 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3056 * Returns 0 for success, non-zero for failure.
3058 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3059 * doorbell.
3061 static int
3062 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3063 int sleep_flag)
3065 u32 cntdn, count;
3066 u32 int_status;
3067 u32 doorbell;
3069 count = 0;
3070 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3071 do {
3072 int_status = readl(&ioc->chip->HostInterruptStatus);
3073 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3074 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3075 "%s: successful count(%d), timeout(%d)\n",
3076 ioc->name, __func__, count, timeout));
3077 return 0;
3078 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3079 doorbell = readl(&ioc->chip->Doorbell);
3080 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3081 MPI2_IOC_STATE_FAULT) {
3082 mpt3sas_base_fault_info(ioc , doorbell);
3083 return -EFAULT;
3085 } else if (int_status == 0xFFFFFFFF)
3086 goto out;
3088 if (sleep_flag == CAN_SLEEP)
3089 usleep_range(1000, 1500);
3090 else
3091 udelay(500);
3092 count++;
3093 } while (--cntdn);
3095 out:
3096 pr_err(MPT3SAS_FMT
3097 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3098 ioc->name, __func__, count, int_status);
3099 return -EFAULT;
3103 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3104 * @ioc: per adapter object
3105 * @timeout: timeout in second
3106 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3108 * Returns 0 for success, non-zero for failure.
3111 static int
3112 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3113 int sleep_flag)
3115 u32 cntdn, count;
3116 u32 doorbell_reg;
3118 count = 0;
3119 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3120 do {
3121 doorbell_reg = readl(&ioc->chip->Doorbell);
3122 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3123 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3124 "%s: successful count(%d), timeout(%d)\n",
3125 ioc->name, __func__, count, timeout));
3126 return 0;
3128 if (sleep_flag == CAN_SLEEP)
3129 usleep_range(1000, 1500);
3130 else
3131 udelay(500);
3132 count++;
3133 } while (--cntdn);
3135 pr_err(MPT3SAS_FMT
3136 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3137 ioc->name, __func__, count, doorbell_reg);
3138 return -EFAULT;
3142 * _base_send_ioc_reset - send doorbell reset
3143 * @ioc: per adapter object
3144 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3145 * @timeout: timeout in second
3146 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3148 * Returns 0 for success, non-zero for failure.
3150 static int
3151 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3152 int sleep_flag)
3154 u32 ioc_state;
3155 int r = 0;
3157 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3158 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3159 ioc->name, __func__);
3160 return -EFAULT;
3163 if (!(ioc->facts.IOCCapabilities &
3164 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3165 return -EFAULT;
3167 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3169 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3170 &ioc->chip->Doorbell);
3171 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3172 r = -EFAULT;
3173 goto out;
3175 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3176 timeout, sleep_flag);
3177 if (ioc_state) {
3178 pr_err(MPT3SAS_FMT
3179 "%s: failed going to ready state (ioc_state=0x%x)\n",
3180 ioc->name, __func__, ioc_state);
3181 r = -EFAULT;
3182 goto out;
3184 out:
3185 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3186 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3187 return r;
3191 * _base_handshake_req_reply_wait - send request thru doorbell interface
3192 * @ioc: per adapter object
3193 * @request_bytes: request length
3194 * @request: pointer having request payload
3195 * @reply_bytes: reply length
3196 * @reply: pointer to reply payload
3197 * @timeout: timeout in second
3198 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3200 * Returns 0 for success, non-zero for failure.
3202 static int
3203 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3204 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3206 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3207 int i;
3208 u8 failed;
3209 u16 dummy;
3210 __le32 *mfp;
3212 /* make sure doorbell is not in use */
3213 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3214 pr_err(MPT3SAS_FMT
3215 "doorbell is in use (line=%d)\n",
3216 ioc->name, __LINE__);
3217 return -EFAULT;
3220 /* clear pending doorbell interrupts from previous state changes */
3221 if (readl(&ioc->chip->HostInterruptStatus) &
3222 MPI2_HIS_IOC2SYS_DB_STATUS)
3223 writel(0, &ioc->chip->HostInterruptStatus);
3225 /* send message to ioc */
3226 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3227 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3228 &ioc->chip->Doorbell);
3230 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3231 pr_err(MPT3SAS_FMT
3232 "doorbell handshake int failed (line=%d)\n",
3233 ioc->name, __LINE__);
3234 return -EFAULT;
3236 writel(0, &ioc->chip->HostInterruptStatus);
3238 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3239 pr_err(MPT3SAS_FMT
3240 "doorbell handshake ack failed (line=%d)\n",
3241 ioc->name, __LINE__);
3242 return -EFAULT;
3245 /* send message 32-bits at a time */
3246 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3247 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3248 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3249 failed = 1;
3252 if (failed) {
3253 pr_err(MPT3SAS_FMT
3254 "doorbell handshake sending request failed (line=%d)\n",
3255 ioc->name, __LINE__);
3256 return -EFAULT;
3259 /* now wait for the reply */
3260 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3261 pr_err(MPT3SAS_FMT
3262 "doorbell handshake int failed (line=%d)\n",
3263 ioc->name, __LINE__);
3264 return -EFAULT;
3267 /* read the first two 16-bits, it gives the total length of the reply */
3268 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3269 & MPI2_DOORBELL_DATA_MASK);
3270 writel(0, &ioc->chip->HostInterruptStatus);
3271 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3272 pr_err(MPT3SAS_FMT
3273 "doorbell handshake int failed (line=%d)\n",
3274 ioc->name, __LINE__);
3275 return -EFAULT;
3277 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3278 & MPI2_DOORBELL_DATA_MASK);
3279 writel(0, &ioc->chip->HostInterruptStatus);
3281 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3282 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3283 pr_err(MPT3SAS_FMT
3284 "doorbell handshake int failed (line=%d)\n",
3285 ioc->name, __LINE__);
3286 return -EFAULT;
3288 if (i >= reply_bytes/2) /* overflow case */
3289 dummy = readl(&ioc->chip->Doorbell);
3290 else
3291 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3292 & MPI2_DOORBELL_DATA_MASK);
3293 writel(0, &ioc->chip->HostInterruptStatus);
3296 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3297 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3298 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3299 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3301 writel(0, &ioc->chip->HostInterruptStatus);
3303 if (ioc->logging_level & MPT_DEBUG_INIT) {
3304 mfp = (__le32 *)reply;
3305 pr_info("\toffset:data\n");
3306 for (i = 0; i < reply_bytes/4; i++)
3307 pr_info("\t[0x%02x]:%08x\n", i*4,
3308 le32_to_cpu(mfp[i]));
3310 return 0;
3314 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3315 * @ioc: per adapter object
3316 * @mpi_reply: the reply payload from FW
3317 * @mpi_request: the request payload sent to FW
3319 * The SAS IO Unit Control Request message allows the host to perform low-level
3320 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3321 * to obtain the IOC assigned device handles for a device if it has other
3322 * identifying information about the device, in addition allows the host to
3323 * remove IOC resources associated with the device.
3325 * Returns 0 for success, non-zero for failure.
3328 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3329 Mpi2SasIoUnitControlReply_t *mpi_reply,
3330 Mpi2SasIoUnitControlRequest_t *mpi_request)
3332 u16 smid;
3333 u32 ioc_state;
3334 unsigned long timeleft;
3335 u8 issue_reset;
3336 int rc;
3337 void *request;
3338 u16 wait_state_count;
3340 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3341 __func__));
3343 mutex_lock(&ioc->base_cmds.mutex);
3345 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3346 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3347 ioc->name, __func__);
3348 rc = -EAGAIN;
3349 goto out;
3352 wait_state_count = 0;
3353 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3354 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3355 if (wait_state_count++ == 10) {
3356 pr_err(MPT3SAS_FMT
3357 "%s: failed due to ioc not operational\n",
3358 ioc->name, __func__);
3359 rc = -EFAULT;
3360 goto out;
3362 ssleep(1);
3363 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3364 pr_info(MPT3SAS_FMT
3365 "%s: waiting for operational state(count=%d)\n",
3366 ioc->name, __func__, wait_state_count);
3369 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3370 if (!smid) {
3371 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3372 ioc->name, __func__);
3373 rc = -EAGAIN;
3374 goto out;
3377 rc = 0;
3378 ioc->base_cmds.status = MPT3_CMD_PENDING;
3379 request = mpt3sas_base_get_msg_frame(ioc, smid);
3380 ioc->base_cmds.smid = smid;
3381 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3382 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3383 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3384 ioc->ioc_link_reset_in_progress = 1;
3385 init_completion(&ioc->base_cmds.done);
3386 mpt3sas_base_put_smid_default(ioc, smid);
3387 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3388 msecs_to_jiffies(10000));
3389 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3390 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3391 ioc->ioc_link_reset_in_progress)
3392 ioc->ioc_link_reset_in_progress = 0;
3393 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3394 pr_err(MPT3SAS_FMT "%s: timeout\n",
3395 ioc->name, __func__);
3396 _debug_dump_mf(mpi_request,
3397 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3398 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3399 issue_reset = 1;
3400 goto issue_host_reset;
3402 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3403 memcpy(mpi_reply, ioc->base_cmds.reply,
3404 sizeof(Mpi2SasIoUnitControlReply_t));
3405 else
3406 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3407 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3408 goto out;
3410 issue_host_reset:
3411 if (issue_reset)
3412 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3413 FORCE_BIG_HAMMER);
3414 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3415 rc = -EFAULT;
3416 out:
3417 mutex_unlock(&ioc->base_cmds.mutex);
3418 return rc;
3422 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3423 * @ioc: per adapter object
3424 * @mpi_reply: the reply payload from FW
3425 * @mpi_request: the request payload sent to FW
3427 * The SCSI Enclosure Processor request message causes the IOC to
3428 * communicate with SES devices to control LED status signals.
3430 * Returns 0 for success, non-zero for failure.
3433 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3434 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3436 u16 smid;
3437 u32 ioc_state;
3438 unsigned long timeleft;
3439 u8 issue_reset;
3440 int rc;
3441 void *request;
3442 u16 wait_state_count;
3444 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3445 __func__));
3447 mutex_lock(&ioc->base_cmds.mutex);
3449 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3450 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3451 ioc->name, __func__);
3452 rc = -EAGAIN;
3453 goto out;
3456 wait_state_count = 0;
3457 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3458 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3459 if (wait_state_count++ == 10) {
3460 pr_err(MPT3SAS_FMT
3461 "%s: failed due to ioc not operational\n",
3462 ioc->name, __func__);
3463 rc = -EFAULT;
3464 goto out;
3466 ssleep(1);
3467 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3468 pr_info(MPT3SAS_FMT
3469 "%s: waiting for operational state(count=%d)\n",
3470 ioc->name,
3471 __func__, wait_state_count);
3474 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3475 if (!smid) {
3476 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3477 ioc->name, __func__);
3478 rc = -EAGAIN;
3479 goto out;
3482 rc = 0;
3483 ioc->base_cmds.status = MPT3_CMD_PENDING;
3484 request = mpt3sas_base_get_msg_frame(ioc, smid);
3485 ioc->base_cmds.smid = smid;
3486 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3487 init_completion(&ioc->base_cmds.done);
3488 mpt3sas_base_put_smid_default(ioc, smid);
3489 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3490 msecs_to_jiffies(10000));
3491 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3492 pr_err(MPT3SAS_FMT "%s: timeout\n",
3493 ioc->name, __func__);
3494 _debug_dump_mf(mpi_request,
3495 sizeof(Mpi2SepRequest_t)/4);
3496 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3497 issue_reset = 1;
3498 goto issue_host_reset;
3500 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3501 memcpy(mpi_reply, ioc->base_cmds.reply,
3502 sizeof(Mpi2SepReply_t));
3503 else
3504 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3505 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3506 goto out;
3508 issue_host_reset:
3509 if (issue_reset)
3510 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3511 FORCE_BIG_HAMMER);
3512 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3513 rc = -EFAULT;
3514 out:
3515 mutex_unlock(&ioc->base_cmds.mutex);
3516 return rc;
3520 * _base_get_port_facts - obtain port facts reply and save in ioc
3521 * @ioc: per adapter object
3522 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3524 * Returns 0 for success, non-zero for failure.
3526 static int
3527 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3529 Mpi2PortFactsRequest_t mpi_request;
3530 Mpi2PortFactsReply_t mpi_reply;
3531 struct mpt3sas_port_facts *pfacts;
3532 int mpi_reply_sz, mpi_request_sz, r;
3534 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3535 __func__));
3537 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3538 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3539 memset(&mpi_request, 0, mpi_request_sz);
3540 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3541 mpi_request.PortNumber = port;
3542 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3543 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3545 if (r != 0) {
3546 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3547 ioc->name, __func__, r);
3548 return r;
3551 pfacts = &ioc->pfacts[port];
3552 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3553 pfacts->PortNumber = mpi_reply.PortNumber;
3554 pfacts->VP_ID = mpi_reply.VP_ID;
3555 pfacts->VF_ID = mpi_reply.VF_ID;
3556 pfacts->MaxPostedCmdBuffers =
3557 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3559 return 0;
3563 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3564 * @ioc: per adapter object
3565 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3567 * Returns 0 for success, non-zero for failure.
3569 static int
3570 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3572 Mpi2IOCFactsRequest_t mpi_request;
3573 Mpi2IOCFactsReply_t mpi_reply;
3574 struct mpt3sas_facts *facts;
3575 int mpi_reply_sz, mpi_request_sz, r;
3577 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3578 __func__));
3580 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3581 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3582 memset(&mpi_request, 0, mpi_request_sz);
3583 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3584 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3585 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3587 if (r != 0) {
3588 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3589 ioc->name, __func__, r);
3590 return r;
3593 facts = &ioc->facts;
3594 memset(facts, 0, sizeof(struct mpt3sas_facts));
3595 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3596 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3597 facts->VP_ID = mpi_reply.VP_ID;
3598 facts->VF_ID = mpi_reply.VF_ID;
3599 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3600 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3601 facts->WhoInit = mpi_reply.WhoInit;
3602 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3603 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3604 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3605 facts->MaxReplyDescriptorPostQueueDepth =
3606 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3607 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3608 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3609 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3610 ioc->ir_firmware = 1;
3611 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3612 facts->IOCRequestFrameSize =
3613 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3614 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3615 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3616 ioc->shost->max_id = -1;
3617 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3618 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3619 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3620 facts->HighPriorityCredit =
3621 le16_to_cpu(mpi_reply.HighPriorityCredit);
3622 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3623 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3625 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3626 "hba queue depth(%d), max chains per io(%d)\n",
3627 ioc->name, facts->RequestCredit,
3628 facts->MaxChainDepth));
3629 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3630 "request frame size(%d), reply frame size(%d)\n", ioc->name,
3631 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3632 return 0;
3636 * _base_send_ioc_init - send ioc_init to firmware
3637 * @ioc: per adapter object
3638 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3640 * Returns 0 for success, non-zero for failure.
3642 static int
3643 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3645 Mpi2IOCInitRequest_t mpi_request;
3646 Mpi2IOCInitReply_t mpi_reply;
3647 int r;
3648 struct timeval current_time;
3649 u16 ioc_status;
3651 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3652 __func__));
3654 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3655 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3656 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3657 mpi_request.VF_ID = 0; /* TODO */
3658 mpi_request.VP_ID = 0;
3659 mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3660 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3662 if (_base_is_controller_msix_enabled(ioc))
3663 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3664 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3665 mpi_request.ReplyDescriptorPostQueueDepth =
3666 cpu_to_le16(ioc->reply_post_queue_depth);
3667 mpi_request.ReplyFreeQueueDepth =
3668 cpu_to_le16(ioc->reply_free_queue_depth);
3670 mpi_request.SenseBufferAddressHigh =
3671 cpu_to_le32((u64)ioc->sense_dma >> 32);
3672 mpi_request.SystemReplyAddressHigh =
3673 cpu_to_le32((u64)ioc->reply_dma >> 32);
3674 mpi_request.SystemRequestFrameBaseAddress =
3675 cpu_to_le64((u64)ioc->request_dma);
3676 mpi_request.ReplyFreeQueueAddress =
3677 cpu_to_le64((u64)ioc->reply_free_dma);
3678 mpi_request.ReplyDescriptorPostQueueAddress =
3679 cpu_to_le64((u64)ioc->reply_post_free_dma);
3682 /* This time stamp specifies number of milliseconds
3683 * since epoch ~ midnight January 1, 1970.
3685 do_gettimeofday(&current_time);
3686 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3687 (current_time.tv_usec / 1000));
3689 if (ioc->logging_level & MPT_DEBUG_INIT) {
3690 __le32 *mfp;
3691 int i;
3693 mfp = (__le32 *)&mpi_request;
3694 pr_info("\toffset:data\n");
3695 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3696 pr_info("\t[0x%02x]:%08x\n", i*4,
3697 le32_to_cpu(mfp[i]));
3700 r = _base_handshake_req_reply_wait(ioc,
3701 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3702 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3703 sleep_flag);
3705 if (r != 0) {
3706 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3707 ioc->name, __func__, r);
3708 return r;
3711 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3712 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3713 mpi_reply.IOCLogInfo) {
3714 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
3715 r = -EIO;
3718 return 0;
3722 * mpt3sas_port_enable_done - command completion routine for port enable
3723 * @ioc: per adapter object
3724 * @smid: system request message index
3725 * @msix_index: MSIX table index supplied by the OS
3726 * @reply: reply message frame(lower 32bit addr)
3728 * Return 1 meaning mf should be freed from _base_interrupt
3729 * 0 means the mf is freed from this function.
3732 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3733 u32 reply)
3735 MPI2DefaultReply_t *mpi_reply;
3736 u16 ioc_status;
3738 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
3739 return 1;
3741 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
3742 if (!mpi_reply)
3743 return 1;
3745 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
3746 return 1;
3748 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
3749 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
3750 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
3751 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
3752 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3753 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3754 ioc->port_enable_failed = 1;
3756 if (ioc->is_driver_loading) {
3757 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3758 mpt3sas_port_enable_complete(ioc);
3759 return 1;
3760 } else {
3761 ioc->start_scan_failed = ioc_status;
3762 ioc->start_scan = 0;
3763 return 1;
3766 complete(&ioc->port_enable_cmds.done);
3767 return 1;
3771 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3772 * @ioc: per adapter object
3773 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3775 * Returns 0 for success, non-zero for failure.
3777 static int
3778 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3780 Mpi2PortEnableRequest_t *mpi_request;
3781 Mpi2PortEnableReply_t *mpi_reply;
3782 unsigned long timeleft;
3783 int r = 0;
3784 u16 smid;
3785 u16 ioc_status;
3787 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3789 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3790 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3791 ioc->name, __func__);
3792 return -EAGAIN;
3795 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3796 if (!smid) {
3797 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3798 ioc->name, __func__);
3799 return -EAGAIN;
3802 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3803 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3804 ioc->port_enable_cmds.smid = smid;
3805 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3806 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3808 init_completion(&ioc->port_enable_cmds.done);
3809 mpt3sas_base_put_smid_default(ioc, smid);
3810 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3811 300*HZ);
3812 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
3813 pr_err(MPT3SAS_FMT "%s: timeout\n",
3814 ioc->name, __func__);
3815 _debug_dump_mf(mpi_request,
3816 sizeof(Mpi2PortEnableRequest_t)/4);
3817 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
3818 r = -EFAULT;
3819 else
3820 r = -ETIME;
3821 goto out;
3824 mpi_reply = ioc->port_enable_cmds.reply;
3825 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3826 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3827 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
3828 ioc->name, __func__, ioc_status);
3829 r = -EFAULT;
3830 goto out;
3833 out:
3834 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
3835 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3836 "SUCCESS" : "FAILED"));
3837 return r;
3841 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
3842 * @ioc: per adapter object
3844 * Returns 0 for success, non-zero for failure.
3847 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
3849 Mpi2PortEnableRequest_t *mpi_request;
3850 u16 smid;
3852 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3854 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3855 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3856 ioc->name, __func__);
3857 return -EAGAIN;
3860 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3861 if (!smid) {
3862 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3863 ioc->name, __func__);
3864 return -EAGAIN;
3867 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3868 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3869 ioc->port_enable_cmds.smid = smid;
3870 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3871 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3873 mpt3sas_base_put_smid_default(ioc, smid);
3874 return 0;
3878 * _base_determine_wait_on_discovery - desposition
3879 * @ioc: per adapter object
3881 * Decide whether to wait on discovery to complete. Used to either
3882 * locate boot device, or report volumes ahead of physical devices.
3884 * Returns 1 for wait, 0 for don't wait
3886 static int
3887 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
3889 /* We wait for discovery to complete if IR firmware is loaded.
3890 * The sas topology events arrive before PD events, so we need time to
3891 * turn on the bit in ioc->pd_handles to indicate PD
3892 * Also, it maybe required to report Volumes ahead of physical
3893 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
3895 if (ioc->ir_firmware)
3896 return 1;
3898 /* if no Bios, then we don't need to wait */
3899 if (!ioc->bios_pg3.BiosVersion)
3900 return 0;
3902 /* Bios is present, then we drop down here.
3904 * If there any entries in the Bios Page 2, then we wait
3905 * for discovery to complete.
3908 /* Current Boot Device */
3909 if ((ioc->bios_pg2.CurrentBootDeviceForm &
3910 MPI2_BIOSPAGE2_FORM_MASK) ==
3911 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3912 /* Request Boot Device */
3913 (ioc->bios_pg2.ReqBootDeviceForm &
3914 MPI2_BIOSPAGE2_FORM_MASK) ==
3915 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
3916 /* Alternate Request Boot Device */
3917 (ioc->bios_pg2.ReqAltBootDeviceForm &
3918 MPI2_BIOSPAGE2_FORM_MASK) ==
3919 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
3920 return 0;
3922 return 1;
3926 * _base_unmask_events - turn on notification for this event
3927 * @ioc: per adapter object
3928 * @event: firmware event
3930 * The mask is stored in ioc->event_masks.
3932 static void
3933 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
3935 u32 desired_event;
3937 if (event >= 128)
3938 return;
3940 desired_event = (1 << (event % 32));
3942 if (event < 32)
3943 ioc->event_masks[0] &= ~desired_event;
3944 else if (event < 64)
3945 ioc->event_masks[1] &= ~desired_event;
3946 else if (event < 96)
3947 ioc->event_masks[2] &= ~desired_event;
3948 else if (event < 128)
3949 ioc->event_masks[3] &= ~desired_event;
3953 * _base_event_notification - send event notification
3954 * @ioc: per adapter object
3955 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3957 * Returns 0 for success, non-zero for failure.
3959 static int
3960 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3962 Mpi2EventNotificationRequest_t *mpi_request;
3963 unsigned long timeleft;
3964 u16 smid;
3965 int r = 0;
3966 int i;
3968 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3969 __func__));
3971 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
3972 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3973 ioc->name, __func__);
3974 return -EAGAIN;
3977 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3978 if (!smid) {
3979 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3980 ioc->name, __func__);
3981 return -EAGAIN;
3983 ioc->base_cmds.status = MPT3_CMD_PENDING;
3984 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3985 ioc->base_cmds.smid = smid;
3986 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
3987 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
3988 mpi_request->VF_ID = 0; /* TODO */
3989 mpi_request->VP_ID = 0;
3990 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
3991 mpi_request->EventMasks[i] =
3992 cpu_to_le32(ioc->event_masks[i]);
3993 init_completion(&ioc->base_cmds.done);
3994 mpt3sas_base_put_smid_default(ioc, smid);
3995 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
3996 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3997 pr_err(MPT3SAS_FMT "%s: timeout\n",
3998 ioc->name, __func__);
3999 _debug_dump_mf(mpi_request,
4000 sizeof(Mpi2EventNotificationRequest_t)/4);
4001 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4002 r = -EFAULT;
4003 else
4004 r = -ETIME;
4005 } else
4006 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4007 ioc->name, __func__));
4008 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4009 return r;
4013 * mpt3sas_base_validate_event_type - validating event types
4014 * @ioc: per adapter object
4015 * @event: firmware event
4017 * This will turn on firmware event notification when application
4018 * ask for that event. We don't mask events that are already enabled.
4020 void
4021 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4023 int i, j;
4024 u32 event_mask, desired_event;
4025 u8 send_update_to_fw;
4027 for (i = 0, send_update_to_fw = 0; i <
4028 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4029 event_mask = ~event_type[i];
4030 desired_event = 1;
4031 for (j = 0; j < 32; j++) {
4032 if (!(event_mask & desired_event) &&
4033 (ioc->event_masks[i] & desired_event)) {
4034 ioc->event_masks[i] &= ~desired_event;
4035 send_update_to_fw = 1;
4037 desired_event = (desired_event << 1);
4041 if (!send_update_to_fw)
4042 return;
4044 mutex_lock(&ioc->base_cmds.mutex);
4045 _base_event_notification(ioc, CAN_SLEEP);
4046 mutex_unlock(&ioc->base_cmds.mutex);
4050 * _base_diag_reset - the "big hammer" start of day reset
4051 * @ioc: per adapter object
4052 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4054 * Returns 0 for success, non-zero for failure.
4056 static int
4057 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4059 u32 host_diagnostic;
4060 u32 ioc_state;
4061 u32 count;
4062 u32 hcb_size;
4064 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4066 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4067 ioc->name));
4069 count = 0;
4070 do {
4071 /* Write magic sequence to WriteSequence register
4072 * Loop until in diagnostic mode
4074 drsprintk(ioc, pr_info(MPT3SAS_FMT
4075 "write magic sequence\n", ioc->name));
4076 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4077 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4078 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4079 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4080 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4081 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4082 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4084 /* wait 100 msec */
4085 if (sleep_flag == CAN_SLEEP)
4086 msleep(100);
4087 else
4088 mdelay(100);
4090 if (count++ > 20)
4091 goto out;
4093 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4094 drsprintk(ioc, pr_info(MPT3SAS_FMT
4095 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4096 ioc->name, count, host_diagnostic));
4098 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4100 hcb_size = readl(&ioc->chip->HCBSize);
4102 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4103 ioc->name));
4104 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4105 &ioc->chip->HostDiagnostic);
4107 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4108 if (sleep_flag == CAN_SLEEP)
4109 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4110 else
4111 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4113 /* Approximately 300 second max wait */
4114 for (count = 0; count < (300000000 /
4115 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4117 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4119 if (host_diagnostic == 0xFFFFFFFF)
4120 goto out;
4121 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4122 break;
4124 /* Wait to pass the second read delay window */
4125 if (sleep_flag == CAN_SLEEP)
4126 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4127 / 1000);
4128 else
4129 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4130 / 1000);
4133 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4135 drsprintk(ioc, pr_info(MPT3SAS_FMT
4136 "restart the adapter assuming the HCB Address points to good F/W\n",
4137 ioc->name));
4138 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4139 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4140 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4142 drsprintk(ioc, pr_info(MPT3SAS_FMT
4143 "re-enable the HCDW\n", ioc->name));
4144 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4145 &ioc->chip->HCBSize);
4148 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4149 ioc->name));
4150 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4151 &ioc->chip->HostDiagnostic);
4153 drsprintk(ioc, pr_info(MPT3SAS_FMT
4154 "disable writes to the diagnostic register\n", ioc->name));
4155 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4157 drsprintk(ioc, pr_info(MPT3SAS_FMT
4158 "Wait for FW to go to the READY state\n", ioc->name));
4159 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4160 sleep_flag);
4161 if (ioc_state) {
4162 pr_err(MPT3SAS_FMT
4163 "%s: failed going to ready state (ioc_state=0x%x)\n",
4164 ioc->name, __func__, ioc_state);
4165 goto out;
4168 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4169 return 0;
4171 out:
4172 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4173 return -EFAULT;
4177 * _base_make_ioc_ready - put controller in READY state
4178 * @ioc: per adapter object
4179 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4180 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4182 * Returns 0 for success, non-zero for failure.
4184 static int
4185 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4186 enum reset_type type)
4188 u32 ioc_state;
4189 int rc;
4190 int count;
4192 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4193 __func__));
4195 if (ioc->pci_error_recovery)
4196 return 0;
4198 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4199 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4200 ioc->name, __func__, ioc_state));
4202 /* if in RESET state, it should move to READY state shortly */
4203 count = 0;
4204 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4205 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4206 MPI2_IOC_STATE_READY) {
4207 if (count++ == 10) {
4208 pr_err(MPT3SAS_FMT
4209 "%s: failed going to ready state (ioc_state=0x%x)\n",
4210 ioc->name, __func__, ioc_state);
4211 return -EFAULT;
4213 if (sleep_flag == CAN_SLEEP)
4214 ssleep(1);
4215 else
4216 mdelay(1000);
4217 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4221 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4222 return 0;
4224 if (ioc_state & MPI2_DOORBELL_USED) {
4225 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4226 "unexpected doorbell active!\n",
4227 ioc->name));
4228 goto issue_diag_reset;
4231 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4232 mpt3sas_base_fault_info(ioc, ioc_state &
4233 MPI2_DOORBELL_DATA_MASK);
4234 goto issue_diag_reset;
4237 if (type == FORCE_BIG_HAMMER)
4238 goto issue_diag_reset;
4240 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4241 if (!(_base_send_ioc_reset(ioc,
4242 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4243 return 0;
4246 issue_diag_reset:
4247 rc = _base_diag_reset(ioc, CAN_SLEEP);
4248 return rc;
4252 * _base_make_ioc_operational - put controller in OPERATIONAL state
4253 * @ioc: per adapter object
4254 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4256 * Returns 0 for success, non-zero for failure.
4258 static int
4259 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4261 int r, i;
4262 unsigned long flags;
4263 u32 reply_address;
4264 u16 smid;
4265 struct _tr_list *delayed_tr, *delayed_tr_next;
4266 struct adapter_reply_queue *reply_q;
4267 long reply_post_free;
4268 u32 reply_post_free_sz;
4270 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4271 __func__));
4273 /* clean the delayed target reset list */
4274 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4275 &ioc->delayed_tr_list, list) {
4276 list_del(&delayed_tr->list);
4277 kfree(delayed_tr);
4281 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4282 &ioc->delayed_tr_volume_list, list) {
4283 list_del(&delayed_tr->list);
4284 kfree(delayed_tr);
4287 /* initialize the scsi lookup free list */
4288 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4289 INIT_LIST_HEAD(&ioc->free_list);
4290 smid = 1;
4291 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4292 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4293 ioc->scsi_lookup[i].cb_idx = 0xFF;
4294 ioc->scsi_lookup[i].smid = smid;
4295 ioc->scsi_lookup[i].scmd = NULL;
4296 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4297 &ioc->free_list);
4300 /* hi-priority queue */
4301 INIT_LIST_HEAD(&ioc->hpr_free_list);
4302 smid = ioc->hi_priority_smid;
4303 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4304 ioc->hpr_lookup[i].cb_idx = 0xFF;
4305 ioc->hpr_lookup[i].smid = smid;
4306 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4307 &ioc->hpr_free_list);
4310 /* internal queue */
4311 INIT_LIST_HEAD(&ioc->internal_free_list);
4312 smid = ioc->internal_smid;
4313 for (i = 0; i < ioc->internal_depth; i++, smid++) {
4314 ioc->internal_lookup[i].cb_idx = 0xFF;
4315 ioc->internal_lookup[i].smid = smid;
4316 list_add_tail(&ioc->internal_lookup[i].tracker_list,
4317 &ioc->internal_free_list);
4320 /* chain pool */
4321 INIT_LIST_HEAD(&ioc->free_chain_list);
4322 for (i = 0; i < ioc->chain_depth; i++)
4323 list_add_tail(&ioc->chain_lookup[i].tracker_list,
4324 &ioc->free_chain_list);
4326 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4328 /* initialize Reply Free Queue */
4329 for (i = 0, reply_address = (u32)ioc->reply_dma ;
4330 i < ioc->reply_free_queue_depth ; i++, reply_address +=
4331 ioc->reply_sz)
4332 ioc->reply_free[i] = cpu_to_le32(reply_address);
4334 /* initialize reply queues */
4335 if (ioc->is_driver_loading)
4336 _base_assign_reply_queues(ioc);
4338 /* initialize Reply Post Free Queue */
4339 reply_post_free = (long)ioc->reply_post_free;
4340 reply_post_free_sz = ioc->reply_post_queue_depth *
4341 sizeof(Mpi2DefaultReplyDescriptor_t);
4342 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4343 reply_q->reply_post_host_index = 0;
4344 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4345 reply_post_free;
4346 for (i = 0; i < ioc->reply_post_queue_depth; i++)
4347 reply_q->reply_post_free[i].Words =
4348 cpu_to_le64(ULLONG_MAX);
4349 if (!_base_is_controller_msix_enabled(ioc))
4350 goto skip_init_reply_post_free_queue;
4351 reply_post_free += reply_post_free_sz;
4353 skip_init_reply_post_free_queue:
4355 r = _base_send_ioc_init(ioc, sleep_flag);
4356 if (r)
4357 return r;
4359 /* initialize reply free host index */
4360 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4361 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4363 /* initialize reply post host index */
4364 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4365 writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4366 &ioc->chip->ReplyPostHostIndex);
4367 if (!_base_is_controller_msix_enabled(ioc))
4368 goto skip_init_reply_post_host_index;
4371 skip_init_reply_post_host_index:
4373 _base_unmask_interrupts(ioc);
4374 r = _base_event_notification(ioc, sleep_flag);
4375 if (r)
4376 return r;
4378 if (sleep_flag == CAN_SLEEP)
4379 _base_static_config_pages(ioc);
4382 if (ioc->is_driver_loading) {
4383 ioc->wait_for_discovery_to_complete =
4384 _base_determine_wait_on_discovery(ioc);
4386 return r; /* scan_start and scan_finished support */
4389 r = _base_send_port_enable(ioc, sleep_flag);
4390 if (r)
4391 return r;
4393 return r;
4397 * mpt3sas_base_free_resources - free resources controller resources
4398 * @ioc: per adapter object
4400 * Return nothing.
4402 void
4403 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4405 struct pci_dev *pdev = ioc->pdev;
4407 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4408 __func__));
4410 if (ioc->chip_phys && ioc->chip) {
4411 _base_mask_interrupts(ioc);
4412 ioc->shost_recovery = 1;
4413 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4414 ioc->shost_recovery = 0;
4417 _base_free_irq(ioc);
4418 _base_disable_msix(ioc);
4420 if (ioc->chip_phys && ioc->chip)
4421 iounmap(ioc->chip);
4422 ioc->chip_phys = 0;
4424 if (pci_is_enabled(pdev)) {
4425 pci_release_selected_regions(ioc->pdev, ioc->bars);
4426 pci_disable_pcie_error_reporting(pdev);
4427 pci_disable_device(pdev);
4429 return;
4433 * mpt3sas_base_attach - attach controller instance
4434 * @ioc: per adapter object
4436 * Returns 0 for success, non-zero for failure.
4439 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4441 int r, i;
4442 int cpu_id, last_cpu_id = 0;
4444 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4445 __func__));
4447 /* setup cpu_msix_table */
4448 ioc->cpu_count = num_online_cpus();
4449 for_each_online_cpu(cpu_id)
4450 last_cpu_id = cpu_id;
4451 ioc->cpu_msix_table_sz = last_cpu_id + 1;
4452 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4453 ioc->reply_queue_count = 1;
4454 if (!ioc->cpu_msix_table) {
4455 dfailprintk(ioc, pr_info(MPT3SAS_FMT
4456 "allocation for cpu_msix_table failed!!!\n",
4457 ioc->name));
4458 r = -ENOMEM;
4459 goto out_free_resources;
4462 r = mpt3sas_base_map_resources(ioc);
4463 if (r)
4464 goto out_free_resources;
4467 pci_set_drvdata(ioc->pdev, ioc->shost);
4468 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4469 if (r)
4470 goto out_free_resources;
4473 * In SAS3.0,
4474 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4475 * Target Status - all require the IEEE formated scatter gather
4476 * elements.
4479 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4480 ioc->build_sg = &_base_build_sg_ieee;
4481 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4482 ioc->mpi25 = 1;
4483 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4486 * These function pointers for other requests that don't
4487 * the require IEEE scatter gather elements.
4489 * For example Configuration Pages and SAS IOUNIT Control don't.
4491 ioc->build_sg_mpi = &_base_build_sg;
4492 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4494 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4495 if (r)
4496 goto out_free_resources;
4498 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4499 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4500 if (!ioc->pfacts) {
4501 r = -ENOMEM;
4502 goto out_free_resources;
4505 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4506 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4507 if (r)
4508 goto out_free_resources;
4511 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4512 if (r)
4513 goto out_free_resources;
4515 init_waitqueue_head(&ioc->reset_wq);
4517 /* allocate memory pd handle bitmask list */
4518 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4519 if (ioc->facts.MaxDevHandle % 8)
4520 ioc->pd_handles_sz++;
4521 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4522 GFP_KERNEL);
4523 if (!ioc->pd_handles) {
4524 r = -ENOMEM;
4525 goto out_free_resources;
4527 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4528 GFP_KERNEL);
4529 if (!ioc->blocking_handles) {
4530 r = -ENOMEM;
4531 goto out_free_resources;
4534 ioc->fwfault_debug = mpt3sas_fwfault_debug;
4536 /* base internal command bits */
4537 mutex_init(&ioc->base_cmds.mutex);
4538 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4539 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4541 /* port_enable command bits */
4542 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4543 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4545 /* transport internal command bits */
4546 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4547 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4548 mutex_init(&ioc->transport_cmds.mutex);
4550 /* scsih internal command bits */
4551 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4552 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4553 mutex_init(&ioc->scsih_cmds.mutex);
4555 /* task management internal command bits */
4556 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4557 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4558 mutex_init(&ioc->tm_cmds.mutex);
4560 /* config page internal command bits */
4561 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4562 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4563 mutex_init(&ioc->config_cmds.mutex);
4565 /* ctl module internal command bits */
4566 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4567 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4568 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4569 mutex_init(&ioc->ctl_cmds.mutex);
4571 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4572 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4573 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4574 !ioc->ctl_cmds.sense) {
4575 r = -ENOMEM;
4576 goto out_free_resources;
4579 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4580 ioc->event_masks[i] = -1;
4582 /* here we enable the events we care about */
4583 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4584 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4585 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4586 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4587 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4588 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4589 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4590 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4591 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4592 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4594 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4595 if (r)
4596 goto out_free_resources;
4598 return 0;
4600 out_free_resources:
4602 ioc->remove_host = 1;
4604 mpt3sas_base_free_resources(ioc);
4605 _base_release_memory_pools(ioc);
4606 pci_set_drvdata(ioc->pdev, NULL);
4607 kfree(ioc->cpu_msix_table);
4608 kfree(ioc->pd_handles);
4609 kfree(ioc->blocking_handles);
4610 kfree(ioc->tm_cmds.reply);
4611 kfree(ioc->transport_cmds.reply);
4612 kfree(ioc->scsih_cmds.reply);
4613 kfree(ioc->config_cmds.reply);
4614 kfree(ioc->base_cmds.reply);
4615 kfree(ioc->port_enable_cmds.reply);
4616 kfree(ioc->ctl_cmds.reply);
4617 kfree(ioc->ctl_cmds.sense);
4618 kfree(ioc->pfacts);
4619 ioc->ctl_cmds.reply = NULL;
4620 ioc->base_cmds.reply = NULL;
4621 ioc->tm_cmds.reply = NULL;
4622 ioc->scsih_cmds.reply = NULL;
4623 ioc->transport_cmds.reply = NULL;
4624 ioc->config_cmds.reply = NULL;
4625 ioc->pfacts = NULL;
4626 return r;
4631 * mpt3sas_base_detach - remove controller instance
4632 * @ioc: per adapter object
4634 * Return nothing.
4636 void
4637 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
4639 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4640 __func__));
4642 mpt3sas_base_stop_watchdog(ioc);
4643 mpt3sas_base_free_resources(ioc);
4644 _base_release_memory_pools(ioc);
4645 pci_set_drvdata(ioc->pdev, NULL);
4646 kfree(ioc->cpu_msix_table);
4647 kfree(ioc->pd_handles);
4648 kfree(ioc->blocking_handles);
4649 kfree(ioc->pfacts);
4650 kfree(ioc->ctl_cmds.reply);
4651 kfree(ioc->ctl_cmds.sense);
4652 kfree(ioc->base_cmds.reply);
4653 kfree(ioc->port_enable_cmds.reply);
4654 kfree(ioc->tm_cmds.reply);
4655 kfree(ioc->transport_cmds.reply);
4656 kfree(ioc->scsih_cmds.reply);
4657 kfree(ioc->config_cmds.reply);
4661 * _base_reset_handler - reset callback handler (for base)
4662 * @ioc: per adapter object
4663 * @reset_phase: phase
4665 * The handler for doing any required cleanup or initialization.
4667 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
4668 * MPT3_IOC_DONE_RESET
4670 * Return nothing.
4672 static void
4673 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
4675 mpt3sas_scsih_reset_handler(ioc, reset_phase);
4676 mpt3sas_ctl_reset_handler(ioc, reset_phase);
4677 switch (reset_phase) {
4678 case MPT3_IOC_PRE_RESET:
4679 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4680 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
4681 break;
4682 case MPT3_IOC_AFTER_RESET:
4683 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4684 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
4685 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
4686 ioc->transport_cmds.status |= MPT3_CMD_RESET;
4687 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4688 complete(&ioc->transport_cmds.done);
4690 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4691 ioc->base_cmds.status |= MPT3_CMD_RESET;
4692 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
4693 complete(&ioc->base_cmds.done);
4695 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4696 ioc->port_enable_failed = 1;
4697 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
4698 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4699 if (ioc->is_driver_loading) {
4700 ioc->start_scan_failed =
4701 MPI2_IOCSTATUS_INTERNAL_ERROR;
4702 ioc->start_scan = 0;
4703 ioc->port_enable_cmds.status =
4704 MPT3_CMD_NOT_USED;
4705 } else
4706 complete(&ioc->port_enable_cmds.done);
4708 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
4709 ioc->config_cmds.status |= MPT3_CMD_RESET;
4710 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
4711 ioc->config_cmds.smid = USHRT_MAX;
4712 complete(&ioc->config_cmds.done);
4714 break;
4715 case MPT3_IOC_DONE_RESET:
4716 dtmprintk(ioc, pr_info(MPT3SAS_FMT
4717 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
4718 break;
4723 * _wait_for_commands_to_complete - reset controller
4724 * @ioc: Pointer to MPT_ADAPTER structure
4725 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4727 * This function waiting(3s) for all pending commands to complete
4728 * prior to putting controller in reset.
4730 static void
4731 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4733 u32 ioc_state;
4734 unsigned long flags;
4735 u16 i;
4737 ioc->pending_io_count = 0;
4738 if (sleep_flag != CAN_SLEEP)
4739 return;
4741 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4742 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4743 return;
4745 /* pending command count */
4746 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4747 for (i = 0; i < ioc->scsiio_depth; i++)
4748 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4749 ioc->pending_io_count++;
4750 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4752 if (!ioc->pending_io_count)
4753 return;
4755 /* wait for pending commands to complete */
4756 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4760 * mpt3sas_base_hard_reset_handler - reset controller
4761 * @ioc: Pointer to MPT_ADAPTER structure
4762 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4763 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4765 * Returns 0 for success, non-zero for failure.
4768 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4769 enum reset_type type)
4771 int r;
4772 unsigned long flags;
4773 u32 ioc_state;
4774 u8 is_fault = 0, is_trigger = 0;
4776 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
4777 __func__));
4779 if (ioc->pci_error_recovery) {
4780 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
4781 ioc->name, __func__);
4782 r = 0;
4783 goto out_unlocked;
4786 if (mpt3sas_fwfault_debug)
4787 mpt3sas_halt_firmware(ioc);
4789 /* TODO - What we really should be doing is pulling
4790 * out all the code associated with NO_SLEEP; its never used.
4791 * That is legacy code from mpt fusion driver, ported over.
4792 * I will leave this BUG_ON here for now till its been resolved.
4794 BUG_ON(sleep_flag == NO_SLEEP);
4796 /* wait for an active reset in progress to complete */
4797 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4798 do {
4799 ssleep(1);
4800 } while (ioc->shost_recovery == 1);
4801 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4802 __func__));
4803 return ioc->ioc_reset_in_progress_status;
4806 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4807 ioc->shost_recovery = 1;
4808 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4810 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4811 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
4812 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4813 MPT3_DIAG_BUFFER_IS_RELEASED))) {
4814 is_trigger = 1;
4815 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4816 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
4817 is_fault = 1;
4819 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
4820 _wait_for_commands_to_complete(ioc, sleep_flag);
4821 _base_mask_interrupts(ioc);
4822 r = _base_make_ioc_ready(ioc, sleep_flag, type);
4823 if (r)
4824 goto out;
4825 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
4827 /* If this hard reset is called while port enable is active, then
4828 * there is no reason to call make_ioc_operational
4830 if (ioc->is_driver_loading && ioc->port_enable_failed) {
4831 ioc->remove_host = 1;
4832 r = -EFAULT;
4833 goto out;
4835 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4836 if (r)
4837 goto out;
4838 r = _base_make_ioc_operational(ioc, sleep_flag);
4839 if (!r)
4840 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
4842 out:
4843 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
4844 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
4846 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4847 ioc->ioc_reset_in_progress_status = r;
4848 ioc->shost_recovery = 0;
4849 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4850 ioc->ioc_reset_count++;
4851 mutex_unlock(&ioc->reset_in_progress_mutex);
4853 out_unlocked:
4854 if ((r == 0) && is_trigger) {
4855 if (is_fault)
4856 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
4857 else
4858 mpt3sas_trigger_master(ioc,
4859 MASTER_TRIGGER_ADAPTER_RESET);
4861 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4862 __func__));
4863 return r;