fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / staging / et131x / et131x.c
blobe516bb69f3b450a48cbf60360b966126f58d5533
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *------------------------------------------------------------------------------
12 * SOFTWARE LICENSE
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
38 * Disclaimer
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
82 #include "et131x.h"
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
110 #define INT_MASK_DISABLE 0xffffffff
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
137 /* MP_TCB flags */
138 #define FMP_DEST_MULTI 0x00000001
139 #define FMP_DEST_BROAD 0x00000002
141 /* MP_ADAPTER flags */
142 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
144 /* MP_SHARED flags */
145 #define FMP_ADAPTER_LOWER_POWER 0x00200000
147 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
150 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
152 /* Some offsets in PCI config space that are actually used. */
153 #define ET1310_PCI_MAC_ADDRESS 0xA4
154 #define ET1310_PCI_EEPROM_STATUS 0xB2
155 #define ET1310_PCI_ACK_NACK 0xC0
156 #define ET1310_PCI_REPLAY 0xC2
157 #define ET1310_PCI_L0L1LATENCY 0xCF
159 /* PCI Product IDs */
160 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
163 /* Define order of magnitude converter */
164 #define NANO_IN_A_MICRO 1000
166 #define PARM_RX_NUM_BUFS_DEF 4
167 #define PARM_RX_TIME_INT_DEF 10
168 #define PARM_RX_MEM_END_DEF 0x2bc
169 #define PARM_TX_TIME_INT_DEF 40
170 #define PARM_TX_NUM_BUFS_DEF 4
171 #define PARM_DMA_CACHE_DEF 0
173 /* RX defines */
174 #define FBR_CHUNKS 32
175 #define MAX_DESC_PER_RING_RX 1024
177 /* number of RFDs - default and min */
178 #define RFD_LOW_WATER_MARK 40
179 #define NIC_DEFAULT_NUM_RFD 1024
180 #define NUM_FBRS 2
182 #define NUM_PACKETS_HANDLED 256
184 #define ALCATEL_MULTICAST_PKT 0x01000000
185 #define ALCATEL_BROADCAST_PKT 0x02000000
187 /* typedefs for Free Buffer Descriptors */
188 struct fbr_desc {
189 u32 addr_lo;
190 u32 addr_hi;
191 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
194 /* Packet Status Ring Descriptors
196 * Word 0:
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
201 * 0: hp hash pass
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
206 * 5: wol WOL Event
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
210 * 9: jp Jumbo Packet
211 * 10: vp VLAN Packet
212 * 11-15: unused
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
230 * Word 1:
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
234 * 28-31: reserved
237 struct pkt_stat_desc {
238 u32 word0;
239 u32 word1;
242 /* Typedefs for the RX DMA status word */
244 /* rx status word 0 holds part of the status bits of the Rx DMA engine
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
254 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
258 * bit 0-15 reserved
259 * bit 16-27 PSRoffset
260 * bit 28 PSRwrap
261 * bit 29-31 unused
264 /* struct rx_status_block is a structure representing the status of the Rx
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
267 struct rx_status_block {
268 u32 word0;
269 u32 word1;
272 /* Structure for look-up table holding free buffer ring pointers, addresses
273 * and state.
275 struct fbr_lookup {
276 void *virt[MAX_DESC_PER_RING_RX];
277 u32 bus_high[MAX_DESC_PER_RING_RX];
278 u32 bus_low[MAX_DESC_PER_RING_RX];
279 void *ring_virtaddr;
280 dma_addr_t ring_physaddr;
281 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
282 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
283 u32 local_full;
284 u32 num_entries;
285 dma_addr_t buffsize;
288 /* struct rx_ring is the sructure representing the adaptor's local
289 * reference(s) to the rings
291 struct rx_ring {
292 struct fbr_lookup *fbr[NUM_FBRS];
293 void *ps_ring_virtaddr;
294 dma_addr_t ps_ring_physaddr;
295 u32 local_psr_full;
296 u32 psr_num_entries;
298 struct rx_status_block *rx_status_block;
299 dma_addr_t rx_status_bus;
301 /* RECV */
302 struct list_head recv_list;
303 u32 num_ready_recv;
305 u32 num_rfd;
307 bool unfinished_receives;
310 /* TX defines */
311 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
313 * 0-15: length of packet
314 * 16-27: VLAN tag
315 * 28: VLAN CFI
316 * 29-31: VLAN priority
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
327 * 7: append CRC
328 * 8: MAC override
329 * 9: pad packet
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
337 #define TXDESC_FLAG_LASTPKT 0x0001
338 #define TXDESC_FLAG_FIRSTPKT 0x0002
339 #define TXDESC_FLAG_INTPROC 0x0004
341 /* struct tx_desc represents each descriptor on the ring */
342 struct tx_desc {
343 u32 addr_hi;
344 u32 addr_lo;
345 u32 len_vlan; /* control words how to xmit the */
346 u32 flags; /* data (detailed above) */
349 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
350 * by 0x101c / 0x1020. This is a DMA10 type
353 /* TCB (Transmit Control Block: Host Side) */
354 struct tcb {
355 struct tcb *next; /* Next entry in ring */
356 u32 flags; /* Our flags for the packet */
357 u32 count; /* Used to spot stuck/lost packets */
358 u32 stale; /* Used to spot stuck/lost packets */
359 struct sk_buff *skb; /* Network skb we are tied to */
360 u32 index; /* Ring indexes */
361 u32 index_start;
364 /* Structure representing our local reference(s) to the ring */
365 struct tx_ring {
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb *tcb_ring;
369 /* List of TCBs that are ready to be used */
370 struct tcb *tcb_qhead;
371 struct tcb *tcb_qtail;
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
377 * tail
379 struct tcb *send_head;
380 struct tcb *send_tail;
381 int used;
383 /* The actual descriptor ring */
384 struct tx_desc *tx_desc_ring;
385 dma_addr_t tx_desc_ring_pa;
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
388 u32 send_idx;
390 /* The location of the write-back status block */
391 u32 *tx_status;
392 dma_addr_t tx_status_pa;
394 /* Packets since the last IRQ: used for interrupt coalescing */
395 int since_irq;
398 /* Do not change these values: if changed, then change also in respective
399 * TXdma and Rxdma engines
401 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
402 #define NUM_TCB 64
404 /* These values are all superseded by registry entries to facilitate tuning.
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
408 #define TX_ERROR_PERIOD 1000
410 #define LO_MARK_PERCENT_FOR_PSR 15
411 #define LO_MARK_PERCENT_FOR_RX 15
413 /* RFD (Receive Frame Descriptor) */
414 struct rfd {
415 struct list_head list_node;
416 struct sk_buff *skb;
417 u32 len; /* total size of receive frame */
418 u16 bufferindex;
419 u8 ringindex;
422 /* Flow Control */
423 #define FLOW_BOTH 0
424 #define FLOW_TXONLY 1
425 #define FLOW_RXONLY 2
426 #define FLOW_NONE 3
428 /* Struct to define some device statistics */
429 struct ce_stats {
430 /* MIB II variables
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
434 * operations
436 u32 unicast_pkts_rcvd;
437 atomic_t unicast_pkts_xmtd;
438 u32 multicast_pkts_rcvd;
439 atomic_t multicast_pkts_xmtd;
440 u32 broadcast_pkts_rcvd;
441 atomic_t broadcast_pkts_xmtd;
442 u32 rcvd_pkts_dropped;
444 /* Tx Statistics. */
445 u32 tx_underflows;
447 u32 tx_collisions;
448 u32 tx_excessive_collisions;
449 u32 tx_first_collisions;
450 u32 tx_late_collisions;
451 u32 tx_max_pkt_errs;
452 u32 tx_deferred;
454 /* Rx Statistics. */
455 u32 rx_overflows;
457 u32 rx_length_errs;
458 u32 rx_align_errs;
459 u32 rx_crc_errs;
460 u32 rx_code_violations;
461 u32 rx_other_errs;
463 u32 synchronous_iterations;
464 u32 interrupt_status;
467 /* The private adapter structure */
468 struct et131x_adapter {
469 struct net_device *netdev;
470 struct pci_dev *pdev;
471 struct mii_bus *mii_bus;
472 struct phy_device *phydev;
473 struct work_struct task;
475 /* Flags that indicate current state of the adapter */
476 u32 flags;
478 /* local link state, to determine if a state change has occurred */
479 int link;
481 /* Configuration */
482 u8 rom_addr[ETH_ALEN];
483 u8 addr[ETH_ALEN];
484 bool has_eeprom;
485 u8 eeprom_data[2];
487 /* Spinlocks */
488 spinlock_t lock;
490 spinlock_t tcb_send_qlock;
491 spinlock_t tcb_ready_qlock;
492 spinlock_t send_hw_lock;
494 spinlock_t rcv_lock;
495 spinlock_t fbr_lock;
497 /* Packet Filter and look ahead size */
498 u32 packet_filter;
500 /* multicast list */
501 u32 multicast_addr_count;
502 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
504 /* Pointer to the device's PCI register space */
505 struct address_map __iomem *regs;
507 /* Registry parameters */
508 u8 wanted_flow; /* Flow we want for 802.3x flow control */
509 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
511 /* Derived from the registry: */
512 u8 flowcontrol; /* flow control validated by the far-end */
514 /* Minimize init-time */
515 struct timer_list error_timer;
517 /* variable putting the phy into coma mode when boot up with no cable
518 * plugged in after 5 seconds
520 u8 boot_coma;
522 /* Next two used to save power information at power down. This
523 * information will be used during power up to set up parts of Power
524 * Management in JAGCore
526 u16 pdown_speed;
527 u8 pdown_duplex;
529 /* Tx Memory Variables */
530 struct tx_ring tx_ring;
532 /* Rx Memory Variables */
533 struct rx_ring rx_ring;
535 /* Stats */
536 struct ce_stats stats;
538 struct net_device_stats net_stats;
541 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
543 u32 reg;
544 int i;
546 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
547 * bits 7,1:0 both equal to 1, at least once after reset.
548 * Subsequent operations need only to check that bits 1:0 are equal
549 * to 1 prior to starting a single byte read/write
552 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
553 /* Read registers grouped in DWORD1 */
554 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
555 return -EIO;
557 /* I2C idle and Phy Queue Avail both true */
558 if ((reg & 0x3000) == 0x3000) {
559 if (status)
560 *status = reg;
561 return reg & 0xFF;
564 return -ETIMEDOUT;
567 /* eeprom_write - Write a byte to the ET1310's EEPROM
568 * @adapter: pointer to our private adapter structure
569 * @addr: the address to write
570 * @data: the value to write
572 * Returns 1 for a successful write.
574 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
576 struct pci_dev *pdev = adapter->pdev;
577 int index = 0;
578 int retries;
579 int err = 0;
580 int i2c_wack = 0;
581 int writeok = 0;
582 u32 status;
583 u32 val = 0;
585 /* For an EEPROM, an I2C single byte write is defined as a START
586 * condition followed by the device address, EEPROM address, one byte
587 * of data and a STOP condition. The STOP condition will trigger the
588 * EEPROM's internally timed write cycle to the nonvolatile memory.
589 * All inputs are disabled during this write cycle and the EEPROM will
590 * not respond to any access until the internal write is complete.
593 err = eeprom_wait_ready(pdev, NULL);
594 if (err < 0)
595 return err;
597 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
598 * and bits 1:0 both =0. Bit 5 should be set according to the
599 * type of EEPROM being accessed (1=two byte addressing, 0=one
600 * byte addressing).
602 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
603 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
604 return -EIO;
606 i2c_wack = 1;
608 /* Prepare EEPROM address for Step 3 */
610 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
611 /* Write the address to the LBCIF Address Register */
612 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
613 break;
614 /* Write the data to the LBCIF Data Register (the I2C write
615 * will begin).
617 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
618 break;
619 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
620 * 1:0 are both equal to 1, the I2C write has completed and the
621 * internal write cycle of the EEPROM is about to start.
622 * (bits 1:0 = 01 is a legal state while waiting from both
623 * equal to 1, but bits 1:0 = 10 is invalid and implies that
624 * something is broken).
626 err = eeprom_wait_ready(pdev, &status);
627 if (err < 0)
628 return 0;
630 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
631 * an error has occurred.Don't break here if we are revision
632 * 1, this is so we do a blind write for load bug.
634 if ((status & LBCIF_STATUS_GENERAL_ERROR)
635 && adapter->pdev->revision == 0)
636 break;
638 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
639 * ACK error has occurred on the address phase of the write.
640 * This could be due to an actual hardware failure or the
641 * EEPROM may still be in its internal write cycle from a
642 * previous write. This write operation was ignored and must be
643 *repeated later.
645 if (status & LBCIF_STATUS_ACK_ERROR) {
646 /* This could be due to an actual hardware failure
647 * or the EEPROM may still be in its internal write
648 * cycle from a previous write. This write operation
649 * was ignored and must be repeated later.
651 udelay(10);
652 continue;
655 writeok = 1;
656 break;
659 /* Set bit 6 of the LBCIF Control Register = 0.
661 udelay(10);
663 while (i2c_wack) {
664 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
665 LBCIF_CONTROL_LBCIF_ENABLE))
666 writeok = 0;
668 /* Do read until internal ACK_ERROR goes away meaning write
669 * completed
671 do {
672 pci_write_config_dword(pdev,
673 LBCIF_ADDRESS_REGISTER,
674 addr);
675 do {
676 pci_read_config_dword(pdev,
677 LBCIF_DATA_REGISTER, &val);
678 } while ((val & 0x00010000) == 0);
679 } while (val & 0x00040000);
681 if ((val & 0xFF00) != 0xC000 || index == 10000)
682 break;
683 index++;
685 return writeok ? 0 : -EIO;
688 /* eeprom_read - Read a byte from the ET1310's EEPROM
689 * @adapter: pointer to our private adapter structure
690 * @addr: the address from which to read
691 * @pdata: a pointer to a byte in which to store the value of the read
692 * @eeprom_id: the ID of the EEPROM
693 * @addrmode: how the EEPROM is to be accessed
695 * Returns 1 for a successful read
697 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
699 struct pci_dev *pdev = adapter->pdev;
700 int err;
701 u32 status;
703 /* A single byte read is similar to the single byte write, with the
704 * exception of the data flow:
707 err = eeprom_wait_ready(pdev, NULL);
708 if (err < 0)
709 return err;
710 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
711 * and bits 1:0 both =0. Bit 5 should be set according to the type
712 * of EEPROM being accessed (1=two byte addressing, 0=one byte
713 * addressing).
715 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
716 LBCIF_CONTROL_LBCIF_ENABLE))
717 return -EIO;
718 /* Write the address to the LBCIF Address Register (I2C read will
719 * begin).
721 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
722 return -EIO;
723 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
724 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
725 * has occurred).
727 err = eeprom_wait_ready(pdev, &status);
728 if (err < 0)
729 return err;
730 /* Regardless of error status, read data byte from LBCIF Data
731 * Register.
733 *pdata = err;
734 /* Check bit 2 of the LBCIF Status Register. If = 1,
735 * then an error has occurred.
737 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
740 static int et131x_init_eeprom(struct et131x_adapter *adapter)
742 struct pci_dev *pdev = adapter->pdev;
743 u8 eestatus;
745 /* We first need to check the EEPROM Status code located at offset
746 * 0xB2 of config space
748 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
750 /* THIS IS A WORKAROUND:
751 * I need to call this function twice to get my card in a
752 * LG M1 Express Dual running. I tried also a msleep before this
753 * function, because I thought there could be some time conditions
754 * but it didn't work. Call the whole function twice also work.
756 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
757 dev_err(&pdev->dev,
758 "Could not read PCI config space for EEPROM Status\n");
759 return -EIO;
762 /* Determine if the error(s) we care about are present. If they are
763 * present we need to fail.
765 if (eestatus & 0x4C) {
766 int write_failed = 0;
767 if (pdev->revision == 0x01) {
768 int i;
769 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
771 /* Re-write the first 4 bytes if we have an eeprom
772 * present and the revision id is 1, this fixes the
773 * corruption seen with 1310 B Silicon
775 for (i = 0; i < 3; i++)
776 if (eeprom_write(adapter, i, eedata[i]) < 0)
777 write_failed = 1;
779 if (pdev->revision != 0x01 || write_failed) {
780 dev_err(&pdev->dev,
781 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
783 /* This error could mean that there was an error
784 * reading the eeprom or that the eeprom doesn't exist.
785 * We will treat each case the same and not try to
786 * gather additional information that normally would
787 * come from the eeprom, like MAC Address
789 adapter->has_eeprom = 0;
790 return -EIO;
793 adapter->has_eeprom = 1;
795 /* Read the EEPROM for information regarding LED behavior. Refer to
796 * ET1310_phy.c, et131x_xcvr_init(), for its use.
798 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
799 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
801 if (adapter->eeprom_data[0] != 0xcd)
802 /* Disable all optional features */
803 adapter->eeprom_data[1] = 0x00;
805 return 0;
808 /* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
809 * @adapter: pointer to our adapter structure
811 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
813 /* Setup the receive dma configuration register for normal operation */
814 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
815 struct rx_ring *rx_ring = &adapter->rx_ring;
817 if (rx_ring->fbr[1]->buffsize == 4096)
818 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
819 else if (rx_ring->fbr[1]->buffsize == 8192)
820 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
821 else if (rx_ring->fbr[1]->buffsize == 16384)
822 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
824 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
825 if (rx_ring->fbr[0]->buffsize == 256)
826 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
827 else if (rx_ring->fbr[0]->buffsize == 512)
828 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
829 else if (rx_ring->fbr[0]->buffsize == 1024)
830 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
831 writel(csr, &adapter->regs->rxdma.csr);
833 csr = readl(&adapter->regs->rxdma.csr);
834 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
835 udelay(5);
836 csr = readl(&adapter->regs->rxdma.csr);
837 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
838 dev_err(&adapter->pdev->dev,
839 "RX Dma failed to exit halt state. CSR 0x%08x\n",
840 csr);
845 /* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
846 * @adapter: pointer to our adapter structure
848 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
850 u32 csr;
851 /* Setup the receive dma configuration register */
852 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
853 &adapter->regs->rxdma.csr);
854 csr = readl(&adapter->regs->rxdma.csr);
855 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
856 udelay(5);
857 csr = readl(&adapter->regs->rxdma.csr);
858 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
859 dev_err(&adapter->pdev->dev,
860 "RX Dma failed to enter halt state. CSR 0x%08x\n",
861 csr);
865 /* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
866 * @adapter: pointer to our adapter structure
868 * Mainly used after a return to the D0 (full-power) state from a lower state.
870 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
872 /* Setup the transmit dma configuration register for normal
873 * operation
875 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
876 &adapter->regs->txdma.csr);
879 static inline void add_10bit(u32 *v, int n)
881 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
884 static inline void add_12bit(u32 *v, int n)
886 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
889 /* et1310_config_mac_regs1 - Initialize the first part of MAC regs
890 * @adapter: pointer to our adapter structure
892 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
894 struct mac_regs __iomem *macregs = &adapter->regs->mac;
895 u32 station1;
896 u32 station2;
897 u32 ipg;
899 /* First we need to reset everything. Write to MAC configuration
900 * register 1 to perform reset.
902 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
903 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
904 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
905 &macregs->cfg1);
907 /* Next lets configure the MAC Inter-packet gap register */
908 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
909 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
910 writel(ipg, &macregs->ipg);
912 /* Next lets configure the MAC Half Duplex register */
913 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
914 writel(0x00A1F037, &macregs->hfdp);
916 /* Next lets configure the MAC Interface Control register */
917 writel(0, &macregs->if_ctrl);
919 /* Let's move on to setting up the mii management configuration */
920 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
922 /* Next lets configure the MAC Station Address register. These
923 * values are read from the EEPROM during initialization and stored
924 * in the adapter structure. We write what is stored in the adapter
925 * structure to the MAC Station Address registers high and low. This
926 * station address is used for generating and checking pause control
927 * packets.
929 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
930 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
931 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
932 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
933 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
934 adapter->addr[2];
935 writel(station1, &macregs->station_addr_1);
936 writel(station2, &macregs->station_addr_2);
938 /* Max ethernet packet in bytes that will be passed by the mac without
939 * being truncated. Allow the MAC to pass 4 more than our max packet
940 * size. This is 4 for the Ethernet CRC.
942 * Packets larger than (registry_jumbo_packet) that do not contain a
943 * VLAN ID will be dropped by the Rx function.
945 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
947 /* clear out MAC config reset */
948 writel(0, &macregs->cfg1);
951 /* et1310_config_mac_regs2 - Initialize the second part of MAC regs
952 * @adapter: pointer to our adapter structure
954 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
956 int32_t delay = 0;
957 struct mac_regs __iomem *mac = &adapter->regs->mac;
958 struct phy_device *phydev = adapter->phydev;
959 u32 cfg1;
960 u32 cfg2;
961 u32 ifctrl;
962 u32 ctl;
964 ctl = readl(&adapter->regs->txmac.ctl);
965 cfg1 = readl(&mac->cfg1);
966 cfg2 = readl(&mac->cfg2);
967 ifctrl = readl(&mac->if_ctrl);
969 /* Set up the if mode bits */
970 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
971 if (phydev->speed == SPEED_1000) {
972 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
973 /* Phy mode bit */
974 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
975 } else {
976 cfg2 |= ET_MAC_CFG2_IFMODE_100;
977 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
980 /* We need to enable Rx/Tx */
981 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
982 ET_MAC_CFG1_TX_FLOW;
983 /* Initialize loop back to off */
984 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
985 if (adapter->flowcontrol == FLOW_RXONLY ||
986 adapter->flowcontrol == FLOW_BOTH)
987 cfg1 |= ET_MAC_CFG1_RX_FLOW;
988 writel(cfg1, &mac->cfg1);
990 /* Now we need to initialize the MAC Configuration 2 register */
991 /* preamble 7, check length, huge frame off, pad crc, crc enable
992 * full duplex off
994 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
995 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
996 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
997 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
998 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
999 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
1001 /* Turn on duplex if needed */
1002 if (phydev->duplex == DUPLEX_FULL)
1003 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
1005 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
1006 if (phydev->duplex == DUPLEX_HALF)
1007 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
1009 writel(ifctrl, &mac->if_ctrl);
1010 writel(cfg2, &mac->cfg2);
1012 do {
1013 udelay(10);
1014 delay++;
1015 cfg1 = readl(&mac->cfg1);
1016 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
1018 if (delay == 100) {
1019 dev_warn(&adapter->pdev->dev,
1020 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1021 cfg1);
1024 /* Enable txmac */
1025 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
1026 writel(ctl, &adapter->regs->txmac.ctl);
1028 /* Ready to start the RXDMA/TXDMA engine */
1029 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
1030 et131x_rx_dma_enable(adapter);
1031 et131x_tx_dma_enable(adapter);
1035 /* et1310_in_phy_coma - check if the device is in phy coma
1036 * @adapter: pointer to our adapter structure
1038 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1040 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1042 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1044 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1047 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1049 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1050 u32 hash1 = 0;
1051 u32 hash2 = 0;
1052 u32 hash3 = 0;
1053 u32 hash4 = 0;
1054 u32 pm_csr;
1056 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1057 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1058 * specified) then we should pass NO multi-cast addresses to the
1059 * driver.
1061 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1062 int i;
1064 /* Loop through our multicast array and set up the device */
1065 for (i = 0; i < adapter->multicast_addr_count; i++) {
1066 u32 result;
1068 result = ether_crc(6, adapter->multicast_list[i]);
1070 result = (result & 0x3F800000) >> 23;
1072 if (result < 32) {
1073 hash1 |= (1 << result);
1074 } else if ((31 < result) && (result < 64)) {
1075 result -= 32;
1076 hash2 |= (1 << result);
1077 } else if ((63 < result) && (result < 96)) {
1078 result -= 64;
1079 hash3 |= (1 << result);
1080 } else {
1081 result -= 96;
1082 hash4 |= (1 << result);
1087 /* Write out the new hash to the device */
1088 pm_csr = readl(&adapter->regs->global.pm_csr);
1089 if (!et1310_in_phy_coma(adapter)) {
1090 writel(hash1, &rxmac->multi_hash1);
1091 writel(hash2, &rxmac->multi_hash2);
1092 writel(hash3, &rxmac->multi_hash3);
1093 writel(hash4, &rxmac->multi_hash4);
1097 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1099 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1100 u32 uni_pf1;
1101 u32 uni_pf2;
1102 u32 uni_pf3;
1103 u32 pm_csr;
1105 /* Set up unicast packet filter reg 3 to be the first two octets of
1106 * the MAC address for both address
1108 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1109 * MAC address for second address
1111 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1112 * MAC address for first address
1114 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1115 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1116 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1117 adapter->addr[1];
1119 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1120 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1121 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1122 adapter->addr[5];
1124 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1125 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1126 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1127 adapter->addr[5];
1129 pm_csr = readl(&adapter->regs->global.pm_csr);
1130 if (!et1310_in_phy_coma(adapter)) {
1131 writel(uni_pf1, &rxmac->uni_pf_addr1);
1132 writel(uni_pf2, &rxmac->uni_pf_addr2);
1133 writel(uni_pf3, &rxmac->uni_pf_addr3);
1137 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1139 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1140 struct phy_device *phydev = adapter->phydev;
1141 u32 sa_lo;
1142 u32 sa_hi = 0;
1143 u32 pf_ctrl = 0;
1145 /* Disable the MAC while it is being configured (also disable WOL) */
1146 writel(0x8, &rxmac->ctrl);
1148 /* Initialize WOL to disabled. */
1149 writel(0, &rxmac->crc0);
1150 writel(0, &rxmac->crc12);
1151 writel(0, &rxmac->crc34);
1153 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1154 * its default Values of 0x00000000 because there are not WOL masks
1155 * as of this time.
1157 writel(0, &rxmac->mask0_word0);
1158 writel(0, &rxmac->mask0_word1);
1159 writel(0, &rxmac->mask0_word2);
1160 writel(0, &rxmac->mask0_word3);
1162 writel(0, &rxmac->mask1_word0);
1163 writel(0, &rxmac->mask1_word1);
1164 writel(0, &rxmac->mask1_word2);
1165 writel(0, &rxmac->mask1_word3);
1167 writel(0, &rxmac->mask2_word0);
1168 writel(0, &rxmac->mask2_word1);
1169 writel(0, &rxmac->mask2_word2);
1170 writel(0, &rxmac->mask2_word3);
1172 writel(0, &rxmac->mask3_word0);
1173 writel(0, &rxmac->mask3_word1);
1174 writel(0, &rxmac->mask3_word2);
1175 writel(0, &rxmac->mask3_word3);
1177 writel(0, &rxmac->mask4_word0);
1178 writel(0, &rxmac->mask4_word1);
1179 writel(0, &rxmac->mask4_word2);
1180 writel(0, &rxmac->mask4_word3);
1182 /* Lets setup the WOL Source Address */
1183 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1184 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1185 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1186 adapter->addr[5];
1187 writel(sa_lo, &rxmac->sa_lo);
1189 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1190 adapter->addr[1];
1191 writel(sa_hi, &rxmac->sa_hi);
1193 /* Disable all Packet Filtering */
1194 writel(0, &rxmac->pf_ctrl);
1196 /* Let's initialize the Unicast Packet filtering address */
1197 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1198 et1310_setup_device_for_unicast(adapter);
1199 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1200 } else {
1201 writel(0, &rxmac->uni_pf_addr1);
1202 writel(0, &rxmac->uni_pf_addr2);
1203 writel(0, &rxmac->uni_pf_addr3);
1206 /* Let's initialize the Multicast hash */
1207 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1208 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1209 et1310_setup_device_for_multicast(adapter);
1212 /* Runt packet filtering. Didn't work in version A silicon. */
1213 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1214 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1216 if (adapter->registry_jumbo_packet > 8192)
1217 /* In order to transmit jumbo packets greater than 8k, the
1218 * FIFO between RxMAC and RxDMA needs to be reduced in size
1219 * to (16k - Jumbo packet size). In order to implement this,
1220 * we must use "cut through" mode in the RxMAC, which chops
1221 * packets down into segments which are (max_size * 16). In
1222 * this case we selected 256 bytes, since this is the size of
1223 * the PCI-Express TLP's that the 1310 uses.
1225 * seg_en on, fc_en off, size 0x10
1227 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1228 else
1229 writel(0, &rxmac->mcif_ctrl_max_seg);
1231 /* Initialize the MCIF water marks */
1232 writel(0, &rxmac->mcif_water_mark);
1234 /* Initialize the MIF control */
1235 writel(0, &rxmac->mif_ctrl);
1237 /* Initialize the Space Available Register */
1238 writel(0, &rxmac->space_avail);
1240 /* Initialize the the mif_ctrl register
1241 * bit 3: Receive code error. One or more nibbles were signaled as
1242 * errors during the reception of the packet. Clear this
1243 * bit in Gigabit, set it in 100Mbit. This was derived
1244 * experimentally at UNH.
1245 * bit 4: Receive CRC error. The packet's CRC did not match the
1246 * internally generated CRC.
1247 * bit 5: Receive length check error. Indicates that frame length
1248 * field value in the packet does not match the actual data
1249 * byte length and is not a type field.
1250 * bit 16: Receive frame truncated.
1251 * bit 17: Drop packet enable
1253 if (phydev && phydev->speed == SPEED_100)
1254 writel(0x30038, &rxmac->mif_ctrl);
1255 else
1256 writel(0x30030, &rxmac->mif_ctrl);
1258 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1259 * filter is always enabled since it is where the runt packets are
1260 * supposed to be dropped. For version A silicon, runt packet
1261 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1262 * but we still leave the packet filter on.
1264 writel(pf_ctrl, &rxmac->pf_ctrl);
1265 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1268 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1270 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1272 /* We need to update the Control Frame Parameters
1273 * cfpt - control frame pause timer set to 64 (0x40)
1274 * cfep - control frame extended pause timer set to 0x0
1276 if (adapter->flowcontrol == FLOW_NONE)
1277 writel(0, &txmac->cf_param);
1278 else
1279 writel(0x40, &txmac->cf_param);
1282 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1284 struct macstat_regs __iomem *macstat =
1285 &adapter->regs->macstat;
1287 /* Next we need to initialize all the macstat registers to zero on
1288 * the device.
1290 writel(0, &macstat->txrx_0_64_byte_frames);
1291 writel(0, &macstat->txrx_65_127_byte_frames);
1292 writel(0, &macstat->txrx_128_255_byte_frames);
1293 writel(0, &macstat->txrx_256_511_byte_frames);
1294 writel(0, &macstat->txrx_512_1023_byte_frames);
1295 writel(0, &macstat->txrx_1024_1518_byte_frames);
1296 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1298 writel(0, &macstat->rx_bytes);
1299 writel(0, &macstat->rx_packets);
1300 writel(0, &macstat->rx_fcs_errs);
1301 writel(0, &macstat->rx_multicast_packets);
1302 writel(0, &macstat->rx_broadcast_packets);
1303 writel(0, &macstat->rx_control_frames);
1304 writel(0, &macstat->rx_pause_frames);
1305 writel(0, &macstat->rx_unknown_opcodes);
1306 writel(0, &macstat->rx_align_errs);
1307 writel(0, &macstat->rx_frame_len_errs);
1308 writel(0, &macstat->rx_code_errs);
1309 writel(0, &macstat->rx_carrier_sense_errs);
1310 writel(0, &macstat->rx_undersize_packets);
1311 writel(0, &macstat->rx_oversize_packets);
1312 writel(0, &macstat->rx_fragment_packets);
1313 writel(0, &macstat->rx_jabbers);
1314 writel(0, &macstat->rx_drops);
1316 writel(0, &macstat->tx_bytes);
1317 writel(0, &macstat->tx_packets);
1318 writel(0, &macstat->tx_multicast_packets);
1319 writel(0, &macstat->tx_broadcast_packets);
1320 writel(0, &macstat->tx_pause_frames);
1321 writel(0, &macstat->tx_deferred);
1322 writel(0, &macstat->tx_excessive_deferred);
1323 writel(0, &macstat->tx_single_collisions);
1324 writel(0, &macstat->tx_multiple_collisions);
1325 writel(0, &macstat->tx_late_collisions);
1326 writel(0, &macstat->tx_excessive_collisions);
1327 writel(0, &macstat->tx_total_collisions);
1328 writel(0, &macstat->tx_pause_honored_frames);
1329 writel(0, &macstat->tx_drops);
1330 writel(0, &macstat->tx_jabbers);
1331 writel(0, &macstat->tx_fcs_errs);
1332 writel(0, &macstat->tx_control_frames);
1333 writel(0, &macstat->tx_oversize_frames);
1334 writel(0, &macstat->tx_undersize_frames);
1335 writel(0, &macstat->tx_fragments);
1336 writel(0, &macstat->carry_reg1);
1337 writel(0, &macstat->carry_reg2);
1339 /* Unmask any counters that we want to track the overflow of.
1340 * Initially this will be all counters. It may become clear later
1341 * that we do not need to track all counters.
1343 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1344 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1347 /* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1348 * @adapter: pointer to our private adapter structure
1349 * @addr: the address of the transceiver
1350 * @reg: the register to read
1351 * @value: pointer to a 16-bit value in which the value will be stored
1353 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1354 u8 reg, u16 *value)
1356 struct mac_regs __iomem *mac = &adapter->regs->mac;
1357 int status = 0;
1358 u32 delay = 0;
1359 u32 mii_addr;
1360 u32 mii_cmd;
1361 u32 mii_indicator;
1363 /* Save a local copy of the registers we are dealing with so we can
1364 * set them back
1366 mii_addr = readl(&mac->mii_mgmt_addr);
1367 mii_cmd = readl(&mac->mii_mgmt_cmd);
1369 /* Stop the current operation */
1370 writel(0, &mac->mii_mgmt_cmd);
1372 /* Set up the register we need to read from on the correct PHY */
1373 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1375 writel(0x1, &mac->mii_mgmt_cmd);
1377 do {
1378 udelay(50);
1379 delay++;
1380 mii_indicator = readl(&mac->mii_mgmt_indicator);
1381 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1383 /* If we hit the max delay, we could not read the register */
1384 if (delay == 50) {
1385 dev_warn(&adapter->pdev->dev,
1386 "reg 0x%08x could not be read\n", reg);
1387 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1388 mii_indicator);
1390 status = -EIO;
1393 /* If we hit here we were able to read the register and we need to
1394 * return the value to the caller
1396 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1398 /* Stop the read operation */
1399 writel(0, &mac->mii_mgmt_cmd);
1401 /* set the registers we touched back to the state at which we entered
1402 * this function
1404 writel(mii_addr, &mac->mii_mgmt_addr);
1405 writel(mii_cmd, &mac->mii_mgmt_cmd);
1407 return status;
1410 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1412 struct phy_device *phydev = adapter->phydev;
1414 if (!phydev)
1415 return -EIO;
1417 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1420 /* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
1421 * @adapter: pointer to our private adapter structure
1422 * @reg: the register to read
1423 * @value: 16-bit value to write
1425 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1427 struct mac_regs __iomem *mac = &adapter->regs->mac;
1428 struct phy_device *phydev = adapter->phydev;
1429 int status = 0;
1430 u8 addr;
1431 u32 delay = 0;
1432 u32 mii_addr;
1433 u32 mii_cmd;
1434 u32 mii_indicator;
1436 if (!phydev)
1437 return -EIO;
1439 addr = phydev->addr;
1441 /* Save a local copy of the registers we are dealing with so we can
1442 * set them back
1444 mii_addr = readl(&mac->mii_mgmt_addr);
1445 mii_cmd = readl(&mac->mii_mgmt_cmd);
1447 /* Stop the current operation */
1448 writel(0, &mac->mii_mgmt_cmd);
1450 /* Set up the register we need to write to on the correct PHY */
1451 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1453 /* Add the value to write to the registers to the mac */
1454 writel(value, &mac->mii_mgmt_ctrl);
1456 do {
1457 udelay(50);
1458 delay++;
1459 mii_indicator = readl(&mac->mii_mgmt_indicator);
1460 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1462 /* If we hit the max delay, we could not write the register */
1463 if (delay == 100) {
1464 u16 tmp;
1466 dev_warn(&adapter->pdev->dev,
1467 "reg 0x%08x could not be written", reg);
1468 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1469 mii_indicator);
1470 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1471 readl(&mac->mii_mgmt_cmd));
1473 et131x_mii_read(adapter, reg, &tmp);
1475 status = -EIO;
1477 /* Stop the write operation */
1478 writel(0, &mac->mii_mgmt_cmd);
1480 /* set the registers we touched back to the state at which we entered
1481 * this function
1483 writel(mii_addr, &mac->mii_mgmt_addr);
1484 writel(mii_cmd, &mac->mii_mgmt_cmd);
1486 return status;
1489 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1490 u16 regnum,
1491 u16 bitnum,
1492 u8 *value)
1494 u16 reg;
1495 u16 mask = 1 << bitnum;
1497 /* Read the requested register */
1498 et131x_mii_read(adapter, regnum, &reg);
1500 *value = (reg & mask) >> bitnum;
1503 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1505 struct phy_device *phydev = adapter->phydev;
1507 if (phydev->duplex == DUPLEX_HALF) {
1508 adapter->flowcontrol = FLOW_NONE;
1509 } else {
1510 char remote_pause, remote_async_pause;
1512 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1513 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1515 if (remote_pause && remote_async_pause) {
1516 adapter->flowcontrol = adapter->wanted_flow;
1517 } else if (remote_pause && !remote_async_pause) {
1518 if (adapter->wanted_flow == FLOW_BOTH)
1519 adapter->flowcontrol = FLOW_BOTH;
1520 else
1521 adapter->flowcontrol = FLOW_NONE;
1522 } else if (!remote_pause && !remote_async_pause) {
1523 adapter->flowcontrol = FLOW_NONE;
1524 } else {
1525 if (adapter->wanted_flow == FLOW_BOTH)
1526 adapter->flowcontrol = FLOW_RXONLY;
1527 else
1528 adapter->flowcontrol = FLOW_NONE;
1533 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1534 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1536 struct ce_stats *stats = &adapter->stats;
1537 struct macstat_regs __iomem *macstat =
1538 &adapter->regs->macstat;
1540 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1541 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1542 stats->tx_deferred += readl(&macstat->tx_deferred);
1543 stats->tx_excessive_collisions +=
1544 readl(&macstat->tx_multiple_collisions);
1545 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1546 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1547 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1549 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1550 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1551 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1552 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1553 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1554 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1555 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1558 /* et1310_handle_macstat_interrupt
1560 * One of the MACSTAT counters has wrapped. Update the local copy of
1561 * the statistics held in the adapter structure, checking the "wrap"
1562 * bit for each counter.
1564 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1566 u32 carry_reg1;
1567 u32 carry_reg2;
1569 /* Read the interrupt bits from the register(s). These are Clear On
1570 * Write.
1572 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1573 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1575 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1576 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1578 /* We need to do update the host copy of all the MAC_STAT counters.
1579 * For each counter, check it's overflow bit. If the overflow bit is
1580 * set, then increment the host version of the count by one complete
1581 * revolution of the counter. This routine is called when the counter
1582 * block indicates that one of the counters has wrapped.
1584 if (carry_reg1 & (1 << 14))
1585 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1586 if (carry_reg1 & (1 << 8))
1587 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1588 if (carry_reg1 & (1 << 7))
1589 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1590 if (carry_reg1 & (1 << 2))
1591 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1592 if (carry_reg1 & (1 << 6))
1593 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1594 if (carry_reg1 & (1 << 3))
1595 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1596 if (carry_reg1 & (1 << 0))
1597 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1598 if (carry_reg2 & (1 << 16))
1599 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1600 if (carry_reg2 & (1 << 15))
1601 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1602 if (carry_reg2 & (1 << 6))
1603 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1604 if (carry_reg2 & (1 << 8))
1605 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1606 if (carry_reg2 & (1 << 5))
1607 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1608 if (carry_reg2 & (1 << 4))
1609 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1610 if (carry_reg2 & (1 << 2))
1611 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1614 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1616 struct net_device *netdev = bus->priv;
1617 struct et131x_adapter *adapter = netdev_priv(netdev);
1618 u16 value;
1619 int ret;
1621 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1623 if (ret < 0)
1624 return ret;
1625 else
1626 return value;
1629 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1630 int reg, u16 value)
1632 struct net_device *netdev = bus->priv;
1633 struct et131x_adapter *adapter = netdev_priv(netdev);
1635 return et131x_mii_write(adapter, reg, value);
1638 static int et131x_mdio_reset(struct mii_bus *bus)
1640 struct net_device *netdev = bus->priv;
1641 struct et131x_adapter *adapter = netdev_priv(netdev);
1643 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1645 return 0;
1648 /* et1310_phy_power_switch - PHY power control
1649 * @adapter: device to control
1650 * @down: true for off/false for back on
1652 * one hundred, ten, one thousand megs
1653 * How would you like to have your LAN accessed
1654 * Can't you see that this code processed
1655 * Phy power, phy power..
1657 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1659 u16 data;
1661 et131x_mii_read(adapter, MII_BMCR, &data);
1662 data &= ~BMCR_PDOWN;
1663 if (down)
1664 data |= BMCR_PDOWN;
1665 et131x_mii_write(adapter, MII_BMCR, data);
1668 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1669 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1671 u16 lcr2;
1673 /* Set the LED behavior such that LED 1 indicates speed (off =
1674 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1675 * link and activity (on for link, blink off for activity).
1677 * NOTE: Some customizations have been added here for specific
1678 * vendors; The LED behavior is now determined by vendor data in the
1679 * EEPROM. However, the above description is the default.
1681 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1682 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1684 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1685 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1687 if ((adapter->eeprom_data[1] & 0x8) == 0)
1688 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1689 else
1690 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1692 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1696 /* et131x_configure_global_regs - configure JAGCore global regs
1698 * Used to configure the global registers on the JAGCore
1700 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1702 struct global_regs __iomem *regs = &adapter->regs->global;
1704 writel(0, &regs->rxq_start_addr);
1705 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1707 if (adapter->registry_jumbo_packet < 2048) {
1708 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1709 * block of RAM that the driver can split between Tx
1710 * and Rx as it desires. Our default is to split it
1711 * 50/50:
1713 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1714 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1715 } else if (adapter->registry_jumbo_packet < 8192) {
1716 /* For jumbo packets > 2k but < 8k, split 50-50. */
1717 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1718 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1719 } else {
1720 /* 9216 is the only packet size greater than 8k that
1721 * is available. The Tx buffer has to be big enough
1722 * for one whole packet on the Tx side. We'll make
1723 * the Tx 9408, and give the rest to Rx
1725 writel(0x01b3, &regs->rxq_end_addr);
1726 writel(0x01b4, &regs->txq_start_addr);
1729 /* Initialize the loopback register. Disable all loopbacks. */
1730 writel(0, &regs->loopback);
1732 /* MSI Register */
1733 writel(0, &regs->msi_config);
1735 /* By default, disable the watchdog timer. It will be enabled when
1736 * a packet is queued.
1738 writel(0, &regs->watchdog_timer);
1741 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1742 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1744 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1745 struct rx_ring *rx_local = &adapter->rx_ring;
1746 struct fbr_desc *fbr_entry;
1747 u32 entry;
1748 u32 psr_num_des;
1749 unsigned long flags;
1750 u8 id;
1752 /* Halt RXDMA to perform the reconfigure. */
1753 et131x_rx_dma_disable(adapter);
1755 /* Load the completion writeback physical address */
1756 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1757 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1759 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1761 /* Set the address and parameters of the packet status ring into the
1762 * 1310's registers
1764 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1765 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1766 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1767 writel(0, &rx_dma->psr_full_offset);
1769 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1770 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1771 &rx_dma->psr_min_des);
1773 spin_lock_irqsave(&adapter->rcv_lock, flags);
1775 /* These local variables track the PSR in the adapter structure */
1776 rx_local->local_psr_full = 0;
1778 for (id = 0; id < NUM_FBRS; id++) {
1779 u32 __iomem *num_des;
1780 u32 __iomem *full_offset;
1781 u32 __iomem *min_des;
1782 u32 __iomem *base_hi;
1783 u32 __iomem *base_lo;
1784 struct fbr_lookup *fbr = rx_local->fbr[id];
1786 if (id == 0) {
1787 num_des = &rx_dma->fbr0_num_des;
1788 full_offset = &rx_dma->fbr0_full_offset;
1789 min_des = &rx_dma->fbr0_min_des;
1790 base_hi = &rx_dma->fbr0_base_hi;
1791 base_lo = &rx_dma->fbr0_base_lo;
1792 } else {
1793 num_des = &rx_dma->fbr1_num_des;
1794 full_offset = &rx_dma->fbr1_full_offset;
1795 min_des = &rx_dma->fbr1_min_des;
1796 base_hi = &rx_dma->fbr1_base_hi;
1797 base_lo = &rx_dma->fbr1_base_lo;
1800 /* Now's the best time to initialize FBR contents */
1801 fbr_entry = fbr->ring_virtaddr;
1802 for (entry = 0; entry < fbr->num_entries; entry++) {
1803 fbr_entry->addr_hi = fbr->bus_high[entry];
1804 fbr_entry->addr_lo = fbr->bus_low[entry];
1805 fbr_entry->word2 = entry;
1806 fbr_entry++;
1809 /* Set the address and parameters of Free buffer ring 1 and 0
1810 * into the 1310's registers
1812 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1813 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1814 writel(fbr->num_entries - 1, num_des);
1815 writel(ET_DMA10_WRAP, full_offset);
1817 /* This variable tracks the free buffer ring 1 full position,
1818 * so it has to match the above.
1820 fbr->local_full = ET_DMA10_WRAP;
1821 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1822 min_des);
1825 /* Program the number of packets we will receive before generating an
1826 * interrupt.
1827 * For version B silicon, this value gets updated once autoneg is
1828 *complete.
1830 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1832 /* The "time_done" is not working correctly to coalesce interrupts
1833 * after a given time period, but rather is giving us an interrupt
1834 * regardless of whether we have received packets.
1835 * This value gets updated once autoneg is complete.
1837 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1839 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1842 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1844 * Configure the transmit engine with the ring buffers we have created
1845 * and prepare it for use.
1847 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1849 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1850 struct tx_ring *tx_ring = &adapter->tx_ring;
1852 /* Load the hardware with the start of the transmit descriptor ring. */
1853 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1854 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1856 /* Initialise the transmit DMA engine */
1857 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1859 /* Load the completion writeback physical address */
1860 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1861 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1863 *tx_ring->tx_status = 0;
1865 writel(0, &txdma->service_request);
1866 tx_ring->send_idx = 0;
1869 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1870 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1872 /* Configure the JAGCore */
1873 et131x_configure_global_regs(adapter);
1875 et1310_config_mac_regs1(adapter);
1877 /* Configure the MMC registers */
1878 /* All we need to do is initialize the Memory Control Register */
1879 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1881 et1310_config_rxmac_regs(adapter);
1882 et1310_config_txmac_regs(adapter);
1884 et131x_config_rx_dma_regs(adapter);
1885 et131x_config_tx_dma_regs(adapter);
1887 et1310_config_macstat_regs(adapter);
1889 et1310_phy_power_switch(adapter, 0);
1890 et131x_xcvr_init(adapter);
1893 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1894 static void et131x_soft_reset(struct et131x_adapter *adapter)
1896 u32 reg;
1898 /* Disable MAC Core */
1899 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1900 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1901 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1902 writel(reg, &adapter->regs->mac.cfg1);
1904 reg = ET_RESET_ALL;
1905 writel(reg, &adapter->regs->global.sw_reset);
1907 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1908 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1909 writel(reg, &adapter->regs->mac.cfg1);
1910 writel(0, &adapter->regs->mac.cfg1);
1913 /* et131x_enable_interrupts - enable interrupt
1915 * Enable the appropriate interrupts on the ET131x according to our
1916 * configuration
1918 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1920 u32 mask;
1922 /* Enable all global interrupts */
1923 if (adapter->flowcontrol == FLOW_TXONLY ||
1924 adapter->flowcontrol == FLOW_BOTH)
1925 mask = INT_MASK_ENABLE;
1926 else
1927 mask = INT_MASK_ENABLE_NO_FLOW;
1929 writel(mask, &adapter->regs->global.int_mask);
1932 /* et131x_disable_interrupts - interrupt disable
1934 * Block all interrupts from the et131x device at the device itself
1936 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1938 /* Disable all global interrupts */
1939 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1942 /* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
1943 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1945 /* Setup the tramsmit dma configuration register */
1946 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1947 &adapter->regs->txdma.csr);
1950 /* et131x_enable_txrx - Enable tx/rx queues */
1951 static void et131x_enable_txrx(struct net_device *netdev)
1953 struct et131x_adapter *adapter = netdev_priv(netdev);
1955 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1956 et131x_rx_dma_enable(adapter);
1957 et131x_tx_dma_enable(adapter);
1959 /* Enable device interrupts */
1960 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1961 et131x_enable_interrupts(adapter);
1963 /* We're ready to move some data, so start the queue */
1964 netif_start_queue(netdev);
1967 /* et131x_disable_txrx - Disable tx/rx queues */
1968 static void et131x_disable_txrx(struct net_device *netdev)
1970 struct et131x_adapter *adapter = netdev_priv(netdev);
1972 /* First thing is to stop the queue */
1973 netif_stop_queue(netdev);
1975 /* Stop the Tx and Rx DMA engines */
1976 et131x_rx_dma_disable(adapter);
1977 et131x_tx_dma_disable(adapter);
1979 /* Disable device interrupts */
1980 et131x_disable_interrupts(adapter);
1983 /* et131x_init_send - Initialize send data structures */
1984 static void et131x_init_send(struct et131x_adapter *adapter)
1986 u32 ct;
1987 struct tx_ring *tx_ring = &adapter->tx_ring;
1988 struct tcb *tcb = tx_ring->tcb_ring;
1990 tx_ring->tcb_qhead = tcb;
1992 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1994 /* Go through and set up each TCB */
1995 for (ct = 0; ct++ < NUM_TCB; tcb++)
1996 /* Set the link pointer in HW TCB to the next TCB in the
1997 * chain
1999 tcb->next = tcb + 1;
2001 /* Set the tail pointer */
2002 tcb--;
2003 tx_ring->tcb_qtail = tcb;
2004 tcb->next = NULL;
2005 /* Curr send queue should now be empty */
2006 tx_ring->send_head = NULL;
2007 tx_ring->send_tail = NULL;
2010 /* et1310_enable_phy_coma - called when network cable is unplugged
2012 * driver receive an phy status change interrupt while in D0 and check that
2013 * phy_status is down.
2015 * -- gate off JAGCore;
2016 * -- set gigE PHY in Coma mode
2017 * -- wake on phy_interrupt; Perform software reset JAGCore,
2018 * re-initialize jagcore and gigE PHY
2020 * Add D0-ASPM-PhyLinkDown Support:
2021 * -- while in D0, when there is a phy_interrupt indicating phy link
2022 * down status, call the MPSetPhyComa routine to enter this active
2023 * state power saving mode
2024 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2025 * indicating linkup status, call the MPDisablePhyComa routine to
2026 * restore JAGCore and gigE PHY
2028 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2030 unsigned long flags;
2031 u32 pmcsr;
2033 pmcsr = readl(&adapter->regs->global.pm_csr);
2035 /* Save the GbE PHY speed and duplex modes. Need to restore this
2036 * when cable is plugged back in
2039 /* Stop sending packets. */
2040 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2041 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
2042 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2044 /* Wait for outstanding Receive packets */
2046 et131x_disable_txrx(adapter->netdev);
2048 /* Gate off JAGCore 3 clock domains */
2049 pmcsr &= ~ET_PMCSR_INIT;
2050 writel(pmcsr, &adapter->regs->global.pm_csr);
2052 /* Program gigE PHY in to Coma mode */
2053 pmcsr |= ET_PM_PHY_SW_COMA;
2054 writel(pmcsr, &adapter->regs->global.pm_csr);
2057 /* et1310_disable_phy_coma - Disable the Phy Coma Mode */
2058 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2060 u32 pmcsr;
2062 pmcsr = readl(&adapter->regs->global.pm_csr);
2064 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2065 pmcsr |= ET_PMCSR_INIT;
2066 pmcsr &= ~ET_PM_PHY_SW_COMA;
2067 writel(pmcsr, &adapter->regs->global.pm_csr);
2069 /* Restore the GbE PHY speed and duplex modes;
2070 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2073 /* Re-initialize the send structures */
2074 et131x_init_send(adapter);
2076 /* Bring the device back to the state it was during init prior to
2077 * autonegotiation being complete. This way, when we get the auto-neg
2078 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2080 et131x_soft_reset(adapter);
2082 /* setup et1310 as per the documentation ?? */
2083 et131x_adapter_setup(adapter);
2085 /* Allow Tx to restart */
2086 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
2088 et131x_enable_txrx(adapter->netdev);
2091 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2093 u32 tmp_free_buff_ring = *free_buff_ring;
2094 tmp_free_buff_ring++;
2095 /* This works for all cases where limit < 1024. The 1023 case
2096 * works because 1023++ is 1024 which means the if condition is not
2097 * taken but the carry of the bit into the wrap bit toggles the wrap
2098 * value correctly
2100 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2101 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2102 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2104 /* For the 1023 case */
2105 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
2106 *free_buff_ring = tmp_free_buff_ring;
2107 return tmp_free_buff_ring;
2110 /* et131x_rx_dma_memory_alloc
2112 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2113 * and the Packet Status Ring.
2115 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2117 u8 id;
2118 u32 i, j;
2119 u32 bufsize;
2120 u32 pktstat_ringsize;
2121 u32 fbr_chunksize;
2122 struct rx_ring *rx_ring = &adapter->rx_ring;
2123 struct fbr_lookup *fbr;
2125 /* Alloc memory for the lookup table */
2126 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2127 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2129 /* The first thing we will do is configure the sizes of the buffer
2130 * rings. These will change based on jumbo packet support. Larger
2131 * jumbo packets increases the size of each entry in FBR0, and the
2132 * number of entries in FBR0, while at the same time decreasing the
2133 * number of entries in FBR1.
2135 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2136 * entries are huge in order to accommodate a "jumbo" frame, then it
2137 * will have less entries. Conversely, FBR1 will now be relied upon
2138 * to carry more "normal" frames, thus it's entry size also increases
2139 * and the number of entries goes up too (since it now carries
2140 * "small" + "regular" packets.
2142 * In this scheme, we try to maintain 512 entries between the two
2143 * rings. Also, FBR1 remains a constant size - when it's size doubles
2144 * the number of entries halves. FBR0 increases in size, however.
2147 if (adapter->registry_jumbo_packet < 2048) {
2148 rx_ring->fbr[0]->buffsize = 256;
2149 rx_ring->fbr[0]->num_entries = 512;
2150 rx_ring->fbr[1]->buffsize = 2048;
2151 rx_ring->fbr[1]->num_entries = 512;
2152 } else if (adapter->registry_jumbo_packet < 4096) {
2153 rx_ring->fbr[0]->buffsize = 512;
2154 rx_ring->fbr[0]->num_entries = 1024;
2155 rx_ring->fbr[1]->buffsize = 4096;
2156 rx_ring->fbr[1]->num_entries = 512;
2157 } else {
2158 rx_ring->fbr[0]->buffsize = 1024;
2159 rx_ring->fbr[0]->num_entries = 768;
2160 rx_ring->fbr[1]->buffsize = 16384;
2161 rx_ring->fbr[1]->num_entries = 128;
2164 rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2165 rx_ring->fbr[1]->num_entries;
2167 for (id = 0; id < NUM_FBRS; id++) {
2168 fbr = rx_ring->fbr[id];
2169 /* Allocate an area of memory for Free Buffer Ring */
2170 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2171 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2172 bufsize,
2173 &fbr->ring_physaddr,
2174 GFP_KERNEL);
2175 if (!fbr->ring_virtaddr) {
2176 dev_err(&adapter->pdev->dev,
2177 "Cannot alloc memory for Free Buffer Ring %d\n", id);
2178 return -ENOMEM;
2182 for (id = 0; id < NUM_FBRS; id++) {
2183 fbr = rx_ring->fbr[id];
2184 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
2186 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
2187 dma_addr_t fbr_tmp_physaddr;
2189 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
2190 &adapter->pdev->dev, fbr_chunksize,
2191 &fbr->mem_physaddrs[i],
2192 GFP_KERNEL);
2194 if (!fbr->mem_virtaddrs[i]) {
2195 dev_err(&adapter->pdev->dev,
2196 "Could not alloc memory\n");
2197 return -ENOMEM;
2200 /* See NOTE in "Save Physical Address" comment above */
2201 fbr_tmp_physaddr = fbr->mem_physaddrs[i];
2203 for (j = 0; j < FBR_CHUNKS; j++) {
2204 u32 index = (i * FBR_CHUNKS) + j;
2206 /* Save the Virtual address of this index for
2207 * quick access later
2209 fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2210 (j * fbr->buffsize);
2212 /* now store the physical address in the
2213 * descriptor so the device can access it
2215 fbr->bus_high[index] =
2216 upper_32_bits(fbr_tmp_physaddr);
2217 fbr->bus_low[index] =
2218 lower_32_bits(fbr_tmp_physaddr);
2220 fbr_tmp_physaddr += fbr->buffsize;
2225 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2226 pktstat_ringsize =
2227 sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
2229 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2230 pktstat_ringsize,
2231 &rx_ring->ps_ring_physaddr,
2232 GFP_KERNEL);
2234 if (!rx_ring->ps_ring_virtaddr) {
2235 dev_err(&adapter->pdev->dev,
2236 "Cannot alloc memory for Packet Status Ring\n");
2237 return -ENOMEM;
2240 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2241 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2242 * are ever returned, make sure the high part is retrieved here before
2243 * storing the adjusted address.
2246 /* Allocate an area of memory for writeback of status information */
2247 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2248 sizeof(struct rx_status_block),
2249 &rx_ring->rx_status_bus,
2250 GFP_KERNEL);
2251 if (!rx_ring->rx_status_block) {
2252 dev_err(&adapter->pdev->dev,
2253 "Cannot alloc memory for Status Block\n");
2254 return -ENOMEM;
2256 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2258 /* The RFDs are going to be put on lists later on, so initialize the
2259 * lists now.
2261 INIT_LIST_HEAD(&rx_ring->recv_list);
2262 return 0;
2265 /* et131x_rx_dma_memory_free - Free all memory allocated within this module */
2266 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2268 u8 id;
2269 u32 index;
2270 u32 bufsize;
2271 u32 pktstat_ringsize;
2272 struct rfd *rfd;
2273 struct rx_ring *rx_ring = &adapter->rx_ring;
2274 struct fbr_lookup *fbr;
2276 /* Free RFDs and associated packet descriptors */
2277 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2279 while (!list_empty(&rx_ring->recv_list)) {
2280 rfd = list_entry(rx_ring->recv_list.next,
2281 struct rfd, list_node);
2283 list_del(&rfd->list_node);
2284 rfd->skb = NULL;
2285 kfree(rfd);
2288 /* Free Free Buffer Rings */
2289 for (id = 0; id < NUM_FBRS; id++) {
2290 fbr = rx_ring->fbr[id];
2292 if (!fbr->ring_virtaddr)
2293 continue;
2295 /* First the packet memory */
2296 for (index = 0;
2297 index < fbr->num_entries / FBR_CHUNKS;
2298 index++) {
2299 if (fbr->mem_virtaddrs[index]) {
2300 bufsize = fbr->buffsize * FBR_CHUNKS;
2302 dma_free_coherent(&adapter->pdev->dev,
2303 bufsize,
2304 fbr->mem_virtaddrs[index],
2305 fbr->mem_physaddrs[index]);
2307 fbr->mem_virtaddrs[index] = NULL;
2311 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2313 dma_free_coherent(&adapter->pdev->dev,
2314 bufsize,
2315 fbr->ring_virtaddr,
2316 fbr->ring_physaddr);
2318 fbr->ring_virtaddr = NULL;
2321 /* Free Packet Status Ring */
2322 if (rx_ring->ps_ring_virtaddr) {
2323 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
2324 rx_ring->psr_num_entries;
2326 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2327 rx_ring->ps_ring_virtaddr,
2328 rx_ring->ps_ring_physaddr);
2330 rx_ring->ps_ring_virtaddr = NULL;
2333 /* Free area of memory for the writeback of status information */
2334 if (rx_ring->rx_status_block) {
2335 dma_free_coherent(&adapter->pdev->dev,
2336 sizeof(struct rx_status_block),
2337 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2338 rx_ring->rx_status_block = NULL;
2341 /* Free the FBR Lookup Table */
2342 kfree(rx_ring->fbr[0]);
2343 kfree(rx_ring->fbr[1]);
2345 /* Reset Counters */
2346 rx_ring->num_ready_recv = 0;
2349 /* et131x_init_recv - Initialize receive data structures */
2350 static int et131x_init_recv(struct et131x_adapter *adapter)
2352 struct rfd *rfd;
2353 u32 rfdct;
2354 struct rx_ring *rx_ring = &adapter->rx_ring;
2356 /* Setup each RFD */
2357 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2358 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
2359 if (!rfd)
2360 return -ENOMEM;
2362 rfd->skb = NULL;
2364 /* Add this RFD to the recv_list */
2365 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2367 /* Increment the available RFD's */
2368 rx_ring->num_ready_recv++;
2371 return 0;
2374 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2375 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2377 struct phy_device *phydev = adapter->phydev;
2379 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2380 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2382 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2383 writel(0, &adapter->regs->rxdma.max_pkt_time);
2384 writel(1, &adapter->regs->rxdma.num_pkt_done);
2388 /* NICReturnRFD - Recycle a RFD and put it back onto the receive list
2389 * @adapter: pointer to our adapter
2390 * @rfd: pointer to the RFD
2392 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2394 struct rx_ring *rx_local = &adapter->rx_ring;
2395 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2396 u16 buff_index = rfd->bufferindex;
2397 u8 ring_index = rfd->ringindex;
2398 unsigned long flags;
2399 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2401 /* We don't use any of the OOB data besides status. Otherwise, we
2402 * need to clean up OOB data
2404 if (buff_index < fbr->num_entries) {
2405 u32 free_buff_ring;
2406 u32 __iomem *offset;
2407 struct fbr_desc *next;
2409 spin_lock_irqsave(&adapter->fbr_lock, flags);
2411 if (ring_index == 0)
2412 offset = &rx_dma->fbr0_full_offset;
2413 else
2414 offset = &rx_dma->fbr1_full_offset;
2416 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2417 INDEX10(fbr->local_full);
2419 /* Handle the Free Buffer Ring advancement here. Write
2420 * the PA / Buffer Index for the returned buffer into
2421 * the oldest (next to be freed)FBR entry
2423 next->addr_hi = fbr->bus_high[buff_index];
2424 next->addr_lo = fbr->bus_low[buff_index];
2425 next->word2 = buff_index;
2427 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2428 fbr->num_entries - 1);
2429 writel(free_buff_ring, offset);
2431 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2432 } else {
2433 dev_err(&adapter->pdev->dev,
2434 "%s illegal Buffer Index returned\n", __func__);
2437 /* The processing on this RFD is done, so put it back on the tail of
2438 * our list
2440 spin_lock_irqsave(&adapter->rcv_lock, flags);
2441 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2442 rx_local->num_ready_recv++;
2443 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2445 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2448 /* nic_rx_pkts - Checks the hardware for available packets
2450 * Returns rfd, a pointer to our MPRFD.
2452 * Checks the hardware for available packets, using completion ring
2453 * If packets are available, it gets an RFD from the recv_list, attaches
2454 * the packet to it, puts the RFD in the RecvPendList, and also returns
2455 * the pointer to the RFD.
2457 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2459 struct rx_ring *rx_local = &adapter->rx_ring;
2460 struct rx_status_block *status;
2461 struct pkt_stat_desc *psr;
2462 struct rfd *rfd;
2463 u32 i;
2464 u8 *buf;
2465 unsigned long flags;
2466 struct list_head *element;
2467 u8 ring_index;
2468 u16 buff_index;
2469 u32 len;
2470 u32 word0;
2471 u32 word1;
2472 struct sk_buff *skb;
2473 struct fbr_lookup *fbr;
2475 /* RX Status block is written by the DMA engine prior to every
2476 * interrupt. It contains the next to be used entry in the Packet
2477 * Status Ring, and also the two Free Buffer rings.
2479 status = rx_local->rx_status_block;
2480 word1 = status->word1 >> 16; /* Get the useful bits */
2482 /* Check the PSR and wrap bits do not match */
2483 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2484 return NULL; /* Looks like this ring is not updated yet */
2486 /* The packet status ring indicates that data is available. */
2487 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2488 (rx_local->local_psr_full & 0xFFF);
2490 /* Grab any information that is required once the PSR is advanced,
2491 * since we can no longer rely on the memory being accurate
2493 len = psr->word1 & 0xFFFF;
2494 ring_index = (psr->word1 >> 26) & 0x03;
2495 fbr = rx_local->fbr[ring_index];
2496 buff_index = (psr->word1 >> 16) & 0x3FF;
2497 word0 = psr->word0;
2499 /* Indicate that we have used this PSR entry. */
2500 /* FIXME wrap 12 */
2501 add_12bit(&rx_local->local_psr_full, 1);
2502 if (
2503 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2504 /* Clear psr full and toggle the wrap bit */
2505 rx_local->local_psr_full &= ~0xFFF;
2506 rx_local->local_psr_full ^= 0x1000;
2509 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2511 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2512 /* Illegal buffer or ring index cannot be used by S/W*/
2513 dev_err(&adapter->pdev->dev,
2514 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2515 rx_local->local_psr_full & 0xFFF, len, buff_index);
2516 return NULL;
2519 /* Get and fill the RFD. */
2520 spin_lock_irqsave(&adapter->rcv_lock, flags);
2522 element = rx_local->recv_list.next;
2523 rfd = list_entry(element, struct rfd, list_node);
2525 if (!rfd) {
2526 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2527 return NULL;
2530 list_del(&rfd->list_node);
2531 rx_local->num_ready_recv--;
2533 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2535 rfd->bufferindex = buff_index;
2536 rfd->ringindex = ring_index;
2538 /* In V1 silicon, there is a bug which screws up filtering of runt
2539 * packets. Therefore runt packet filtering is disabled in the MAC and
2540 * the packets are dropped here. They are also counted here.
2542 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2543 adapter->stats.rx_other_errs++;
2544 len = 0;
2547 if (len == 0) {
2548 rfd->len = 0;
2549 goto out;
2552 /* Determine if this is a multicast packet coming in */
2553 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2554 !(word0 & ALCATEL_BROADCAST_PKT)) {
2555 /* Promiscuous mode and Multicast mode are not mutually
2556 * exclusive as was first thought. I guess Promiscuous is just
2557 * considered a super-set of the other filters. Generally filter
2558 * is 0x2b when in promiscuous mode.
2560 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2561 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2562 && !(adapter->packet_filter &
2563 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
2564 buf = fbr->virt[buff_index];
2566 /* Loop through our list to see if the destination
2567 * address of this packet matches one in our list.
2569 for (i = 0; i < adapter->multicast_addr_count; i++) {
2570 if (buf[0] == adapter->multicast_list[i][0]
2571 && buf[1] == adapter->multicast_list[i][1]
2572 && buf[2] == adapter->multicast_list[i][2]
2573 && buf[3] == adapter->multicast_list[i][3]
2574 && buf[4] == adapter->multicast_list[i][4]
2575 && buf[5] == adapter->multicast_list[i][5]) {
2576 break;
2580 /* If our index is equal to the number of Multicast
2581 * address we have, then this means we did not find this
2582 * packet's matching address in our list. Set the len to
2583 * zero, so we free our RFD when we return from this
2584 * function.
2586 if (i == adapter->multicast_addr_count)
2587 len = 0;
2590 if (len > 0)
2591 adapter->stats.multicast_pkts_rcvd++;
2592 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2593 adapter->stats.broadcast_pkts_rcvd++;
2594 } else {
2595 /* Not sure what this counter measures in promiscuous mode.
2596 * Perhaps we should check the MAC address to see if it is
2597 * directed to us in promiscuous mode.
2599 adapter->stats.unicast_pkts_rcvd++;
2602 if (!len) {
2603 rfd->len = 0;
2604 goto out;
2607 rfd->len = len;
2609 skb = dev_alloc_skb(rfd->len + 2);
2610 if (!skb) {
2611 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2612 return NULL;
2615 adapter->net_stats.rx_bytes += rfd->len;
2617 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2619 skb->protocol = eth_type_trans(skb, adapter->netdev);
2620 skb->ip_summed = CHECKSUM_NONE;
2621 netif_rx_ni(skb);
2623 out:
2624 nic_return_rfd(adapter, rfd);
2625 return rfd;
2628 /* et131x_handle_recv_interrupt - Interrupt handler for receive processing
2630 * Assumption, Rcv spinlock has been acquired.
2632 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
2634 struct rfd *rfd = NULL;
2635 u32 count = 0;
2636 bool done = true;
2637 struct rx_ring *rx_ring = &adapter->rx_ring;
2639 /* Process up to available RFD's */
2640 while (count < NUM_PACKETS_HANDLED) {
2641 if (list_empty(&rx_ring->recv_list)) {
2642 WARN_ON(rx_ring->num_ready_recv != 0);
2643 done = false;
2644 break;
2647 rfd = nic_rx_pkts(adapter);
2649 if (rfd == NULL)
2650 break;
2652 /* Do not receive any packets until a filter has been set.
2653 * Do not receive any packets until we have link.
2654 * If length is zero, return the RFD in order to advance the
2655 * Free buffer ring.
2657 if (!adapter->packet_filter ||
2658 !netif_carrier_ok(adapter->netdev) ||
2659 rfd->len == 0)
2660 continue;
2662 /* Increment the number of packets we received */
2663 adapter->net_stats.rx_packets++;
2665 /* Set the status on the packet, either resources or success */
2666 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2667 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2669 count++;
2672 if (count == NUM_PACKETS_HANDLED || !done) {
2673 rx_ring->unfinished_receives = true;
2674 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2675 &adapter->regs->global.watchdog_timer);
2676 } else
2677 /* Watchdog timer will disable itself if appropriate. */
2678 rx_ring->unfinished_receives = false;
2681 /* et131x_tx_dma_memory_alloc
2683 * Allocates memory that will be visible both to the device and to the CPU.
2684 * The OS will pass us packets, pointers to which we will insert in the Tx
2685 * Descriptor queue. The device will read this queue to find the packets in
2686 * memory. The device will update the "status" in memory each time it xmits a
2687 * packet.
2689 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2691 int desc_size = 0;
2692 struct tx_ring *tx_ring = &adapter->tx_ring;
2694 /* Allocate memory for the TCB's (Transmit Control Block) */
2695 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2696 GFP_ATOMIC | GFP_DMA);
2697 if (!tx_ring->tcb_ring)
2698 return -ENOMEM;
2700 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2701 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2702 desc_size,
2703 &tx_ring->tx_desc_ring_pa,
2704 GFP_KERNEL);
2705 if (!tx_ring->tx_desc_ring) {
2706 dev_err(&adapter->pdev->dev,
2707 "Cannot alloc memory for Tx Ring\n");
2708 return -ENOMEM;
2711 /* Save physical address
2713 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2714 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2715 * are ever returned, make sure the high part is retrieved here before
2716 * storing the adjusted address.
2718 /* Allocate memory for the Tx status block */
2719 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2720 sizeof(u32),
2721 &tx_ring->tx_status_pa,
2722 GFP_KERNEL);
2723 if (!tx_ring->tx_status_pa) {
2724 dev_err(&adapter->pdev->dev,
2725 "Cannot alloc memory for Tx status block\n");
2726 return -ENOMEM;
2728 return 0;
2731 /* et131x_tx_dma_memory_free - Free all memory allocated within this module */
2732 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2734 int desc_size = 0;
2735 struct tx_ring *tx_ring = &adapter->tx_ring;
2737 if (tx_ring->tx_desc_ring) {
2738 /* Free memory relating to Tx rings here */
2739 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2740 dma_free_coherent(&adapter->pdev->dev,
2741 desc_size,
2742 tx_ring->tx_desc_ring,
2743 tx_ring->tx_desc_ring_pa);
2744 tx_ring->tx_desc_ring = NULL;
2747 /* Free memory for the Tx status block */
2748 if (tx_ring->tx_status) {
2749 dma_free_coherent(&adapter->pdev->dev,
2750 sizeof(u32),
2751 tx_ring->tx_status,
2752 tx_ring->tx_status_pa);
2754 tx_ring->tx_status = NULL;
2756 /* Free the memory for the tcb structures */
2757 kfree(tx_ring->tcb_ring);
2760 /* nic_send_packet - NIC specific send handler for version B silicon.
2761 * @adapter: pointer to our adapter
2762 * @tcb: pointer to struct tcb
2764 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2766 u32 i;
2767 struct tx_desc desc[24]; /* 24 x 16 byte */
2768 u32 frag = 0;
2769 u32 thiscopy, remainder;
2770 struct sk_buff *skb = tcb->skb;
2771 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2772 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2773 unsigned long flags;
2774 struct phy_device *phydev = adapter->phydev;
2775 dma_addr_t dma_addr;
2776 struct tx_ring *tx_ring = &adapter->tx_ring;
2778 /* Part of the optimizations of this send routine restrict us to
2779 * sending 24 fragments at a pass. In practice we should never see
2780 * more than 5 fragments.
2782 * NOTE: The older version of this function (below) can handle any
2783 * number of fragments. If needed, we can call this function,
2784 * although it is less efficient.
2787 /* nr_frags should be no more than 18. */
2788 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2790 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2792 for (i = 0; i < nr_frags; i++) {
2793 /* If there is something in this element, lets get a
2794 * descriptor from the ring and get the necessary data
2796 if (i == 0) {
2797 /* If the fragments are smaller than a standard MTU,
2798 * then map them to a single descriptor in the Tx
2799 * Desc ring. However, if they're larger, as is
2800 * possible with support for jumbo packets, then
2801 * split them each across 2 descriptors.
2803 * This will work until we determine why the hardware
2804 * doesn't seem to like large fragments.
2806 if (skb_headlen(skb) <= 1514) {
2807 /* Low 16bits are length, high is vlan and
2808 * unused currently so zero
2810 desc[frag].len_vlan = skb_headlen(skb);
2811 dma_addr = dma_map_single(&adapter->pdev->dev,
2812 skb->data,
2813 skb_headlen(skb),
2814 DMA_TO_DEVICE);
2815 desc[frag].addr_lo = lower_32_bits(dma_addr);
2816 desc[frag].addr_hi = upper_32_bits(dma_addr);
2817 frag++;
2818 } else {
2819 desc[frag].len_vlan = skb_headlen(skb) / 2;
2820 dma_addr = dma_map_single(&adapter->pdev->dev,
2821 skb->data,
2822 (skb_headlen(skb) / 2),
2823 DMA_TO_DEVICE);
2824 desc[frag].addr_lo = lower_32_bits(dma_addr);
2825 desc[frag].addr_hi = upper_32_bits(dma_addr);
2826 frag++;
2828 desc[frag].len_vlan = skb_headlen(skb) / 2;
2829 dma_addr = dma_map_single(&adapter->pdev->dev,
2830 skb->data +
2831 (skb_headlen(skb) / 2),
2832 (skb_headlen(skb) / 2),
2833 DMA_TO_DEVICE);
2834 desc[frag].addr_lo = lower_32_bits(dma_addr);
2835 desc[frag].addr_hi = upper_32_bits(dma_addr);
2836 frag++;
2838 } else {
2839 desc[frag].len_vlan = frags[i - 1].size;
2840 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2841 &frags[i - 1],
2843 frags[i - 1].size,
2844 DMA_TO_DEVICE);
2845 desc[frag].addr_lo = lower_32_bits(dma_addr);
2846 desc[frag].addr_hi = upper_32_bits(dma_addr);
2847 frag++;
2851 if (phydev && phydev->speed == SPEED_1000) {
2852 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2853 /* Last element & Interrupt flag */
2854 desc[frag - 1].flags =
2855 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2856 tx_ring->since_irq = 0;
2857 } else { /* Last element */
2858 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2860 } else
2861 desc[frag - 1].flags =
2862 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2864 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2866 tcb->index_start = tx_ring->send_idx;
2867 tcb->stale = 0;
2869 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2871 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2873 if (thiscopy >= frag) {
2874 remainder = 0;
2875 thiscopy = frag;
2876 } else {
2877 remainder = frag - thiscopy;
2880 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2881 desc,
2882 sizeof(struct tx_desc) * thiscopy);
2884 add_10bit(&tx_ring->send_idx, thiscopy);
2886 if (INDEX10(tx_ring->send_idx) == 0 ||
2887 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2888 tx_ring->send_idx &= ~ET_DMA10_MASK;
2889 tx_ring->send_idx ^= ET_DMA10_WRAP;
2892 if (remainder) {
2893 memcpy(tx_ring->tx_desc_ring,
2894 desc + thiscopy,
2895 sizeof(struct tx_desc) * remainder);
2897 add_10bit(&tx_ring->send_idx, remainder);
2900 if (INDEX10(tx_ring->send_idx) == 0) {
2901 if (tx_ring->send_idx)
2902 tcb->index = NUM_DESC_PER_RING_TX - 1;
2903 else
2904 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2905 } else
2906 tcb->index = tx_ring->send_idx - 1;
2908 spin_lock(&adapter->tcb_send_qlock);
2910 if (tx_ring->send_tail)
2911 tx_ring->send_tail->next = tcb;
2912 else
2913 tx_ring->send_head = tcb;
2915 tx_ring->send_tail = tcb;
2917 WARN_ON(tcb->next != NULL);
2919 tx_ring->used++;
2921 spin_unlock(&adapter->tcb_send_qlock);
2923 /* Write the new write pointer back to the device. */
2924 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2926 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2927 * timer to wake us up if this packet isn't followed by N more.
2929 if (phydev && phydev->speed == SPEED_1000) {
2930 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2931 &adapter->regs->global.watchdog_timer);
2933 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2935 return 0;
2938 /* send_packet - Do the work to send a packet
2940 * Assumption: Send spinlock has been acquired
2942 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2944 int status;
2945 struct tcb *tcb;
2946 u16 *shbufva;
2947 unsigned long flags;
2948 struct tx_ring *tx_ring = &adapter->tx_ring;
2950 /* All packets must have at least a MAC address and a protocol type */
2951 if (skb->len < ETH_HLEN)
2952 return -EIO;
2954 /* Get a TCB for this packet */
2955 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2957 tcb = tx_ring->tcb_qhead;
2959 if (tcb == NULL) {
2960 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2961 return -ENOMEM;
2964 tx_ring->tcb_qhead = tcb->next;
2966 if (tx_ring->tcb_qhead == NULL)
2967 tx_ring->tcb_qtail = NULL;
2969 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2971 tcb->skb = skb;
2973 if (skb->data != NULL && skb_headlen(skb) >= 6) {
2974 shbufva = (u16 *) skb->data;
2976 if ((shbufva[0] == 0xffff) &&
2977 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
2978 tcb->flags |= FMP_DEST_BROAD;
2979 else if ((shbufva[0] & 0x3) == 0x0001)
2980 tcb->flags |= FMP_DEST_MULTI;
2983 tcb->next = NULL;
2985 /* Call the NIC specific send handler. */
2986 status = nic_send_packet(adapter, tcb);
2988 if (status != 0) {
2989 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2991 if (tx_ring->tcb_qtail)
2992 tx_ring->tcb_qtail->next = tcb;
2993 else
2994 /* Apparently ready Q is empty. */
2995 tx_ring->tcb_qhead = tcb;
2997 tx_ring->tcb_qtail = tcb;
2998 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2999 return status;
3001 WARN_ON(tx_ring->used > NUM_TCB);
3002 return 0;
3005 /* et131x_send_packets - This function is called by the OS to send packets */
3006 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3008 int status = 0;
3009 struct et131x_adapter *adapter = netdev_priv(netdev);
3010 struct tx_ring *tx_ring = &adapter->tx_ring;
3012 /* Send these packets
3014 * NOTE: The Linux Tx entry point is only given one packet at a time
3015 * to Tx, so the PacketCount and it's array used makes no sense here
3018 /* TCB is not available */
3019 if (tx_ring->used >= NUM_TCB) {
3020 /* NOTE: If there's an error on send, no need to queue the
3021 * packet under Linux; if we just send an error up to the
3022 * netif layer, it will resend the skb to us.
3024 status = -ENOMEM;
3025 } else {
3026 /* We need to see if the link is up; if it's not, make the
3027 * netif layer think we're good and drop the packet
3029 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3030 !netif_carrier_ok(netdev)) {
3031 dev_kfree_skb_any(skb);
3032 skb = NULL;
3034 adapter->net_stats.tx_dropped++;
3035 } else {
3036 status = send_packet(skb, adapter);
3037 if (status != 0 && status != -ENOMEM) {
3038 /* On any other error, make netif think we're
3039 * OK and drop the packet
3041 dev_kfree_skb_any(skb);
3042 skb = NULL;
3043 adapter->net_stats.tx_dropped++;
3047 return status;
3050 /* free_send_packet - Recycle a struct tcb
3051 * @adapter: pointer to our adapter
3052 * @tcb: pointer to struct tcb
3054 * Complete the packet if necessary
3055 * Assumption - Send spinlock has been acquired
3057 static inline void free_send_packet(struct et131x_adapter *adapter,
3058 struct tcb *tcb)
3060 unsigned long flags;
3061 struct tx_desc *desc = NULL;
3062 struct net_device_stats *stats = &adapter->net_stats;
3063 struct tx_ring *tx_ring = &adapter->tx_ring;
3064 u64 dma_addr;
3066 if (tcb->flags & FMP_DEST_BROAD)
3067 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3068 else if (tcb->flags & FMP_DEST_MULTI)
3069 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3070 else
3071 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3073 if (tcb->skb) {
3074 stats->tx_bytes += tcb->skb->len;
3076 /* Iterate through the TX descriptors on the ring
3077 * corresponding to this packet and umap the fragments
3078 * they point to
3080 do {
3081 desc = tx_ring->tx_desc_ring +
3082 INDEX10(tcb->index_start);
3084 dma_addr = desc->addr_lo;
3085 dma_addr |= (u64)desc->addr_hi << 32;
3087 dma_unmap_single(&adapter->pdev->dev,
3088 dma_addr,
3089 desc->len_vlan, DMA_TO_DEVICE);
3091 add_10bit(&tcb->index_start, 1);
3092 if (INDEX10(tcb->index_start) >=
3093 NUM_DESC_PER_RING_TX) {
3094 tcb->index_start &= ~ET_DMA10_MASK;
3095 tcb->index_start ^= ET_DMA10_WRAP;
3097 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
3099 dev_kfree_skb_any(tcb->skb);
3102 memset(tcb, 0, sizeof(struct tcb));
3104 /* Add the TCB to the Ready Q */
3105 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3107 adapter->net_stats.tx_packets++;
3109 if (tx_ring->tcb_qtail)
3110 tx_ring->tcb_qtail->next = tcb;
3111 else
3112 /* Apparently ready Q is empty. */
3113 tx_ring->tcb_qhead = tcb;
3115 tx_ring->tcb_qtail = tcb;
3117 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3118 WARN_ON(tx_ring->used < 0);
3121 /* et131x_free_busy_send_packets - Free and complete the stopped active sends
3123 * Assumption - Send spinlock has been acquired
3125 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3127 struct tcb *tcb;
3128 unsigned long flags;
3129 u32 freed = 0;
3130 struct tx_ring *tx_ring = &adapter->tx_ring;
3132 /* Any packets being sent? Check the first TCB on the send list */
3133 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3135 tcb = tx_ring->send_head;
3137 while (tcb != NULL && freed < NUM_TCB) {
3138 struct tcb *next = tcb->next;
3140 tx_ring->send_head = next;
3142 if (next == NULL)
3143 tx_ring->send_tail = NULL;
3145 tx_ring->used--;
3147 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3149 freed++;
3150 free_send_packet(adapter, tcb);
3152 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3154 tcb = tx_ring->send_head;
3157 WARN_ON(freed == NUM_TCB);
3159 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3161 tx_ring->used = 0;
3164 /* et131x_handle_send_interrupt - Interrupt handler for sending processing
3166 * Re-claim the send resources, complete sends and get more to send from
3167 * the send wait queue.
3169 * Assumption - Send spinlock has been acquired
3171 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3173 unsigned long flags;
3174 u32 serviced;
3175 struct tcb *tcb;
3176 u32 index;
3177 struct tx_ring *tx_ring = &adapter->tx_ring;
3179 serviced = readl(&adapter->regs->txdma.new_service_complete);
3180 index = INDEX10(serviced);
3182 /* Has the ring wrapped? Process any descriptors that do not have
3183 * the same "wrap" indicator as the current completion indicator
3185 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3187 tcb = tx_ring->send_head;
3189 while (tcb &&
3190 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3191 index < INDEX10(tcb->index)) {
3192 tx_ring->used--;
3193 tx_ring->send_head = tcb->next;
3194 if (tcb->next == NULL)
3195 tx_ring->send_tail = NULL;
3197 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3198 free_send_packet(adapter, tcb);
3199 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3201 /* Goto the next packet */
3202 tcb = tx_ring->send_head;
3204 while (tcb &&
3205 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3206 && index > (tcb->index & ET_DMA10_MASK)) {
3207 tx_ring->used--;
3208 tx_ring->send_head = tcb->next;
3209 if (tcb->next == NULL)
3210 tx_ring->send_tail = NULL;
3212 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3213 free_send_packet(adapter, tcb);
3214 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3216 /* Goto the next packet */
3217 tcb = tx_ring->send_head;
3220 /* Wake up the queue when we hit a low-water mark */
3221 if (tx_ring->used <= NUM_TCB / 3)
3222 netif_wake_queue(adapter->netdev);
3224 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3227 static int et131x_get_settings(struct net_device *netdev,
3228 struct ethtool_cmd *cmd)
3230 struct et131x_adapter *adapter = netdev_priv(netdev);
3232 return phy_ethtool_gset(adapter->phydev, cmd);
3235 static int et131x_set_settings(struct net_device *netdev,
3236 struct ethtool_cmd *cmd)
3238 struct et131x_adapter *adapter = netdev_priv(netdev);
3240 return phy_ethtool_sset(adapter->phydev, cmd);
3243 static int et131x_get_regs_len(struct net_device *netdev)
3245 #define ET131X_REGS_LEN 256
3246 return ET131X_REGS_LEN * sizeof(u32);
3249 static void et131x_get_regs(struct net_device *netdev,
3250 struct ethtool_regs *regs, void *regs_data)
3252 struct et131x_adapter *adapter = netdev_priv(netdev);
3253 struct address_map __iomem *aregs = adapter->regs;
3254 u32 *regs_buff = regs_data;
3255 u32 num = 0;
3256 u16 tmp;
3258 memset(regs_data, 0, et131x_get_regs_len(netdev));
3260 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3261 adapter->pdev->device;
3263 /* PHY regs */
3264 et131x_mii_read(adapter, MII_BMCR, &tmp);
3265 regs_buff[num++] = tmp;
3266 et131x_mii_read(adapter, MII_BMSR, &tmp);
3267 regs_buff[num++] = tmp;
3268 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3269 regs_buff[num++] = tmp;
3270 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3271 regs_buff[num++] = tmp;
3272 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3273 regs_buff[num++] = tmp;
3274 et131x_mii_read(adapter, MII_LPA, &tmp);
3275 regs_buff[num++] = tmp;
3276 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3277 regs_buff[num++] = tmp;
3278 /* Autoneg next page transmit reg */
3279 et131x_mii_read(adapter, 0x07, &tmp);
3280 regs_buff[num++] = tmp;
3281 /* Link partner next page reg */
3282 et131x_mii_read(adapter, 0x08, &tmp);
3283 regs_buff[num++] = tmp;
3284 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3285 regs_buff[num++] = tmp;
3286 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3287 regs_buff[num++] = tmp;
3288 et131x_mii_read(adapter, 0x0b, &tmp);
3289 regs_buff[num++] = tmp;
3290 et131x_mii_read(adapter, 0x0c, &tmp);
3291 regs_buff[num++] = tmp;
3292 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3293 regs_buff[num++] = tmp;
3294 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3295 regs_buff[num++] = tmp;
3296 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3297 regs_buff[num++] = tmp;
3299 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3300 regs_buff[num++] = tmp;
3301 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3302 regs_buff[num++] = tmp;
3303 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3304 regs_buff[num++] = tmp;
3305 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3306 regs_buff[num++] = tmp;
3307 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3308 regs_buff[num++] = tmp;
3310 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3311 regs_buff[num++] = tmp;
3312 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3313 regs_buff[num++] = tmp;
3314 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3315 regs_buff[num++] = tmp;
3316 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3317 regs_buff[num++] = tmp;
3318 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3319 regs_buff[num++] = tmp;
3320 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3321 regs_buff[num++] = tmp;
3322 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3323 regs_buff[num++] = tmp;
3324 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3325 regs_buff[num++] = tmp;
3327 /* Global regs */
3328 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3329 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3330 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3331 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3332 regs_buff[num++] = readl(&aregs->global.pm_csr);
3333 regs_buff[num++] = adapter->stats.interrupt_status;
3334 regs_buff[num++] = readl(&aregs->global.int_mask);
3335 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3336 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3337 regs_buff[num++] = readl(&aregs->global.sw_reset);
3338 regs_buff[num++] = readl(&aregs->global.slv_timer);
3339 regs_buff[num++] = readl(&aregs->global.msi_config);
3340 regs_buff[num++] = readl(&aregs->global.loopback);
3341 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3343 /* TXDMA regs */
3344 regs_buff[num++] = readl(&aregs->txdma.csr);
3345 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3346 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3347 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3348 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3349 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3350 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3351 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3352 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3353 regs_buff[num++] = readl(&aregs->txdma.service_request);
3354 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3355 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3356 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3357 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3358 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3359 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3360 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3361 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3362 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3363 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3364 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3365 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3366 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3367 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3368 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3369 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3371 /* RXDMA regs */
3372 regs_buff[num++] = readl(&aregs->rxdma.csr);
3373 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3374 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3375 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3376 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3377 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3378 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3379 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3380 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3381 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3382 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3383 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3384 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3385 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3386 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3387 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3388 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3389 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3390 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3391 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3392 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3393 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3394 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3395 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3396 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3397 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3398 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3399 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3400 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3403 static void et131x_get_drvinfo(struct net_device *netdev,
3404 struct ethtool_drvinfo *info)
3406 struct et131x_adapter *adapter = netdev_priv(netdev);
3408 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3409 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3410 strlcpy(info->bus_info, pci_name(adapter->pdev),
3411 sizeof(info->bus_info));
3414 static struct ethtool_ops et131x_ethtool_ops = {
3415 .get_settings = et131x_get_settings,
3416 .set_settings = et131x_set_settings,
3417 .get_drvinfo = et131x_get_drvinfo,
3418 .get_regs_len = et131x_get_regs_len,
3419 .get_regs = et131x_get_regs,
3420 .get_link = ethtool_op_get_link,
3423 /* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
3424 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3426 /* If have our default mac from init and no mac address from
3427 * EEPROM then we need to generate the last octet and set it on the
3428 * device
3430 if (is_zero_ether_addr(adapter->rom_addr)) {
3431 /* We need to randomly generate the last octet so we
3432 * decrease our chances of setting the mac address to
3433 * same as another one of our cards in the system
3435 get_random_bytes(&adapter->addr[5], 1);
3436 /* We have the default value in the register we are
3437 * working with so we need to copy the current
3438 * address into the permanent address
3440 memcpy(adapter->rom_addr,
3441 adapter->addr, ETH_ALEN);
3442 } else {
3443 /* We do not have an override address, so set the
3444 * current address to the permanent address and add
3445 * it to the device
3447 memcpy(adapter->addr,
3448 adapter->rom_addr, ETH_ALEN);
3452 /* et131x_pci_init - initial PCI setup
3454 * Perform the initial setup of PCI registers and if possible initialise
3455 * the MAC address. At this point the I/O registers have yet to be mapped
3457 static int et131x_pci_init(struct et131x_adapter *adapter,
3458 struct pci_dev *pdev)
3460 u16 max_payload;
3461 int i, rc;
3463 rc = et131x_init_eeprom(adapter);
3464 if (rc < 0)
3465 goto out;
3467 if (!pci_is_pcie(pdev)) {
3468 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3469 goto err_out;
3472 /* Let's set up the PORT LOGIC Register. */
3474 /* Program the Ack/Nak latency and replay timers */
3475 max_payload = pdev->pcie_mpss;
3477 if (max_payload < 2) {
3478 static const u16 acknak[2] = { 0x76, 0xD0 };
3479 static const u16 replay[2] = { 0x1E0, 0x2ED };
3481 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3482 acknak[max_payload])) {
3483 dev_err(&pdev->dev,
3484 "Could not write PCI config space for ACK/NAK\n");
3485 goto err_out;
3487 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3488 replay[max_payload])) {
3489 dev_err(&pdev->dev,
3490 "Could not write PCI config space for Replay Timer\n");
3491 goto err_out;
3495 /* l0s and l1 latency timers. We are using default values.
3496 * Representing 001 for L0s and 010 for L1
3498 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3499 dev_err(&pdev->dev,
3500 "Could not write PCI config space for Latency Timers\n");
3501 goto err_out;
3504 /* Change the max read size to 2k */
3505 if (pcie_set_readrq(pdev, 2048)) {
3506 dev_err(&pdev->dev,
3507 "Couldn't change PCI config space for Max read size\n");
3508 goto err_out;
3511 /* Get MAC address from config space if an eeprom exists, otherwise
3512 * the MAC address there will not be valid
3514 if (!adapter->has_eeprom) {
3515 et131x_hwaddr_init(adapter);
3516 return 0;
3519 for (i = 0; i < ETH_ALEN; i++) {
3520 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3521 adapter->rom_addr + i)) {
3522 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3523 goto err_out;
3526 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
3527 out:
3528 return rc;
3529 err_out:
3530 rc = -EIO;
3531 goto out;
3534 /* et131x_error_timer_handler
3535 * @data: timer-specific variable; here a pointer to our adapter structure
3537 * The routine called when the error timer expires, to track the number of
3538 * recurring errors.
3540 static void et131x_error_timer_handler(unsigned long data)
3542 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3543 struct phy_device *phydev = adapter->phydev;
3545 if (et1310_in_phy_coma(adapter)) {
3546 /* Bring the device immediately out of coma, to
3547 * prevent it from sleeping indefinitely, this
3548 * mechanism could be improved!
3550 et1310_disable_phy_coma(adapter);
3551 adapter->boot_coma = 20;
3552 } else {
3553 et1310_update_macstat_host_counters(adapter);
3556 if (!phydev->link && adapter->boot_coma < 11)
3557 adapter->boot_coma++;
3559 if (adapter->boot_coma == 10) {
3560 if (!phydev->link) {
3561 if (!et1310_in_phy_coma(adapter)) {
3562 /* NOTE - This was originally a 'sync with
3563 * interrupt'. How to do that under Linux?
3565 et131x_enable_interrupts(adapter);
3566 et1310_enable_phy_coma(adapter);
3571 /* This is a periodic timer, so reschedule */
3572 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
3575 /* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
3576 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3578 et131x_tx_dma_memory_free(adapter);
3579 et131x_rx_dma_memory_free(adapter);
3582 /* et131x_adapter_memory_alloc
3583 * Allocate all the memory blocks for send, receive and others.
3585 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3587 int status;
3589 /* Allocate memory for the Tx Ring */
3590 status = et131x_tx_dma_memory_alloc(adapter);
3591 if (status) {
3592 dev_err(&adapter->pdev->dev,
3593 "et131x_tx_dma_memory_alloc FAILED\n");
3594 return status;
3596 /* Receive buffer memory allocation */
3597 status = et131x_rx_dma_memory_alloc(adapter);
3598 if (status) {
3599 dev_err(&adapter->pdev->dev,
3600 "et131x_rx_dma_memory_alloc FAILED\n");
3601 et131x_tx_dma_memory_free(adapter);
3602 return status;
3605 /* Init receive data structures */
3606 status = et131x_init_recv(adapter);
3607 if (status) {
3608 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3609 et131x_adapter_memory_free(adapter);
3611 return status;
3614 static void et131x_adjust_link(struct net_device *netdev)
3616 struct et131x_adapter *adapter = netdev_priv(netdev);
3617 struct phy_device *phydev = adapter->phydev;
3619 if (!phydev)
3620 return;
3621 if (phydev->link == adapter->link)
3622 return;
3624 /* Check to see if we are in coma mode and if
3625 * so, disable it because we will not be able
3626 * to read PHY values until we are out.
3628 if (et1310_in_phy_coma(adapter))
3629 et1310_disable_phy_coma(adapter);
3631 adapter->link = phydev->link;
3632 phy_print_status(phydev);
3634 if (phydev->link) {
3635 adapter->boot_coma = 20;
3636 if (phydev->speed == SPEED_10) {
3637 u16 register18;
3639 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3640 &register18);
3641 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3642 register18 | 0x4);
3643 et131x_mii_write(adapter, PHY_INDEX_REG,
3644 register18 | 0x8402);
3645 et131x_mii_write(adapter, PHY_DATA_REG,
3646 register18 | 511);
3647 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3648 register18);
3651 et1310_config_flow_control(adapter);
3653 if (phydev->speed == SPEED_1000 &&
3654 adapter->registry_jumbo_packet > 2048) {
3655 u16 reg;
3657 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3658 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3659 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3660 et131x_mii_write(adapter, PHY_CONFIG, reg);
3663 et131x_set_rx_dma_timer(adapter);
3664 et1310_config_mac_regs2(adapter);
3665 } else {
3666 adapter->boot_coma = 0;
3668 if (phydev->speed == SPEED_10) {
3669 u16 register18;
3671 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3672 &register18);
3673 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3674 register18 | 0x4);
3675 et131x_mii_write(adapter, PHY_INDEX_REG,
3676 register18 | 0x8402);
3677 et131x_mii_write(adapter, PHY_DATA_REG,
3678 register18 | 511);
3679 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
3680 register18);
3683 /* Free the packets being actively sent & stopped */
3684 et131x_free_busy_send_packets(adapter);
3686 /* Re-initialize the send structures */
3687 et131x_init_send(adapter);
3689 /* Bring the device back to the state it was during
3690 * init prior to autonegotiation being complete. This
3691 * way, when we get the auto-neg complete interrupt,
3692 * we can complete init by calling config_mac_regs2.
3694 et131x_soft_reset(adapter);
3696 /* Setup ET1310 as per the documentation */
3697 et131x_adapter_setup(adapter);
3699 /* perform reset of tx/rx */
3700 et131x_disable_txrx(netdev);
3701 et131x_enable_txrx(netdev);
3705 static int et131x_mii_probe(struct net_device *netdev)
3707 struct et131x_adapter *adapter = netdev_priv(netdev);
3708 struct phy_device *phydev = NULL;
3710 phydev = phy_find_first(adapter->mii_bus);
3711 if (!phydev) {
3712 dev_err(&adapter->pdev->dev, "no PHY found\n");
3713 return -ENODEV;
3716 phydev = phy_connect(netdev, dev_name(&phydev->dev),
3717 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3719 if (IS_ERR(phydev)) {
3720 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3721 return PTR_ERR(phydev);
3724 phydev->supported &= (SUPPORTED_10baseT_Half
3725 | SUPPORTED_10baseT_Full
3726 | SUPPORTED_100baseT_Half
3727 | SUPPORTED_100baseT_Full
3728 | SUPPORTED_Autoneg
3729 | SUPPORTED_MII
3730 | SUPPORTED_TP);
3732 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3733 phydev->supported |= SUPPORTED_1000baseT_Full;
3735 phydev->advertising = phydev->supported;
3736 adapter->phydev = phydev;
3738 dev_info(&adapter->pdev->dev,
3739 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3740 phydev->drv->name, dev_name(&phydev->dev));
3742 return 0;
3745 /* et131x_adapter_init
3747 * Initialize the data structures for the et131x_adapter object and link
3748 * them together with the platform provided device structures.
3750 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3751 struct pci_dev *pdev)
3753 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3755 struct et131x_adapter *adapter;
3757 /* Allocate private adapter struct and copy in relevant information */
3758 adapter = netdev_priv(netdev);
3759 adapter->pdev = pci_dev_get(pdev);
3760 adapter->netdev = netdev;
3762 /* Initialize spinlocks here */
3763 spin_lock_init(&adapter->lock);
3764 spin_lock_init(&adapter->tcb_send_qlock);
3765 spin_lock_init(&adapter->tcb_ready_qlock);
3766 spin_lock_init(&adapter->send_hw_lock);
3767 spin_lock_init(&adapter->rcv_lock);
3768 spin_lock_init(&adapter->fbr_lock);
3770 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3772 /* Set the MAC address to a default */
3773 memcpy(adapter->addr, default_mac, ETH_ALEN);
3775 return adapter;
3778 /* et131x_pci_remove
3780 * Registered in the pci_driver structure, this function is called when the
3781 * PCI subsystem detects that a PCI device which matches the information
3782 * contained in the pci_device_id table has been removed.
3784 static void et131x_pci_remove(struct pci_dev *pdev)
3786 struct net_device *netdev = pci_get_drvdata(pdev);
3787 struct et131x_adapter *adapter = netdev_priv(netdev);
3789 unregister_netdev(netdev);
3790 phy_disconnect(adapter->phydev);
3791 mdiobus_unregister(adapter->mii_bus);
3792 cancel_work_sync(&adapter->task);
3793 kfree(adapter->mii_bus->irq);
3794 mdiobus_free(adapter->mii_bus);
3796 et131x_adapter_memory_free(adapter);
3797 iounmap(adapter->regs);
3798 pci_dev_put(pdev);
3800 free_netdev(netdev);
3801 pci_release_regions(pdev);
3802 pci_disable_device(pdev);
3805 /* et131x_up - Bring up a device for use. */
3806 static void et131x_up(struct net_device *netdev)
3808 struct et131x_adapter *adapter = netdev_priv(netdev);
3810 et131x_enable_txrx(netdev);
3811 phy_start(adapter->phydev);
3814 /* et131x_down - Bring down the device */
3815 static void et131x_down(struct net_device *netdev)
3817 struct et131x_adapter *adapter = netdev_priv(netdev);
3819 /* Save the timestamp for the TX watchdog, prevent a timeout */
3820 netdev->trans_start = jiffies;
3822 phy_stop(adapter->phydev);
3823 et131x_disable_txrx(netdev);
3826 #ifdef CONFIG_PM_SLEEP
3827 static int et131x_suspend(struct device *dev)
3829 struct pci_dev *pdev = to_pci_dev(dev);
3830 struct net_device *netdev = pci_get_drvdata(pdev);
3832 if (netif_running(netdev)) {
3833 netif_device_detach(netdev);
3834 et131x_down(netdev);
3835 pci_save_state(pdev);
3838 return 0;
3841 static int et131x_resume(struct device *dev)
3843 struct pci_dev *pdev = to_pci_dev(dev);
3844 struct net_device *netdev = pci_get_drvdata(pdev);
3846 if (netif_running(netdev)) {
3847 pci_restore_state(pdev);
3848 et131x_up(netdev);
3849 netif_device_attach(netdev);
3852 return 0;
3855 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3856 #define ET131X_PM_OPS (&et131x_pm_ops)
3857 #else
3858 #define ET131X_PM_OPS NULL
3859 #endif
3861 /* et131x_isr - The Interrupt Service Routine for the driver.
3862 * @irq: the IRQ on which the interrupt was received.
3863 * @dev_id: device-specific info (here a pointer to a net_device struct)
3865 * Returns a value indicating if the interrupt was handled.
3867 static irqreturn_t et131x_isr(int irq, void *dev_id)
3869 bool handled = true;
3870 struct net_device *netdev = (struct net_device *)dev_id;
3871 struct et131x_adapter *adapter = netdev_priv(netdev);
3872 struct rx_ring *rx_ring = &adapter->rx_ring;
3873 struct tx_ring *tx_ring = &adapter->tx_ring;
3874 u32 status;
3876 if (!netif_device_present(netdev)) {
3877 handled = false;
3878 goto out;
3881 /* If the adapter is in low power state, then it should not
3882 * recognize any interrupt
3885 /* Disable Device Interrupts */
3886 et131x_disable_interrupts(adapter);
3888 /* Get a copy of the value in the interrupt status register
3889 * so we can process the interrupting section
3891 status = readl(&adapter->regs->global.int_status);
3893 if (adapter->flowcontrol == FLOW_TXONLY ||
3894 adapter->flowcontrol == FLOW_BOTH) {
3895 status &= ~INT_MASK_ENABLE;
3896 } else {
3897 status &= ~INT_MASK_ENABLE_NO_FLOW;
3900 /* Make sure this is our interrupt */
3901 if (!status) {
3902 handled = false;
3903 et131x_enable_interrupts(adapter);
3904 goto out;
3907 /* This is our interrupt, so process accordingly */
3909 if (status & ET_INTR_WATCHDOG) {
3910 struct tcb *tcb = tx_ring->send_head;
3912 if (tcb)
3913 if (++tcb->stale > 1)
3914 status |= ET_INTR_TXDMA_ISR;
3916 if (rx_ring->unfinished_receives)
3917 status |= ET_INTR_RXDMA_XFR_DONE;
3918 else if (tcb == NULL)
3919 writel(0, &adapter->regs->global.watchdog_timer);
3921 status &= ~ET_INTR_WATCHDOG;
3924 if (!status) {
3925 /* This interrupt has in some way been "handled" by
3926 * the ISR. Either it was a spurious Rx interrupt, or
3927 * it was a Tx interrupt that has been filtered by
3928 * the ISR.
3930 et131x_enable_interrupts(adapter);
3931 goto out;
3934 /* We need to save the interrupt status value for use in our
3935 * DPC. We will clear the software copy of that in that
3936 * routine.
3938 adapter->stats.interrupt_status = status;
3940 /* Schedule the ISR handler as a bottom-half task in the
3941 * kernel's tq_immediate queue, and mark the queue for
3942 * execution
3944 schedule_work(&adapter->task);
3945 out:
3946 return IRQ_RETVAL(handled);
3949 /* et131x_isr_handler - The ISR handler
3951 * scheduled to run in a deferred context by the ISR. This is where the ISR's
3952 * work actually gets done.
3954 static void et131x_isr_handler(struct work_struct *work)
3956 struct et131x_adapter *adapter =
3957 container_of(work, struct et131x_adapter, task);
3958 u32 status = adapter->stats.interrupt_status;
3959 struct address_map __iomem *iomem = adapter->regs;
3961 /* These first two are by far the most common. Once handled, we clear
3962 * their two bits in the status word. If the word is now zero, we
3963 * exit.
3965 /* Handle all the completed Transmit interrupts */
3966 if (status & ET_INTR_TXDMA_ISR)
3967 et131x_handle_send_interrupt(adapter);
3969 /* Handle all the completed Receives interrupts */
3970 if (status & ET_INTR_RXDMA_XFR_DONE)
3971 et131x_handle_recv_interrupt(adapter);
3973 status &= ~(ET_INTR_TXDMA_ERR | ET_INTR_RXDMA_XFR_DONE);
3975 if (!status)
3976 goto out;
3978 /* Handle the TXDMA Error interrupt */
3979 if (status & ET_INTR_TXDMA_ERR) {
3980 /* Following read also clears the register (COR) */
3981 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3983 dev_warn(&adapter->pdev->dev,
3984 "TXDMA_ERR interrupt, error = %d\n",
3985 txdma_err);
3988 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3989 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3990 /* This indicates the number of unused buffers in RXDMA free
3991 * buffer ring 0 is <= the limit you programmed. Free buffer
3992 * resources need to be returned. Free buffers are consumed as
3993 * packets are passed from the network to the host. The host
3994 * becomes aware of the packets from the contents of the packet
3995 * status ring. This ring is queried when the packet done
3996 * interrupt occurs. Packets are then passed to the OS. When
3997 * the OS is done with the packets the resources can be
3998 * returned to the ET1310 for re-use. This interrupt is one
3999 * method of returning resources.
4002 /* If the user has flow control on, then we will
4003 * send a pause packet, otherwise just exit
4005 if (adapter->flowcontrol == FLOW_TXONLY ||
4006 adapter->flowcontrol == FLOW_BOTH) {
4007 u32 pm_csr;
4009 /* Tell the device to send a pause packet via the back
4010 * pressure register (bp req and bp xon/xoff)
4012 pm_csr = readl(&iomem->global.pm_csr);
4013 if (!et1310_in_phy_coma(adapter))
4014 writel(3, &iomem->txmac.bp_ctrl);
4018 /* Handle Packet Status Ring Low Interrupt */
4019 if (status & ET_INTR_RXDMA_STAT_LOW) {
4020 /* Same idea as with the two Free Buffer Rings. Packets going
4021 * from the network to the host each consume a free buffer
4022 * resource and a packet status resource. These resoures are
4023 * passed to the OS. When the OS is done with the resources,
4024 * they need to be returned to the ET1310. This is one method
4025 * of returning the resources.
4029 /* Handle RXDMA Error Interrupt */
4030 if (status & ET_INTR_RXDMA_ERR) {
4031 /* The rxdma_error interrupt is sent when a time-out on a
4032 * request issued by the JAGCore has occurred or a completion is
4033 * returned with an un-successful status. In both cases the
4034 * request is considered complete. The JAGCore will
4035 * automatically re-try the request in question. Normally
4036 * information on events like these are sent to the host using
4037 * the "Advanced Error Reporting" capability. This interrupt is
4038 * another way of getting similar information. The only thing
4039 * required is to clear the interrupt by reading the ISR in the
4040 * global resources. The JAGCore will do a re-try on the
4041 * request. Normally you should never see this interrupt. If
4042 * you start to see this interrupt occurring frequently then
4043 * something bad has occurred. A reset might be the thing to do.
4045 /* TRAP();*/
4047 dev_warn(&adapter->pdev->dev,
4048 "RxDMA_ERR interrupt, error %x\n",
4049 readl(&iomem->txmac.tx_test));
4052 /* Handle the Wake on LAN Event */
4053 if (status & ET_INTR_WOL) {
4054 /* This is a secondary interrupt for wake on LAN. The driver
4055 * should never see this, if it does, something serious is
4056 * wrong. We will TRAP the message when we are in DBG mode,
4057 * otherwise we will ignore it.
4059 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4062 /* Let's move on to the TxMac */
4063 if (status & ET_INTR_TXMAC) {
4064 u32 err = readl(&iomem->txmac.err);
4066 /* When any of the errors occur and TXMAC generates an
4067 * interrupt to report these errors, it usually means that
4068 * TXMAC has detected an error in the data stream retrieved
4069 * from the on-chip Tx Q. All of these errors are catastrophic
4070 * and TXMAC won't be able to recover data when these errors
4071 * occur. In a nutshell, the whole Tx path will have to be reset
4072 * and re-configured afterwards.
4074 dev_warn(&adapter->pdev->dev,
4075 "TXMAC interrupt, error 0x%08x\n",
4076 err);
4078 /* If we are debugging, we want to see this error, otherwise we
4079 * just want the device to be reset and continue
4083 /* Handle RXMAC Interrupt */
4084 if (status & ET_INTR_RXMAC) {
4085 /* These interrupts are catastrophic to the device, what we need
4086 * to do is disable the interrupts and set the flag to cause us
4087 * to reset so we can solve this issue.
4089 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
4091 dev_warn(&adapter->pdev->dev,
4092 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4093 readl(&iomem->rxmac.err_reg));
4095 dev_warn(&adapter->pdev->dev,
4096 "Enable 0x%08x, Diag 0x%08x\n",
4097 readl(&iomem->rxmac.ctrl),
4098 readl(&iomem->rxmac.rxq_diag));
4100 /* If we are debugging, we want to see this error, otherwise we
4101 * just want the device to be reset and continue
4105 /* Handle MAC_STAT Interrupt */
4106 if (status & ET_INTR_MAC_STAT) {
4107 /* This means at least one of the un-masked counters in the
4108 * MAC_STAT block has rolled over. Use this to maintain the top,
4109 * software managed bits of the counter(s).
4111 et1310_handle_macstat_interrupt(adapter);
4114 /* Handle SLV Timeout Interrupt */
4115 if (status & ET_INTR_SLV_TIMEOUT) {
4116 /* This means a timeout has occurred on a read or write request
4117 * to one of the JAGCore registers. The Global Resources block
4118 * has terminated the request and on a read request, returned a
4119 * "fake" value. The most likely reasons are: Bad Address or the
4120 * addressed module is in a power-down state and can't respond.
4123 out:
4124 et131x_enable_interrupts(adapter);
4127 /* et131x_stats - Return the current device statistics */
4128 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4130 struct et131x_adapter *adapter = netdev_priv(netdev);
4131 struct net_device_stats *stats = &adapter->net_stats;
4132 struct ce_stats *devstat = &adapter->stats;
4134 stats->rx_errors = devstat->rx_length_errs +
4135 devstat->rx_align_errs +
4136 devstat->rx_crc_errs +
4137 devstat->rx_code_violations +
4138 devstat->rx_other_errs;
4139 stats->tx_errors = devstat->tx_max_pkt_errs;
4140 stats->multicast = devstat->multicast_pkts_rcvd;
4141 stats->collisions = devstat->tx_collisions;
4143 stats->rx_length_errors = devstat->rx_length_errs;
4144 stats->rx_over_errors = devstat->rx_overflows;
4145 stats->rx_crc_errors = devstat->rx_crc_errs;
4147 /* NOTE: These stats don't have corresponding values in CE_STATS,
4148 * so we're going to have to update these directly from within the
4149 * TX/RX code
4151 /* stats->rx_bytes = 20; devstat->; */
4152 /* stats->tx_bytes = 20; devstat->; */
4153 /* stats->rx_dropped = devstat->; */
4154 /* stats->tx_dropped = devstat->; */
4156 /* NOTE: Not used, can't find analogous statistics */
4157 /* stats->rx_frame_errors = devstat->; */
4158 /* stats->rx_fifo_errors = devstat->; */
4159 /* stats->rx_missed_errors = devstat->; */
4161 /* stats->tx_aborted_errors = devstat->; */
4162 /* stats->tx_carrier_errors = devstat->; */
4163 /* stats->tx_fifo_errors = devstat->; */
4164 /* stats->tx_heartbeat_errors = devstat->; */
4165 /* stats->tx_window_errors = devstat->; */
4166 return stats;
4169 /* et131x_open - Open the device for use. */
4170 static int et131x_open(struct net_device *netdev)
4172 struct et131x_adapter *adapter = netdev_priv(netdev);
4173 struct pci_dev *pdev = adapter->pdev;
4174 unsigned int irq = pdev->irq;
4175 int result;
4177 /* Start the timer to track NIC errors */
4178 init_timer(&adapter->error_timer);
4179 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4180 adapter->error_timer.function = et131x_error_timer_handler;
4181 adapter->error_timer.data = (unsigned long)adapter;
4182 add_timer(&adapter->error_timer);
4184 result = request_irq(irq, et131x_isr,
4185 IRQF_SHARED, netdev->name, netdev);
4186 if (result) {
4187 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4188 return result;
4191 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
4193 et131x_up(netdev);
4195 return result;
4198 /* et131x_close - Close the device */
4199 static int et131x_close(struct net_device *netdev)
4201 struct et131x_adapter *adapter = netdev_priv(netdev);
4203 et131x_down(netdev);
4205 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
4206 free_irq(adapter->pdev->irq, netdev);
4208 /* Stop the error timer */
4209 return del_timer_sync(&adapter->error_timer);
4212 /* et131x_ioctl - The I/O Control handler for the driver
4213 * @netdev: device on which the control request is being made
4214 * @reqbuf: a pointer to the IOCTL request buffer
4215 * @cmd: the IOCTL command code
4217 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4218 int cmd)
4220 struct et131x_adapter *adapter = netdev_priv(netdev);
4222 if (!adapter->phydev)
4223 return -EINVAL;
4225 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4228 /* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4229 * @adapter: pointer to our private adapter structure
4231 * FIXME: lot of dups with MAC code
4233 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4235 int filter = adapter->packet_filter;
4236 int status = 0;
4237 u32 ctrl;
4238 u32 pf_ctrl;
4240 ctrl = readl(&adapter->regs->rxmac.ctrl);
4241 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4243 /* Default to disabled packet filtering. Enable it in the individual
4244 * case statements that require the device to filter something
4246 ctrl |= 0x04;
4248 /* Set us to be in promiscuous mode so we receive everything, this
4249 * is also true when we get a packet filter of 0
4251 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4252 pf_ctrl &= ~7; /* Clear filter bits */
4253 else {
4254 /* Set us up with Multicast packet filtering. Three cases are
4255 * possible - (1) we have a multi-cast list, (2) we receive ALL
4256 * multicast entries or (3) we receive none.
4258 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4259 pf_ctrl &= ~2; /* Multicast filter bit */
4260 else {
4261 et1310_setup_device_for_multicast(adapter);
4262 pf_ctrl |= 2;
4263 ctrl &= ~0x04;
4266 /* Set us up with Unicast packet filtering */
4267 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4268 et1310_setup_device_for_unicast(adapter);
4269 pf_ctrl |= 4;
4270 ctrl &= ~0x04;
4273 /* Set us up with Broadcast packet filtering */
4274 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4275 pf_ctrl |= 1; /* Broadcast filter bit */
4276 ctrl &= ~0x04;
4277 } else
4278 pf_ctrl &= ~1;
4280 /* Setup the receive mac configuration registers - Packet
4281 * Filter control + the enable / disable for packet filter
4282 * in the control reg.
4284 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4285 writel(ctrl, &adapter->regs->rxmac.ctrl);
4287 return status;
4290 /* et131x_multicast - The handler to configure multicasting on the interface */
4291 static void et131x_multicast(struct net_device *netdev)
4293 struct et131x_adapter *adapter = netdev_priv(netdev);
4294 int packet_filter;
4295 unsigned long flags;
4296 struct netdev_hw_addr *ha;
4297 int i;
4299 spin_lock_irqsave(&adapter->lock, flags);
4301 /* Before we modify the platform-independent filter flags, store them
4302 * locally. This allows us to determine if anything's changed and if
4303 * we even need to bother the hardware
4305 packet_filter = adapter->packet_filter;
4307 /* Clear the 'multicast' flag locally; because we only have a single
4308 * flag to check multicast, and multiple multicast addresses can be
4309 * set, this is the easiest way to determine if more than one
4310 * multicast address is being set.
4312 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4314 /* Check the net_device flags and set the device independent flags
4315 * accordingly
4318 if (netdev->flags & IFF_PROMISC)
4319 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4320 else
4321 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4323 if (netdev->flags & IFF_ALLMULTI)
4324 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4326 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4327 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4329 if (netdev_mc_count(netdev) < 1) {
4330 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4331 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4332 } else
4333 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4335 /* Set values in the private adapter struct */
4336 i = 0;
4337 netdev_for_each_mc_addr(ha, netdev) {
4338 if (i == NIC_MAX_MCAST_LIST)
4339 break;
4340 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4342 adapter->multicast_addr_count = i;
4344 /* Are the new flags different from the previous ones? If not, then no
4345 * action is required
4347 * NOTE - This block will always update the multicast_list with the
4348 * hardware, even if the addresses aren't the same.
4350 if (packet_filter != adapter->packet_filter)
4351 et131x_set_packet_filter(adapter);
4353 spin_unlock_irqrestore(&adapter->lock, flags);
4356 /* et131x_tx - The handler to tx a packet on the device */
4357 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4359 int status = 0;
4360 struct et131x_adapter *adapter = netdev_priv(netdev);
4361 struct tx_ring *tx_ring = &adapter->tx_ring;
4363 /* stop the queue if it's getting full */
4364 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
4365 netif_stop_queue(netdev);
4367 /* Save the timestamp for the TX timeout watchdog */
4368 netdev->trans_start = jiffies;
4370 /* Call the device-specific data Tx routine */
4371 status = et131x_send_packets(skb, netdev);
4373 /* Check status and manage the netif queue if necessary */
4374 if (status != 0) {
4375 if (status == -ENOMEM)
4376 status = NETDEV_TX_BUSY;
4377 else
4378 status = NETDEV_TX_OK;
4380 return status;
4383 /* et131x_tx_timeout - Timeout handler
4385 * The handler called when a Tx request times out. The timeout period is
4386 * specified by the 'tx_timeo" element in the net_device structure (see
4387 * et131x_alloc_device() to see how this value is set).
4389 static void et131x_tx_timeout(struct net_device *netdev)
4391 struct et131x_adapter *adapter = netdev_priv(netdev);
4392 struct tx_ring *tx_ring = &adapter->tx_ring;
4393 struct tcb *tcb;
4394 unsigned long flags;
4396 /* If the device is closed, ignore the timeout */
4397 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
4398 return;
4400 /* Any nonrecoverable hardware error?
4401 * Checks adapter->flags for any failure in phy reading
4403 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
4404 return;
4406 /* Hardware failure? */
4407 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
4408 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4409 return;
4412 /* Is send stuck? */
4413 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4415 tcb = tx_ring->send_head;
4417 if (tcb != NULL) {
4418 tcb->count++;
4420 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4421 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4422 flags);
4424 dev_warn(&adapter->pdev->dev,
4425 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4426 tcb->index,
4427 tcb->flags);
4429 adapter->net_stats.tx_errors++;
4431 /* perform reset of tx/rx */
4432 et131x_disable_txrx(netdev);
4433 et131x_enable_txrx(netdev);
4434 return;
4438 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4441 /* et131x_change_mtu - The handler called to change the MTU for the device */
4442 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4444 int result = 0;
4445 struct et131x_adapter *adapter = netdev_priv(netdev);
4447 /* Make sure the requested MTU is valid */
4448 if (new_mtu < 64 || new_mtu > 9216)
4449 return -EINVAL;
4451 et131x_disable_txrx(netdev);
4452 et131x_handle_send_interrupt(adapter);
4453 et131x_handle_recv_interrupt(adapter);
4455 /* Set the new MTU */
4456 netdev->mtu = new_mtu;
4458 /* Free Rx DMA memory */
4459 et131x_adapter_memory_free(adapter);
4461 /* Set the config parameter for Jumbo Packet support */
4462 adapter->registry_jumbo_packet = new_mtu + 14;
4463 et131x_soft_reset(adapter);
4465 /* Alloc and init Rx DMA memory */
4466 result = et131x_adapter_memory_alloc(adapter);
4467 if (result != 0) {
4468 dev_warn(&adapter->pdev->dev,
4469 "Change MTU failed; couldn't re-alloc DMA memory\n");
4470 return result;
4473 et131x_init_send(adapter);
4475 et131x_hwaddr_init(adapter);
4476 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4478 /* Init the device with the new settings */
4479 et131x_adapter_setup(adapter);
4481 et131x_enable_txrx(netdev);
4483 return result;
4486 /* et131x_set_mac_addr - handler to change the MAC address for the device */
4487 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
4489 int result = 0;
4490 struct et131x_adapter *adapter = netdev_priv(netdev);
4491 struct sockaddr *address = new_mac;
4493 if (adapter == NULL)
4494 return -ENODEV;
4496 /* Make sure the requested MAC is valid */
4497 if (!is_valid_ether_addr(address->sa_data))
4498 return -EADDRNOTAVAIL;
4500 et131x_disable_txrx(netdev);
4501 et131x_handle_send_interrupt(adapter);
4502 et131x_handle_recv_interrupt(adapter);
4504 /* Set the new MAC */
4505 /* netdev->set_mac_address = &new_mac; */
4507 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
4509 netdev_info(netdev, "Setting MAC address to %pM\n",
4510 netdev->dev_addr);
4512 /* Free Rx DMA memory */
4513 et131x_adapter_memory_free(adapter);
4515 et131x_soft_reset(adapter);
4517 /* Alloc and init Rx DMA memory */
4518 result = et131x_adapter_memory_alloc(adapter);
4519 if (result != 0) {
4520 dev_err(&adapter->pdev->dev,
4521 "Change MAC failed; couldn't re-alloc DMA memory\n");
4522 return result;
4525 et131x_init_send(adapter);
4527 et131x_hwaddr_init(adapter);
4529 /* Init the device with the new settings */
4530 et131x_adapter_setup(adapter);
4532 et131x_enable_txrx(netdev);
4534 return result;
4537 static const struct net_device_ops et131x_netdev_ops = {
4538 .ndo_open = et131x_open,
4539 .ndo_stop = et131x_close,
4540 .ndo_start_xmit = et131x_tx,
4541 .ndo_set_rx_mode = et131x_multicast,
4542 .ndo_tx_timeout = et131x_tx_timeout,
4543 .ndo_change_mtu = et131x_change_mtu,
4544 .ndo_set_mac_address = et131x_set_mac_addr,
4545 .ndo_validate_addr = eth_validate_addr,
4546 .ndo_get_stats = et131x_stats,
4547 .ndo_do_ioctl = et131x_ioctl,
4550 /* et131x_pci_setup - Perform device initialization
4551 * @pdev: a pointer to the device's pci_dev structure
4552 * @ent: this device's entry in the pci_device_id table
4554 * Registered in the pci_driver structure, this function is called when the
4555 * PCI subsystem finds a new PCI device which matches the information
4556 * contained in the pci_device_id table. This routine is the equivalent to
4557 * a device insertion routine.
4559 static int et131x_pci_setup(struct pci_dev *pdev,
4560 const struct pci_device_id *ent)
4562 struct net_device *netdev;
4563 struct et131x_adapter *adapter;
4564 int rc;
4565 int ii;
4567 rc = pci_enable_device(pdev);
4568 if (rc < 0) {
4569 dev_err(&pdev->dev, "pci_enable_device() failed\n");
4570 goto out;
4573 /* Perform some basic PCI checks */
4574 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4575 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
4576 rc = -ENODEV;
4577 goto err_disable;
4580 rc = pci_request_regions(pdev, DRIVER_NAME);
4581 if (rc < 0) {
4582 dev_err(&pdev->dev, "Can't get PCI resources\n");
4583 goto err_disable;
4586 pci_set_master(pdev);
4588 /* Check the DMA addressing support of this device */
4589 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4590 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
4591 dev_err(&pdev->dev, "No usable DMA addressing method\n");
4592 rc = -EIO;
4593 goto err_release_res;
4596 /* Allocate netdev and private adapter structs */
4597 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
4598 if (!netdev) {
4599 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
4600 rc = -ENOMEM;
4601 goto err_release_res;
4604 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4605 netdev->netdev_ops = &et131x_netdev_ops;
4607 SET_NETDEV_DEV(netdev, &pdev->dev);
4608 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
4610 adapter = et131x_adapter_init(netdev, pdev);
4612 rc = et131x_pci_init(adapter, pdev);
4613 if (rc < 0)
4614 goto err_free_dev;
4616 /* Map the bus-relative registers to system virtual memory */
4617 adapter->regs = pci_ioremap_bar(pdev, 0);
4618 if (!adapter->regs) {
4619 dev_err(&pdev->dev, "Cannot map device registers\n");
4620 rc = -ENOMEM;
4621 goto err_free_dev;
4624 /* If Phy COMA mode was enabled when we went down, disable it here. */
4625 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4627 /* Issue a global reset to the et1310 */
4628 et131x_soft_reset(adapter);
4630 /* Disable all interrupts (paranoid) */
4631 et131x_disable_interrupts(adapter);
4633 /* Allocate DMA memory */
4634 rc = et131x_adapter_memory_alloc(adapter);
4635 if (rc < 0) {
4636 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4637 goto err_iounmap;
4640 /* Init send data structures */
4641 et131x_init_send(adapter);
4643 /* Set up the task structure for the ISR's deferred handler */
4644 INIT_WORK(&adapter->task, et131x_isr_handler);
4646 /* Copy address into the net_device struct */
4647 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4649 /* Init variable for counting how long we do not have link status */
4650 adapter->boot_coma = 0;
4651 et1310_disable_phy_coma(adapter);
4653 rc = -ENOMEM;
4655 /* Setup the mii_bus struct */
4656 adapter->mii_bus = mdiobus_alloc();
4657 if (!adapter->mii_bus) {
4658 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4659 goto err_mem_free;
4662 adapter->mii_bus->name = "et131x_eth_mii";
4663 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4664 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4665 adapter->mii_bus->priv = netdev;
4666 adapter->mii_bus->read = et131x_mdio_read;
4667 adapter->mii_bus->write = et131x_mdio_write;
4668 adapter->mii_bus->reset = et131x_mdio_reset;
4669 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4670 GFP_KERNEL);
4671 if (!adapter->mii_bus->irq)
4672 goto err_mdio_free;
4674 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4675 adapter->mii_bus->irq[ii] = PHY_POLL;
4677 rc = mdiobus_register(adapter->mii_bus);
4678 if (rc < 0) {
4679 dev_err(&pdev->dev, "failed to register MII bus\n");
4680 goto err_mdio_free_irq;
4683 rc = et131x_mii_probe(netdev);
4684 if (rc < 0) {
4685 dev_err(&pdev->dev, "failed to probe MII bus\n");
4686 goto err_mdio_unregister;
4689 /* Setup et1310 as per the documentation */
4690 et131x_adapter_setup(adapter);
4692 /* We can enable interrupts now
4694 * NOTE - Because registration of interrupt handler is done in the
4695 * device's open(), defer enabling device interrupts to that
4696 * point
4699 /* Register the net_device struct with the Linux network layer */
4700 rc = register_netdev(netdev);
4701 if (rc < 0) {
4702 dev_err(&pdev->dev, "register_netdev() failed\n");
4703 goto err_phy_disconnect;
4706 /* Register the net_device struct with the PCI subsystem. Save a copy
4707 * of the PCI config space for this device now that the device has
4708 * been initialized, just in case it needs to be quickly restored.
4710 pci_set_drvdata(pdev, netdev);
4711 out:
4712 return rc;
4714 err_phy_disconnect:
4715 phy_disconnect(adapter->phydev);
4716 err_mdio_unregister:
4717 mdiobus_unregister(adapter->mii_bus);
4718 err_mdio_free_irq:
4719 kfree(adapter->mii_bus->irq);
4720 err_mdio_free:
4721 mdiobus_free(adapter->mii_bus);
4722 err_mem_free:
4723 et131x_adapter_memory_free(adapter);
4724 err_iounmap:
4725 iounmap(adapter->regs);
4726 err_free_dev:
4727 pci_dev_put(pdev);
4728 free_netdev(netdev);
4729 err_release_res:
4730 pci_release_regions(pdev);
4731 err_disable:
4732 pci_disable_device(pdev);
4733 goto out;
4736 static const struct pci_device_id et131x_pci_table[] = {
4737 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4738 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4739 {0,}
4741 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4743 static struct pci_driver et131x_driver = {
4744 .name = DRIVER_NAME,
4745 .id_table = et131x_pci_table,
4746 .probe = et131x_pci_setup,
4747 .remove = et131x_pci_remove,
4748 .driver.pm = ET131X_PM_OPS,
4751 module_pci_driver(et131x_driver);