2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 * Copyright © 2005 Agere Systems Inc.
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *------------------------------------------------------------------------------
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
110 #define INT_MASK_DISABLE 0xffffffff
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
138 #define FMP_DEST_MULTI 0x00000001
139 #define FMP_DEST_BROAD 0x00000002
141 /* MP_ADAPTER flags */
142 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
144 /* MP_SHARED flags */
145 #define FMP_ADAPTER_LOWER_POWER 0x00200000
147 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
150 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
152 /* Some offsets in PCI config space that are actually used. */
153 #define ET1310_PCI_MAC_ADDRESS 0xA4
154 #define ET1310_PCI_EEPROM_STATUS 0xB2
155 #define ET1310_PCI_ACK_NACK 0xC0
156 #define ET1310_PCI_REPLAY 0xC2
157 #define ET1310_PCI_L0L1LATENCY 0xCF
159 /* PCI Product IDs */
160 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
163 /* Define order of magnitude converter */
164 #define NANO_IN_A_MICRO 1000
166 #define PARM_RX_NUM_BUFS_DEF 4
167 #define PARM_RX_TIME_INT_DEF 10
168 #define PARM_RX_MEM_END_DEF 0x2bc
169 #define PARM_TX_TIME_INT_DEF 40
170 #define PARM_TX_NUM_BUFS_DEF 4
171 #define PARM_DMA_CACHE_DEF 0
174 #define FBR_CHUNKS 32
175 #define MAX_DESC_PER_RING_RX 1024
177 /* number of RFDs - default and min */
178 #define RFD_LOW_WATER_MARK 40
179 #define NIC_DEFAULT_NUM_RFD 1024
182 #define NUM_PACKETS_HANDLED 256
184 #define ALCATEL_MULTICAST_PKT 0x01000000
185 #define ALCATEL_BROADCAST_PKT 0x02000000
187 /* typedefs for Free Buffer Descriptors */
191 u32 word2
; /* Bits 10-31 reserved, 0-9 descriptor */
194 /* Packet Status Ring Descriptors
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
237 struct pkt_stat_desc
{
242 /* Typedefs for the RX DMA status word */
244 /* rx status word 0 holds part of the status bits of the Rx DMA engine
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
254 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
259 * bit 16-27 PSRoffset
264 /* struct rx_status_block is a structure representing the status of the Rx
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
267 struct rx_status_block
{
272 /* Structure for look-up table holding free buffer ring pointers, addresses
276 void *virt
[MAX_DESC_PER_RING_RX
];
277 u32 bus_high
[MAX_DESC_PER_RING_RX
];
278 u32 bus_low
[MAX_DESC_PER_RING_RX
];
280 dma_addr_t ring_physaddr
;
281 void *mem_virtaddrs
[MAX_DESC_PER_RING_RX
/ FBR_CHUNKS
];
282 dma_addr_t mem_physaddrs
[MAX_DESC_PER_RING_RX
/ FBR_CHUNKS
];
288 /* struct rx_ring is the sructure representing the adaptor's local
289 * reference(s) to the rings
292 struct fbr_lookup
*fbr
[NUM_FBRS
];
293 void *ps_ring_virtaddr
;
294 dma_addr_t ps_ring_physaddr
;
298 struct rx_status_block
*rx_status_block
;
299 dma_addr_t rx_status_bus
;
302 struct list_head recv_list
;
307 bool unfinished_receives
;
311 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
313 * 0-15: length of packet
316 * 29-31: VLAN priority
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
337 #define TXDESC_FLAG_LASTPKT 0x0001
338 #define TXDESC_FLAG_FIRSTPKT 0x0002
339 #define TXDESC_FLAG_INTPROC 0x0004
341 /* struct tx_desc represents each descriptor on the ring */
345 u32 len_vlan
; /* control words how to xmit the */
346 u32 flags
; /* data (detailed above) */
349 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
350 * by 0x101c / 0x1020. This is a DMA10 type
353 /* TCB (Transmit Control Block: Host Side) */
355 struct tcb
*next
; /* Next entry in ring */
356 u32 flags
; /* Our flags for the packet */
357 u32 count
; /* Used to spot stuck/lost packets */
358 u32 stale
; /* Used to spot stuck/lost packets */
359 struct sk_buff
*skb
; /* Network skb we are tied to */
360 u32 index
; /* Ring indexes */
364 /* Structure representing our local reference(s) to the ring */
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb
*tcb_ring
;
369 /* List of TCBs that are ready to be used */
370 struct tcb
*tcb_qhead
;
371 struct tcb
*tcb_qtail
;
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
379 struct tcb
*send_head
;
380 struct tcb
*send_tail
;
383 /* The actual descriptor ring */
384 struct tx_desc
*tx_desc_ring
;
385 dma_addr_t tx_desc_ring_pa
;
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
390 /* The location of the write-back status block */
392 dma_addr_t tx_status_pa
;
394 /* Packets since the last IRQ: used for interrupt coalescing */
398 /* Do not change these values: if changed, then change also in respective
399 * TXdma and Rxdma engines
401 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
404 /* These values are all superseded by registry entries to facilitate tuning.
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
408 #define TX_ERROR_PERIOD 1000
410 #define LO_MARK_PERCENT_FOR_PSR 15
411 #define LO_MARK_PERCENT_FOR_RX 15
413 /* RFD (Receive Frame Descriptor) */
415 struct list_head list_node
;
417 u32 len
; /* total size of receive frame */
424 #define FLOW_TXONLY 1
425 #define FLOW_RXONLY 2
428 /* Struct to define some device statistics */
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
436 u32 unicast_pkts_rcvd
;
437 atomic_t unicast_pkts_xmtd
;
438 u32 multicast_pkts_rcvd
;
439 atomic_t multicast_pkts_xmtd
;
440 u32 broadcast_pkts_rcvd
;
441 atomic_t broadcast_pkts_xmtd
;
442 u32 rcvd_pkts_dropped
;
448 u32 tx_excessive_collisions
;
449 u32 tx_first_collisions
;
450 u32 tx_late_collisions
;
460 u32 rx_code_violations
;
463 u32 synchronous_iterations
;
464 u32 interrupt_status
;
467 /* The private adapter structure */
468 struct et131x_adapter
{
469 struct net_device
*netdev
;
470 struct pci_dev
*pdev
;
471 struct mii_bus
*mii_bus
;
472 struct phy_device
*phydev
;
473 struct work_struct task
;
475 /* Flags that indicate current state of the adapter */
478 /* local link state, to determine if a state change has occurred */
482 u8 rom_addr
[ETH_ALEN
];
490 spinlock_t tcb_send_qlock
;
491 spinlock_t tcb_ready_qlock
;
492 spinlock_t send_hw_lock
;
497 /* Packet Filter and look ahead size */
501 u32 multicast_addr_count
;
502 u8 multicast_list
[NIC_MAX_MCAST_LIST
][ETH_ALEN
];
504 /* Pointer to the device's PCI register space */
505 struct address_map __iomem
*regs
;
507 /* Registry parameters */
508 u8 wanted_flow
; /* Flow we want for 802.3x flow control */
509 u32 registry_jumbo_packet
; /* Max supported ethernet packet size */
511 /* Derived from the registry: */
512 u8 flowcontrol
; /* flow control validated by the far-end */
514 /* Minimize init-time */
515 struct timer_list error_timer
;
517 /* variable putting the phy into coma mode when boot up with no cable
518 * plugged in after 5 seconds
522 /* Next two used to save power information at power down. This
523 * information will be used during power up to set up parts of Power
524 * Management in JAGCore
529 /* Tx Memory Variables */
530 struct tx_ring tx_ring
;
532 /* Rx Memory Variables */
533 struct rx_ring rx_ring
;
536 struct ce_stats stats
;
538 struct net_device_stats net_stats
;
541 static int eeprom_wait_ready(struct pci_dev
*pdev
, u32
*status
)
546 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
547 * bits 7,1:0 both equal to 1, at least once after reset.
548 * Subsequent operations need only to check that bits 1:0 are equal
549 * to 1 prior to starting a single byte read/write
552 for (i
= 0; i
< MAX_NUM_REGISTER_POLLS
; i
++) {
553 /* Read registers grouped in DWORD1 */
554 if (pci_read_config_dword(pdev
, LBCIF_DWORD1_GROUP
, ®
))
557 /* I2C idle and Phy Queue Avail both true */
558 if ((reg
& 0x3000) == 0x3000) {
567 /* eeprom_write - Write a byte to the ET1310's EEPROM
568 * @adapter: pointer to our private adapter structure
569 * @addr: the address to write
570 * @data: the value to write
572 * Returns 1 for a successful write.
574 static int eeprom_write(struct et131x_adapter
*adapter
, u32 addr
, u8 data
)
576 struct pci_dev
*pdev
= adapter
->pdev
;
585 /* For an EEPROM, an I2C single byte write is defined as a START
586 * condition followed by the device address, EEPROM address, one byte
587 * of data and a STOP condition. The STOP condition will trigger the
588 * EEPROM's internally timed write cycle to the nonvolatile memory.
589 * All inputs are disabled during this write cycle and the EEPROM will
590 * not respond to any access until the internal write is complete.
593 err
= eeprom_wait_ready(pdev
, NULL
);
597 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
598 * and bits 1:0 both =0. Bit 5 should be set according to the
599 * type of EEPROM being accessed (1=two byte addressing, 0=one
602 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
603 LBCIF_CONTROL_LBCIF_ENABLE
| LBCIF_CONTROL_I2C_WRITE
))
608 /* Prepare EEPROM address for Step 3 */
610 for (retries
= 0; retries
< MAX_NUM_WRITE_RETRIES
; retries
++) {
611 /* Write the address to the LBCIF Address Register */
612 if (pci_write_config_dword(pdev
, LBCIF_ADDRESS_REGISTER
, addr
))
614 /* Write the data to the LBCIF Data Register (the I2C write
617 if (pci_write_config_byte(pdev
, LBCIF_DATA_REGISTER
, data
))
619 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
620 * 1:0 are both equal to 1, the I2C write has completed and the
621 * internal write cycle of the EEPROM is about to start.
622 * (bits 1:0 = 01 is a legal state while waiting from both
623 * equal to 1, but bits 1:0 = 10 is invalid and implies that
624 * something is broken).
626 err
= eeprom_wait_ready(pdev
, &status
);
630 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
631 * an error has occurred.Don't break here if we are revision
632 * 1, this is so we do a blind write for load bug.
634 if ((status
& LBCIF_STATUS_GENERAL_ERROR
)
635 && adapter
->pdev
->revision
== 0)
638 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
639 * ACK error has occurred on the address phase of the write.
640 * This could be due to an actual hardware failure or the
641 * EEPROM may still be in its internal write cycle from a
642 * previous write. This write operation was ignored and must be
645 if (status
& LBCIF_STATUS_ACK_ERROR
) {
646 /* This could be due to an actual hardware failure
647 * or the EEPROM may still be in its internal write
648 * cycle from a previous write. This write operation
649 * was ignored and must be repeated later.
659 /* Set bit 6 of the LBCIF Control Register = 0.
664 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
665 LBCIF_CONTROL_LBCIF_ENABLE
))
668 /* Do read until internal ACK_ERROR goes away meaning write
672 pci_write_config_dword(pdev
,
673 LBCIF_ADDRESS_REGISTER
,
676 pci_read_config_dword(pdev
,
677 LBCIF_DATA_REGISTER
, &val
);
678 } while ((val
& 0x00010000) == 0);
679 } while (val
& 0x00040000);
681 if ((val
& 0xFF00) != 0xC000 || index
== 10000)
685 return writeok
? 0 : -EIO
;
688 /* eeprom_read - Read a byte from the ET1310's EEPROM
689 * @adapter: pointer to our private adapter structure
690 * @addr: the address from which to read
691 * @pdata: a pointer to a byte in which to store the value of the read
692 * @eeprom_id: the ID of the EEPROM
693 * @addrmode: how the EEPROM is to be accessed
695 * Returns 1 for a successful read
697 static int eeprom_read(struct et131x_adapter
*adapter
, u32 addr
, u8
*pdata
)
699 struct pci_dev
*pdev
= adapter
->pdev
;
703 /* A single byte read is similar to the single byte write, with the
704 * exception of the data flow:
707 err
= eeprom_wait_ready(pdev
, NULL
);
710 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
711 * and bits 1:0 both =0. Bit 5 should be set according to the type
712 * of EEPROM being accessed (1=two byte addressing, 0=one byte
715 if (pci_write_config_byte(pdev
, LBCIF_CONTROL_REGISTER
,
716 LBCIF_CONTROL_LBCIF_ENABLE
))
718 /* Write the address to the LBCIF Address Register (I2C read will
721 if (pci_write_config_dword(pdev
, LBCIF_ADDRESS_REGISTER
, addr
))
723 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
724 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
727 err
= eeprom_wait_ready(pdev
, &status
);
730 /* Regardless of error status, read data byte from LBCIF Data
734 /* Check bit 2 of the LBCIF Status Register. If = 1,
735 * then an error has occurred.
737 return (status
& LBCIF_STATUS_ACK_ERROR
) ? -EIO
: 0;
740 static int et131x_init_eeprom(struct et131x_adapter
*adapter
)
742 struct pci_dev
*pdev
= adapter
->pdev
;
745 /* We first need to check the EEPROM Status code located at offset
746 * 0xB2 of config space
748 pci_read_config_byte(pdev
, ET1310_PCI_EEPROM_STATUS
, &eestatus
);
750 /* THIS IS A WORKAROUND:
751 * I need to call this function twice to get my card in a
752 * LG M1 Express Dual running. I tried also a msleep before this
753 * function, because I thought there could be some time conditions
754 * but it didn't work. Call the whole function twice also work.
756 if (pci_read_config_byte(pdev
, ET1310_PCI_EEPROM_STATUS
, &eestatus
)) {
758 "Could not read PCI config space for EEPROM Status\n");
762 /* Determine if the error(s) we care about are present. If they are
763 * present we need to fail.
765 if (eestatus
& 0x4C) {
766 int write_failed
= 0;
767 if (pdev
->revision
== 0x01) {
769 static const u8 eedata
[4] = { 0xFE, 0x13, 0x10, 0xFF };
771 /* Re-write the first 4 bytes if we have an eeprom
772 * present and the revision id is 1, this fixes the
773 * corruption seen with 1310 B Silicon
775 for (i
= 0; i
< 3; i
++)
776 if (eeprom_write(adapter
, i
, eedata
[i
]) < 0)
779 if (pdev
->revision
!= 0x01 || write_failed
) {
781 "Fatal EEPROM Status Error - 0x%04x\n", eestatus
);
783 /* This error could mean that there was an error
784 * reading the eeprom or that the eeprom doesn't exist.
785 * We will treat each case the same and not try to
786 * gather additional information that normally would
787 * come from the eeprom, like MAC Address
789 adapter
->has_eeprom
= 0;
793 adapter
->has_eeprom
= 1;
795 /* Read the EEPROM for information regarding LED behavior. Refer to
796 * ET1310_phy.c, et131x_xcvr_init(), for its use.
798 eeprom_read(adapter
, 0x70, &adapter
->eeprom_data
[0]);
799 eeprom_read(adapter
, 0x71, &adapter
->eeprom_data
[1]);
801 if (adapter
->eeprom_data
[0] != 0xcd)
802 /* Disable all optional features */
803 adapter
->eeprom_data
[1] = 0x00;
808 /* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
809 * @adapter: pointer to our adapter structure
811 static void et131x_rx_dma_enable(struct et131x_adapter
*adapter
)
813 /* Setup the receive dma configuration register for normal operation */
814 u32 csr
= ET_RXDMA_CSR_FBR1_ENABLE
;
815 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
817 if (rx_ring
->fbr
[1]->buffsize
== 4096)
818 csr
|= ET_RXDMA_CSR_FBR1_SIZE_LO
;
819 else if (rx_ring
->fbr
[1]->buffsize
== 8192)
820 csr
|= ET_RXDMA_CSR_FBR1_SIZE_HI
;
821 else if (rx_ring
->fbr
[1]->buffsize
== 16384)
822 csr
|= ET_RXDMA_CSR_FBR1_SIZE_LO
| ET_RXDMA_CSR_FBR1_SIZE_HI
;
824 csr
|= ET_RXDMA_CSR_FBR0_ENABLE
;
825 if (rx_ring
->fbr
[0]->buffsize
== 256)
826 csr
|= ET_RXDMA_CSR_FBR0_SIZE_LO
;
827 else if (rx_ring
->fbr
[0]->buffsize
== 512)
828 csr
|= ET_RXDMA_CSR_FBR0_SIZE_HI
;
829 else if (rx_ring
->fbr
[0]->buffsize
== 1024)
830 csr
|= ET_RXDMA_CSR_FBR0_SIZE_LO
| ET_RXDMA_CSR_FBR0_SIZE_HI
;
831 writel(csr
, &adapter
->regs
->rxdma
.csr
);
833 csr
= readl(&adapter
->regs
->rxdma
.csr
);
834 if (csr
& ET_RXDMA_CSR_HALT_STATUS
) {
836 csr
= readl(&adapter
->regs
->rxdma
.csr
);
837 if (csr
& ET_RXDMA_CSR_HALT_STATUS
) {
838 dev_err(&adapter
->pdev
->dev
,
839 "RX Dma failed to exit halt state. CSR 0x%08x\n",
845 /* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
846 * @adapter: pointer to our adapter structure
848 static void et131x_rx_dma_disable(struct et131x_adapter
*adapter
)
851 /* Setup the receive dma configuration register */
852 writel(ET_RXDMA_CSR_HALT
| ET_RXDMA_CSR_FBR1_ENABLE
,
853 &adapter
->regs
->rxdma
.csr
);
854 csr
= readl(&adapter
->regs
->rxdma
.csr
);
855 if (!(csr
& ET_RXDMA_CSR_HALT_STATUS
)) {
857 csr
= readl(&adapter
->regs
->rxdma
.csr
);
858 if (!(csr
& ET_RXDMA_CSR_HALT_STATUS
))
859 dev_err(&adapter
->pdev
->dev
,
860 "RX Dma failed to enter halt state. CSR 0x%08x\n",
865 /* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
866 * @adapter: pointer to our adapter structure
868 * Mainly used after a return to the D0 (full-power) state from a lower state.
870 static void et131x_tx_dma_enable(struct et131x_adapter
*adapter
)
872 /* Setup the transmit dma configuration register for normal
875 writel(ET_TXDMA_SNGL_EPKT
|(PARM_DMA_CACHE_DEF
<< ET_TXDMA_CACHE_SHIFT
),
876 &adapter
->regs
->txdma
.csr
);
879 static inline void add_10bit(u32
*v
, int n
)
881 *v
= INDEX10(*v
+ n
) | (*v
& ET_DMA10_WRAP
);
884 static inline void add_12bit(u32
*v
, int n
)
886 *v
= INDEX12(*v
+ n
) | (*v
& ET_DMA12_WRAP
);
889 /* et1310_config_mac_regs1 - Initialize the first part of MAC regs
890 * @adapter: pointer to our adapter structure
892 static void et1310_config_mac_regs1(struct et131x_adapter
*adapter
)
894 struct mac_regs __iomem
*macregs
= &adapter
->regs
->mac
;
899 /* First we need to reset everything. Write to MAC configuration
900 * register 1 to perform reset.
902 writel(ET_MAC_CFG1_SOFT_RESET
| ET_MAC_CFG1_SIM_RESET
|
903 ET_MAC_CFG1_RESET_RXMC
| ET_MAC_CFG1_RESET_TXMC
|
904 ET_MAC_CFG1_RESET_RXFUNC
| ET_MAC_CFG1_RESET_TXFUNC
,
907 /* Next lets configure the MAC Inter-packet gap register */
908 ipg
= 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
909 ipg
|= 0x50 << 8; /* ifg enforce 0x50 */
910 writel(ipg
, ¯egs
->ipg
);
912 /* Next lets configure the MAC Half Duplex register */
913 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
914 writel(0x00A1F037, ¯egs
->hfdp
);
916 /* Next lets configure the MAC Interface Control register */
917 writel(0, ¯egs
->if_ctrl
);
919 /* Let's move on to setting up the mii management configuration */
920 writel(ET_MAC_MIIMGMT_CLK_RST
, ¯egs
->mii_mgmt_cfg
);
922 /* Next lets configure the MAC Station Address register. These
923 * values are read from the EEPROM during initialization and stored
924 * in the adapter structure. We write what is stored in the adapter
925 * structure to the MAC Station Address registers high and low. This
926 * station address is used for generating and checking pause control
929 station2
= (adapter
->addr
[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT
) |
930 (adapter
->addr
[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT
);
931 station1
= (adapter
->addr
[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT
) |
932 (adapter
->addr
[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT
) |
933 (adapter
->addr
[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT
) |
935 writel(station1
, ¯egs
->station_addr_1
);
936 writel(station2
, ¯egs
->station_addr_2
);
938 /* Max ethernet packet in bytes that will be passed by the mac without
939 * being truncated. Allow the MAC to pass 4 more than our max packet
940 * size. This is 4 for the Ethernet CRC.
942 * Packets larger than (registry_jumbo_packet) that do not contain a
943 * VLAN ID will be dropped by the Rx function.
945 writel(adapter
->registry_jumbo_packet
+ 4, ¯egs
->max_fm_len
);
947 /* clear out MAC config reset */
948 writel(0, ¯egs
->cfg1
);
951 /* et1310_config_mac_regs2 - Initialize the second part of MAC regs
952 * @adapter: pointer to our adapter structure
954 static void et1310_config_mac_regs2(struct et131x_adapter
*adapter
)
957 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
958 struct phy_device
*phydev
= adapter
->phydev
;
964 ctl
= readl(&adapter
->regs
->txmac
.ctl
);
965 cfg1
= readl(&mac
->cfg1
);
966 cfg2
= readl(&mac
->cfg2
);
967 ifctrl
= readl(&mac
->if_ctrl
);
969 /* Set up the if mode bits */
970 cfg2
&= ~ET_MAC_CFG2_IFMODE_MASK
;
971 if (phydev
->speed
== SPEED_1000
) {
972 cfg2
|= ET_MAC_CFG2_IFMODE_1000
;
974 ifctrl
&= ~ET_MAC_IFCTRL_PHYMODE
;
976 cfg2
|= ET_MAC_CFG2_IFMODE_100
;
977 ifctrl
|= ET_MAC_IFCTRL_PHYMODE
;
980 /* We need to enable Rx/Tx */
981 cfg1
|= ET_MAC_CFG1_RX_ENABLE
| ET_MAC_CFG1_TX_ENABLE
|
983 /* Initialize loop back to off */
984 cfg1
&= ~(ET_MAC_CFG1_LOOPBACK
| ET_MAC_CFG1_RX_FLOW
);
985 if (adapter
->flowcontrol
== FLOW_RXONLY
||
986 adapter
->flowcontrol
== FLOW_BOTH
)
987 cfg1
|= ET_MAC_CFG1_RX_FLOW
;
988 writel(cfg1
, &mac
->cfg1
);
990 /* Now we need to initialize the MAC Configuration 2 register */
991 /* preamble 7, check length, huge frame off, pad crc, crc enable
994 cfg2
|= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT
;
995 cfg2
|= ET_MAC_CFG2_IFMODE_LEN_CHECK
;
996 cfg2
|= ET_MAC_CFG2_IFMODE_PAD_CRC
;
997 cfg2
|= ET_MAC_CFG2_IFMODE_CRC_ENABLE
;
998 cfg2
&= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME
;
999 cfg2
&= ~ET_MAC_CFG2_IFMODE_FULL_DPLX
;
1001 /* Turn on duplex if needed */
1002 if (phydev
->duplex
== DUPLEX_FULL
)
1003 cfg2
|= ET_MAC_CFG2_IFMODE_FULL_DPLX
;
1005 ifctrl
&= ~ET_MAC_IFCTRL_GHDMODE
;
1006 if (phydev
->duplex
== DUPLEX_HALF
)
1007 ifctrl
|= ET_MAC_IFCTRL_GHDMODE
;
1009 writel(ifctrl
, &mac
->if_ctrl
);
1010 writel(cfg2
, &mac
->cfg2
);
1015 cfg1
= readl(&mac
->cfg1
);
1016 } while ((cfg1
& ET_MAC_CFG1_WAIT
) != ET_MAC_CFG1_WAIT
&& delay
< 100);
1019 dev_warn(&adapter
->pdev
->dev
,
1020 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1025 ctl
|= ET_TX_CTRL_TXMAC_ENABLE
| ET_TX_CTRL_FC_DISABLE
;
1026 writel(ctl
, &adapter
->regs
->txmac
.ctl
);
1028 /* Ready to start the RXDMA/TXDMA engine */
1029 if (adapter
->flags
& FMP_ADAPTER_LOWER_POWER
) {
1030 et131x_rx_dma_enable(adapter
);
1031 et131x_tx_dma_enable(adapter
);
1035 /* et1310_in_phy_coma - check if the device is in phy coma
1036 * @adapter: pointer to our adapter structure
1038 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1040 static int et1310_in_phy_coma(struct et131x_adapter
*adapter
)
1042 u32 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
1044 return ET_PM_PHY_SW_COMA
& pmcsr
? 1 : 0;
1047 static void et1310_setup_device_for_multicast(struct et131x_adapter
*adapter
)
1049 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1056 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1057 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1058 * specified) then we should pass NO multi-cast addresses to the
1061 if (adapter
->packet_filter
& ET131X_PACKET_TYPE_MULTICAST
) {
1064 /* Loop through our multicast array and set up the device */
1065 for (i
= 0; i
< adapter
->multicast_addr_count
; i
++) {
1068 result
= ether_crc(6, adapter
->multicast_list
[i
]);
1070 result
= (result
& 0x3F800000) >> 23;
1073 hash1
|= (1 << result
);
1074 } else if ((31 < result
) && (result
< 64)) {
1076 hash2
|= (1 << result
);
1077 } else if ((63 < result
) && (result
< 96)) {
1079 hash3
|= (1 << result
);
1082 hash4
|= (1 << result
);
1087 /* Write out the new hash to the device */
1088 pm_csr
= readl(&adapter
->regs
->global
.pm_csr
);
1089 if (!et1310_in_phy_coma(adapter
)) {
1090 writel(hash1
, &rxmac
->multi_hash1
);
1091 writel(hash2
, &rxmac
->multi_hash2
);
1092 writel(hash3
, &rxmac
->multi_hash3
);
1093 writel(hash4
, &rxmac
->multi_hash4
);
1097 static void et1310_setup_device_for_unicast(struct et131x_adapter
*adapter
)
1099 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1105 /* Set up unicast packet filter reg 3 to be the first two octets of
1106 * the MAC address for both address
1108 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1109 * MAC address for second address
1111 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1112 * MAC address for first address
1114 uni_pf3
= (adapter
->addr
[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT
) |
1115 (adapter
->addr
[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT
) |
1116 (adapter
->addr
[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT
) |
1119 uni_pf2
= (adapter
->addr
[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT
) |
1120 (adapter
->addr
[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT
) |
1121 (adapter
->addr
[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT
) |
1124 uni_pf1
= (adapter
->addr
[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT
) |
1125 (adapter
->addr
[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT
) |
1126 (adapter
->addr
[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT
) |
1129 pm_csr
= readl(&adapter
->regs
->global
.pm_csr
);
1130 if (!et1310_in_phy_coma(adapter
)) {
1131 writel(uni_pf1
, &rxmac
->uni_pf_addr1
);
1132 writel(uni_pf2
, &rxmac
->uni_pf_addr2
);
1133 writel(uni_pf3
, &rxmac
->uni_pf_addr3
);
1137 static void et1310_config_rxmac_regs(struct et131x_adapter
*adapter
)
1139 struct rxmac_regs __iomem
*rxmac
= &adapter
->regs
->rxmac
;
1140 struct phy_device
*phydev
= adapter
->phydev
;
1145 /* Disable the MAC while it is being configured (also disable WOL) */
1146 writel(0x8, &rxmac
->ctrl
);
1148 /* Initialize WOL to disabled. */
1149 writel(0, &rxmac
->crc0
);
1150 writel(0, &rxmac
->crc12
);
1151 writel(0, &rxmac
->crc34
);
1153 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1154 * its default Values of 0x00000000 because there are not WOL masks
1157 writel(0, &rxmac
->mask0_word0
);
1158 writel(0, &rxmac
->mask0_word1
);
1159 writel(0, &rxmac
->mask0_word2
);
1160 writel(0, &rxmac
->mask0_word3
);
1162 writel(0, &rxmac
->mask1_word0
);
1163 writel(0, &rxmac
->mask1_word1
);
1164 writel(0, &rxmac
->mask1_word2
);
1165 writel(0, &rxmac
->mask1_word3
);
1167 writel(0, &rxmac
->mask2_word0
);
1168 writel(0, &rxmac
->mask2_word1
);
1169 writel(0, &rxmac
->mask2_word2
);
1170 writel(0, &rxmac
->mask2_word3
);
1172 writel(0, &rxmac
->mask3_word0
);
1173 writel(0, &rxmac
->mask3_word1
);
1174 writel(0, &rxmac
->mask3_word2
);
1175 writel(0, &rxmac
->mask3_word3
);
1177 writel(0, &rxmac
->mask4_word0
);
1178 writel(0, &rxmac
->mask4_word1
);
1179 writel(0, &rxmac
->mask4_word2
);
1180 writel(0, &rxmac
->mask4_word3
);
1182 /* Lets setup the WOL Source Address */
1183 sa_lo
= (adapter
->addr
[2] << ET_RX_WOL_LO_SA3_SHIFT
) |
1184 (adapter
->addr
[3] << ET_RX_WOL_LO_SA4_SHIFT
) |
1185 (adapter
->addr
[4] << ET_RX_WOL_LO_SA5_SHIFT
) |
1187 writel(sa_lo
, &rxmac
->sa_lo
);
1189 sa_hi
= (u32
) (adapter
->addr
[0] << ET_RX_WOL_HI_SA1_SHIFT
) |
1191 writel(sa_hi
, &rxmac
->sa_hi
);
1193 /* Disable all Packet Filtering */
1194 writel(0, &rxmac
->pf_ctrl
);
1196 /* Let's initialize the Unicast Packet filtering address */
1197 if (adapter
->packet_filter
& ET131X_PACKET_TYPE_DIRECTED
) {
1198 et1310_setup_device_for_unicast(adapter
);
1199 pf_ctrl
|= ET_RX_PFCTRL_UNICST_FILTER_ENABLE
;
1201 writel(0, &rxmac
->uni_pf_addr1
);
1202 writel(0, &rxmac
->uni_pf_addr2
);
1203 writel(0, &rxmac
->uni_pf_addr3
);
1206 /* Let's initialize the Multicast hash */
1207 if (!(adapter
->packet_filter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
1208 pf_ctrl
|= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE
;
1209 et1310_setup_device_for_multicast(adapter
);
1212 /* Runt packet filtering. Didn't work in version A silicon. */
1213 pf_ctrl
|= (NIC_MIN_PACKET_SIZE
+ 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT
;
1214 pf_ctrl
|= ET_RX_PFCTRL_FRAG_FILTER_ENABLE
;
1216 if (adapter
->registry_jumbo_packet
> 8192)
1217 /* In order to transmit jumbo packets greater than 8k, the
1218 * FIFO between RxMAC and RxDMA needs to be reduced in size
1219 * to (16k - Jumbo packet size). In order to implement this,
1220 * we must use "cut through" mode in the RxMAC, which chops
1221 * packets down into segments which are (max_size * 16). In
1222 * this case we selected 256 bytes, since this is the size of
1223 * the PCI-Express TLP's that the 1310 uses.
1225 * seg_en on, fc_en off, size 0x10
1227 writel(0x41, &rxmac
->mcif_ctrl_max_seg
);
1229 writel(0, &rxmac
->mcif_ctrl_max_seg
);
1231 /* Initialize the MCIF water marks */
1232 writel(0, &rxmac
->mcif_water_mark
);
1234 /* Initialize the MIF control */
1235 writel(0, &rxmac
->mif_ctrl
);
1237 /* Initialize the Space Available Register */
1238 writel(0, &rxmac
->space_avail
);
1240 /* Initialize the the mif_ctrl register
1241 * bit 3: Receive code error. One or more nibbles were signaled as
1242 * errors during the reception of the packet. Clear this
1243 * bit in Gigabit, set it in 100Mbit. This was derived
1244 * experimentally at UNH.
1245 * bit 4: Receive CRC error. The packet's CRC did not match the
1246 * internally generated CRC.
1247 * bit 5: Receive length check error. Indicates that frame length
1248 * field value in the packet does not match the actual data
1249 * byte length and is not a type field.
1250 * bit 16: Receive frame truncated.
1251 * bit 17: Drop packet enable
1253 if (phydev
&& phydev
->speed
== SPEED_100
)
1254 writel(0x30038, &rxmac
->mif_ctrl
);
1256 writel(0x30030, &rxmac
->mif_ctrl
);
1258 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1259 * filter is always enabled since it is where the runt packets are
1260 * supposed to be dropped. For version A silicon, runt packet
1261 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1262 * but we still leave the packet filter on.
1264 writel(pf_ctrl
, &rxmac
->pf_ctrl
);
1265 writel(ET_RX_CTRL_RXMAC_ENABLE
| ET_RX_CTRL_WOL_DISABLE
, &rxmac
->ctrl
);
1268 static void et1310_config_txmac_regs(struct et131x_adapter
*adapter
)
1270 struct txmac_regs __iomem
*txmac
= &adapter
->regs
->txmac
;
1272 /* We need to update the Control Frame Parameters
1273 * cfpt - control frame pause timer set to 64 (0x40)
1274 * cfep - control frame extended pause timer set to 0x0
1276 if (adapter
->flowcontrol
== FLOW_NONE
)
1277 writel(0, &txmac
->cf_param
);
1279 writel(0x40, &txmac
->cf_param
);
1282 static void et1310_config_macstat_regs(struct et131x_adapter
*adapter
)
1284 struct macstat_regs __iomem
*macstat
=
1285 &adapter
->regs
->macstat
;
1287 /* Next we need to initialize all the macstat registers to zero on
1290 writel(0, &macstat
->txrx_0_64_byte_frames
);
1291 writel(0, &macstat
->txrx_65_127_byte_frames
);
1292 writel(0, &macstat
->txrx_128_255_byte_frames
);
1293 writel(0, &macstat
->txrx_256_511_byte_frames
);
1294 writel(0, &macstat
->txrx_512_1023_byte_frames
);
1295 writel(0, &macstat
->txrx_1024_1518_byte_frames
);
1296 writel(0, &macstat
->txrx_1519_1522_gvln_frames
);
1298 writel(0, &macstat
->rx_bytes
);
1299 writel(0, &macstat
->rx_packets
);
1300 writel(0, &macstat
->rx_fcs_errs
);
1301 writel(0, &macstat
->rx_multicast_packets
);
1302 writel(0, &macstat
->rx_broadcast_packets
);
1303 writel(0, &macstat
->rx_control_frames
);
1304 writel(0, &macstat
->rx_pause_frames
);
1305 writel(0, &macstat
->rx_unknown_opcodes
);
1306 writel(0, &macstat
->rx_align_errs
);
1307 writel(0, &macstat
->rx_frame_len_errs
);
1308 writel(0, &macstat
->rx_code_errs
);
1309 writel(0, &macstat
->rx_carrier_sense_errs
);
1310 writel(0, &macstat
->rx_undersize_packets
);
1311 writel(0, &macstat
->rx_oversize_packets
);
1312 writel(0, &macstat
->rx_fragment_packets
);
1313 writel(0, &macstat
->rx_jabbers
);
1314 writel(0, &macstat
->rx_drops
);
1316 writel(0, &macstat
->tx_bytes
);
1317 writel(0, &macstat
->tx_packets
);
1318 writel(0, &macstat
->tx_multicast_packets
);
1319 writel(0, &macstat
->tx_broadcast_packets
);
1320 writel(0, &macstat
->tx_pause_frames
);
1321 writel(0, &macstat
->tx_deferred
);
1322 writel(0, &macstat
->tx_excessive_deferred
);
1323 writel(0, &macstat
->tx_single_collisions
);
1324 writel(0, &macstat
->tx_multiple_collisions
);
1325 writel(0, &macstat
->tx_late_collisions
);
1326 writel(0, &macstat
->tx_excessive_collisions
);
1327 writel(0, &macstat
->tx_total_collisions
);
1328 writel(0, &macstat
->tx_pause_honored_frames
);
1329 writel(0, &macstat
->tx_drops
);
1330 writel(0, &macstat
->tx_jabbers
);
1331 writel(0, &macstat
->tx_fcs_errs
);
1332 writel(0, &macstat
->tx_control_frames
);
1333 writel(0, &macstat
->tx_oversize_frames
);
1334 writel(0, &macstat
->tx_undersize_frames
);
1335 writel(0, &macstat
->tx_fragments
);
1336 writel(0, &macstat
->carry_reg1
);
1337 writel(0, &macstat
->carry_reg2
);
1339 /* Unmask any counters that we want to track the overflow of.
1340 * Initially this will be all counters. It may become clear later
1341 * that we do not need to track all counters.
1343 writel(0xFFFFBE32, &macstat
->carry_reg1_mask
);
1344 writel(0xFFFE7E8B, &macstat
->carry_reg2_mask
);
1347 /* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1348 * @adapter: pointer to our private adapter structure
1349 * @addr: the address of the transceiver
1350 * @reg: the register to read
1351 * @value: pointer to a 16-bit value in which the value will be stored
1353 static int et131x_phy_mii_read(struct et131x_adapter
*adapter
, u8 addr
,
1356 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1363 /* Save a local copy of the registers we are dealing with so we can
1366 mii_addr
= readl(&mac
->mii_mgmt_addr
);
1367 mii_cmd
= readl(&mac
->mii_mgmt_cmd
);
1369 /* Stop the current operation */
1370 writel(0, &mac
->mii_mgmt_cmd
);
1372 /* Set up the register we need to read from on the correct PHY */
1373 writel(ET_MAC_MII_ADDR(addr
, reg
), &mac
->mii_mgmt_addr
);
1375 writel(0x1, &mac
->mii_mgmt_cmd
);
1380 mii_indicator
= readl(&mac
->mii_mgmt_indicator
);
1381 } while ((mii_indicator
& ET_MAC_MGMT_WAIT
) && delay
< 50);
1383 /* If we hit the max delay, we could not read the register */
1385 dev_warn(&adapter
->pdev
->dev
,
1386 "reg 0x%08x could not be read\n", reg
);
1387 dev_warn(&adapter
->pdev
->dev
, "status is 0x%08x\n",
1393 /* If we hit here we were able to read the register and we need to
1394 * return the value to the caller
1396 *value
= readl(&mac
->mii_mgmt_stat
) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK
;
1398 /* Stop the read operation */
1399 writel(0, &mac
->mii_mgmt_cmd
);
1401 /* set the registers we touched back to the state at which we entered
1404 writel(mii_addr
, &mac
->mii_mgmt_addr
);
1405 writel(mii_cmd
, &mac
->mii_mgmt_cmd
);
1410 static int et131x_mii_read(struct et131x_adapter
*adapter
, u8 reg
, u16
*value
)
1412 struct phy_device
*phydev
= adapter
->phydev
;
1417 return et131x_phy_mii_read(adapter
, phydev
->addr
, reg
, value
);
1420 /* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
1421 * @adapter: pointer to our private adapter structure
1422 * @reg: the register to read
1423 * @value: 16-bit value to write
1425 static int et131x_mii_write(struct et131x_adapter
*adapter
, u8 reg
, u16 value
)
1427 struct mac_regs __iomem
*mac
= &adapter
->regs
->mac
;
1428 struct phy_device
*phydev
= adapter
->phydev
;
1439 addr
= phydev
->addr
;
1441 /* Save a local copy of the registers we are dealing with so we can
1444 mii_addr
= readl(&mac
->mii_mgmt_addr
);
1445 mii_cmd
= readl(&mac
->mii_mgmt_cmd
);
1447 /* Stop the current operation */
1448 writel(0, &mac
->mii_mgmt_cmd
);
1450 /* Set up the register we need to write to on the correct PHY */
1451 writel(ET_MAC_MII_ADDR(addr
, reg
), &mac
->mii_mgmt_addr
);
1453 /* Add the value to write to the registers to the mac */
1454 writel(value
, &mac
->mii_mgmt_ctrl
);
1459 mii_indicator
= readl(&mac
->mii_mgmt_indicator
);
1460 } while ((mii_indicator
& ET_MAC_MGMT_BUSY
) && delay
< 100);
1462 /* If we hit the max delay, we could not write the register */
1466 dev_warn(&adapter
->pdev
->dev
,
1467 "reg 0x%08x could not be written", reg
);
1468 dev_warn(&adapter
->pdev
->dev
, "status is 0x%08x\n",
1470 dev_warn(&adapter
->pdev
->dev
, "command is 0x%08x\n",
1471 readl(&mac
->mii_mgmt_cmd
));
1473 et131x_mii_read(adapter
, reg
, &tmp
);
1477 /* Stop the write operation */
1478 writel(0, &mac
->mii_mgmt_cmd
);
1480 /* set the registers we touched back to the state at which we entered
1483 writel(mii_addr
, &mac
->mii_mgmt_addr
);
1484 writel(mii_cmd
, &mac
->mii_mgmt_cmd
);
1489 static void et1310_phy_read_mii_bit(struct et131x_adapter
*adapter
,
1495 u16 mask
= 1 << bitnum
;
1497 /* Read the requested register */
1498 et131x_mii_read(adapter
, regnum
, ®
);
1500 *value
= (reg
& mask
) >> bitnum
;
1503 static void et1310_config_flow_control(struct et131x_adapter
*adapter
)
1505 struct phy_device
*phydev
= adapter
->phydev
;
1507 if (phydev
->duplex
== DUPLEX_HALF
) {
1508 adapter
->flowcontrol
= FLOW_NONE
;
1510 char remote_pause
, remote_async_pause
;
1512 et1310_phy_read_mii_bit(adapter
, 5, 10, &remote_pause
);
1513 et1310_phy_read_mii_bit(adapter
, 5, 11, &remote_async_pause
);
1515 if (remote_pause
&& remote_async_pause
) {
1516 adapter
->flowcontrol
= adapter
->wanted_flow
;
1517 } else if (remote_pause
&& !remote_async_pause
) {
1518 if (adapter
->wanted_flow
== FLOW_BOTH
)
1519 adapter
->flowcontrol
= FLOW_BOTH
;
1521 adapter
->flowcontrol
= FLOW_NONE
;
1522 } else if (!remote_pause
&& !remote_async_pause
) {
1523 adapter
->flowcontrol
= FLOW_NONE
;
1525 if (adapter
->wanted_flow
== FLOW_BOTH
)
1526 adapter
->flowcontrol
= FLOW_RXONLY
;
1528 adapter
->flowcontrol
= FLOW_NONE
;
1533 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1534 static void et1310_update_macstat_host_counters(struct et131x_adapter
*adapter
)
1536 struct ce_stats
*stats
= &adapter
->stats
;
1537 struct macstat_regs __iomem
*macstat
=
1538 &adapter
->regs
->macstat
;
1540 stats
->tx_collisions
+= readl(&macstat
->tx_total_collisions
);
1541 stats
->tx_first_collisions
+= readl(&macstat
->tx_single_collisions
);
1542 stats
->tx_deferred
+= readl(&macstat
->tx_deferred
);
1543 stats
->tx_excessive_collisions
+=
1544 readl(&macstat
->tx_multiple_collisions
);
1545 stats
->tx_late_collisions
+= readl(&macstat
->tx_late_collisions
);
1546 stats
->tx_underflows
+= readl(&macstat
->tx_undersize_frames
);
1547 stats
->tx_max_pkt_errs
+= readl(&macstat
->tx_oversize_frames
);
1549 stats
->rx_align_errs
+= readl(&macstat
->rx_align_errs
);
1550 stats
->rx_crc_errs
+= readl(&macstat
->rx_code_errs
);
1551 stats
->rcvd_pkts_dropped
+= readl(&macstat
->rx_drops
);
1552 stats
->rx_overflows
+= readl(&macstat
->rx_oversize_packets
);
1553 stats
->rx_code_violations
+= readl(&macstat
->rx_fcs_errs
);
1554 stats
->rx_length_errs
+= readl(&macstat
->rx_frame_len_errs
);
1555 stats
->rx_other_errs
+= readl(&macstat
->rx_fragment_packets
);
1558 /* et1310_handle_macstat_interrupt
1560 * One of the MACSTAT counters has wrapped. Update the local copy of
1561 * the statistics held in the adapter structure, checking the "wrap"
1562 * bit for each counter.
1564 static void et1310_handle_macstat_interrupt(struct et131x_adapter
*adapter
)
1569 /* Read the interrupt bits from the register(s). These are Clear On
1572 carry_reg1
= readl(&adapter
->regs
->macstat
.carry_reg1
);
1573 carry_reg2
= readl(&adapter
->regs
->macstat
.carry_reg2
);
1575 writel(carry_reg1
, &adapter
->regs
->macstat
.carry_reg1
);
1576 writel(carry_reg2
, &adapter
->regs
->macstat
.carry_reg2
);
1578 /* We need to do update the host copy of all the MAC_STAT counters.
1579 * For each counter, check it's overflow bit. If the overflow bit is
1580 * set, then increment the host version of the count by one complete
1581 * revolution of the counter. This routine is called when the counter
1582 * block indicates that one of the counters has wrapped.
1584 if (carry_reg1
& (1 << 14))
1585 adapter
->stats
.rx_code_violations
+= COUNTER_WRAP_16_BIT
;
1586 if (carry_reg1
& (1 << 8))
1587 adapter
->stats
.rx_align_errs
+= COUNTER_WRAP_12_BIT
;
1588 if (carry_reg1
& (1 << 7))
1589 adapter
->stats
.rx_length_errs
+= COUNTER_WRAP_16_BIT
;
1590 if (carry_reg1
& (1 << 2))
1591 adapter
->stats
.rx_other_errs
+= COUNTER_WRAP_16_BIT
;
1592 if (carry_reg1
& (1 << 6))
1593 adapter
->stats
.rx_crc_errs
+= COUNTER_WRAP_16_BIT
;
1594 if (carry_reg1
& (1 << 3))
1595 adapter
->stats
.rx_overflows
+= COUNTER_WRAP_16_BIT
;
1596 if (carry_reg1
& (1 << 0))
1597 adapter
->stats
.rcvd_pkts_dropped
+= COUNTER_WRAP_16_BIT
;
1598 if (carry_reg2
& (1 << 16))
1599 adapter
->stats
.tx_max_pkt_errs
+= COUNTER_WRAP_12_BIT
;
1600 if (carry_reg2
& (1 << 15))
1601 adapter
->stats
.tx_underflows
+= COUNTER_WRAP_12_BIT
;
1602 if (carry_reg2
& (1 << 6))
1603 adapter
->stats
.tx_first_collisions
+= COUNTER_WRAP_12_BIT
;
1604 if (carry_reg2
& (1 << 8))
1605 adapter
->stats
.tx_deferred
+= COUNTER_WRAP_12_BIT
;
1606 if (carry_reg2
& (1 << 5))
1607 adapter
->stats
.tx_excessive_collisions
+= COUNTER_WRAP_12_BIT
;
1608 if (carry_reg2
& (1 << 4))
1609 adapter
->stats
.tx_late_collisions
+= COUNTER_WRAP_12_BIT
;
1610 if (carry_reg2
& (1 << 2))
1611 adapter
->stats
.tx_collisions
+= COUNTER_WRAP_12_BIT
;
1614 static int et131x_mdio_read(struct mii_bus
*bus
, int phy_addr
, int reg
)
1616 struct net_device
*netdev
= bus
->priv
;
1617 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1621 ret
= et131x_phy_mii_read(adapter
, phy_addr
, reg
, &value
);
1629 static int et131x_mdio_write(struct mii_bus
*bus
, int phy_addr
,
1632 struct net_device
*netdev
= bus
->priv
;
1633 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1635 return et131x_mii_write(adapter
, reg
, value
);
1638 static int et131x_mdio_reset(struct mii_bus
*bus
)
1640 struct net_device
*netdev
= bus
->priv
;
1641 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1643 et131x_mii_write(adapter
, MII_BMCR
, BMCR_RESET
);
1648 /* et1310_phy_power_switch - PHY power control
1649 * @adapter: device to control
1650 * @down: true for off/false for back on
1652 * one hundred, ten, one thousand megs
1653 * How would you like to have your LAN accessed
1654 * Can't you see that this code processed
1655 * Phy power, phy power..
1657 static void et1310_phy_power_switch(struct et131x_adapter
*adapter
, bool down
)
1661 et131x_mii_read(adapter
, MII_BMCR
, &data
);
1662 data
&= ~BMCR_PDOWN
;
1665 et131x_mii_write(adapter
, MII_BMCR
, data
);
1668 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1669 static void et131x_xcvr_init(struct et131x_adapter
*adapter
)
1673 /* Set the LED behavior such that LED 1 indicates speed (off =
1674 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1675 * link and activity (on for link, blink off for activity).
1677 * NOTE: Some customizations have been added here for specific
1678 * vendors; The LED behavior is now determined by vendor data in the
1679 * EEPROM. However, the above description is the default.
1681 if ((adapter
->eeprom_data
[1] & 0x4) == 0) {
1682 et131x_mii_read(adapter
, PHY_LED_2
, &lcr2
);
1684 lcr2
&= (ET_LED2_LED_100TX
| ET_LED2_LED_1000T
);
1685 lcr2
|= (LED_VAL_LINKON_ACTIVE
<< LED_LINK_SHIFT
);
1687 if ((adapter
->eeprom_data
[1] & 0x8) == 0)
1688 lcr2
|= (LED_VAL_1000BT_100BTX
<< LED_TXRX_SHIFT
);
1690 lcr2
|= (LED_VAL_LINKON
<< LED_TXRX_SHIFT
);
1692 et131x_mii_write(adapter
, PHY_LED_2
, lcr2
);
1696 /* et131x_configure_global_regs - configure JAGCore global regs
1698 * Used to configure the global registers on the JAGCore
1700 static void et131x_configure_global_regs(struct et131x_adapter
*adapter
)
1702 struct global_regs __iomem
*regs
= &adapter
->regs
->global
;
1704 writel(0, ®s
->rxq_start_addr
);
1705 writel(INTERNAL_MEM_SIZE
- 1, ®s
->txq_end_addr
);
1707 if (adapter
->registry_jumbo_packet
< 2048) {
1708 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1709 * block of RAM that the driver can split between Tx
1710 * and Rx as it desires. Our default is to split it
1713 writel(PARM_RX_MEM_END_DEF
, ®s
->rxq_end_addr
);
1714 writel(PARM_RX_MEM_END_DEF
+ 1, ®s
->txq_start_addr
);
1715 } else if (adapter
->registry_jumbo_packet
< 8192) {
1716 /* For jumbo packets > 2k but < 8k, split 50-50. */
1717 writel(INTERNAL_MEM_RX_OFFSET
, ®s
->rxq_end_addr
);
1718 writel(INTERNAL_MEM_RX_OFFSET
+ 1, ®s
->txq_start_addr
);
1720 /* 9216 is the only packet size greater than 8k that
1721 * is available. The Tx buffer has to be big enough
1722 * for one whole packet on the Tx side. We'll make
1723 * the Tx 9408, and give the rest to Rx
1725 writel(0x01b3, ®s
->rxq_end_addr
);
1726 writel(0x01b4, ®s
->txq_start_addr
);
1729 /* Initialize the loopback register. Disable all loopbacks. */
1730 writel(0, ®s
->loopback
);
1733 writel(0, ®s
->msi_config
);
1735 /* By default, disable the watchdog timer. It will be enabled when
1736 * a packet is queued.
1738 writel(0, ®s
->watchdog_timer
);
1741 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1742 static void et131x_config_rx_dma_regs(struct et131x_adapter
*adapter
)
1744 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
1745 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
1746 struct fbr_desc
*fbr_entry
;
1749 unsigned long flags
;
1752 /* Halt RXDMA to perform the reconfigure. */
1753 et131x_rx_dma_disable(adapter
);
1755 /* Load the completion writeback physical address */
1756 writel(upper_32_bits(rx_local
->rx_status_bus
), &rx_dma
->dma_wb_base_hi
);
1757 writel(lower_32_bits(rx_local
->rx_status_bus
), &rx_dma
->dma_wb_base_lo
);
1759 memset(rx_local
->rx_status_block
, 0, sizeof(struct rx_status_block
));
1761 /* Set the address and parameters of the packet status ring into the
1764 writel(upper_32_bits(rx_local
->ps_ring_physaddr
), &rx_dma
->psr_base_hi
);
1765 writel(lower_32_bits(rx_local
->ps_ring_physaddr
), &rx_dma
->psr_base_lo
);
1766 writel(rx_local
->psr_num_entries
- 1, &rx_dma
->psr_num_des
);
1767 writel(0, &rx_dma
->psr_full_offset
);
1769 psr_num_des
= readl(&rx_dma
->psr_num_des
) & ET_RXDMA_PSR_NUM_DES_MASK
;
1770 writel((psr_num_des
* LO_MARK_PERCENT_FOR_PSR
) / 100,
1771 &rx_dma
->psr_min_des
);
1773 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
1775 /* These local variables track the PSR in the adapter structure */
1776 rx_local
->local_psr_full
= 0;
1778 for (id
= 0; id
< NUM_FBRS
; id
++) {
1779 u32 __iomem
*num_des
;
1780 u32 __iomem
*full_offset
;
1781 u32 __iomem
*min_des
;
1782 u32 __iomem
*base_hi
;
1783 u32 __iomem
*base_lo
;
1784 struct fbr_lookup
*fbr
= rx_local
->fbr
[id
];
1787 num_des
= &rx_dma
->fbr0_num_des
;
1788 full_offset
= &rx_dma
->fbr0_full_offset
;
1789 min_des
= &rx_dma
->fbr0_min_des
;
1790 base_hi
= &rx_dma
->fbr0_base_hi
;
1791 base_lo
= &rx_dma
->fbr0_base_lo
;
1793 num_des
= &rx_dma
->fbr1_num_des
;
1794 full_offset
= &rx_dma
->fbr1_full_offset
;
1795 min_des
= &rx_dma
->fbr1_min_des
;
1796 base_hi
= &rx_dma
->fbr1_base_hi
;
1797 base_lo
= &rx_dma
->fbr1_base_lo
;
1800 /* Now's the best time to initialize FBR contents */
1801 fbr_entry
= fbr
->ring_virtaddr
;
1802 for (entry
= 0; entry
< fbr
->num_entries
; entry
++) {
1803 fbr_entry
->addr_hi
= fbr
->bus_high
[entry
];
1804 fbr_entry
->addr_lo
= fbr
->bus_low
[entry
];
1805 fbr_entry
->word2
= entry
;
1809 /* Set the address and parameters of Free buffer ring 1 and 0
1810 * into the 1310's registers
1812 writel(upper_32_bits(fbr
->ring_physaddr
), base_hi
);
1813 writel(lower_32_bits(fbr
->ring_physaddr
), base_lo
);
1814 writel(fbr
->num_entries
- 1, num_des
);
1815 writel(ET_DMA10_WRAP
, full_offset
);
1817 /* This variable tracks the free buffer ring 1 full position,
1818 * so it has to match the above.
1820 fbr
->local_full
= ET_DMA10_WRAP
;
1821 writel(((fbr
->num_entries
* LO_MARK_PERCENT_FOR_RX
) / 100) - 1,
1825 /* Program the number of packets we will receive before generating an
1827 * For version B silicon, this value gets updated once autoneg is
1830 writel(PARM_RX_NUM_BUFS_DEF
, &rx_dma
->num_pkt_done
);
1832 /* The "time_done" is not working correctly to coalesce interrupts
1833 * after a given time period, but rather is giving us an interrupt
1834 * regardless of whether we have received packets.
1835 * This value gets updated once autoneg is complete.
1837 writel(PARM_RX_TIME_INT_DEF
, &rx_dma
->max_pkt_time
);
1839 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
1842 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1844 * Configure the transmit engine with the ring buffers we have created
1845 * and prepare it for use.
1847 static void et131x_config_tx_dma_regs(struct et131x_adapter
*adapter
)
1849 struct txdma_regs __iomem
*txdma
= &adapter
->regs
->txdma
;
1850 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
1852 /* Load the hardware with the start of the transmit descriptor ring. */
1853 writel(upper_32_bits(tx_ring
->tx_desc_ring_pa
), &txdma
->pr_base_hi
);
1854 writel(lower_32_bits(tx_ring
->tx_desc_ring_pa
), &txdma
->pr_base_lo
);
1856 /* Initialise the transmit DMA engine */
1857 writel(NUM_DESC_PER_RING_TX
- 1, &txdma
->pr_num_des
);
1859 /* Load the completion writeback physical address */
1860 writel(upper_32_bits(tx_ring
->tx_status_pa
), &txdma
->dma_wb_base_hi
);
1861 writel(lower_32_bits(tx_ring
->tx_status_pa
), &txdma
->dma_wb_base_lo
);
1863 *tx_ring
->tx_status
= 0;
1865 writel(0, &txdma
->service_request
);
1866 tx_ring
->send_idx
= 0;
1869 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1870 static void et131x_adapter_setup(struct et131x_adapter
*adapter
)
1872 /* Configure the JAGCore */
1873 et131x_configure_global_regs(adapter
);
1875 et1310_config_mac_regs1(adapter
);
1877 /* Configure the MMC registers */
1878 /* All we need to do is initialize the Memory Control Register */
1879 writel(ET_MMC_ENABLE
, &adapter
->regs
->mmc
.mmc_ctrl
);
1881 et1310_config_rxmac_regs(adapter
);
1882 et1310_config_txmac_regs(adapter
);
1884 et131x_config_rx_dma_regs(adapter
);
1885 et131x_config_tx_dma_regs(adapter
);
1887 et1310_config_macstat_regs(adapter
);
1889 et1310_phy_power_switch(adapter
, 0);
1890 et131x_xcvr_init(adapter
);
1893 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1894 static void et131x_soft_reset(struct et131x_adapter
*adapter
)
1898 /* Disable MAC Core */
1899 reg
= ET_MAC_CFG1_SOFT_RESET
| ET_MAC_CFG1_SIM_RESET
|
1900 ET_MAC_CFG1_RESET_RXMC
| ET_MAC_CFG1_RESET_TXMC
|
1901 ET_MAC_CFG1_RESET_RXFUNC
| ET_MAC_CFG1_RESET_TXFUNC
;
1902 writel(reg
, &adapter
->regs
->mac
.cfg1
);
1905 writel(reg
, &adapter
->regs
->global
.sw_reset
);
1907 reg
= ET_MAC_CFG1_RESET_RXMC
| ET_MAC_CFG1_RESET_TXMC
|
1908 ET_MAC_CFG1_RESET_RXFUNC
| ET_MAC_CFG1_RESET_TXFUNC
;
1909 writel(reg
, &adapter
->regs
->mac
.cfg1
);
1910 writel(0, &adapter
->regs
->mac
.cfg1
);
1913 /* et131x_enable_interrupts - enable interrupt
1915 * Enable the appropriate interrupts on the ET131x according to our
1918 static void et131x_enable_interrupts(struct et131x_adapter
*adapter
)
1922 /* Enable all global interrupts */
1923 if (adapter
->flowcontrol
== FLOW_TXONLY
||
1924 adapter
->flowcontrol
== FLOW_BOTH
)
1925 mask
= INT_MASK_ENABLE
;
1927 mask
= INT_MASK_ENABLE_NO_FLOW
;
1929 writel(mask
, &adapter
->regs
->global
.int_mask
);
1932 /* et131x_disable_interrupts - interrupt disable
1934 * Block all interrupts from the et131x device at the device itself
1936 static void et131x_disable_interrupts(struct et131x_adapter
*adapter
)
1938 /* Disable all global interrupts */
1939 writel(INT_MASK_DISABLE
, &adapter
->regs
->global
.int_mask
);
1942 /* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
1943 static void et131x_tx_dma_disable(struct et131x_adapter
*adapter
)
1945 /* Setup the tramsmit dma configuration register */
1946 writel(ET_TXDMA_CSR_HALT
| ET_TXDMA_SNGL_EPKT
,
1947 &adapter
->regs
->txdma
.csr
);
1950 /* et131x_enable_txrx - Enable tx/rx queues */
1951 static void et131x_enable_txrx(struct net_device
*netdev
)
1953 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1955 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1956 et131x_rx_dma_enable(adapter
);
1957 et131x_tx_dma_enable(adapter
);
1959 /* Enable device interrupts */
1960 if (adapter
->flags
& FMP_ADAPTER_INTERRUPT_IN_USE
)
1961 et131x_enable_interrupts(adapter
);
1963 /* We're ready to move some data, so start the queue */
1964 netif_start_queue(netdev
);
1967 /* et131x_disable_txrx - Disable tx/rx queues */
1968 static void et131x_disable_txrx(struct net_device
*netdev
)
1970 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
1972 /* First thing is to stop the queue */
1973 netif_stop_queue(netdev
);
1975 /* Stop the Tx and Rx DMA engines */
1976 et131x_rx_dma_disable(adapter
);
1977 et131x_tx_dma_disable(adapter
);
1979 /* Disable device interrupts */
1980 et131x_disable_interrupts(adapter
);
1983 /* et131x_init_send - Initialize send data structures */
1984 static void et131x_init_send(struct et131x_adapter
*adapter
)
1987 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
1988 struct tcb
*tcb
= tx_ring
->tcb_ring
;
1990 tx_ring
->tcb_qhead
= tcb
;
1992 memset(tcb
, 0, sizeof(struct tcb
) * NUM_TCB
);
1994 /* Go through and set up each TCB */
1995 for (ct
= 0; ct
++ < NUM_TCB
; tcb
++)
1996 /* Set the link pointer in HW TCB to the next TCB in the
1999 tcb
->next
= tcb
+ 1;
2001 /* Set the tail pointer */
2003 tx_ring
->tcb_qtail
= tcb
;
2005 /* Curr send queue should now be empty */
2006 tx_ring
->send_head
= NULL
;
2007 tx_ring
->send_tail
= NULL
;
2010 /* et1310_enable_phy_coma - called when network cable is unplugged
2012 * driver receive an phy status change interrupt while in D0 and check that
2013 * phy_status is down.
2015 * -- gate off JAGCore;
2016 * -- set gigE PHY in Coma mode
2017 * -- wake on phy_interrupt; Perform software reset JAGCore,
2018 * re-initialize jagcore and gigE PHY
2020 * Add D0-ASPM-PhyLinkDown Support:
2021 * -- while in D0, when there is a phy_interrupt indicating phy link
2022 * down status, call the MPSetPhyComa routine to enter this active
2023 * state power saving mode
2024 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2025 * indicating linkup status, call the MPDisablePhyComa routine to
2026 * restore JAGCore and gigE PHY
2028 static void et1310_enable_phy_coma(struct et131x_adapter
*adapter
)
2030 unsigned long flags
;
2033 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
2035 /* Save the GbE PHY speed and duplex modes. Need to restore this
2036 * when cable is plugged back in
2039 /* Stop sending packets. */
2040 spin_lock_irqsave(&adapter
->send_hw_lock
, flags
);
2041 adapter
->flags
|= FMP_ADAPTER_LOWER_POWER
;
2042 spin_unlock_irqrestore(&adapter
->send_hw_lock
, flags
);
2044 /* Wait for outstanding Receive packets */
2046 et131x_disable_txrx(adapter
->netdev
);
2048 /* Gate off JAGCore 3 clock domains */
2049 pmcsr
&= ~ET_PMCSR_INIT
;
2050 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2052 /* Program gigE PHY in to Coma mode */
2053 pmcsr
|= ET_PM_PHY_SW_COMA
;
2054 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2057 /* et1310_disable_phy_coma - Disable the Phy Coma Mode */
2058 static void et1310_disable_phy_coma(struct et131x_adapter
*adapter
)
2062 pmcsr
= readl(&adapter
->regs
->global
.pm_csr
);
2064 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2065 pmcsr
|= ET_PMCSR_INIT
;
2066 pmcsr
&= ~ET_PM_PHY_SW_COMA
;
2067 writel(pmcsr
, &adapter
->regs
->global
.pm_csr
);
2069 /* Restore the GbE PHY speed and duplex modes;
2070 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2073 /* Re-initialize the send structures */
2074 et131x_init_send(adapter
);
2076 /* Bring the device back to the state it was during init prior to
2077 * autonegotiation being complete. This way, when we get the auto-neg
2078 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2080 et131x_soft_reset(adapter
);
2082 /* setup et1310 as per the documentation ?? */
2083 et131x_adapter_setup(adapter
);
2085 /* Allow Tx to restart */
2086 adapter
->flags
&= ~FMP_ADAPTER_LOWER_POWER
;
2088 et131x_enable_txrx(adapter
->netdev
);
2091 static inline u32
bump_free_buff_ring(u32
*free_buff_ring
, u32 limit
)
2093 u32 tmp_free_buff_ring
= *free_buff_ring
;
2094 tmp_free_buff_ring
++;
2095 /* This works for all cases where limit < 1024. The 1023 case
2096 * works because 1023++ is 1024 which means the if condition is not
2097 * taken but the carry of the bit into the wrap bit toggles the wrap
2100 if ((tmp_free_buff_ring
& ET_DMA10_MASK
) > limit
) {
2101 tmp_free_buff_ring
&= ~ET_DMA10_MASK
;
2102 tmp_free_buff_ring
^= ET_DMA10_WRAP
;
2104 /* For the 1023 case */
2105 tmp_free_buff_ring
&= (ET_DMA10_MASK
| ET_DMA10_WRAP
);
2106 *free_buff_ring
= tmp_free_buff_ring
;
2107 return tmp_free_buff_ring
;
2110 /* et131x_rx_dma_memory_alloc
2112 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2113 * and the Packet Status Ring.
2115 static int et131x_rx_dma_memory_alloc(struct et131x_adapter
*adapter
)
2120 u32 pktstat_ringsize
;
2122 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
2123 struct fbr_lookup
*fbr
;
2125 /* Alloc memory for the lookup table */
2126 rx_ring
->fbr
[0] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
2127 rx_ring
->fbr
[1] = kmalloc(sizeof(struct fbr_lookup
), GFP_KERNEL
);
2129 /* The first thing we will do is configure the sizes of the buffer
2130 * rings. These will change based on jumbo packet support. Larger
2131 * jumbo packets increases the size of each entry in FBR0, and the
2132 * number of entries in FBR0, while at the same time decreasing the
2133 * number of entries in FBR1.
2135 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2136 * entries are huge in order to accommodate a "jumbo" frame, then it
2137 * will have less entries. Conversely, FBR1 will now be relied upon
2138 * to carry more "normal" frames, thus it's entry size also increases
2139 * and the number of entries goes up too (since it now carries
2140 * "small" + "regular" packets.
2142 * In this scheme, we try to maintain 512 entries between the two
2143 * rings. Also, FBR1 remains a constant size - when it's size doubles
2144 * the number of entries halves. FBR0 increases in size, however.
2147 if (adapter
->registry_jumbo_packet
< 2048) {
2148 rx_ring
->fbr
[0]->buffsize
= 256;
2149 rx_ring
->fbr
[0]->num_entries
= 512;
2150 rx_ring
->fbr
[1]->buffsize
= 2048;
2151 rx_ring
->fbr
[1]->num_entries
= 512;
2152 } else if (adapter
->registry_jumbo_packet
< 4096) {
2153 rx_ring
->fbr
[0]->buffsize
= 512;
2154 rx_ring
->fbr
[0]->num_entries
= 1024;
2155 rx_ring
->fbr
[1]->buffsize
= 4096;
2156 rx_ring
->fbr
[1]->num_entries
= 512;
2158 rx_ring
->fbr
[0]->buffsize
= 1024;
2159 rx_ring
->fbr
[0]->num_entries
= 768;
2160 rx_ring
->fbr
[1]->buffsize
= 16384;
2161 rx_ring
->fbr
[1]->num_entries
= 128;
2164 rx_ring
->psr_num_entries
= rx_ring
->fbr
[0]->num_entries
+
2165 rx_ring
->fbr
[1]->num_entries
;
2167 for (id
= 0; id
< NUM_FBRS
; id
++) {
2168 fbr
= rx_ring
->fbr
[id
];
2169 /* Allocate an area of memory for Free Buffer Ring */
2170 bufsize
= sizeof(struct fbr_desc
) * fbr
->num_entries
;
2171 fbr
->ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2173 &fbr
->ring_physaddr
,
2175 if (!fbr
->ring_virtaddr
) {
2176 dev_err(&adapter
->pdev
->dev
,
2177 "Cannot alloc memory for Free Buffer Ring %d\n", id
);
2182 for (id
= 0; id
< NUM_FBRS
; id
++) {
2183 fbr
= rx_ring
->fbr
[id
];
2184 fbr_chunksize
= (FBR_CHUNKS
* fbr
->buffsize
);
2186 for (i
= 0; i
< fbr
->num_entries
/ FBR_CHUNKS
; i
++) {
2187 dma_addr_t fbr_tmp_physaddr
;
2189 fbr
->mem_virtaddrs
[i
] = dma_alloc_coherent(
2190 &adapter
->pdev
->dev
, fbr_chunksize
,
2191 &fbr
->mem_physaddrs
[i
],
2194 if (!fbr
->mem_virtaddrs
[i
]) {
2195 dev_err(&adapter
->pdev
->dev
,
2196 "Could not alloc memory\n");
2200 /* See NOTE in "Save Physical Address" comment above */
2201 fbr_tmp_physaddr
= fbr
->mem_physaddrs
[i
];
2203 for (j
= 0; j
< FBR_CHUNKS
; j
++) {
2204 u32 index
= (i
* FBR_CHUNKS
) + j
;
2206 /* Save the Virtual address of this index for
2207 * quick access later
2209 fbr
->virt
[index
] = (u8
*)fbr
->mem_virtaddrs
[i
] +
2210 (j
* fbr
->buffsize
);
2212 /* now store the physical address in the
2213 * descriptor so the device can access it
2215 fbr
->bus_high
[index
] =
2216 upper_32_bits(fbr_tmp_physaddr
);
2217 fbr
->bus_low
[index
] =
2218 lower_32_bits(fbr_tmp_physaddr
);
2220 fbr_tmp_physaddr
+= fbr
->buffsize
;
2225 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2227 sizeof(struct pkt_stat_desc
) * rx_ring
->psr_num_entries
;
2229 rx_ring
->ps_ring_virtaddr
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2231 &rx_ring
->ps_ring_physaddr
,
2234 if (!rx_ring
->ps_ring_virtaddr
) {
2235 dev_err(&adapter
->pdev
->dev
,
2236 "Cannot alloc memory for Packet Status Ring\n");
2240 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2241 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2242 * are ever returned, make sure the high part is retrieved here before
2243 * storing the adjusted address.
2246 /* Allocate an area of memory for writeback of status information */
2247 rx_ring
->rx_status_block
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2248 sizeof(struct rx_status_block
),
2249 &rx_ring
->rx_status_bus
,
2251 if (!rx_ring
->rx_status_block
) {
2252 dev_err(&adapter
->pdev
->dev
,
2253 "Cannot alloc memory for Status Block\n");
2256 rx_ring
->num_rfd
= NIC_DEFAULT_NUM_RFD
;
2258 /* The RFDs are going to be put on lists later on, so initialize the
2261 INIT_LIST_HEAD(&rx_ring
->recv_list
);
2265 /* et131x_rx_dma_memory_free - Free all memory allocated within this module */
2266 static void et131x_rx_dma_memory_free(struct et131x_adapter
*adapter
)
2271 u32 pktstat_ringsize
;
2273 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
2274 struct fbr_lookup
*fbr
;
2276 /* Free RFDs and associated packet descriptors */
2277 WARN_ON(rx_ring
->num_ready_recv
!= rx_ring
->num_rfd
);
2279 while (!list_empty(&rx_ring
->recv_list
)) {
2280 rfd
= list_entry(rx_ring
->recv_list
.next
,
2281 struct rfd
, list_node
);
2283 list_del(&rfd
->list_node
);
2288 /* Free Free Buffer Rings */
2289 for (id
= 0; id
< NUM_FBRS
; id
++) {
2290 fbr
= rx_ring
->fbr
[id
];
2292 if (!fbr
->ring_virtaddr
)
2295 /* First the packet memory */
2297 index
< fbr
->num_entries
/ FBR_CHUNKS
;
2299 if (fbr
->mem_virtaddrs
[index
]) {
2300 bufsize
= fbr
->buffsize
* FBR_CHUNKS
;
2302 dma_free_coherent(&adapter
->pdev
->dev
,
2304 fbr
->mem_virtaddrs
[index
],
2305 fbr
->mem_physaddrs
[index
]);
2307 fbr
->mem_virtaddrs
[index
] = NULL
;
2311 bufsize
= sizeof(struct fbr_desc
) * fbr
->num_entries
;
2313 dma_free_coherent(&adapter
->pdev
->dev
,
2316 fbr
->ring_physaddr
);
2318 fbr
->ring_virtaddr
= NULL
;
2321 /* Free Packet Status Ring */
2322 if (rx_ring
->ps_ring_virtaddr
) {
2323 pktstat_ringsize
= sizeof(struct pkt_stat_desc
) *
2324 rx_ring
->psr_num_entries
;
2326 dma_free_coherent(&adapter
->pdev
->dev
, pktstat_ringsize
,
2327 rx_ring
->ps_ring_virtaddr
,
2328 rx_ring
->ps_ring_physaddr
);
2330 rx_ring
->ps_ring_virtaddr
= NULL
;
2333 /* Free area of memory for the writeback of status information */
2334 if (rx_ring
->rx_status_block
) {
2335 dma_free_coherent(&adapter
->pdev
->dev
,
2336 sizeof(struct rx_status_block
),
2337 rx_ring
->rx_status_block
, rx_ring
->rx_status_bus
);
2338 rx_ring
->rx_status_block
= NULL
;
2341 /* Free the FBR Lookup Table */
2342 kfree(rx_ring
->fbr
[0]);
2343 kfree(rx_ring
->fbr
[1]);
2345 /* Reset Counters */
2346 rx_ring
->num_ready_recv
= 0;
2349 /* et131x_init_recv - Initialize receive data structures */
2350 static int et131x_init_recv(struct et131x_adapter
*adapter
)
2354 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
2356 /* Setup each RFD */
2357 for (rfdct
= 0; rfdct
< rx_ring
->num_rfd
; rfdct
++) {
2358 rfd
= kzalloc(sizeof(struct rfd
), GFP_ATOMIC
| GFP_DMA
);
2364 /* Add this RFD to the recv_list */
2365 list_add_tail(&rfd
->list_node
, &rx_ring
->recv_list
);
2367 /* Increment the available RFD's */
2368 rx_ring
->num_ready_recv
++;
2374 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2375 static void et131x_set_rx_dma_timer(struct et131x_adapter
*adapter
)
2377 struct phy_device
*phydev
= adapter
->phydev
;
2379 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2380 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2382 if ((phydev
->speed
== SPEED_100
) || (phydev
->speed
== SPEED_10
)) {
2383 writel(0, &adapter
->regs
->rxdma
.max_pkt_time
);
2384 writel(1, &adapter
->regs
->rxdma
.num_pkt_done
);
2388 /* NICReturnRFD - Recycle a RFD and put it back onto the receive list
2389 * @adapter: pointer to our adapter
2390 * @rfd: pointer to the RFD
2392 static void nic_return_rfd(struct et131x_adapter
*adapter
, struct rfd
*rfd
)
2394 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
2395 struct rxdma_regs __iomem
*rx_dma
= &adapter
->regs
->rxdma
;
2396 u16 buff_index
= rfd
->bufferindex
;
2397 u8 ring_index
= rfd
->ringindex
;
2398 unsigned long flags
;
2399 struct fbr_lookup
*fbr
= rx_local
->fbr
[ring_index
];
2401 /* We don't use any of the OOB data besides status. Otherwise, we
2402 * need to clean up OOB data
2404 if (buff_index
< fbr
->num_entries
) {
2406 u32 __iomem
*offset
;
2407 struct fbr_desc
*next
;
2409 spin_lock_irqsave(&adapter
->fbr_lock
, flags
);
2411 if (ring_index
== 0)
2412 offset
= &rx_dma
->fbr0_full_offset
;
2414 offset
= &rx_dma
->fbr1_full_offset
;
2416 next
= (struct fbr_desc
*)(fbr
->ring_virtaddr
) +
2417 INDEX10(fbr
->local_full
);
2419 /* Handle the Free Buffer Ring advancement here. Write
2420 * the PA / Buffer Index for the returned buffer into
2421 * the oldest (next to be freed)FBR entry
2423 next
->addr_hi
= fbr
->bus_high
[buff_index
];
2424 next
->addr_lo
= fbr
->bus_low
[buff_index
];
2425 next
->word2
= buff_index
;
2427 free_buff_ring
= bump_free_buff_ring(&fbr
->local_full
,
2428 fbr
->num_entries
- 1);
2429 writel(free_buff_ring
, offset
);
2431 spin_unlock_irqrestore(&adapter
->fbr_lock
, flags
);
2433 dev_err(&adapter
->pdev
->dev
,
2434 "%s illegal Buffer Index returned\n", __func__
);
2437 /* The processing on this RFD is done, so put it back on the tail of
2440 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
2441 list_add_tail(&rfd
->list_node
, &rx_local
->recv_list
);
2442 rx_local
->num_ready_recv
++;
2443 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2445 WARN_ON(rx_local
->num_ready_recv
> rx_local
->num_rfd
);
2448 /* nic_rx_pkts - Checks the hardware for available packets
2450 * Returns rfd, a pointer to our MPRFD.
2452 * Checks the hardware for available packets, using completion ring
2453 * If packets are available, it gets an RFD from the recv_list, attaches
2454 * the packet to it, puts the RFD in the RecvPendList, and also returns
2455 * the pointer to the RFD.
2457 static struct rfd
*nic_rx_pkts(struct et131x_adapter
*adapter
)
2459 struct rx_ring
*rx_local
= &adapter
->rx_ring
;
2460 struct rx_status_block
*status
;
2461 struct pkt_stat_desc
*psr
;
2465 unsigned long flags
;
2466 struct list_head
*element
;
2472 struct sk_buff
*skb
;
2473 struct fbr_lookup
*fbr
;
2475 /* RX Status block is written by the DMA engine prior to every
2476 * interrupt. It contains the next to be used entry in the Packet
2477 * Status Ring, and also the two Free Buffer rings.
2479 status
= rx_local
->rx_status_block
;
2480 word1
= status
->word1
>> 16; /* Get the useful bits */
2482 /* Check the PSR and wrap bits do not match */
2483 if ((word1
& 0x1FFF) == (rx_local
->local_psr_full
& 0x1FFF))
2484 return NULL
; /* Looks like this ring is not updated yet */
2486 /* The packet status ring indicates that data is available. */
2487 psr
= (struct pkt_stat_desc
*) (rx_local
->ps_ring_virtaddr
) +
2488 (rx_local
->local_psr_full
& 0xFFF);
2490 /* Grab any information that is required once the PSR is advanced,
2491 * since we can no longer rely on the memory being accurate
2493 len
= psr
->word1
& 0xFFFF;
2494 ring_index
= (psr
->word1
>> 26) & 0x03;
2495 fbr
= rx_local
->fbr
[ring_index
];
2496 buff_index
= (psr
->word1
>> 16) & 0x3FF;
2499 /* Indicate that we have used this PSR entry. */
2501 add_12bit(&rx_local
->local_psr_full
, 1);
2503 (rx_local
->local_psr_full
& 0xFFF) > rx_local
->psr_num_entries
- 1) {
2504 /* Clear psr full and toggle the wrap bit */
2505 rx_local
->local_psr_full
&= ~0xFFF;
2506 rx_local
->local_psr_full
^= 0x1000;
2509 writel(rx_local
->local_psr_full
, &adapter
->regs
->rxdma
.psr_full_offset
);
2511 if (ring_index
> 1 || buff_index
> fbr
->num_entries
- 1) {
2512 /* Illegal buffer or ring index cannot be used by S/W*/
2513 dev_err(&adapter
->pdev
->dev
,
2514 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2515 rx_local
->local_psr_full
& 0xFFF, len
, buff_index
);
2519 /* Get and fill the RFD. */
2520 spin_lock_irqsave(&adapter
->rcv_lock
, flags
);
2522 element
= rx_local
->recv_list
.next
;
2523 rfd
= list_entry(element
, struct rfd
, list_node
);
2526 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2530 list_del(&rfd
->list_node
);
2531 rx_local
->num_ready_recv
--;
2533 spin_unlock_irqrestore(&adapter
->rcv_lock
, flags
);
2535 rfd
->bufferindex
= buff_index
;
2536 rfd
->ringindex
= ring_index
;
2538 /* In V1 silicon, there is a bug which screws up filtering of runt
2539 * packets. Therefore runt packet filtering is disabled in the MAC and
2540 * the packets are dropped here. They are also counted here.
2542 if (len
< (NIC_MIN_PACKET_SIZE
+ 4)) {
2543 adapter
->stats
.rx_other_errs
++;
2552 /* Determine if this is a multicast packet coming in */
2553 if ((word0
& ALCATEL_MULTICAST_PKT
) &&
2554 !(word0
& ALCATEL_BROADCAST_PKT
)) {
2555 /* Promiscuous mode and Multicast mode are not mutually
2556 * exclusive as was first thought. I guess Promiscuous is just
2557 * considered a super-set of the other filters. Generally filter
2558 * is 0x2b when in promiscuous mode.
2560 if ((adapter
->packet_filter
& ET131X_PACKET_TYPE_MULTICAST
)
2561 && !(adapter
->packet_filter
& ET131X_PACKET_TYPE_PROMISCUOUS
)
2562 && !(adapter
->packet_filter
&
2563 ET131X_PACKET_TYPE_ALL_MULTICAST
)) {
2564 buf
= fbr
->virt
[buff_index
];
2566 /* Loop through our list to see if the destination
2567 * address of this packet matches one in our list.
2569 for (i
= 0; i
< adapter
->multicast_addr_count
; i
++) {
2570 if (buf
[0] == adapter
->multicast_list
[i
][0]
2571 && buf
[1] == adapter
->multicast_list
[i
][1]
2572 && buf
[2] == adapter
->multicast_list
[i
][2]
2573 && buf
[3] == adapter
->multicast_list
[i
][3]
2574 && buf
[4] == adapter
->multicast_list
[i
][4]
2575 && buf
[5] == adapter
->multicast_list
[i
][5]) {
2580 /* If our index is equal to the number of Multicast
2581 * address we have, then this means we did not find this
2582 * packet's matching address in our list. Set the len to
2583 * zero, so we free our RFD when we return from this
2586 if (i
== adapter
->multicast_addr_count
)
2591 adapter
->stats
.multicast_pkts_rcvd
++;
2592 } else if (word0
& ALCATEL_BROADCAST_PKT
) {
2593 adapter
->stats
.broadcast_pkts_rcvd
++;
2595 /* Not sure what this counter measures in promiscuous mode.
2596 * Perhaps we should check the MAC address to see if it is
2597 * directed to us in promiscuous mode.
2599 adapter
->stats
.unicast_pkts_rcvd
++;
2609 skb
= dev_alloc_skb(rfd
->len
+ 2);
2611 dev_err(&adapter
->pdev
->dev
, "Couldn't alloc an SKB for Rx\n");
2615 adapter
->net_stats
.rx_bytes
+= rfd
->len
;
2617 memcpy(skb_put(skb
, rfd
->len
), fbr
->virt
[buff_index
], rfd
->len
);
2619 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
2620 skb
->ip_summed
= CHECKSUM_NONE
;
2624 nic_return_rfd(adapter
, rfd
);
2628 /* et131x_handle_recv_interrupt - Interrupt handler for receive processing
2630 * Assumption, Rcv spinlock has been acquired.
2632 static void et131x_handle_recv_interrupt(struct et131x_adapter
*adapter
)
2634 struct rfd
*rfd
= NULL
;
2637 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
2639 /* Process up to available RFD's */
2640 while (count
< NUM_PACKETS_HANDLED
) {
2641 if (list_empty(&rx_ring
->recv_list
)) {
2642 WARN_ON(rx_ring
->num_ready_recv
!= 0);
2647 rfd
= nic_rx_pkts(adapter
);
2652 /* Do not receive any packets until a filter has been set.
2653 * Do not receive any packets until we have link.
2654 * If length is zero, return the RFD in order to advance the
2657 if (!adapter
->packet_filter
||
2658 !netif_carrier_ok(adapter
->netdev
) ||
2662 /* Increment the number of packets we received */
2663 adapter
->net_stats
.rx_packets
++;
2665 /* Set the status on the packet, either resources or success */
2666 if (rx_ring
->num_ready_recv
< RFD_LOW_WATER_MARK
)
2667 dev_warn(&adapter
->pdev
->dev
, "RFD's are running out\n");
2672 if (count
== NUM_PACKETS_HANDLED
|| !done
) {
2673 rx_ring
->unfinished_receives
= true;
2674 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
2675 &adapter
->regs
->global
.watchdog_timer
);
2677 /* Watchdog timer will disable itself if appropriate. */
2678 rx_ring
->unfinished_receives
= false;
2681 /* et131x_tx_dma_memory_alloc
2683 * Allocates memory that will be visible both to the device and to the CPU.
2684 * The OS will pass us packets, pointers to which we will insert in the Tx
2685 * Descriptor queue. The device will read this queue to find the packets in
2686 * memory. The device will update the "status" in memory each time it xmits a
2689 static int et131x_tx_dma_memory_alloc(struct et131x_adapter
*adapter
)
2692 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2694 /* Allocate memory for the TCB's (Transmit Control Block) */
2695 tx_ring
->tcb_ring
= kcalloc(NUM_TCB
, sizeof(struct tcb
),
2696 GFP_ATOMIC
| GFP_DMA
);
2697 if (!tx_ring
->tcb_ring
)
2700 desc_size
= (sizeof(struct tx_desc
) * NUM_DESC_PER_RING_TX
);
2701 tx_ring
->tx_desc_ring
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2703 &tx_ring
->tx_desc_ring_pa
,
2705 if (!tx_ring
->tx_desc_ring
) {
2706 dev_err(&adapter
->pdev
->dev
,
2707 "Cannot alloc memory for Tx Ring\n");
2711 /* Save physical address
2713 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2714 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2715 * are ever returned, make sure the high part is retrieved here before
2716 * storing the adjusted address.
2718 /* Allocate memory for the Tx status block */
2719 tx_ring
->tx_status
= dma_alloc_coherent(&adapter
->pdev
->dev
,
2721 &tx_ring
->tx_status_pa
,
2723 if (!tx_ring
->tx_status_pa
) {
2724 dev_err(&adapter
->pdev
->dev
,
2725 "Cannot alloc memory for Tx status block\n");
2731 /* et131x_tx_dma_memory_free - Free all memory allocated within this module */
2732 static void et131x_tx_dma_memory_free(struct et131x_adapter
*adapter
)
2735 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2737 if (tx_ring
->tx_desc_ring
) {
2738 /* Free memory relating to Tx rings here */
2739 desc_size
= (sizeof(struct tx_desc
) * NUM_DESC_PER_RING_TX
);
2740 dma_free_coherent(&adapter
->pdev
->dev
,
2742 tx_ring
->tx_desc_ring
,
2743 tx_ring
->tx_desc_ring_pa
);
2744 tx_ring
->tx_desc_ring
= NULL
;
2747 /* Free memory for the Tx status block */
2748 if (tx_ring
->tx_status
) {
2749 dma_free_coherent(&adapter
->pdev
->dev
,
2752 tx_ring
->tx_status_pa
);
2754 tx_ring
->tx_status
= NULL
;
2756 /* Free the memory for the tcb structures */
2757 kfree(tx_ring
->tcb_ring
);
2760 /* nic_send_packet - NIC specific send handler for version B silicon.
2761 * @adapter: pointer to our adapter
2762 * @tcb: pointer to struct tcb
2764 static int nic_send_packet(struct et131x_adapter
*adapter
, struct tcb
*tcb
)
2767 struct tx_desc desc
[24]; /* 24 x 16 byte */
2769 u32 thiscopy
, remainder
;
2770 struct sk_buff
*skb
= tcb
->skb
;
2771 u32 nr_frags
= skb_shinfo(skb
)->nr_frags
+ 1;
2772 struct skb_frag_struct
*frags
= &skb_shinfo(skb
)->frags
[0];
2773 unsigned long flags
;
2774 struct phy_device
*phydev
= adapter
->phydev
;
2775 dma_addr_t dma_addr
;
2776 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2778 /* Part of the optimizations of this send routine restrict us to
2779 * sending 24 fragments at a pass. In practice we should never see
2780 * more than 5 fragments.
2782 * NOTE: The older version of this function (below) can handle any
2783 * number of fragments. If needed, we can call this function,
2784 * although it is less efficient.
2787 /* nr_frags should be no more than 18. */
2788 BUILD_BUG_ON(MAX_SKB_FRAGS
+ 1 > 23);
2790 memset(desc
, 0, sizeof(struct tx_desc
) * (nr_frags
+ 1));
2792 for (i
= 0; i
< nr_frags
; i
++) {
2793 /* If there is something in this element, lets get a
2794 * descriptor from the ring and get the necessary data
2797 /* If the fragments are smaller than a standard MTU,
2798 * then map them to a single descriptor in the Tx
2799 * Desc ring. However, if they're larger, as is
2800 * possible with support for jumbo packets, then
2801 * split them each across 2 descriptors.
2803 * This will work until we determine why the hardware
2804 * doesn't seem to like large fragments.
2806 if (skb_headlen(skb
) <= 1514) {
2807 /* Low 16bits are length, high is vlan and
2808 * unused currently so zero
2810 desc
[frag
].len_vlan
= skb_headlen(skb
);
2811 dma_addr
= dma_map_single(&adapter
->pdev
->dev
,
2815 desc
[frag
].addr_lo
= lower_32_bits(dma_addr
);
2816 desc
[frag
].addr_hi
= upper_32_bits(dma_addr
);
2819 desc
[frag
].len_vlan
= skb_headlen(skb
) / 2;
2820 dma_addr
= dma_map_single(&adapter
->pdev
->dev
,
2822 (skb_headlen(skb
) / 2),
2824 desc
[frag
].addr_lo
= lower_32_bits(dma_addr
);
2825 desc
[frag
].addr_hi
= upper_32_bits(dma_addr
);
2828 desc
[frag
].len_vlan
= skb_headlen(skb
) / 2;
2829 dma_addr
= dma_map_single(&adapter
->pdev
->dev
,
2831 (skb_headlen(skb
) / 2),
2832 (skb_headlen(skb
) / 2),
2834 desc
[frag
].addr_lo
= lower_32_bits(dma_addr
);
2835 desc
[frag
].addr_hi
= upper_32_bits(dma_addr
);
2839 desc
[frag
].len_vlan
= frags
[i
- 1].size
;
2840 dma_addr
= skb_frag_dma_map(&adapter
->pdev
->dev
,
2845 desc
[frag
].addr_lo
= lower_32_bits(dma_addr
);
2846 desc
[frag
].addr_hi
= upper_32_bits(dma_addr
);
2851 if (phydev
&& phydev
->speed
== SPEED_1000
) {
2852 if (++tx_ring
->since_irq
== PARM_TX_NUM_BUFS_DEF
) {
2853 /* Last element & Interrupt flag */
2854 desc
[frag
- 1].flags
=
2855 TXDESC_FLAG_INTPROC
| TXDESC_FLAG_LASTPKT
;
2856 tx_ring
->since_irq
= 0;
2857 } else { /* Last element */
2858 desc
[frag
- 1].flags
= TXDESC_FLAG_LASTPKT
;
2861 desc
[frag
- 1].flags
=
2862 TXDESC_FLAG_INTPROC
| TXDESC_FLAG_LASTPKT
;
2864 desc
[0].flags
|= TXDESC_FLAG_FIRSTPKT
;
2866 tcb
->index_start
= tx_ring
->send_idx
;
2869 spin_lock_irqsave(&adapter
->send_hw_lock
, flags
);
2871 thiscopy
= NUM_DESC_PER_RING_TX
- INDEX10(tx_ring
->send_idx
);
2873 if (thiscopy
>= frag
) {
2877 remainder
= frag
- thiscopy
;
2880 memcpy(tx_ring
->tx_desc_ring
+ INDEX10(tx_ring
->send_idx
),
2882 sizeof(struct tx_desc
) * thiscopy
);
2884 add_10bit(&tx_ring
->send_idx
, thiscopy
);
2886 if (INDEX10(tx_ring
->send_idx
) == 0 ||
2887 INDEX10(tx_ring
->send_idx
) == NUM_DESC_PER_RING_TX
) {
2888 tx_ring
->send_idx
&= ~ET_DMA10_MASK
;
2889 tx_ring
->send_idx
^= ET_DMA10_WRAP
;
2893 memcpy(tx_ring
->tx_desc_ring
,
2895 sizeof(struct tx_desc
) * remainder
);
2897 add_10bit(&tx_ring
->send_idx
, remainder
);
2900 if (INDEX10(tx_ring
->send_idx
) == 0) {
2901 if (tx_ring
->send_idx
)
2902 tcb
->index
= NUM_DESC_PER_RING_TX
- 1;
2904 tcb
->index
= ET_DMA10_WRAP
|(NUM_DESC_PER_RING_TX
- 1);
2906 tcb
->index
= tx_ring
->send_idx
- 1;
2908 spin_lock(&adapter
->tcb_send_qlock
);
2910 if (tx_ring
->send_tail
)
2911 tx_ring
->send_tail
->next
= tcb
;
2913 tx_ring
->send_head
= tcb
;
2915 tx_ring
->send_tail
= tcb
;
2917 WARN_ON(tcb
->next
!= NULL
);
2921 spin_unlock(&adapter
->tcb_send_qlock
);
2923 /* Write the new write pointer back to the device. */
2924 writel(tx_ring
->send_idx
, &adapter
->regs
->txdma
.service_request
);
2926 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2927 * timer to wake us up if this packet isn't followed by N more.
2929 if (phydev
&& phydev
->speed
== SPEED_1000
) {
2930 writel(PARM_TX_TIME_INT_DEF
* NANO_IN_A_MICRO
,
2931 &adapter
->regs
->global
.watchdog_timer
);
2933 spin_unlock_irqrestore(&adapter
->send_hw_lock
, flags
);
2938 /* send_packet - Do the work to send a packet
2940 * Assumption: Send spinlock has been acquired
2942 static int send_packet(struct sk_buff
*skb
, struct et131x_adapter
*adapter
)
2947 unsigned long flags
;
2948 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
2950 /* All packets must have at least a MAC address and a protocol type */
2951 if (skb
->len
< ETH_HLEN
)
2954 /* Get a TCB for this packet */
2955 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
2957 tcb
= tx_ring
->tcb_qhead
;
2960 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
2964 tx_ring
->tcb_qhead
= tcb
->next
;
2966 if (tx_ring
->tcb_qhead
== NULL
)
2967 tx_ring
->tcb_qtail
= NULL
;
2969 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
2973 if (skb
->data
!= NULL
&& skb_headlen(skb
) >= 6) {
2974 shbufva
= (u16
*) skb
->data
;
2976 if ((shbufva
[0] == 0xffff) &&
2977 (shbufva
[1] == 0xffff) && (shbufva
[2] == 0xffff))
2978 tcb
->flags
|= FMP_DEST_BROAD
;
2979 else if ((shbufva
[0] & 0x3) == 0x0001)
2980 tcb
->flags
|= FMP_DEST_MULTI
;
2985 /* Call the NIC specific send handler. */
2986 status
= nic_send_packet(adapter
, tcb
);
2989 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
2991 if (tx_ring
->tcb_qtail
)
2992 tx_ring
->tcb_qtail
->next
= tcb
;
2994 /* Apparently ready Q is empty. */
2995 tx_ring
->tcb_qhead
= tcb
;
2997 tx_ring
->tcb_qtail
= tcb
;
2998 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3001 WARN_ON(tx_ring
->used
> NUM_TCB
);
3005 /* et131x_send_packets - This function is called by the OS to send packets */
3006 static int et131x_send_packets(struct sk_buff
*skb
, struct net_device
*netdev
)
3009 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3010 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3012 /* Send these packets
3014 * NOTE: The Linux Tx entry point is only given one packet at a time
3015 * to Tx, so the PacketCount and it's array used makes no sense here
3018 /* TCB is not available */
3019 if (tx_ring
->used
>= NUM_TCB
) {
3020 /* NOTE: If there's an error on send, no need to queue the
3021 * packet under Linux; if we just send an error up to the
3022 * netif layer, it will resend the skb to us.
3026 /* We need to see if the link is up; if it's not, make the
3027 * netif layer think we're good and drop the packet
3029 if ((adapter
->flags
& FMP_ADAPTER_FAIL_SEND_MASK
) ||
3030 !netif_carrier_ok(netdev
)) {
3031 dev_kfree_skb_any(skb
);
3034 adapter
->net_stats
.tx_dropped
++;
3036 status
= send_packet(skb
, adapter
);
3037 if (status
!= 0 && status
!= -ENOMEM
) {
3038 /* On any other error, make netif think we're
3039 * OK and drop the packet
3041 dev_kfree_skb_any(skb
);
3043 adapter
->net_stats
.tx_dropped
++;
3050 /* free_send_packet - Recycle a struct tcb
3051 * @adapter: pointer to our adapter
3052 * @tcb: pointer to struct tcb
3054 * Complete the packet if necessary
3055 * Assumption - Send spinlock has been acquired
3057 static inline void free_send_packet(struct et131x_adapter
*adapter
,
3060 unsigned long flags
;
3061 struct tx_desc
*desc
= NULL
;
3062 struct net_device_stats
*stats
= &adapter
->net_stats
;
3063 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3066 if (tcb
->flags
& FMP_DEST_BROAD
)
3067 atomic_inc(&adapter
->stats
.broadcast_pkts_xmtd
);
3068 else if (tcb
->flags
& FMP_DEST_MULTI
)
3069 atomic_inc(&adapter
->stats
.multicast_pkts_xmtd
);
3071 atomic_inc(&adapter
->stats
.unicast_pkts_xmtd
);
3074 stats
->tx_bytes
+= tcb
->skb
->len
;
3076 /* Iterate through the TX descriptors on the ring
3077 * corresponding to this packet and umap the fragments
3081 desc
= tx_ring
->tx_desc_ring
+
3082 INDEX10(tcb
->index_start
);
3084 dma_addr
= desc
->addr_lo
;
3085 dma_addr
|= (u64
)desc
->addr_hi
<< 32;
3087 dma_unmap_single(&adapter
->pdev
->dev
,
3089 desc
->len_vlan
, DMA_TO_DEVICE
);
3091 add_10bit(&tcb
->index_start
, 1);
3092 if (INDEX10(tcb
->index_start
) >=
3093 NUM_DESC_PER_RING_TX
) {
3094 tcb
->index_start
&= ~ET_DMA10_MASK
;
3095 tcb
->index_start
^= ET_DMA10_WRAP
;
3097 } while (desc
!= tx_ring
->tx_desc_ring
+ INDEX10(tcb
->index
));
3099 dev_kfree_skb_any(tcb
->skb
);
3102 memset(tcb
, 0, sizeof(struct tcb
));
3104 /* Add the TCB to the Ready Q */
3105 spin_lock_irqsave(&adapter
->tcb_ready_qlock
, flags
);
3107 adapter
->net_stats
.tx_packets
++;
3109 if (tx_ring
->tcb_qtail
)
3110 tx_ring
->tcb_qtail
->next
= tcb
;
3112 /* Apparently ready Q is empty. */
3113 tx_ring
->tcb_qhead
= tcb
;
3115 tx_ring
->tcb_qtail
= tcb
;
3117 spin_unlock_irqrestore(&adapter
->tcb_ready_qlock
, flags
);
3118 WARN_ON(tx_ring
->used
< 0);
3121 /* et131x_free_busy_send_packets - Free and complete the stopped active sends
3123 * Assumption - Send spinlock has been acquired
3125 static void et131x_free_busy_send_packets(struct et131x_adapter
*adapter
)
3128 unsigned long flags
;
3130 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3132 /* Any packets being sent? Check the first TCB on the send list */
3133 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3135 tcb
= tx_ring
->send_head
;
3137 while (tcb
!= NULL
&& freed
< NUM_TCB
) {
3138 struct tcb
*next
= tcb
->next
;
3140 tx_ring
->send_head
= next
;
3143 tx_ring
->send_tail
= NULL
;
3147 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3150 free_send_packet(adapter
, tcb
);
3152 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3154 tcb
= tx_ring
->send_head
;
3157 WARN_ON(freed
== NUM_TCB
);
3159 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3164 /* et131x_handle_send_interrupt - Interrupt handler for sending processing
3166 * Re-claim the send resources, complete sends and get more to send from
3167 * the send wait queue.
3169 * Assumption - Send spinlock has been acquired
3171 static void et131x_handle_send_interrupt(struct et131x_adapter
*adapter
)
3173 unsigned long flags
;
3177 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3179 serviced
= readl(&adapter
->regs
->txdma
.new_service_complete
);
3180 index
= INDEX10(serviced
);
3182 /* Has the ring wrapped? Process any descriptors that do not have
3183 * the same "wrap" indicator as the current completion indicator
3185 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3187 tcb
= tx_ring
->send_head
;
3190 ((serviced
^ tcb
->index
) & ET_DMA10_WRAP
) &&
3191 index
< INDEX10(tcb
->index
)) {
3193 tx_ring
->send_head
= tcb
->next
;
3194 if (tcb
->next
== NULL
)
3195 tx_ring
->send_tail
= NULL
;
3197 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3198 free_send_packet(adapter
, tcb
);
3199 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3201 /* Goto the next packet */
3202 tcb
= tx_ring
->send_head
;
3205 !((serviced
^ tcb
->index
) & ET_DMA10_WRAP
)
3206 && index
> (tcb
->index
& ET_DMA10_MASK
)) {
3208 tx_ring
->send_head
= tcb
->next
;
3209 if (tcb
->next
== NULL
)
3210 tx_ring
->send_tail
= NULL
;
3212 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3213 free_send_packet(adapter
, tcb
);
3214 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
3216 /* Goto the next packet */
3217 tcb
= tx_ring
->send_head
;
3220 /* Wake up the queue when we hit a low-water mark */
3221 if (tx_ring
->used
<= NUM_TCB
/ 3)
3222 netif_wake_queue(adapter
->netdev
);
3224 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
3227 static int et131x_get_settings(struct net_device
*netdev
,
3228 struct ethtool_cmd
*cmd
)
3230 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3232 return phy_ethtool_gset(adapter
->phydev
, cmd
);
3235 static int et131x_set_settings(struct net_device
*netdev
,
3236 struct ethtool_cmd
*cmd
)
3238 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3240 return phy_ethtool_sset(adapter
->phydev
, cmd
);
3243 static int et131x_get_regs_len(struct net_device
*netdev
)
3245 #define ET131X_REGS_LEN 256
3246 return ET131X_REGS_LEN
* sizeof(u32
);
3249 static void et131x_get_regs(struct net_device
*netdev
,
3250 struct ethtool_regs
*regs
, void *regs_data
)
3252 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3253 struct address_map __iomem
*aregs
= adapter
->regs
;
3254 u32
*regs_buff
= regs_data
;
3258 memset(regs_data
, 0, et131x_get_regs_len(netdev
));
3260 regs
->version
= (1 << 24) | (adapter
->pdev
->revision
<< 16) |
3261 adapter
->pdev
->device
;
3264 et131x_mii_read(adapter
, MII_BMCR
, &tmp
);
3265 regs_buff
[num
++] = tmp
;
3266 et131x_mii_read(adapter
, MII_BMSR
, &tmp
);
3267 regs_buff
[num
++] = tmp
;
3268 et131x_mii_read(adapter
, MII_PHYSID1
, &tmp
);
3269 regs_buff
[num
++] = tmp
;
3270 et131x_mii_read(adapter
, MII_PHYSID2
, &tmp
);
3271 regs_buff
[num
++] = tmp
;
3272 et131x_mii_read(adapter
, MII_ADVERTISE
, &tmp
);
3273 regs_buff
[num
++] = tmp
;
3274 et131x_mii_read(adapter
, MII_LPA
, &tmp
);
3275 regs_buff
[num
++] = tmp
;
3276 et131x_mii_read(adapter
, MII_EXPANSION
, &tmp
);
3277 regs_buff
[num
++] = tmp
;
3278 /* Autoneg next page transmit reg */
3279 et131x_mii_read(adapter
, 0x07, &tmp
);
3280 regs_buff
[num
++] = tmp
;
3281 /* Link partner next page reg */
3282 et131x_mii_read(adapter
, 0x08, &tmp
);
3283 regs_buff
[num
++] = tmp
;
3284 et131x_mii_read(adapter
, MII_CTRL1000
, &tmp
);
3285 regs_buff
[num
++] = tmp
;
3286 et131x_mii_read(adapter
, MII_STAT1000
, &tmp
);
3287 regs_buff
[num
++] = tmp
;
3288 et131x_mii_read(adapter
, 0x0b, &tmp
);
3289 regs_buff
[num
++] = tmp
;
3290 et131x_mii_read(adapter
, 0x0c, &tmp
);
3291 regs_buff
[num
++] = tmp
;
3292 et131x_mii_read(adapter
, MII_MMD_CTRL
, &tmp
);
3293 regs_buff
[num
++] = tmp
;
3294 et131x_mii_read(adapter
, MII_MMD_DATA
, &tmp
);
3295 regs_buff
[num
++] = tmp
;
3296 et131x_mii_read(adapter
, MII_ESTATUS
, &tmp
);
3297 regs_buff
[num
++] = tmp
;
3299 et131x_mii_read(adapter
, PHY_INDEX_REG
, &tmp
);
3300 regs_buff
[num
++] = tmp
;
3301 et131x_mii_read(adapter
, PHY_DATA_REG
, &tmp
);
3302 regs_buff
[num
++] = tmp
;
3303 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
, &tmp
);
3304 regs_buff
[num
++] = tmp
;
3305 et131x_mii_read(adapter
, PHY_LOOPBACK_CONTROL
, &tmp
);
3306 regs_buff
[num
++] = tmp
;
3307 et131x_mii_read(adapter
, PHY_LOOPBACK_CONTROL
+ 1, &tmp
);
3308 regs_buff
[num
++] = tmp
;
3310 et131x_mii_read(adapter
, PHY_REGISTER_MGMT_CONTROL
, &tmp
);
3311 regs_buff
[num
++] = tmp
;
3312 et131x_mii_read(adapter
, PHY_CONFIG
, &tmp
);
3313 regs_buff
[num
++] = tmp
;
3314 et131x_mii_read(adapter
, PHY_PHY_CONTROL
, &tmp
);
3315 regs_buff
[num
++] = tmp
;
3316 et131x_mii_read(adapter
, PHY_INTERRUPT_MASK
, &tmp
);
3317 regs_buff
[num
++] = tmp
;
3318 et131x_mii_read(adapter
, PHY_INTERRUPT_STATUS
, &tmp
);
3319 regs_buff
[num
++] = tmp
;
3320 et131x_mii_read(adapter
, PHY_PHY_STATUS
, &tmp
);
3321 regs_buff
[num
++] = tmp
;
3322 et131x_mii_read(adapter
, PHY_LED_1
, &tmp
);
3323 regs_buff
[num
++] = tmp
;
3324 et131x_mii_read(adapter
, PHY_LED_2
, &tmp
);
3325 regs_buff
[num
++] = tmp
;
3328 regs_buff
[num
++] = readl(&aregs
->global
.txq_start_addr
);
3329 regs_buff
[num
++] = readl(&aregs
->global
.txq_end_addr
);
3330 regs_buff
[num
++] = readl(&aregs
->global
.rxq_start_addr
);
3331 regs_buff
[num
++] = readl(&aregs
->global
.rxq_end_addr
);
3332 regs_buff
[num
++] = readl(&aregs
->global
.pm_csr
);
3333 regs_buff
[num
++] = adapter
->stats
.interrupt_status
;
3334 regs_buff
[num
++] = readl(&aregs
->global
.int_mask
);
3335 regs_buff
[num
++] = readl(&aregs
->global
.int_alias_clr_en
);
3336 regs_buff
[num
++] = readl(&aregs
->global
.int_status_alias
);
3337 regs_buff
[num
++] = readl(&aregs
->global
.sw_reset
);
3338 regs_buff
[num
++] = readl(&aregs
->global
.slv_timer
);
3339 regs_buff
[num
++] = readl(&aregs
->global
.msi_config
);
3340 regs_buff
[num
++] = readl(&aregs
->global
.loopback
);
3341 regs_buff
[num
++] = readl(&aregs
->global
.watchdog_timer
);
3344 regs_buff
[num
++] = readl(&aregs
->txdma
.csr
);
3345 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_base_hi
);
3346 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_base_lo
);
3347 regs_buff
[num
++] = readl(&aregs
->txdma
.pr_num_des
);
3348 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_wr_addr
);
3349 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_wr_addr_ext
);
3350 regs_buff
[num
++] = readl(&aregs
->txdma
.txq_rd_addr
);
3351 regs_buff
[num
++] = readl(&aregs
->txdma
.dma_wb_base_hi
);
3352 regs_buff
[num
++] = readl(&aregs
->txdma
.dma_wb_base_lo
);
3353 regs_buff
[num
++] = readl(&aregs
->txdma
.service_request
);
3354 regs_buff
[num
++] = readl(&aregs
->txdma
.service_complete
);
3355 regs_buff
[num
++] = readl(&aregs
->txdma
.cache_rd_index
);
3356 regs_buff
[num
++] = readl(&aregs
->txdma
.cache_wr_index
);
3357 regs_buff
[num
++] = readl(&aregs
->txdma
.tx_dma_error
);
3358 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_abort_cnt
);
3359 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_abort_cnt
);
3360 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_abort_cnt
);
3361 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_timeout_cnt
);
3362 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_timeout_cnt
);
3363 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_timeout_cnt
);
3364 regs_buff
[num
++] = readl(&aregs
->txdma
.desc_error_cnt
);
3365 regs_buff
[num
++] = readl(&aregs
->txdma
.payload_error_cnt
);
3366 regs_buff
[num
++] = readl(&aregs
->txdma
.writeback_error_cnt
);
3367 regs_buff
[num
++] = readl(&aregs
->txdma
.dropped_tlp_cnt
);
3368 regs_buff
[num
++] = readl(&aregs
->txdma
.new_service_complete
);
3369 regs_buff
[num
++] = readl(&aregs
->txdma
.ethernet_packet_cnt
);
3372 regs_buff
[num
++] = readl(&aregs
->rxdma
.csr
);
3373 regs_buff
[num
++] = readl(&aregs
->rxdma
.dma_wb_base_hi
);
3374 regs_buff
[num
++] = readl(&aregs
->rxdma
.dma_wb_base_lo
);
3375 regs_buff
[num
++] = readl(&aregs
->rxdma
.num_pkt_done
);
3376 regs_buff
[num
++] = readl(&aregs
->rxdma
.max_pkt_time
);
3377 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_rd_addr
);
3378 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_rd_addr_ext
);
3379 regs_buff
[num
++] = readl(&aregs
->rxdma
.rxq_wr_addr
);
3380 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_base_hi
);
3381 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_base_lo
);
3382 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_num_des
);
3383 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_avail_offset
);
3384 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_full_offset
);
3385 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_access_index
);
3386 regs_buff
[num
++] = readl(&aregs
->rxdma
.psr_min_des
);
3387 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_base_lo
);
3388 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_base_hi
);
3389 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_num_des
);
3390 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_avail_offset
);
3391 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_full_offset
);
3392 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_rd_index
);
3393 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr0_min_des
);
3394 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_base_lo
);
3395 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_base_hi
);
3396 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_num_des
);
3397 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_avail_offset
);
3398 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_full_offset
);
3399 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_rd_index
);
3400 regs_buff
[num
++] = readl(&aregs
->rxdma
.fbr1_min_des
);
3403 static void et131x_get_drvinfo(struct net_device
*netdev
,
3404 struct ethtool_drvinfo
*info
)
3406 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3408 strlcpy(info
->driver
, DRIVER_NAME
, sizeof(info
->driver
));
3409 strlcpy(info
->version
, DRIVER_VERSION
, sizeof(info
->version
));
3410 strlcpy(info
->bus_info
, pci_name(adapter
->pdev
),
3411 sizeof(info
->bus_info
));
3414 static struct ethtool_ops et131x_ethtool_ops
= {
3415 .get_settings
= et131x_get_settings
,
3416 .set_settings
= et131x_set_settings
,
3417 .get_drvinfo
= et131x_get_drvinfo
,
3418 .get_regs_len
= et131x_get_regs_len
,
3419 .get_regs
= et131x_get_regs
,
3420 .get_link
= ethtool_op_get_link
,
3423 /* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
3424 static void et131x_hwaddr_init(struct et131x_adapter
*adapter
)
3426 /* If have our default mac from init and no mac address from
3427 * EEPROM then we need to generate the last octet and set it on the
3430 if (is_zero_ether_addr(adapter
->rom_addr
)) {
3431 /* We need to randomly generate the last octet so we
3432 * decrease our chances of setting the mac address to
3433 * same as another one of our cards in the system
3435 get_random_bytes(&adapter
->addr
[5], 1);
3436 /* We have the default value in the register we are
3437 * working with so we need to copy the current
3438 * address into the permanent address
3440 memcpy(adapter
->rom_addr
,
3441 adapter
->addr
, ETH_ALEN
);
3443 /* We do not have an override address, so set the
3444 * current address to the permanent address and add
3447 memcpy(adapter
->addr
,
3448 adapter
->rom_addr
, ETH_ALEN
);
3452 /* et131x_pci_init - initial PCI setup
3454 * Perform the initial setup of PCI registers and if possible initialise
3455 * the MAC address. At this point the I/O registers have yet to be mapped
3457 static int et131x_pci_init(struct et131x_adapter
*adapter
,
3458 struct pci_dev
*pdev
)
3463 rc
= et131x_init_eeprom(adapter
);
3467 if (!pci_is_pcie(pdev
)) {
3468 dev_err(&pdev
->dev
, "Missing PCIe capabilities\n");
3472 /* Let's set up the PORT LOGIC Register. */
3474 /* Program the Ack/Nak latency and replay timers */
3475 max_payload
= pdev
->pcie_mpss
;
3477 if (max_payload
< 2) {
3478 static const u16 acknak
[2] = { 0x76, 0xD0 };
3479 static const u16 replay
[2] = { 0x1E0, 0x2ED };
3481 if (pci_write_config_word(pdev
, ET1310_PCI_ACK_NACK
,
3482 acknak
[max_payload
])) {
3484 "Could not write PCI config space for ACK/NAK\n");
3487 if (pci_write_config_word(pdev
, ET1310_PCI_REPLAY
,
3488 replay
[max_payload
])) {
3490 "Could not write PCI config space for Replay Timer\n");
3495 /* l0s and l1 latency timers. We are using default values.
3496 * Representing 001 for L0s and 010 for L1
3498 if (pci_write_config_byte(pdev
, ET1310_PCI_L0L1LATENCY
, 0x11)) {
3500 "Could not write PCI config space for Latency Timers\n");
3504 /* Change the max read size to 2k */
3505 if (pcie_set_readrq(pdev
, 2048)) {
3507 "Couldn't change PCI config space for Max read size\n");
3511 /* Get MAC address from config space if an eeprom exists, otherwise
3512 * the MAC address there will not be valid
3514 if (!adapter
->has_eeprom
) {
3515 et131x_hwaddr_init(adapter
);
3519 for (i
= 0; i
< ETH_ALEN
; i
++) {
3520 if (pci_read_config_byte(pdev
, ET1310_PCI_MAC_ADDRESS
+ i
,
3521 adapter
->rom_addr
+ i
)) {
3522 dev_err(&pdev
->dev
, "Could not read PCI config space for MAC address\n");
3526 memcpy(adapter
->addr
, adapter
->rom_addr
, ETH_ALEN
);
3534 /* et131x_error_timer_handler
3535 * @data: timer-specific variable; here a pointer to our adapter structure
3537 * The routine called when the error timer expires, to track the number of
3540 static void et131x_error_timer_handler(unsigned long data
)
3542 struct et131x_adapter
*adapter
= (struct et131x_adapter
*) data
;
3543 struct phy_device
*phydev
= adapter
->phydev
;
3545 if (et1310_in_phy_coma(adapter
)) {
3546 /* Bring the device immediately out of coma, to
3547 * prevent it from sleeping indefinitely, this
3548 * mechanism could be improved!
3550 et1310_disable_phy_coma(adapter
);
3551 adapter
->boot_coma
= 20;
3553 et1310_update_macstat_host_counters(adapter
);
3556 if (!phydev
->link
&& adapter
->boot_coma
< 11)
3557 adapter
->boot_coma
++;
3559 if (adapter
->boot_coma
== 10) {
3560 if (!phydev
->link
) {
3561 if (!et1310_in_phy_coma(adapter
)) {
3562 /* NOTE - This was originally a 'sync with
3563 * interrupt'. How to do that under Linux?
3565 et131x_enable_interrupts(adapter
);
3566 et1310_enable_phy_coma(adapter
);
3571 /* This is a periodic timer, so reschedule */
3572 mod_timer(&adapter
->error_timer
, jiffies
+ TX_ERROR_PERIOD
* HZ
/ 1000);
3575 /* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
3576 static void et131x_adapter_memory_free(struct et131x_adapter
*adapter
)
3578 et131x_tx_dma_memory_free(adapter
);
3579 et131x_rx_dma_memory_free(adapter
);
3582 /* et131x_adapter_memory_alloc
3583 * Allocate all the memory blocks for send, receive and others.
3585 static int et131x_adapter_memory_alloc(struct et131x_adapter
*adapter
)
3589 /* Allocate memory for the Tx Ring */
3590 status
= et131x_tx_dma_memory_alloc(adapter
);
3592 dev_err(&adapter
->pdev
->dev
,
3593 "et131x_tx_dma_memory_alloc FAILED\n");
3596 /* Receive buffer memory allocation */
3597 status
= et131x_rx_dma_memory_alloc(adapter
);
3599 dev_err(&adapter
->pdev
->dev
,
3600 "et131x_rx_dma_memory_alloc FAILED\n");
3601 et131x_tx_dma_memory_free(adapter
);
3605 /* Init receive data structures */
3606 status
= et131x_init_recv(adapter
);
3608 dev_err(&adapter
->pdev
->dev
, "et131x_init_recv FAILED\n");
3609 et131x_adapter_memory_free(adapter
);
3614 static void et131x_adjust_link(struct net_device
*netdev
)
3616 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3617 struct phy_device
*phydev
= adapter
->phydev
;
3621 if (phydev
->link
== adapter
->link
)
3624 /* Check to see if we are in coma mode and if
3625 * so, disable it because we will not be able
3626 * to read PHY values until we are out.
3628 if (et1310_in_phy_coma(adapter
))
3629 et1310_disable_phy_coma(adapter
);
3631 adapter
->link
= phydev
->link
;
3632 phy_print_status(phydev
);
3635 adapter
->boot_coma
= 20;
3636 if (phydev
->speed
== SPEED_10
) {
3639 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
3641 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
3643 et131x_mii_write(adapter
, PHY_INDEX_REG
,
3644 register18
| 0x8402);
3645 et131x_mii_write(adapter
, PHY_DATA_REG
,
3647 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
3651 et1310_config_flow_control(adapter
);
3653 if (phydev
->speed
== SPEED_1000
&&
3654 adapter
->registry_jumbo_packet
> 2048) {
3657 et131x_mii_read(adapter
, PHY_CONFIG
, ®
);
3658 reg
&= ~ET_PHY_CONFIG_TX_FIFO_DEPTH
;
3659 reg
|= ET_PHY_CONFIG_FIFO_DEPTH_32
;
3660 et131x_mii_write(adapter
, PHY_CONFIG
, reg
);
3663 et131x_set_rx_dma_timer(adapter
);
3664 et1310_config_mac_regs2(adapter
);
3666 adapter
->boot_coma
= 0;
3668 if (phydev
->speed
== SPEED_10
) {
3671 et131x_mii_read(adapter
, PHY_MPHY_CONTROL_REG
,
3673 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
3675 et131x_mii_write(adapter
, PHY_INDEX_REG
,
3676 register18
| 0x8402);
3677 et131x_mii_write(adapter
, PHY_DATA_REG
,
3679 et131x_mii_write(adapter
, PHY_MPHY_CONTROL_REG
,
3683 /* Free the packets being actively sent & stopped */
3684 et131x_free_busy_send_packets(adapter
);
3686 /* Re-initialize the send structures */
3687 et131x_init_send(adapter
);
3689 /* Bring the device back to the state it was during
3690 * init prior to autonegotiation being complete. This
3691 * way, when we get the auto-neg complete interrupt,
3692 * we can complete init by calling config_mac_regs2.
3694 et131x_soft_reset(adapter
);
3696 /* Setup ET1310 as per the documentation */
3697 et131x_adapter_setup(adapter
);
3699 /* perform reset of tx/rx */
3700 et131x_disable_txrx(netdev
);
3701 et131x_enable_txrx(netdev
);
3705 static int et131x_mii_probe(struct net_device
*netdev
)
3707 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3708 struct phy_device
*phydev
= NULL
;
3710 phydev
= phy_find_first(adapter
->mii_bus
);
3712 dev_err(&adapter
->pdev
->dev
, "no PHY found\n");
3716 phydev
= phy_connect(netdev
, dev_name(&phydev
->dev
),
3717 &et131x_adjust_link
, PHY_INTERFACE_MODE_MII
);
3719 if (IS_ERR(phydev
)) {
3720 dev_err(&adapter
->pdev
->dev
, "Could not attach to PHY\n");
3721 return PTR_ERR(phydev
);
3724 phydev
->supported
&= (SUPPORTED_10baseT_Half
3725 | SUPPORTED_10baseT_Full
3726 | SUPPORTED_100baseT_Half
3727 | SUPPORTED_100baseT_Full
3732 if (adapter
->pdev
->device
!= ET131X_PCI_DEVICE_ID_FAST
)
3733 phydev
->supported
|= SUPPORTED_1000baseT_Full
;
3735 phydev
->advertising
= phydev
->supported
;
3736 adapter
->phydev
= phydev
;
3738 dev_info(&adapter
->pdev
->dev
,
3739 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3740 phydev
->drv
->name
, dev_name(&phydev
->dev
));
3745 /* et131x_adapter_init
3747 * Initialize the data structures for the et131x_adapter object and link
3748 * them together with the platform provided device structures.
3750 static struct et131x_adapter
*et131x_adapter_init(struct net_device
*netdev
,
3751 struct pci_dev
*pdev
)
3753 static const u8 default_mac
[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3755 struct et131x_adapter
*adapter
;
3757 /* Allocate private adapter struct and copy in relevant information */
3758 adapter
= netdev_priv(netdev
);
3759 adapter
->pdev
= pci_dev_get(pdev
);
3760 adapter
->netdev
= netdev
;
3762 /* Initialize spinlocks here */
3763 spin_lock_init(&adapter
->lock
);
3764 spin_lock_init(&adapter
->tcb_send_qlock
);
3765 spin_lock_init(&adapter
->tcb_ready_qlock
);
3766 spin_lock_init(&adapter
->send_hw_lock
);
3767 spin_lock_init(&adapter
->rcv_lock
);
3768 spin_lock_init(&adapter
->fbr_lock
);
3770 adapter
->registry_jumbo_packet
= 1514; /* 1514-9216 */
3772 /* Set the MAC address to a default */
3773 memcpy(adapter
->addr
, default_mac
, ETH_ALEN
);
3778 /* et131x_pci_remove
3780 * Registered in the pci_driver structure, this function is called when the
3781 * PCI subsystem detects that a PCI device which matches the information
3782 * contained in the pci_device_id table has been removed.
3784 static void et131x_pci_remove(struct pci_dev
*pdev
)
3786 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3787 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3789 unregister_netdev(netdev
);
3790 phy_disconnect(adapter
->phydev
);
3791 mdiobus_unregister(adapter
->mii_bus
);
3792 cancel_work_sync(&adapter
->task
);
3793 kfree(adapter
->mii_bus
->irq
);
3794 mdiobus_free(adapter
->mii_bus
);
3796 et131x_adapter_memory_free(adapter
);
3797 iounmap(adapter
->regs
);
3800 free_netdev(netdev
);
3801 pci_release_regions(pdev
);
3802 pci_disable_device(pdev
);
3805 /* et131x_up - Bring up a device for use. */
3806 static void et131x_up(struct net_device
*netdev
)
3808 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3810 et131x_enable_txrx(netdev
);
3811 phy_start(adapter
->phydev
);
3814 /* et131x_down - Bring down the device */
3815 static void et131x_down(struct net_device
*netdev
)
3817 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3819 /* Save the timestamp for the TX watchdog, prevent a timeout */
3820 netdev
->trans_start
= jiffies
;
3822 phy_stop(adapter
->phydev
);
3823 et131x_disable_txrx(netdev
);
3826 #ifdef CONFIG_PM_SLEEP
3827 static int et131x_suspend(struct device
*dev
)
3829 struct pci_dev
*pdev
= to_pci_dev(dev
);
3830 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3832 if (netif_running(netdev
)) {
3833 netif_device_detach(netdev
);
3834 et131x_down(netdev
);
3835 pci_save_state(pdev
);
3841 static int et131x_resume(struct device
*dev
)
3843 struct pci_dev
*pdev
= to_pci_dev(dev
);
3844 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3846 if (netif_running(netdev
)) {
3847 pci_restore_state(pdev
);
3849 netif_device_attach(netdev
);
3855 static SIMPLE_DEV_PM_OPS(et131x_pm_ops
, et131x_suspend
, et131x_resume
);
3856 #define ET131X_PM_OPS (&et131x_pm_ops)
3858 #define ET131X_PM_OPS NULL
3861 /* et131x_isr - The Interrupt Service Routine for the driver.
3862 * @irq: the IRQ on which the interrupt was received.
3863 * @dev_id: device-specific info (here a pointer to a net_device struct)
3865 * Returns a value indicating if the interrupt was handled.
3867 static irqreturn_t
et131x_isr(int irq
, void *dev_id
)
3869 bool handled
= true;
3870 struct net_device
*netdev
= (struct net_device
*)dev_id
;
3871 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
3872 struct rx_ring
*rx_ring
= &adapter
->rx_ring
;
3873 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
3876 if (!netif_device_present(netdev
)) {
3881 /* If the adapter is in low power state, then it should not
3882 * recognize any interrupt
3885 /* Disable Device Interrupts */
3886 et131x_disable_interrupts(adapter
);
3888 /* Get a copy of the value in the interrupt status register
3889 * so we can process the interrupting section
3891 status
= readl(&adapter
->regs
->global
.int_status
);
3893 if (adapter
->flowcontrol
== FLOW_TXONLY
||
3894 adapter
->flowcontrol
== FLOW_BOTH
) {
3895 status
&= ~INT_MASK_ENABLE
;
3897 status
&= ~INT_MASK_ENABLE_NO_FLOW
;
3900 /* Make sure this is our interrupt */
3903 et131x_enable_interrupts(adapter
);
3907 /* This is our interrupt, so process accordingly */
3909 if (status
& ET_INTR_WATCHDOG
) {
3910 struct tcb
*tcb
= tx_ring
->send_head
;
3913 if (++tcb
->stale
> 1)
3914 status
|= ET_INTR_TXDMA_ISR
;
3916 if (rx_ring
->unfinished_receives
)
3917 status
|= ET_INTR_RXDMA_XFR_DONE
;
3918 else if (tcb
== NULL
)
3919 writel(0, &adapter
->regs
->global
.watchdog_timer
);
3921 status
&= ~ET_INTR_WATCHDOG
;
3925 /* This interrupt has in some way been "handled" by
3926 * the ISR. Either it was a spurious Rx interrupt, or
3927 * it was a Tx interrupt that has been filtered by
3930 et131x_enable_interrupts(adapter
);
3934 /* We need to save the interrupt status value for use in our
3935 * DPC. We will clear the software copy of that in that
3938 adapter
->stats
.interrupt_status
= status
;
3940 /* Schedule the ISR handler as a bottom-half task in the
3941 * kernel's tq_immediate queue, and mark the queue for
3944 schedule_work(&adapter
->task
);
3946 return IRQ_RETVAL(handled
);
3949 /* et131x_isr_handler - The ISR handler
3951 * scheduled to run in a deferred context by the ISR. This is where the ISR's
3952 * work actually gets done.
3954 static void et131x_isr_handler(struct work_struct
*work
)
3956 struct et131x_adapter
*adapter
=
3957 container_of(work
, struct et131x_adapter
, task
);
3958 u32 status
= adapter
->stats
.interrupt_status
;
3959 struct address_map __iomem
*iomem
= adapter
->regs
;
3961 /* These first two are by far the most common. Once handled, we clear
3962 * their two bits in the status word. If the word is now zero, we
3965 /* Handle all the completed Transmit interrupts */
3966 if (status
& ET_INTR_TXDMA_ISR
)
3967 et131x_handle_send_interrupt(adapter
);
3969 /* Handle all the completed Receives interrupts */
3970 if (status
& ET_INTR_RXDMA_XFR_DONE
)
3971 et131x_handle_recv_interrupt(adapter
);
3973 status
&= ~(ET_INTR_TXDMA_ERR
| ET_INTR_RXDMA_XFR_DONE
);
3978 /* Handle the TXDMA Error interrupt */
3979 if (status
& ET_INTR_TXDMA_ERR
) {
3980 /* Following read also clears the register (COR) */
3981 u32 txdma_err
= readl(&iomem
->txdma
.tx_dma_error
);
3983 dev_warn(&adapter
->pdev
->dev
,
3984 "TXDMA_ERR interrupt, error = %d\n",
3988 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3989 if (status
& (ET_INTR_RXDMA_FB_R0_LOW
| ET_INTR_RXDMA_FB_R1_LOW
)) {
3990 /* This indicates the number of unused buffers in RXDMA free
3991 * buffer ring 0 is <= the limit you programmed. Free buffer
3992 * resources need to be returned. Free buffers are consumed as
3993 * packets are passed from the network to the host. The host
3994 * becomes aware of the packets from the contents of the packet
3995 * status ring. This ring is queried when the packet done
3996 * interrupt occurs. Packets are then passed to the OS. When
3997 * the OS is done with the packets the resources can be
3998 * returned to the ET1310 for re-use. This interrupt is one
3999 * method of returning resources.
4002 /* If the user has flow control on, then we will
4003 * send a pause packet, otherwise just exit
4005 if (adapter
->flowcontrol
== FLOW_TXONLY
||
4006 adapter
->flowcontrol
== FLOW_BOTH
) {
4009 /* Tell the device to send a pause packet via the back
4010 * pressure register (bp req and bp xon/xoff)
4012 pm_csr
= readl(&iomem
->global
.pm_csr
);
4013 if (!et1310_in_phy_coma(adapter
))
4014 writel(3, &iomem
->txmac
.bp_ctrl
);
4018 /* Handle Packet Status Ring Low Interrupt */
4019 if (status
& ET_INTR_RXDMA_STAT_LOW
) {
4020 /* Same idea as with the two Free Buffer Rings. Packets going
4021 * from the network to the host each consume a free buffer
4022 * resource and a packet status resource. These resoures are
4023 * passed to the OS. When the OS is done with the resources,
4024 * they need to be returned to the ET1310. This is one method
4025 * of returning the resources.
4029 /* Handle RXDMA Error Interrupt */
4030 if (status
& ET_INTR_RXDMA_ERR
) {
4031 /* The rxdma_error interrupt is sent when a time-out on a
4032 * request issued by the JAGCore has occurred or a completion is
4033 * returned with an un-successful status. In both cases the
4034 * request is considered complete. The JAGCore will
4035 * automatically re-try the request in question. Normally
4036 * information on events like these are sent to the host using
4037 * the "Advanced Error Reporting" capability. This interrupt is
4038 * another way of getting similar information. The only thing
4039 * required is to clear the interrupt by reading the ISR in the
4040 * global resources. The JAGCore will do a re-try on the
4041 * request. Normally you should never see this interrupt. If
4042 * you start to see this interrupt occurring frequently then
4043 * something bad has occurred. A reset might be the thing to do.
4047 dev_warn(&adapter
->pdev
->dev
,
4048 "RxDMA_ERR interrupt, error %x\n",
4049 readl(&iomem
->txmac
.tx_test
));
4052 /* Handle the Wake on LAN Event */
4053 if (status
& ET_INTR_WOL
) {
4054 /* This is a secondary interrupt for wake on LAN. The driver
4055 * should never see this, if it does, something serious is
4056 * wrong. We will TRAP the message when we are in DBG mode,
4057 * otherwise we will ignore it.
4059 dev_err(&adapter
->pdev
->dev
, "WAKE_ON_LAN interrupt\n");
4062 /* Let's move on to the TxMac */
4063 if (status
& ET_INTR_TXMAC
) {
4064 u32 err
= readl(&iomem
->txmac
.err
);
4066 /* When any of the errors occur and TXMAC generates an
4067 * interrupt to report these errors, it usually means that
4068 * TXMAC has detected an error in the data stream retrieved
4069 * from the on-chip Tx Q. All of these errors are catastrophic
4070 * and TXMAC won't be able to recover data when these errors
4071 * occur. In a nutshell, the whole Tx path will have to be reset
4072 * and re-configured afterwards.
4074 dev_warn(&adapter
->pdev
->dev
,
4075 "TXMAC interrupt, error 0x%08x\n",
4078 /* If we are debugging, we want to see this error, otherwise we
4079 * just want the device to be reset and continue
4083 /* Handle RXMAC Interrupt */
4084 if (status
& ET_INTR_RXMAC
) {
4085 /* These interrupts are catastrophic to the device, what we need
4086 * to do is disable the interrupts and set the flag to cause us
4087 * to reset so we can solve this issue.
4089 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
4091 dev_warn(&adapter
->pdev
->dev
,
4092 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4093 readl(&iomem
->rxmac
.err_reg
));
4095 dev_warn(&adapter
->pdev
->dev
,
4096 "Enable 0x%08x, Diag 0x%08x\n",
4097 readl(&iomem
->rxmac
.ctrl
),
4098 readl(&iomem
->rxmac
.rxq_diag
));
4100 /* If we are debugging, we want to see this error, otherwise we
4101 * just want the device to be reset and continue
4105 /* Handle MAC_STAT Interrupt */
4106 if (status
& ET_INTR_MAC_STAT
) {
4107 /* This means at least one of the un-masked counters in the
4108 * MAC_STAT block has rolled over. Use this to maintain the top,
4109 * software managed bits of the counter(s).
4111 et1310_handle_macstat_interrupt(adapter
);
4114 /* Handle SLV Timeout Interrupt */
4115 if (status
& ET_INTR_SLV_TIMEOUT
) {
4116 /* This means a timeout has occurred on a read or write request
4117 * to one of the JAGCore registers. The Global Resources block
4118 * has terminated the request and on a read request, returned a
4119 * "fake" value. The most likely reasons are: Bad Address or the
4120 * addressed module is in a power-down state and can't respond.
4124 et131x_enable_interrupts(adapter
);
4127 /* et131x_stats - Return the current device statistics */
4128 static struct net_device_stats
*et131x_stats(struct net_device
*netdev
)
4130 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4131 struct net_device_stats
*stats
= &adapter
->net_stats
;
4132 struct ce_stats
*devstat
= &adapter
->stats
;
4134 stats
->rx_errors
= devstat
->rx_length_errs
+
4135 devstat
->rx_align_errs
+
4136 devstat
->rx_crc_errs
+
4137 devstat
->rx_code_violations
+
4138 devstat
->rx_other_errs
;
4139 stats
->tx_errors
= devstat
->tx_max_pkt_errs
;
4140 stats
->multicast
= devstat
->multicast_pkts_rcvd
;
4141 stats
->collisions
= devstat
->tx_collisions
;
4143 stats
->rx_length_errors
= devstat
->rx_length_errs
;
4144 stats
->rx_over_errors
= devstat
->rx_overflows
;
4145 stats
->rx_crc_errors
= devstat
->rx_crc_errs
;
4147 /* NOTE: These stats don't have corresponding values in CE_STATS,
4148 * so we're going to have to update these directly from within the
4151 /* stats->rx_bytes = 20; devstat->; */
4152 /* stats->tx_bytes = 20; devstat->; */
4153 /* stats->rx_dropped = devstat->; */
4154 /* stats->tx_dropped = devstat->; */
4156 /* NOTE: Not used, can't find analogous statistics */
4157 /* stats->rx_frame_errors = devstat->; */
4158 /* stats->rx_fifo_errors = devstat->; */
4159 /* stats->rx_missed_errors = devstat->; */
4161 /* stats->tx_aborted_errors = devstat->; */
4162 /* stats->tx_carrier_errors = devstat->; */
4163 /* stats->tx_fifo_errors = devstat->; */
4164 /* stats->tx_heartbeat_errors = devstat->; */
4165 /* stats->tx_window_errors = devstat->; */
4169 /* et131x_open - Open the device for use. */
4170 static int et131x_open(struct net_device
*netdev
)
4172 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4173 struct pci_dev
*pdev
= adapter
->pdev
;
4174 unsigned int irq
= pdev
->irq
;
4177 /* Start the timer to track NIC errors */
4178 init_timer(&adapter
->error_timer
);
4179 adapter
->error_timer
.expires
= jiffies
+ TX_ERROR_PERIOD
* HZ
/ 1000;
4180 adapter
->error_timer
.function
= et131x_error_timer_handler
;
4181 adapter
->error_timer
.data
= (unsigned long)adapter
;
4182 add_timer(&adapter
->error_timer
);
4184 result
= request_irq(irq
, et131x_isr
,
4185 IRQF_SHARED
, netdev
->name
, netdev
);
4187 dev_err(&pdev
->dev
, "could not register IRQ %d\n", irq
);
4191 adapter
->flags
|= FMP_ADAPTER_INTERRUPT_IN_USE
;
4198 /* et131x_close - Close the device */
4199 static int et131x_close(struct net_device
*netdev
)
4201 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4203 et131x_down(netdev
);
4205 adapter
->flags
&= ~FMP_ADAPTER_INTERRUPT_IN_USE
;
4206 free_irq(adapter
->pdev
->irq
, netdev
);
4208 /* Stop the error timer */
4209 return del_timer_sync(&adapter
->error_timer
);
4212 /* et131x_ioctl - The I/O Control handler for the driver
4213 * @netdev: device on which the control request is being made
4214 * @reqbuf: a pointer to the IOCTL request buffer
4215 * @cmd: the IOCTL command code
4217 static int et131x_ioctl(struct net_device
*netdev
, struct ifreq
*reqbuf
,
4220 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4222 if (!adapter
->phydev
)
4225 return phy_mii_ioctl(adapter
->phydev
, reqbuf
, cmd
);
4228 /* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4229 * @adapter: pointer to our private adapter structure
4231 * FIXME: lot of dups with MAC code
4233 static int et131x_set_packet_filter(struct et131x_adapter
*adapter
)
4235 int filter
= adapter
->packet_filter
;
4240 ctrl
= readl(&adapter
->regs
->rxmac
.ctrl
);
4241 pf_ctrl
= readl(&adapter
->regs
->rxmac
.pf_ctrl
);
4243 /* Default to disabled packet filtering. Enable it in the individual
4244 * case statements that require the device to filter something
4248 /* Set us to be in promiscuous mode so we receive everything, this
4249 * is also true when we get a packet filter of 0
4251 if ((filter
& ET131X_PACKET_TYPE_PROMISCUOUS
) || filter
== 0)
4252 pf_ctrl
&= ~7; /* Clear filter bits */
4254 /* Set us up with Multicast packet filtering. Three cases are
4255 * possible - (1) we have a multi-cast list, (2) we receive ALL
4256 * multicast entries or (3) we receive none.
4258 if (filter
& ET131X_PACKET_TYPE_ALL_MULTICAST
)
4259 pf_ctrl
&= ~2; /* Multicast filter bit */
4261 et1310_setup_device_for_multicast(adapter
);
4266 /* Set us up with Unicast packet filtering */
4267 if (filter
& ET131X_PACKET_TYPE_DIRECTED
) {
4268 et1310_setup_device_for_unicast(adapter
);
4273 /* Set us up with Broadcast packet filtering */
4274 if (filter
& ET131X_PACKET_TYPE_BROADCAST
) {
4275 pf_ctrl
|= 1; /* Broadcast filter bit */
4280 /* Setup the receive mac configuration registers - Packet
4281 * Filter control + the enable / disable for packet filter
4282 * in the control reg.
4284 writel(pf_ctrl
, &adapter
->regs
->rxmac
.pf_ctrl
);
4285 writel(ctrl
, &adapter
->regs
->rxmac
.ctrl
);
4290 /* et131x_multicast - The handler to configure multicasting on the interface */
4291 static void et131x_multicast(struct net_device
*netdev
)
4293 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4295 unsigned long flags
;
4296 struct netdev_hw_addr
*ha
;
4299 spin_lock_irqsave(&adapter
->lock
, flags
);
4301 /* Before we modify the platform-independent filter flags, store them
4302 * locally. This allows us to determine if anything's changed and if
4303 * we even need to bother the hardware
4305 packet_filter
= adapter
->packet_filter
;
4307 /* Clear the 'multicast' flag locally; because we only have a single
4308 * flag to check multicast, and multiple multicast addresses can be
4309 * set, this is the easiest way to determine if more than one
4310 * multicast address is being set.
4312 packet_filter
&= ~ET131X_PACKET_TYPE_MULTICAST
;
4314 /* Check the net_device flags and set the device independent flags
4318 if (netdev
->flags
& IFF_PROMISC
)
4319 adapter
->packet_filter
|= ET131X_PACKET_TYPE_PROMISCUOUS
;
4321 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_PROMISCUOUS
;
4323 if (netdev
->flags
& IFF_ALLMULTI
)
4324 adapter
->packet_filter
|= ET131X_PACKET_TYPE_ALL_MULTICAST
;
4326 if (netdev_mc_count(netdev
) > NIC_MAX_MCAST_LIST
)
4327 adapter
->packet_filter
|= ET131X_PACKET_TYPE_ALL_MULTICAST
;
4329 if (netdev_mc_count(netdev
) < 1) {
4330 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_ALL_MULTICAST
;
4331 adapter
->packet_filter
&= ~ET131X_PACKET_TYPE_MULTICAST
;
4333 adapter
->packet_filter
|= ET131X_PACKET_TYPE_MULTICAST
;
4335 /* Set values in the private adapter struct */
4337 netdev_for_each_mc_addr(ha
, netdev
) {
4338 if (i
== NIC_MAX_MCAST_LIST
)
4340 memcpy(adapter
->multicast_list
[i
++], ha
->addr
, ETH_ALEN
);
4342 adapter
->multicast_addr_count
= i
;
4344 /* Are the new flags different from the previous ones? If not, then no
4345 * action is required
4347 * NOTE - This block will always update the multicast_list with the
4348 * hardware, even if the addresses aren't the same.
4350 if (packet_filter
!= adapter
->packet_filter
)
4351 et131x_set_packet_filter(adapter
);
4353 spin_unlock_irqrestore(&adapter
->lock
, flags
);
4356 /* et131x_tx - The handler to tx a packet on the device */
4357 static int et131x_tx(struct sk_buff
*skb
, struct net_device
*netdev
)
4360 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4361 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
4363 /* stop the queue if it's getting full */
4364 if (tx_ring
->used
>= NUM_TCB
- 1 && !netif_queue_stopped(netdev
))
4365 netif_stop_queue(netdev
);
4367 /* Save the timestamp for the TX timeout watchdog */
4368 netdev
->trans_start
= jiffies
;
4370 /* Call the device-specific data Tx routine */
4371 status
= et131x_send_packets(skb
, netdev
);
4373 /* Check status and manage the netif queue if necessary */
4375 if (status
== -ENOMEM
)
4376 status
= NETDEV_TX_BUSY
;
4378 status
= NETDEV_TX_OK
;
4383 /* et131x_tx_timeout - Timeout handler
4385 * The handler called when a Tx request times out. The timeout period is
4386 * specified by the 'tx_timeo" element in the net_device structure (see
4387 * et131x_alloc_device() to see how this value is set).
4389 static void et131x_tx_timeout(struct net_device
*netdev
)
4391 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4392 struct tx_ring
*tx_ring
= &adapter
->tx_ring
;
4394 unsigned long flags
;
4396 /* If the device is closed, ignore the timeout */
4397 if (~(adapter
->flags
& FMP_ADAPTER_INTERRUPT_IN_USE
))
4400 /* Any nonrecoverable hardware error?
4401 * Checks adapter->flags for any failure in phy reading
4403 if (adapter
->flags
& FMP_ADAPTER_NON_RECOVER_ERROR
)
4406 /* Hardware failure? */
4407 if (adapter
->flags
& FMP_ADAPTER_HARDWARE_ERROR
) {
4408 dev_err(&adapter
->pdev
->dev
, "hardware error - reset\n");
4412 /* Is send stuck? */
4413 spin_lock_irqsave(&adapter
->tcb_send_qlock
, flags
);
4415 tcb
= tx_ring
->send_head
;
4420 if (tcb
->count
> NIC_SEND_HANG_THRESHOLD
) {
4421 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
,
4424 dev_warn(&adapter
->pdev
->dev
,
4425 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4429 adapter
->net_stats
.tx_errors
++;
4431 /* perform reset of tx/rx */
4432 et131x_disable_txrx(netdev
);
4433 et131x_enable_txrx(netdev
);
4438 spin_unlock_irqrestore(&adapter
->tcb_send_qlock
, flags
);
4441 /* et131x_change_mtu - The handler called to change the MTU for the device */
4442 static int et131x_change_mtu(struct net_device
*netdev
, int new_mtu
)
4445 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4447 /* Make sure the requested MTU is valid */
4448 if (new_mtu
< 64 || new_mtu
> 9216)
4451 et131x_disable_txrx(netdev
);
4452 et131x_handle_send_interrupt(adapter
);
4453 et131x_handle_recv_interrupt(adapter
);
4455 /* Set the new MTU */
4456 netdev
->mtu
= new_mtu
;
4458 /* Free Rx DMA memory */
4459 et131x_adapter_memory_free(adapter
);
4461 /* Set the config parameter for Jumbo Packet support */
4462 adapter
->registry_jumbo_packet
= new_mtu
+ 14;
4463 et131x_soft_reset(adapter
);
4465 /* Alloc and init Rx DMA memory */
4466 result
= et131x_adapter_memory_alloc(adapter
);
4468 dev_warn(&adapter
->pdev
->dev
,
4469 "Change MTU failed; couldn't re-alloc DMA memory\n");
4473 et131x_init_send(adapter
);
4475 et131x_hwaddr_init(adapter
);
4476 memcpy(netdev
->dev_addr
, adapter
->addr
, ETH_ALEN
);
4478 /* Init the device with the new settings */
4479 et131x_adapter_setup(adapter
);
4481 et131x_enable_txrx(netdev
);
4486 /* et131x_set_mac_addr - handler to change the MAC address for the device */
4487 static int et131x_set_mac_addr(struct net_device
*netdev
, void *new_mac
)
4490 struct et131x_adapter
*adapter
= netdev_priv(netdev
);
4491 struct sockaddr
*address
= new_mac
;
4493 if (adapter
== NULL
)
4496 /* Make sure the requested MAC is valid */
4497 if (!is_valid_ether_addr(address
->sa_data
))
4498 return -EADDRNOTAVAIL
;
4500 et131x_disable_txrx(netdev
);
4501 et131x_handle_send_interrupt(adapter
);
4502 et131x_handle_recv_interrupt(adapter
);
4504 /* Set the new MAC */
4505 /* netdev->set_mac_address = &new_mac; */
4507 memcpy(netdev
->dev_addr
, address
->sa_data
, netdev
->addr_len
);
4509 netdev_info(netdev
, "Setting MAC address to %pM\n",
4512 /* Free Rx DMA memory */
4513 et131x_adapter_memory_free(adapter
);
4515 et131x_soft_reset(adapter
);
4517 /* Alloc and init Rx DMA memory */
4518 result
= et131x_adapter_memory_alloc(adapter
);
4520 dev_err(&adapter
->pdev
->dev
,
4521 "Change MAC failed; couldn't re-alloc DMA memory\n");
4525 et131x_init_send(adapter
);
4527 et131x_hwaddr_init(adapter
);
4529 /* Init the device with the new settings */
4530 et131x_adapter_setup(adapter
);
4532 et131x_enable_txrx(netdev
);
4537 static const struct net_device_ops et131x_netdev_ops
= {
4538 .ndo_open
= et131x_open
,
4539 .ndo_stop
= et131x_close
,
4540 .ndo_start_xmit
= et131x_tx
,
4541 .ndo_set_rx_mode
= et131x_multicast
,
4542 .ndo_tx_timeout
= et131x_tx_timeout
,
4543 .ndo_change_mtu
= et131x_change_mtu
,
4544 .ndo_set_mac_address
= et131x_set_mac_addr
,
4545 .ndo_validate_addr
= eth_validate_addr
,
4546 .ndo_get_stats
= et131x_stats
,
4547 .ndo_do_ioctl
= et131x_ioctl
,
4550 /* et131x_pci_setup - Perform device initialization
4551 * @pdev: a pointer to the device's pci_dev structure
4552 * @ent: this device's entry in the pci_device_id table
4554 * Registered in the pci_driver structure, this function is called when the
4555 * PCI subsystem finds a new PCI device which matches the information
4556 * contained in the pci_device_id table. This routine is the equivalent to
4557 * a device insertion routine.
4559 static int et131x_pci_setup(struct pci_dev
*pdev
,
4560 const struct pci_device_id
*ent
)
4562 struct net_device
*netdev
;
4563 struct et131x_adapter
*adapter
;
4567 rc
= pci_enable_device(pdev
);
4569 dev_err(&pdev
->dev
, "pci_enable_device() failed\n");
4573 /* Perform some basic PCI checks */
4574 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4575 dev_err(&pdev
->dev
, "Can't find PCI device's base address\n");
4580 rc
= pci_request_regions(pdev
, DRIVER_NAME
);
4582 dev_err(&pdev
->dev
, "Can't get PCI resources\n");
4586 pci_set_master(pdev
);
4588 /* Check the DMA addressing support of this device */
4589 if (dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(64)) &&
4590 dma_set_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32))) {
4591 dev_err(&pdev
->dev
, "No usable DMA addressing method\n");
4593 goto err_release_res
;
4596 /* Allocate netdev and private adapter structs */
4597 netdev
= alloc_etherdev(sizeof(struct et131x_adapter
));
4599 dev_err(&pdev
->dev
, "Couldn't alloc netdev struct\n");
4601 goto err_release_res
;
4604 netdev
->watchdog_timeo
= ET131X_TX_TIMEOUT
;
4605 netdev
->netdev_ops
= &et131x_netdev_ops
;
4607 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
4608 SET_ETHTOOL_OPS(netdev
, &et131x_ethtool_ops
);
4610 adapter
= et131x_adapter_init(netdev
, pdev
);
4612 rc
= et131x_pci_init(adapter
, pdev
);
4616 /* Map the bus-relative registers to system virtual memory */
4617 adapter
->regs
= pci_ioremap_bar(pdev
, 0);
4618 if (!adapter
->regs
) {
4619 dev_err(&pdev
->dev
, "Cannot map device registers\n");
4624 /* If Phy COMA mode was enabled when we went down, disable it here. */
4625 writel(ET_PMCSR_INIT
, &adapter
->regs
->global
.pm_csr
);
4627 /* Issue a global reset to the et1310 */
4628 et131x_soft_reset(adapter
);
4630 /* Disable all interrupts (paranoid) */
4631 et131x_disable_interrupts(adapter
);
4633 /* Allocate DMA memory */
4634 rc
= et131x_adapter_memory_alloc(adapter
);
4636 dev_err(&pdev
->dev
, "Could not alloc adapater memory (DMA)\n");
4640 /* Init send data structures */
4641 et131x_init_send(adapter
);
4643 /* Set up the task structure for the ISR's deferred handler */
4644 INIT_WORK(&adapter
->task
, et131x_isr_handler
);
4646 /* Copy address into the net_device struct */
4647 memcpy(netdev
->dev_addr
, adapter
->addr
, ETH_ALEN
);
4649 /* Init variable for counting how long we do not have link status */
4650 adapter
->boot_coma
= 0;
4651 et1310_disable_phy_coma(adapter
);
4655 /* Setup the mii_bus struct */
4656 adapter
->mii_bus
= mdiobus_alloc();
4657 if (!adapter
->mii_bus
) {
4658 dev_err(&pdev
->dev
, "Alloc of mii_bus struct failed\n");
4662 adapter
->mii_bus
->name
= "et131x_eth_mii";
4663 snprintf(adapter
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x",
4664 (adapter
->pdev
->bus
->number
<< 8) | adapter
->pdev
->devfn
);
4665 adapter
->mii_bus
->priv
= netdev
;
4666 adapter
->mii_bus
->read
= et131x_mdio_read
;
4667 adapter
->mii_bus
->write
= et131x_mdio_write
;
4668 adapter
->mii_bus
->reset
= et131x_mdio_reset
;
4669 adapter
->mii_bus
->irq
= kmalloc_array(PHY_MAX_ADDR
, sizeof(int),
4671 if (!adapter
->mii_bus
->irq
)
4674 for (ii
= 0; ii
< PHY_MAX_ADDR
; ii
++)
4675 adapter
->mii_bus
->irq
[ii
] = PHY_POLL
;
4677 rc
= mdiobus_register(adapter
->mii_bus
);
4679 dev_err(&pdev
->dev
, "failed to register MII bus\n");
4680 goto err_mdio_free_irq
;
4683 rc
= et131x_mii_probe(netdev
);
4685 dev_err(&pdev
->dev
, "failed to probe MII bus\n");
4686 goto err_mdio_unregister
;
4689 /* Setup et1310 as per the documentation */
4690 et131x_adapter_setup(adapter
);
4692 /* We can enable interrupts now
4694 * NOTE - Because registration of interrupt handler is done in the
4695 * device's open(), defer enabling device interrupts to that
4699 /* Register the net_device struct with the Linux network layer */
4700 rc
= register_netdev(netdev
);
4702 dev_err(&pdev
->dev
, "register_netdev() failed\n");
4703 goto err_phy_disconnect
;
4706 /* Register the net_device struct with the PCI subsystem. Save a copy
4707 * of the PCI config space for this device now that the device has
4708 * been initialized, just in case it needs to be quickly restored.
4710 pci_set_drvdata(pdev
, netdev
);
4715 phy_disconnect(adapter
->phydev
);
4716 err_mdio_unregister
:
4717 mdiobus_unregister(adapter
->mii_bus
);
4719 kfree(adapter
->mii_bus
->irq
);
4721 mdiobus_free(adapter
->mii_bus
);
4723 et131x_adapter_memory_free(adapter
);
4725 iounmap(adapter
->regs
);
4728 free_netdev(netdev
);
4730 pci_release_regions(pdev
);
4732 pci_disable_device(pdev
);
4736 static const struct pci_device_id et131x_pci_table
[] = {
4737 { PCI_VDEVICE(ATT
, ET131X_PCI_DEVICE_ID_GIG
), 0UL},
4738 { PCI_VDEVICE(ATT
, ET131X_PCI_DEVICE_ID_FAST
), 0UL},
4741 MODULE_DEVICE_TABLE(pci
, et131x_pci_table
);
4743 static struct pci_driver et131x_driver
= {
4744 .name
= DRIVER_NAME
,
4745 .id_table
= et131x_pci_table
,
4746 .probe
= et131x_pci_setup
,
4747 .remove
= et131x_pci_remove
,
4748 .driver
.pm
= ET131X_PM_OPS
,
4751 module_pci_driver(et131x_driver
);