fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blobc50fd9f11aab8b0dfb8b90991378a51bf8255d1b
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
74 int init_se_kmem_caches(void)
76 se_sess_cache = kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session), __alignof__(struct se_session),
78 0, NULL);
79 if (!se_sess_cache) {
80 pr_err("kmem_cache_create() for struct se_session"
81 " failed\n");
82 goto out;
84 se_ua_cache = kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua), __alignof__(struct se_ua),
86 0, NULL);
87 if (!se_ua_cache) {
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache;
91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration),
93 __alignof__(struct t10_pr_registration), 0, NULL);
94 if (!t10_pr_reg_cache) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 " failed\n");
97 goto out_free_ua_cache;
99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 0, NULL);
102 if (!t10_alua_lu_gp_cache) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 " failed\n");
105 goto out_free_pr_reg_cache;
107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member),
109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 if (!t10_alua_lu_gp_mem_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 "cache failed\n");
113 goto out_free_lu_gp_cache;
115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp),
117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 if (!t10_alua_tg_pt_gp_cache) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 "cache failed\n");
121 goto out_free_lu_gp_mem_cache;
123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member),
126 __alignof__(struct t10_alua_tg_pt_gp_member),
127 0, NULL);
128 if (!t10_alua_tg_pt_gp_mem_cache) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 "mem_t failed\n");
131 goto out_free_tg_pt_gp_cache;
133 t10_alua_lba_map_cache = kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map),
136 __alignof__(struct t10_alua_lba_map), 0, NULL);
137 if (!t10_alua_lba_map_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139 "cache failed\n");
140 goto out_free_tg_pt_gp_mem_cache;
142 t10_alua_lba_map_mem_cache = kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member),
145 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146 if (!t10_alua_lba_map_mem_cache) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148 "cache failed\n");
149 goto out_free_lba_map_cache;
152 target_completion_wq = alloc_workqueue("target_completion",
153 WQ_MEM_RECLAIM, 0);
154 if (!target_completion_wq)
155 goto out_free_lba_map_mem_cache;
157 return 0;
159 out_free_lba_map_mem_cache:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162 kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170 kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172 kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174 kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176 kmem_cache_destroy(se_sess_cache);
177 out:
178 return -ENOMEM;
181 void release_se_kmem_caches(void)
183 destroy_workqueue(target_completion_wq);
184 kmem_cache_destroy(se_sess_cache);
185 kmem_cache_destroy(se_ua_cache);
186 kmem_cache_destroy(t10_pr_reg_cache);
187 kmem_cache_destroy(t10_alua_lu_gp_cache);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 kmem_cache_destroy(t10_alua_lba_map_cache);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
200 * Allocate a new row index for the entry type specified
202 u32 scsi_get_new_index(scsi_index_t type)
204 u32 new_index;
206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
208 spin_lock(&scsi_mib_index_lock);
209 new_index = ++scsi_mib_index[type];
210 spin_unlock(&scsi_mib_index_lock);
212 return new_index;
215 void transport_subsystem_check_init(void)
217 int ret;
218 static int sub_api_initialized;
220 if (sub_api_initialized)
221 return;
223 ret = request_module("target_core_iblock");
224 if (ret != 0)
225 pr_err("Unable to load target_core_iblock\n");
227 ret = request_module("target_core_file");
228 if (ret != 0)
229 pr_err("Unable to load target_core_file\n");
231 ret = request_module("target_core_pscsi");
232 if (ret != 0)
233 pr_err("Unable to load target_core_pscsi\n");
235 sub_api_initialized = 1;
238 struct se_session *transport_init_session(void)
240 struct se_session *se_sess;
242 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243 if (!se_sess) {
244 pr_err("Unable to allocate struct se_session from"
245 " se_sess_cache\n");
246 return ERR_PTR(-ENOMEM);
248 INIT_LIST_HEAD(&se_sess->sess_list);
249 INIT_LIST_HEAD(&se_sess->sess_acl_list);
250 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251 INIT_LIST_HEAD(&se_sess->sess_wait_list);
252 spin_lock_init(&se_sess->sess_cmd_lock);
253 kref_init(&se_sess->sess_kref);
255 return se_sess;
257 EXPORT_SYMBOL(transport_init_session);
259 int transport_alloc_session_tags(struct se_session *se_sess,
260 unsigned int tag_num, unsigned int tag_size)
262 int rc;
264 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
265 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
266 if (!se_sess->sess_cmd_map) {
267 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
268 if (!se_sess->sess_cmd_map) {
269 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
270 return -ENOMEM;
274 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
275 if (rc < 0) {
276 pr_err("Unable to init se_sess->sess_tag_pool,"
277 " tag_num: %u\n", tag_num);
278 if (is_vmalloc_addr(se_sess->sess_cmd_map))
279 vfree(se_sess->sess_cmd_map);
280 else
281 kfree(se_sess->sess_cmd_map);
282 se_sess->sess_cmd_map = NULL;
283 return -ENOMEM;
286 return 0;
288 EXPORT_SYMBOL(transport_alloc_session_tags);
290 struct se_session *transport_init_session_tags(unsigned int tag_num,
291 unsigned int tag_size)
293 struct se_session *se_sess;
294 int rc;
296 se_sess = transport_init_session();
297 if (IS_ERR(se_sess))
298 return se_sess;
300 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
301 if (rc < 0) {
302 transport_free_session(se_sess);
303 return ERR_PTR(-ENOMEM);
306 return se_sess;
308 EXPORT_SYMBOL(transport_init_session_tags);
311 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
313 void __transport_register_session(
314 struct se_portal_group *se_tpg,
315 struct se_node_acl *se_nacl,
316 struct se_session *se_sess,
317 void *fabric_sess_ptr)
319 unsigned char buf[PR_REG_ISID_LEN];
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
329 if (se_nacl) {
331 * If the fabric module supports an ISID based TransportID,
332 * save this value in binary from the fabric I_T Nexus now.
334 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
335 memset(&buf[0], 0, PR_REG_ISID_LEN);
336 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
337 &buf[0], PR_REG_ISID_LEN);
338 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
340 kref_get(&se_nacl->acl_kref);
342 spin_lock_irq(&se_nacl->nacl_sess_lock);
344 * The se_nacl->nacl_sess pointer will be set to the
345 * last active I_T Nexus for each struct se_node_acl.
347 se_nacl->nacl_sess = se_sess;
349 list_add_tail(&se_sess->sess_acl_list,
350 &se_nacl->acl_sess_list);
351 spin_unlock_irq(&se_nacl->nacl_sess_lock);
353 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
355 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
356 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
358 EXPORT_SYMBOL(__transport_register_session);
360 void transport_register_session(
361 struct se_portal_group *se_tpg,
362 struct se_node_acl *se_nacl,
363 struct se_session *se_sess,
364 void *fabric_sess_ptr)
366 unsigned long flags;
368 spin_lock_irqsave(&se_tpg->session_lock, flags);
369 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
370 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
372 EXPORT_SYMBOL(transport_register_session);
374 static void target_release_session(struct kref *kref)
376 struct se_session *se_sess = container_of(kref,
377 struct se_session, sess_kref);
378 struct se_portal_group *se_tpg = se_sess->se_tpg;
380 se_tpg->se_tpg_tfo->close_session(se_sess);
383 void target_get_session(struct se_session *se_sess)
385 kref_get(&se_sess->sess_kref);
387 EXPORT_SYMBOL(target_get_session);
389 void target_put_session(struct se_session *se_sess)
391 struct se_portal_group *tpg = se_sess->se_tpg;
393 if (tpg->se_tpg_tfo->put_session != NULL) {
394 tpg->se_tpg_tfo->put_session(se_sess);
395 return;
397 kref_put(&se_sess->sess_kref, target_release_session);
399 EXPORT_SYMBOL(target_put_session);
401 static void target_complete_nacl(struct kref *kref)
403 struct se_node_acl *nacl = container_of(kref,
404 struct se_node_acl, acl_kref);
406 complete(&nacl->acl_free_comp);
409 void target_put_nacl(struct se_node_acl *nacl)
411 kref_put(&nacl->acl_kref, target_complete_nacl);
414 void transport_deregister_session_configfs(struct se_session *se_sess)
416 struct se_node_acl *se_nacl;
417 unsigned long flags;
419 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
421 se_nacl = se_sess->se_node_acl;
422 if (se_nacl) {
423 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
424 if (se_nacl->acl_stop == 0)
425 list_del(&se_sess->sess_acl_list);
427 * If the session list is empty, then clear the pointer.
428 * Otherwise, set the struct se_session pointer from the tail
429 * element of the per struct se_node_acl active session list.
431 if (list_empty(&se_nacl->acl_sess_list))
432 se_nacl->nacl_sess = NULL;
433 else {
434 se_nacl->nacl_sess = container_of(
435 se_nacl->acl_sess_list.prev,
436 struct se_session, sess_acl_list);
438 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
441 EXPORT_SYMBOL(transport_deregister_session_configfs);
443 void transport_free_session(struct se_session *se_sess)
445 if (se_sess->sess_cmd_map) {
446 percpu_ida_destroy(&se_sess->sess_tag_pool);
447 if (is_vmalloc_addr(se_sess->sess_cmd_map))
448 vfree(se_sess->sess_cmd_map);
449 else
450 kfree(se_sess->sess_cmd_map);
452 kmem_cache_free(se_sess_cache, se_sess);
454 EXPORT_SYMBOL(transport_free_session);
456 void transport_deregister_session(struct se_session *se_sess)
458 struct se_portal_group *se_tpg = se_sess->se_tpg;
459 struct target_core_fabric_ops *se_tfo;
460 struct se_node_acl *se_nacl;
461 unsigned long flags;
462 bool comp_nacl = true;
464 if (!se_tpg) {
465 transport_free_session(se_sess);
466 return;
468 se_tfo = se_tpg->se_tpg_tfo;
470 spin_lock_irqsave(&se_tpg->session_lock, flags);
471 list_del(&se_sess->sess_list);
472 se_sess->se_tpg = NULL;
473 se_sess->fabric_sess_ptr = NULL;
474 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
477 * Determine if we need to do extra work for this initiator node's
478 * struct se_node_acl if it had been previously dynamically generated.
480 se_nacl = se_sess->se_node_acl;
482 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
483 if (se_nacl && se_nacl->dynamic_node_acl) {
484 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
485 list_del(&se_nacl->acl_list);
486 se_tpg->num_node_acls--;
487 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
488 core_tpg_wait_for_nacl_pr_ref(se_nacl);
489 core_free_device_list_for_node(se_nacl, se_tpg);
490 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
492 comp_nacl = false;
493 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
496 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
498 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
499 se_tpg->se_tpg_tfo->get_fabric_name());
501 * If last kref is dropping now for an explicit NodeACL, awake sleeping
502 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
503 * removal context.
505 if (se_nacl && comp_nacl == true)
506 target_put_nacl(se_nacl);
508 transport_free_session(se_sess);
510 EXPORT_SYMBOL(transport_deregister_session);
513 * Called with cmd->t_state_lock held.
515 static void target_remove_from_state_list(struct se_cmd *cmd)
517 struct se_device *dev = cmd->se_dev;
518 unsigned long flags;
520 if (!dev)
521 return;
523 if (cmd->transport_state & CMD_T_BUSY)
524 return;
526 spin_lock_irqsave(&dev->execute_task_lock, flags);
527 if (cmd->state_active) {
528 list_del(&cmd->state_list);
529 cmd->state_active = false;
531 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
534 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
535 bool write_pending)
537 unsigned long flags;
539 spin_lock_irqsave(&cmd->t_state_lock, flags);
540 if (write_pending)
541 cmd->t_state = TRANSPORT_WRITE_PENDING;
543 if (remove_from_lists) {
544 target_remove_from_state_list(cmd);
547 * Clear struct se_cmd->se_lun before the handoff to FE.
549 cmd->se_lun = NULL;
553 * Determine if frontend context caller is requesting the stopping of
554 * this command for frontend exceptions.
556 if (cmd->transport_state & CMD_T_STOP) {
557 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
558 __func__, __LINE__,
559 cmd->se_tfo->get_task_tag(cmd));
561 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
563 complete(&cmd->t_transport_stop_comp);
564 return 1;
567 cmd->transport_state &= ~CMD_T_ACTIVE;
568 if (remove_from_lists) {
570 * Some fabric modules like tcm_loop can release
571 * their internally allocated I/O reference now and
572 * struct se_cmd now.
574 * Fabric modules are expected to return '1' here if the
575 * se_cmd being passed is released at this point,
576 * or zero if not being released.
578 if (cmd->se_tfo->check_stop_free != NULL) {
579 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
580 return cmd->se_tfo->check_stop_free(cmd);
584 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
585 return 0;
588 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
590 return transport_cmd_check_stop(cmd, true, false);
593 static void transport_lun_remove_cmd(struct se_cmd *cmd)
595 struct se_lun *lun = cmd->se_lun;
597 if (!lun)
598 return;
600 if (cmpxchg(&cmd->lun_ref_active, true, false))
601 percpu_ref_put(&lun->lun_ref);
604 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
606 if (transport_cmd_check_stop_to_fabric(cmd))
607 return;
608 if (remove)
609 transport_put_cmd(cmd);
612 static void target_complete_failure_work(struct work_struct *work)
614 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
616 transport_generic_request_failure(cmd,
617 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
621 * Used when asking transport to copy Sense Data from the underlying
622 * Linux/SCSI struct scsi_cmnd
624 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
626 struct se_device *dev = cmd->se_dev;
628 WARN_ON(!cmd->se_lun);
630 if (!dev)
631 return NULL;
633 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
634 return NULL;
636 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
638 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
639 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
640 return cmd->sense_buffer;
643 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
645 struct se_device *dev = cmd->se_dev;
646 int success = scsi_status == GOOD;
647 unsigned long flags;
649 cmd->scsi_status = scsi_status;
652 spin_lock_irqsave(&cmd->t_state_lock, flags);
653 cmd->transport_state &= ~CMD_T_BUSY;
655 if (dev && dev->transport->transport_complete) {
656 dev->transport->transport_complete(cmd,
657 cmd->t_data_sg,
658 transport_get_sense_buffer(cmd));
659 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
660 success = 1;
664 * See if we are waiting to complete for an exception condition.
666 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
667 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
668 complete(&cmd->task_stop_comp);
669 return;
672 if (!success)
673 cmd->transport_state |= CMD_T_FAILED;
676 * Check for case where an explicit ABORT_TASK has been received
677 * and transport_wait_for_tasks() will be waiting for completion..
679 if (cmd->transport_state & CMD_T_ABORTED &&
680 cmd->transport_state & CMD_T_STOP) {
681 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
682 complete(&cmd->t_transport_stop_comp);
683 return;
684 } else if (cmd->transport_state & CMD_T_FAILED) {
685 INIT_WORK(&cmd->work, target_complete_failure_work);
686 } else {
687 INIT_WORK(&cmd->work, target_complete_ok_work);
690 cmd->t_state = TRANSPORT_COMPLETE;
691 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
692 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
694 queue_work(target_completion_wq, &cmd->work);
696 EXPORT_SYMBOL(target_complete_cmd);
698 static void target_add_to_state_list(struct se_cmd *cmd)
700 struct se_device *dev = cmd->se_dev;
701 unsigned long flags;
703 spin_lock_irqsave(&dev->execute_task_lock, flags);
704 if (!cmd->state_active) {
705 list_add_tail(&cmd->state_list, &dev->state_list);
706 cmd->state_active = true;
708 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
712 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
714 static void transport_write_pending_qf(struct se_cmd *cmd);
715 static void transport_complete_qf(struct se_cmd *cmd);
717 void target_qf_do_work(struct work_struct *work)
719 struct se_device *dev = container_of(work, struct se_device,
720 qf_work_queue);
721 LIST_HEAD(qf_cmd_list);
722 struct se_cmd *cmd, *cmd_tmp;
724 spin_lock_irq(&dev->qf_cmd_lock);
725 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
726 spin_unlock_irq(&dev->qf_cmd_lock);
728 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
729 list_del(&cmd->se_qf_node);
730 atomic_dec(&dev->dev_qf_count);
731 smp_mb__after_atomic_dec();
733 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
734 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
735 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
736 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
737 : "UNKNOWN");
739 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
740 transport_write_pending_qf(cmd);
741 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
742 transport_complete_qf(cmd);
746 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
748 switch (cmd->data_direction) {
749 case DMA_NONE:
750 return "NONE";
751 case DMA_FROM_DEVICE:
752 return "READ";
753 case DMA_TO_DEVICE:
754 return "WRITE";
755 case DMA_BIDIRECTIONAL:
756 return "BIDI";
757 default:
758 break;
761 return "UNKNOWN";
764 void transport_dump_dev_state(
765 struct se_device *dev,
766 char *b,
767 int *bl)
769 *bl += sprintf(b + *bl, "Status: ");
770 if (dev->export_count)
771 *bl += sprintf(b + *bl, "ACTIVATED");
772 else
773 *bl += sprintf(b + *bl, "DEACTIVATED");
775 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
776 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
777 dev->dev_attrib.block_size,
778 dev->dev_attrib.hw_max_sectors);
779 *bl += sprintf(b + *bl, " ");
782 void transport_dump_vpd_proto_id(
783 struct t10_vpd *vpd,
784 unsigned char *p_buf,
785 int p_buf_len)
787 unsigned char buf[VPD_TMP_BUF_SIZE];
788 int len;
790 memset(buf, 0, VPD_TMP_BUF_SIZE);
791 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
793 switch (vpd->protocol_identifier) {
794 case 0x00:
795 sprintf(buf+len, "Fibre Channel\n");
796 break;
797 case 0x10:
798 sprintf(buf+len, "Parallel SCSI\n");
799 break;
800 case 0x20:
801 sprintf(buf+len, "SSA\n");
802 break;
803 case 0x30:
804 sprintf(buf+len, "IEEE 1394\n");
805 break;
806 case 0x40:
807 sprintf(buf+len, "SCSI Remote Direct Memory Access"
808 " Protocol\n");
809 break;
810 case 0x50:
811 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
812 break;
813 case 0x60:
814 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
815 break;
816 case 0x70:
817 sprintf(buf+len, "Automation/Drive Interface Transport"
818 " Protocol\n");
819 break;
820 case 0x80:
821 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
822 break;
823 default:
824 sprintf(buf+len, "Unknown 0x%02x\n",
825 vpd->protocol_identifier);
826 break;
829 if (p_buf)
830 strncpy(p_buf, buf, p_buf_len);
831 else
832 pr_debug("%s", buf);
835 void
836 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
839 * Check if the Protocol Identifier Valid (PIV) bit is set..
841 * from spc3r23.pdf section 7.5.1
843 if (page_83[1] & 0x80) {
844 vpd->protocol_identifier = (page_83[0] & 0xf0);
845 vpd->protocol_identifier_set = 1;
846 transport_dump_vpd_proto_id(vpd, NULL, 0);
849 EXPORT_SYMBOL(transport_set_vpd_proto_id);
851 int transport_dump_vpd_assoc(
852 struct t10_vpd *vpd,
853 unsigned char *p_buf,
854 int p_buf_len)
856 unsigned char buf[VPD_TMP_BUF_SIZE];
857 int ret = 0;
858 int len;
860 memset(buf, 0, VPD_TMP_BUF_SIZE);
861 len = sprintf(buf, "T10 VPD Identifier Association: ");
863 switch (vpd->association) {
864 case 0x00:
865 sprintf(buf+len, "addressed logical unit\n");
866 break;
867 case 0x10:
868 sprintf(buf+len, "target port\n");
869 break;
870 case 0x20:
871 sprintf(buf+len, "SCSI target device\n");
872 break;
873 default:
874 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
875 ret = -EINVAL;
876 break;
879 if (p_buf)
880 strncpy(p_buf, buf, p_buf_len);
881 else
882 pr_debug("%s", buf);
884 return ret;
887 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
890 * The VPD identification association..
892 * from spc3r23.pdf Section 7.6.3.1 Table 297
894 vpd->association = (page_83[1] & 0x30);
895 return transport_dump_vpd_assoc(vpd, NULL, 0);
897 EXPORT_SYMBOL(transport_set_vpd_assoc);
899 int transport_dump_vpd_ident_type(
900 struct t10_vpd *vpd,
901 unsigned char *p_buf,
902 int p_buf_len)
904 unsigned char buf[VPD_TMP_BUF_SIZE];
905 int ret = 0;
906 int len;
908 memset(buf, 0, VPD_TMP_BUF_SIZE);
909 len = sprintf(buf, "T10 VPD Identifier Type: ");
911 switch (vpd->device_identifier_type) {
912 case 0x00:
913 sprintf(buf+len, "Vendor specific\n");
914 break;
915 case 0x01:
916 sprintf(buf+len, "T10 Vendor ID based\n");
917 break;
918 case 0x02:
919 sprintf(buf+len, "EUI-64 based\n");
920 break;
921 case 0x03:
922 sprintf(buf+len, "NAA\n");
923 break;
924 case 0x04:
925 sprintf(buf+len, "Relative target port identifier\n");
926 break;
927 case 0x08:
928 sprintf(buf+len, "SCSI name string\n");
929 break;
930 default:
931 sprintf(buf+len, "Unsupported: 0x%02x\n",
932 vpd->device_identifier_type);
933 ret = -EINVAL;
934 break;
937 if (p_buf) {
938 if (p_buf_len < strlen(buf)+1)
939 return -EINVAL;
940 strncpy(p_buf, buf, p_buf_len);
941 } else {
942 pr_debug("%s", buf);
945 return ret;
948 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
951 * The VPD identifier type..
953 * from spc3r23.pdf Section 7.6.3.1 Table 298
955 vpd->device_identifier_type = (page_83[1] & 0x0f);
956 return transport_dump_vpd_ident_type(vpd, NULL, 0);
958 EXPORT_SYMBOL(transport_set_vpd_ident_type);
960 int transport_dump_vpd_ident(
961 struct t10_vpd *vpd,
962 unsigned char *p_buf,
963 int p_buf_len)
965 unsigned char buf[VPD_TMP_BUF_SIZE];
966 int ret = 0;
968 memset(buf, 0, VPD_TMP_BUF_SIZE);
970 switch (vpd->device_identifier_code_set) {
971 case 0x01: /* Binary */
972 snprintf(buf, sizeof(buf),
973 "T10 VPD Binary Device Identifier: %s\n",
974 &vpd->device_identifier[0]);
975 break;
976 case 0x02: /* ASCII */
977 snprintf(buf, sizeof(buf),
978 "T10 VPD ASCII Device Identifier: %s\n",
979 &vpd->device_identifier[0]);
980 break;
981 case 0x03: /* UTF-8 */
982 snprintf(buf, sizeof(buf),
983 "T10 VPD UTF-8 Device Identifier: %s\n",
984 &vpd->device_identifier[0]);
985 break;
986 default:
987 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
988 " 0x%02x", vpd->device_identifier_code_set);
989 ret = -EINVAL;
990 break;
993 if (p_buf)
994 strncpy(p_buf, buf, p_buf_len);
995 else
996 pr_debug("%s", buf);
998 return ret;
1002 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1004 static const char hex_str[] = "0123456789abcdef";
1005 int j = 0, i = 4; /* offset to start of the identifier */
1008 * The VPD Code Set (encoding)
1010 * from spc3r23.pdf Section 7.6.3.1 Table 296
1012 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1013 switch (vpd->device_identifier_code_set) {
1014 case 0x01: /* Binary */
1015 vpd->device_identifier[j++] =
1016 hex_str[vpd->device_identifier_type];
1017 while (i < (4 + page_83[3])) {
1018 vpd->device_identifier[j++] =
1019 hex_str[(page_83[i] & 0xf0) >> 4];
1020 vpd->device_identifier[j++] =
1021 hex_str[page_83[i] & 0x0f];
1022 i++;
1024 break;
1025 case 0x02: /* ASCII */
1026 case 0x03: /* UTF-8 */
1027 while (i < (4 + page_83[3]))
1028 vpd->device_identifier[j++] = page_83[i++];
1029 break;
1030 default:
1031 break;
1034 return transport_dump_vpd_ident(vpd, NULL, 0);
1036 EXPORT_SYMBOL(transport_set_vpd_ident);
1038 sense_reason_t
1039 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1041 struct se_device *dev = cmd->se_dev;
1043 if (cmd->unknown_data_length) {
1044 cmd->data_length = size;
1045 } else if (size != cmd->data_length) {
1046 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1047 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1048 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1049 cmd->data_length, size, cmd->t_task_cdb[0]);
1051 if (cmd->data_direction == DMA_TO_DEVICE) {
1052 pr_err("Rejecting underflow/overflow"
1053 " WRITE data\n");
1054 return TCM_INVALID_CDB_FIELD;
1057 * Reject READ_* or WRITE_* with overflow/underflow for
1058 * type SCF_SCSI_DATA_CDB.
1060 if (dev->dev_attrib.block_size != 512) {
1061 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1062 " CDB on non 512-byte sector setup subsystem"
1063 " plugin: %s\n", dev->transport->name);
1064 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1065 return TCM_INVALID_CDB_FIELD;
1068 * For the overflow case keep the existing fabric provided
1069 * ->data_length. Otherwise for the underflow case, reset
1070 * ->data_length to the smaller SCSI expected data transfer
1071 * length.
1073 if (size > cmd->data_length) {
1074 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1075 cmd->residual_count = (size - cmd->data_length);
1076 } else {
1077 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1078 cmd->residual_count = (cmd->data_length - size);
1079 cmd->data_length = size;
1083 return 0;
1088 * Used by fabric modules containing a local struct se_cmd within their
1089 * fabric dependent per I/O descriptor.
1091 void transport_init_se_cmd(
1092 struct se_cmd *cmd,
1093 struct target_core_fabric_ops *tfo,
1094 struct se_session *se_sess,
1095 u32 data_length,
1096 int data_direction,
1097 int task_attr,
1098 unsigned char *sense_buffer)
1100 INIT_LIST_HEAD(&cmd->se_delayed_node);
1101 INIT_LIST_HEAD(&cmd->se_qf_node);
1102 INIT_LIST_HEAD(&cmd->se_cmd_list);
1103 INIT_LIST_HEAD(&cmd->state_list);
1104 init_completion(&cmd->t_transport_stop_comp);
1105 init_completion(&cmd->cmd_wait_comp);
1106 init_completion(&cmd->task_stop_comp);
1107 spin_lock_init(&cmd->t_state_lock);
1108 cmd->transport_state = CMD_T_DEV_ACTIVE;
1110 cmd->se_tfo = tfo;
1111 cmd->se_sess = se_sess;
1112 cmd->data_length = data_length;
1113 cmd->data_direction = data_direction;
1114 cmd->sam_task_attr = task_attr;
1115 cmd->sense_buffer = sense_buffer;
1117 cmd->state_active = false;
1119 EXPORT_SYMBOL(transport_init_se_cmd);
1121 static sense_reason_t
1122 transport_check_alloc_task_attr(struct se_cmd *cmd)
1124 struct se_device *dev = cmd->se_dev;
1127 * Check if SAM Task Attribute emulation is enabled for this
1128 * struct se_device storage object
1130 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1131 return 0;
1133 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1134 pr_debug("SAM Task Attribute ACA"
1135 " emulation is not supported\n");
1136 return TCM_INVALID_CDB_FIELD;
1139 * Used to determine when ORDERED commands should go from
1140 * Dormant to Active status.
1142 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1143 smp_mb__after_atomic_inc();
1144 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1145 cmd->se_ordered_id, cmd->sam_task_attr,
1146 dev->transport->name);
1147 return 0;
1150 sense_reason_t
1151 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1153 struct se_device *dev = cmd->se_dev;
1154 sense_reason_t ret;
1157 * Ensure that the received CDB is less than the max (252 + 8) bytes
1158 * for VARIABLE_LENGTH_CMD
1160 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1161 pr_err("Received SCSI CDB with command_size: %d that"
1162 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1163 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1164 return TCM_INVALID_CDB_FIELD;
1167 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1168 * allocate the additional extended CDB buffer now.. Otherwise
1169 * setup the pointer from __t_task_cdb to t_task_cdb.
1171 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1172 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1173 GFP_KERNEL);
1174 if (!cmd->t_task_cdb) {
1175 pr_err("Unable to allocate cmd->t_task_cdb"
1176 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1177 scsi_command_size(cdb),
1178 (unsigned long)sizeof(cmd->__t_task_cdb));
1179 return TCM_OUT_OF_RESOURCES;
1181 } else
1182 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1184 * Copy the original CDB into cmd->
1186 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1188 trace_target_sequencer_start(cmd);
1191 * Check for an existing UNIT ATTENTION condition
1193 ret = target_scsi3_ua_check(cmd);
1194 if (ret)
1195 return ret;
1197 ret = target_alua_state_check(cmd);
1198 if (ret)
1199 return ret;
1201 ret = target_check_reservation(cmd);
1202 if (ret) {
1203 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1204 return ret;
1207 ret = dev->transport->parse_cdb(cmd);
1208 if (ret)
1209 return ret;
1211 ret = transport_check_alloc_task_attr(cmd);
1212 if (ret)
1213 return ret;
1215 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1217 spin_lock(&cmd->se_lun->lun_sep_lock);
1218 if (cmd->se_lun->lun_sep)
1219 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1220 spin_unlock(&cmd->se_lun->lun_sep_lock);
1221 return 0;
1223 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1226 * Used by fabric module frontends to queue tasks directly.
1227 * Many only be used from process context only
1229 int transport_handle_cdb_direct(
1230 struct se_cmd *cmd)
1232 sense_reason_t ret;
1234 if (!cmd->se_lun) {
1235 dump_stack();
1236 pr_err("cmd->se_lun is NULL\n");
1237 return -EINVAL;
1239 if (in_interrupt()) {
1240 dump_stack();
1241 pr_err("transport_generic_handle_cdb cannot be called"
1242 " from interrupt context\n");
1243 return -EINVAL;
1246 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1247 * outstanding descriptors are handled correctly during shutdown via
1248 * transport_wait_for_tasks()
1250 * Also, we don't take cmd->t_state_lock here as we only expect
1251 * this to be called for initial descriptor submission.
1253 cmd->t_state = TRANSPORT_NEW_CMD;
1254 cmd->transport_state |= CMD_T_ACTIVE;
1257 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1258 * so follow TRANSPORT_NEW_CMD processing thread context usage
1259 * and call transport_generic_request_failure() if necessary..
1261 ret = transport_generic_new_cmd(cmd);
1262 if (ret)
1263 transport_generic_request_failure(cmd, ret);
1264 return 0;
1266 EXPORT_SYMBOL(transport_handle_cdb_direct);
1268 sense_reason_t
1269 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1270 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1272 if (!sgl || !sgl_count)
1273 return 0;
1276 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1277 * scatterlists already have been set to follow what the fabric
1278 * passes for the original expected data transfer length.
1280 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1281 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1282 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1283 return TCM_INVALID_CDB_FIELD;
1286 cmd->t_data_sg = sgl;
1287 cmd->t_data_nents = sgl_count;
1289 if (sgl_bidi && sgl_bidi_count) {
1290 cmd->t_bidi_data_sg = sgl_bidi;
1291 cmd->t_bidi_data_nents = sgl_bidi_count;
1293 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1294 return 0;
1298 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1299 * se_cmd + use pre-allocated SGL memory.
1301 * @se_cmd: command descriptor to submit
1302 * @se_sess: associated se_sess for endpoint
1303 * @cdb: pointer to SCSI CDB
1304 * @sense: pointer to SCSI sense buffer
1305 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1306 * @data_length: fabric expected data transfer length
1307 * @task_addr: SAM task attribute
1308 * @data_dir: DMA data direction
1309 * @flags: flags for command submission from target_sc_flags_tables
1310 * @sgl: struct scatterlist memory for unidirectional mapping
1311 * @sgl_count: scatterlist count for unidirectional mapping
1312 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1313 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1314 * @sgl_prot: struct scatterlist memory protection information
1315 * @sgl_prot_count: scatterlist count for protection information
1317 * Returns non zero to signal active I/O shutdown failure. All other
1318 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1319 * but still return zero here.
1321 * This may only be called from process context, and also currently
1322 * assumes internal allocation of fabric payload buffer by target-core.
1324 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1325 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1326 u32 data_length, int task_attr, int data_dir, int flags,
1327 struct scatterlist *sgl, u32 sgl_count,
1328 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1329 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1331 struct se_portal_group *se_tpg;
1332 sense_reason_t rc;
1333 int ret;
1335 se_tpg = se_sess->se_tpg;
1336 BUG_ON(!se_tpg);
1337 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1338 BUG_ON(in_interrupt());
1340 * Initialize se_cmd for target operation. From this point
1341 * exceptions are handled by sending exception status via
1342 * target_core_fabric_ops->queue_status() callback
1344 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1345 data_length, data_dir, task_attr, sense);
1346 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1347 se_cmd->unknown_data_length = 1;
1349 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1350 * se_sess->sess_cmd_list. A second kref_get here is necessary
1351 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1352 * kref_put() to happen during fabric packet acknowledgement.
1354 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1355 if (ret)
1356 return ret;
1358 * Signal bidirectional data payloads to target-core
1360 if (flags & TARGET_SCF_BIDI_OP)
1361 se_cmd->se_cmd_flags |= SCF_BIDI;
1363 * Locate se_lun pointer and attach it to struct se_cmd
1365 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1366 if (rc) {
1367 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1368 target_put_sess_cmd(se_sess, se_cmd);
1369 return 0;
1372 * Save pointers for SGLs containing protection information,
1373 * if present.
1375 if (sgl_prot_count) {
1376 se_cmd->t_prot_sg = sgl_prot;
1377 se_cmd->t_prot_nents = sgl_prot_count;
1380 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1381 if (rc != 0) {
1382 transport_generic_request_failure(se_cmd, rc);
1383 return 0;
1386 * When a non zero sgl_count has been passed perform SGL passthrough
1387 * mapping for pre-allocated fabric memory instead of having target
1388 * core perform an internal SGL allocation..
1390 if (sgl_count != 0) {
1391 BUG_ON(!sgl);
1394 * A work-around for tcm_loop as some userspace code via
1395 * scsi-generic do not memset their associated read buffers,
1396 * so go ahead and do that here for type non-data CDBs. Also
1397 * note that this is currently guaranteed to be a single SGL
1398 * for this case by target core in target_setup_cmd_from_cdb()
1399 * -> transport_generic_cmd_sequencer().
1401 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1402 se_cmd->data_direction == DMA_FROM_DEVICE) {
1403 unsigned char *buf = NULL;
1405 if (sgl)
1406 buf = kmap(sg_page(sgl)) + sgl->offset;
1408 if (buf) {
1409 memset(buf, 0, sgl->length);
1410 kunmap(sg_page(sgl));
1414 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1415 sgl_bidi, sgl_bidi_count);
1416 if (rc != 0) {
1417 transport_generic_request_failure(se_cmd, rc);
1418 return 0;
1423 * Check if we need to delay processing because of ALUA
1424 * Active/NonOptimized primary access state..
1426 core_alua_check_nonop_delay(se_cmd);
1428 transport_handle_cdb_direct(se_cmd);
1429 return 0;
1431 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1434 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1436 * @se_cmd: command descriptor to submit
1437 * @se_sess: associated se_sess for endpoint
1438 * @cdb: pointer to SCSI CDB
1439 * @sense: pointer to SCSI sense buffer
1440 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1441 * @data_length: fabric expected data transfer length
1442 * @task_addr: SAM task attribute
1443 * @data_dir: DMA data direction
1444 * @flags: flags for command submission from target_sc_flags_tables
1446 * Returns non zero to signal active I/O shutdown failure. All other
1447 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1448 * but still return zero here.
1450 * This may only be called from process context, and also currently
1451 * assumes internal allocation of fabric payload buffer by target-core.
1453 * It also assumes interal target core SGL memory allocation.
1455 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1456 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1457 u32 data_length, int task_attr, int data_dir, int flags)
1459 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1460 unpacked_lun, data_length, task_attr, data_dir,
1461 flags, NULL, 0, NULL, 0, NULL, 0);
1463 EXPORT_SYMBOL(target_submit_cmd);
1465 static void target_complete_tmr_failure(struct work_struct *work)
1467 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1469 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1470 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1472 transport_cmd_check_stop_to_fabric(se_cmd);
1476 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1477 * for TMR CDBs
1479 * @se_cmd: command descriptor to submit
1480 * @se_sess: associated se_sess for endpoint
1481 * @sense: pointer to SCSI sense buffer
1482 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1483 * @fabric_context: fabric context for TMR req
1484 * @tm_type: Type of TM request
1485 * @gfp: gfp type for caller
1486 * @tag: referenced task tag for TMR_ABORT_TASK
1487 * @flags: submit cmd flags
1489 * Callable from all contexts.
1492 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1493 unsigned char *sense, u32 unpacked_lun,
1494 void *fabric_tmr_ptr, unsigned char tm_type,
1495 gfp_t gfp, unsigned int tag, int flags)
1497 struct se_portal_group *se_tpg;
1498 int ret;
1500 se_tpg = se_sess->se_tpg;
1501 BUG_ON(!se_tpg);
1503 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1504 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1506 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1507 * allocation failure.
1509 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1510 if (ret < 0)
1511 return -ENOMEM;
1513 if (tm_type == TMR_ABORT_TASK)
1514 se_cmd->se_tmr_req->ref_task_tag = tag;
1516 /* See target_submit_cmd for commentary */
1517 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1518 if (ret) {
1519 core_tmr_release_req(se_cmd->se_tmr_req);
1520 return ret;
1523 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1524 if (ret) {
1526 * For callback during failure handling, push this work off
1527 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1529 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1530 schedule_work(&se_cmd->work);
1531 return 0;
1533 transport_generic_handle_tmr(se_cmd);
1534 return 0;
1536 EXPORT_SYMBOL(target_submit_tmr);
1539 * If the cmd is active, request it to be stopped and sleep until it
1540 * has completed.
1542 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1544 bool was_active = false;
1546 if (cmd->transport_state & CMD_T_BUSY) {
1547 cmd->transport_state |= CMD_T_REQUEST_STOP;
1548 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1550 pr_debug("cmd %p waiting to complete\n", cmd);
1551 wait_for_completion(&cmd->task_stop_comp);
1552 pr_debug("cmd %p stopped successfully\n", cmd);
1554 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1555 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1556 cmd->transport_state &= ~CMD_T_BUSY;
1557 was_active = true;
1560 return was_active;
1564 * Handle SAM-esque emulation for generic transport request failures.
1566 void transport_generic_request_failure(struct se_cmd *cmd,
1567 sense_reason_t sense_reason)
1569 int ret = 0;
1571 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1572 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1573 cmd->t_task_cdb[0]);
1574 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1575 cmd->se_tfo->get_cmd_state(cmd),
1576 cmd->t_state, sense_reason);
1577 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1578 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1579 (cmd->transport_state & CMD_T_STOP) != 0,
1580 (cmd->transport_state & CMD_T_SENT) != 0);
1583 * For SAM Task Attribute emulation for failed struct se_cmd
1585 transport_complete_task_attr(cmd);
1587 * Handle special case for COMPARE_AND_WRITE failure, where the
1588 * callback is expected to drop the per device ->caw_mutex.
1590 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1591 cmd->transport_complete_callback)
1592 cmd->transport_complete_callback(cmd);
1594 switch (sense_reason) {
1595 case TCM_NON_EXISTENT_LUN:
1596 case TCM_UNSUPPORTED_SCSI_OPCODE:
1597 case TCM_INVALID_CDB_FIELD:
1598 case TCM_INVALID_PARAMETER_LIST:
1599 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1600 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1601 case TCM_UNKNOWN_MODE_PAGE:
1602 case TCM_WRITE_PROTECTED:
1603 case TCM_ADDRESS_OUT_OF_RANGE:
1604 case TCM_CHECK_CONDITION_ABORT_CMD:
1605 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1606 case TCM_CHECK_CONDITION_NOT_READY:
1607 break;
1608 case TCM_OUT_OF_RESOURCES:
1609 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1610 break;
1611 case TCM_RESERVATION_CONFLICT:
1613 * No SENSE Data payload for this case, set SCSI Status
1614 * and queue the response to $FABRIC_MOD.
1616 * Uses linux/include/scsi/scsi.h SAM status codes defs
1618 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1620 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1621 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1622 * CONFLICT STATUS.
1624 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1626 if (cmd->se_sess &&
1627 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1628 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1629 cmd->orig_fe_lun, 0x2C,
1630 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1632 trace_target_cmd_complete(cmd);
1633 ret = cmd->se_tfo-> queue_status(cmd);
1634 if (ret == -EAGAIN || ret == -ENOMEM)
1635 goto queue_full;
1636 goto check_stop;
1637 default:
1638 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1639 cmd->t_task_cdb[0], sense_reason);
1640 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1641 break;
1644 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1645 if (ret == -EAGAIN || ret == -ENOMEM)
1646 goto queue_full;
1648 check_stop:
1649 transport_lun_remove_cmd(cmd);
1650 if (!transport_cmd_check_stop_to_fabric(cmd))
1652 return;
1654 queue_full:
1655 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1656 transport_handle_queue_full(cmd, cmd->se_dev);
1658 EXPORT_SYMBOL(transport_generic_request_failure);
1660 void __target_execute_cmd(struct se_cmd *cmd)
1662 sense_reason_t ret;
1664 if (cmd->execute_cmd) {
1665 ret = cmd->execute_cmd(cmd);
1666 if (ret) {
1667 spin_lock_irq(&cmd->t_state_lock);
1668 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1669 spin_unlock_irq(&cmd->t_state_lock);
1671 transport_generic_request_failure(cmd, ret);
1676 static bool target_handle_task_attr(struct se_cmd *cmd)
1678 struct se_device *dev = cmd->se_dev;
1680 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1681 return false;
1684 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1685 * to allow the passed struct se_cmd list of tasks to the front of the list.
1687 switch (cmd->sam_task_attr) {
1688 case MSG_HEAD_TAG:
1689 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1690 "se_ordered_id: %u\n",
1691 cmd->t_task_cdb[0], cmd->se_ordered_id);
1692 return false;
1693 case MSG_ORDERED_TAG:
1694 atomic_inc(&dev->dev_ordered_sync);
1695 smp_mb__after_atomic_inc();
1697 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1698 " se_ordered_id: %u\n",
1699 cmd->t_task_cdb[0], cmd->se_ordered_id);
1702 * Execute an ORDERED command if no other older commands
1703 * exist that need to be completed first.
1705 if (!atomic_read(&dev->simple_cmds))
1706 return false;
1707 break;
1708 default:
1710 * For SIMPLE and UNTAGGED Task Attribute commands
1712 atomic_inc(&dev->simple_cmds);
1713 smp_mb__after_atomic_inc();
1714 break;
1717 if (atomic_read(&dev->dev_ordered_sync) == 0)
1718 return false;
1720 spin_lock(&dev->delayed_cmd_lock);
1721 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1722 spin_unlock(&dev->delayed_cmd_lock);
1724 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1725 " delayed CMD list, se_ordered_id: %u\n",
1726 cmd->t_task_cdb[0], cmd->sam_task_attr,
1727 cmd->se_ordered_id);
1728 return true;
1731 void target_execute_cmd(struct se_cmd *cmd)
1734 * If the received CDB has aleady been aborted stop processing it here.
1736 if (transport_check_aborted_status(cmd, 1))
1737 return;
1740 * Determine if frontend context caller is requesting the stopping of
1741 * this command for frontend exceptions.
1743 spin_lock_irq(&cmd->t_state_lock);
1744 if (cmd->transport_state & CMD_T_STOP) {
1745 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1746 __func__, __LINE__,
1747 cmd->se_tfo->get_task_tag(cmd));
1749 spin_unlock_irq(&cmd->t_state_lock);
1750 complete(&cmd->t_transport_stop_comp);
1751 return;
1754 cmd->t_state = TRANSPORT_PROCESSING;
1755 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1756 spin_unlock_irq(&cmd->t_state_lock);
1758 if (target_handle_task_attr(cmd)) {
1759 spin_lock_irq(&cmd->t_state_lock);
1760 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1761 spin_unlock_irq(&cmd->t_state_lock);
1762 return;
1765 __target_execute_cmd(cmd);
1767 EXPORT_SYMBOL(target_execute_cmd);
1770 * Process all commands up to the last received ORDERED task attribute which
1771 * requires another blocking boundary
1773 static void target_restart_delayed_cmds(struct se_device *dev)
1775 for (;;) {
1776 struct se_cmd *cmd;
1778 spin_lock(&dev->delayed_cmd_lock);
1779 if (list_empty(&dev->delayed_cmd_list)) {
1780 spin_unlock(&dev->delayed_cmd_lock);
1781 break;
1784 cmd = list_entry(dev->delayed_cmd_list.next,
1785 struct se_cmd, se_delayed_node);
1786 list_del(&cmd->se_delayed_node);
1787 spin_unlock(&dev->delayed_cmd_lock);
1789 __target_execute_cmd(cmd);
1791 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1792 break;
1797 * Called from I/O completion to determine which dormant/delayed
1798 * and ordered cmds need to have their tasks added to the execution queue.
1800 static void transport_complete_task_attr(struct se_cmd *cmd)
1802 struct se_device *dev = cmd->se_dev;
1804 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1805 return;
1807 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1808 atomic_dec(&dev->simple_cmds);
1809 smp_mb__after_atomic_dec();
1810 dev->dev_cur_ordered_id++;
1811 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1812 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1813 cmd->se_ordered_id);
1814 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1815 dev->dev_cur_ordered_id++;
1816 pr_debug("Incremented dev_cur_ordered_id: %u for"
1817 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1818 cmd->se_ordered_id);
1819 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1820 atomic_dec(&dev->dev_ordered_sync);
1821 smp_mb__after_atomic_dec();
1823 dev->dev_cur_ordered_id++;
1824 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1825 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1828 target_restart_delayed_cmds(dev);
1831 static void transport_complete_qf(struct se_cmd *cmd)
1833 int ret = 0;
1835 transport_complete_task_attr(cmd);
1837 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1838 trace_target_cmd_complete(cmd);
1839 ret = cmd->se_tfo->queue_status(cmd);
1840 if (ret)
1841 goto out;
1844 switch (cmd->data_direction) {
1845 case DMA_FROM_DEVICE:
1846 trace_target_cmd_complete(cmd);
1847 ret = cmd->se_tfo->queue_data_in(cmd);
1848 break;
1849 case DMA_TO_DEVICE:
1850 if (cmd->se_cmd_flags & SCF_BIDI) {
1851 ret = cmd->se_tfo->queue_data_in(cmd);
1852 if (ret < 0)
1853 break;
1855 /* Fall through for DMA_TO_DEVICE */
1856 case DMA_NONE:
1857 trace_target_cmd_complete(cmd);
1858 ret = cmd->se_tfo->queue_status(cmd);
1859 break;
1860 default:
1861 break;
1864 out:
1865 if (ret < 0) {
1866 transport_handle_queue_full(cmd, cmd->se_dev);
1867 return;
1869 transport_lun_remove_cmd(cmd);
1870 transport_cmd_check_stop_to_fabric(cmd);
1873 static void transport_handle_queue_full(
1874 struct se_cmd *cmd,
1875 struct se_device *dev)
1877 spin_lock_irq(&dev->qf_cmd_lock);
1878 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1879 atomic_inc(&dev->dev_qf_count);
1880 smp_mb__after_atomic_inc();
1881 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1883 schedule_work(&cmd->se_dev->qf_work_queue);
1886 static void target_complete_ok_work(struct work_struct *work)
1888 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1889 int ret;
1892 * Check if we need to move delayed/dormant tasks from cmds on the
1893 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1894 * Attribute.
1896 transport_complete_task_attr(cmd);
1899 * Check to schedule QUEUE_FULL work, or execute an existing
1900 * cmd->transport_qf_callback()
1902 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1903 schedule_work(&cmd->se_dev->qf_work_queue);
1906 * Check if we need to send a sense buffer from
1907 * the struct se_cmd in question.
1909 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1910 WARN_ON(!cmd->scsi_status);
1911 ret = transport_send_check_condition_and_sense(
1912 cmd, 0, 1);
1913 if (ret == -EAGAIN || ret == -ENOMEM)
1914 goto queue_full;
1916 transport_lun_remove_cmd(cmd);
1917 transport_cmd_check_stop_to_fabric(cmd);
1918 return;
1921 * Check for a callback, used by amongst other things
1922 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1924 if (cmd->transport_complete_callback) {
1925 sense_reason_t rc;
1927 rc = cmd->transport_complete_callback(cmd);
1928 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1929 return;
1930 } else if (rc) {
1931 ret = transport_send_check_condition_and_sense(cmd,
1932 rc, 0);
1933 if (ret == -EAGAIN || ret == -ENOMEM)
1934 goto queue_full;
1936 transport_lun_remove_cmd(cmd);
1937 transport_cmd_check_stop_to_fabric(cmd);
1938 return;
1942 switch (cmd->data_direction) {
1943 case DMA_FROM_DEVICE:
1944 spin_lock(&cmd->se_lun->lun_sep_lock);
1945 if (cmd->se_lun->lun_sep) {
1946 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1947 cmd->data_length;
1949 spin_unlock(&cmd->se_lun->lun_sep_lock);
1951 trace_target_cmd_complete(cmd);
1952 ret = cmd->se_tfo->queue_data_in(cmd);
1953 if (ret == -EAGAIN || ret == -ENOMEM)
1954 goto queue_full;
1955 break;
1956 case DMA_TO_DEVICE:
1957 spin_lock(&cmd->se_lun->lun_sep_lock);
1958 if (cmd->se_lun->lun_sep) {
1959 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1960 cmd->data_length;
1962 spin_unlock(&cmd->se_lun->lun_sep_lock);
1964 * Check if we need to send READ payload for BIDI-COMMAND
1966 if (cmd->se_cmd_flags & SCF_BIDI) {
1967 spin_lock(&cmd->se_lun->lun_sep_lock);
1968 if (cmd->se_lun->lun_sep) {
1969 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1970 cmd->data_length;
1972 spin_unlock(&cmd->se_lun->lun_sep_lock);
1973 ret = cmd->se_tfo->queue_data_in(cmd);
1974 if (ret == -EAGAIN || ret == -ENOMEM)
1975 goto queue_full;
1976 break;
1978 /* Fall through for DMA_TO_DEVICE */
1979 case DMA_NONE:
1980 trace_target_cmd_complete(cmd);
1981 ret = cmd->se_tfo->queue_status(cmd);
1982 if (ret == -EAGAIN || ret == -ENOMEM)
1983 goto queue_full;
1984 break;
1985 default:
1986 break;
1989 transport_lun_remove_cmd(cmd);
1990 transport_cmd_check_stop_to_fabric(cmd);
1991 return;
1993 queue_full:
1994 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1995 " data_direction: %d\n", cmd, cmd->data_direction);
1996 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1997 transport_handle_queue_full(cmd, cmd->se_dev);
2000 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2002 struct scatterlist *sg;
2003 int count;
2005 for_each_sg(sgl, sg, nents, count)
2006 __free_page(sg_page(sg));
2008 kfree(sgl);
2011 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2014 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2015 * emulation, and free + reset pointers if necessary..
2017 if (!cmd->t_data_sg_orig)
2018 return;
2020 kfree(cmd->t_data_sg);
2021 cmd->t_data_sg = cmd->t_data_sg_orig;
2022 cmd->t_data_sg_orig = NULL;
2023 cmd->t_data_nents = cmd->t_data_nents_orig;
2024 cmd->t_data_nents_orig = 0;
2027 static inline void transport_free_pages(struct se_cmd *cmd)
2029 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2030 transport_reset_sgl_orig(cmd);
2031 return;
2033 transport_reset_sgl_orig(cmd);
2035 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2036 cmd->t_data_sg = NULL;
2037 cmd->t_data_nents = 0;
2039 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2040 cmd->t_bidi_data_sg = NULL;
2041 cmd->t_bidi_data_nents = 0;
2045 * transport_release_cmd - free a command
2046 * @cmd: command to free
2048 * This routine unconditionally frees a command, and reference counting
2049 * or list removal must be done in the caller.
2051 static int transport_release_cmd(struct se_cmd *cmd)
2053 BUG_ON(!cmd->se_tfo);
2055 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2056 core_tmr_release_req(cmd->se_tmr_req);
2057 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2058 kfree(cmd->t_task_cdb);
2060 * If this cmd has been setup with target_get_sess_cmd(), drop
2061 * the kref and call ->release_cmd() in kref callback.
2063 return target_put_sess_cmd(cmd->se_sess, cmd);
2067 * transport_put_cmd - release a reference to a command
2068 * @cmd: command to release
2070 * This routine releases our reference to the command and frees it if possible.
2072 static int transport_put_cmd(struct se_cmd *cmd)
2074 transport_free_pages(cmd);
2075 return transport_release_cmd(cmd);
2078 void *transport_kmap_data_sg(struct se_cmd *cmd)
2080 struct scatterlist *sg = cmd->t_data_sg;
2081 struct page **pages;
2082 int i;
2085 * We need to take into account a possible offset here for fabrics like
2086 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2087 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2089 if (!cmd->t_data_nents)
2090 return NULL;
2092 BUG_ON(!sg);
2093 if (cmd->t_data_nents == 1)
2094 return kmap(sg_page(sg)) + sg->offset;
2096 /* >1 page. use vmap */
2097 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2098 if (!pages)
2099 return NULL;
2101 /* convert sg[] to pages[] */
2102 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2103 pages[i] = sg_page(sg);
2106 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2107 kfree(pages);
2108 if (!cmd->t_data_vmap)
2109 return NULL;
2111 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2113 EXPORT_SYMBOL(transport_kmap_data_sg);
2115 void transport_kunmap_data_sg(struct se_cmd *cmd)
2117 if (!cmd->t_data_nents) {
2118 return;
2119 } else if (cmd->t_data_nents == 1) {
2120 kunmap(sg_page(cmd->t_data_sg));
2121 return;
2124 vunmap(cmd->t_data_vmap);
2125 cmd->t_data_vmap = NULL;
2127 EXPORT_SYMBOL(transport_kunmap_data_sg);
2130 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2131 bool zero_page)
2133 struct scatterlist *sg;
2134 struct page *page;
2135 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2136 unsigned int nent;
2137 int i = 0;
2139 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2140 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2141 if (!sg)
2142 return -ENOMEM;
2144 sg_init_table(sg, nent);
2146 while (length) {
2147 u32 page_len = min_t(u32, length, PAGE_SIZE);
2148 page = alloc_page(GFP_KERNEL | zero_flag);
2149 if (!page)
2150 goto out;
2152 sg_set_page(&sg[i], page, page_len, 0);
2153 length -= page_len;
2154 i++;
2156 *sgl = sg;
2157 *nents = nent;
2158 return 0;
2160 out:
2161 while (i > 0) {
2162 i--;
2163 __free_page(sg_page(&sg[i]));
2165 kfree(sg);
2166 return -ENOMEM;
2170 * Allocate any required resources to execute the command. For writes we
2171 * might not have the payload yet, so notify the fabric via a call to
2172 * ->write_pending instead. Otherwise place it on the execution queue.
2174 sense_reason_t
2175 transport_generic_new_cmd(struct se_cmd *cmd)
2177 int ret = 0;
2180 * Determine is the TCM fabric module has already allocated physical
2181 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2182 * beforehand.
2184 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2185 cmd->data_length) {
2186 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2188 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2189 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2190 u32 bidi_length;
2192 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2193 bidi_length = cmd->t_task_nolb *
2194 cmd->se_dev->dev_attrib.block_size;
2195 else
2196 bidi_length = cmd->data_length;
2198 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2199 &cmd->t_bidi_data_nents,
2200 bidi_length, zero_flag);
2201 if (ret < 0)
2202 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2205 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2206 cmd->data_length, zero_flag);
2207 if (ret < 0)
2208 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2211 * If this command is not a write we can execute it right here,
2212 * for write buffers we need to notify the fabric driver first
2213 * and let it call back once the write buffers are ready.
2215 target_add_to_state_list(cmd);
2216 if (cmd->data_direction != DMA_TO_DEVICE) {
2217 target_execute_cmd(cmd);
2218 return 0;
2220 transport_cmd_check_stop(cmd, false, true);
2222 ret = cmd->se_tfo->write_pending(cmd);
2223 if (ret == -EAGAIN || ret == -ENOMEM)
2224 goto queue_full;
2226 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2227 WARN_ON(ret);
2229 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2231 queue_full:
2232 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2233 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2234 transport_handle_queue_full(cmd, cmd->se_dev);
2235 return 0;
2237 EXPORT_SYMBOL(transport_generic_new_cmd);
2239 static void transport_write_pending_qf(struct se_cmd *cmd)
2241 int ret;
2243 ret = cmd->se_tfo->write_pending(cmd);
2244 if (ret == -EAGAIN || ret == -ENOMEM) {
2245 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2246 cmd);
2247 transport_handle_queue_full(cmd, cmd->se_dev);
2251 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2253 unsigned long flags;
2254 int ret = 0;
2256 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2257 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2258 transport_wait_for_tasks(cmd);
2260 ret = transport_release_cmd(cmd);
2261 } else {
2262 if (wait_for_tasks)
2263 transport_wait_for_tasks(cmd);
2265 * Handle WRITE failure case where transport_generic_new_cmd()
2266 * has already added se_cmd to state_list, but fabric has
2267 * failed command before I/O submission.
2269 if (cmd->state_active) {
2270 spin_lock_irqsave(&cmd->t_state_lock, flags);
2271 target_remove_from_state_list(cmd);
2272 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2275 if (cmd->se_lun)
2276 transport_lun_remove_cmd(cmd);
2278 ret = transport_put_cmd(cmd);
2280 return ret;
2282 EXPORT_SYMBOL(transport_generic_free_cmd);
2284 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2285 * @se_sess: session to reference
2286 * @se_cmd: command descriptor to add
2287 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2289 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2290 bool ack_kref)
2292 unsigned long flags;
2293 int ret = 0;
2295 kref_init(&se_cmd->cmd_kref);
2297 * Add a second kref if the fabric caller is expecting to handle
2298 * fabric acknowledgement that requires two target_put_sess_cmd()
2299 * invocations before se_cmd descriptor release.
2301 if (ack_kref == true) {
2302 kref_get(&se_cmd->cmd_kref);
2303 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2306 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2307 if (se_sess->sess_tearing_down) {
2308 ret = -ESHUTDOWN;
2309 goto out;
2311 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2312 out:
2313 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2314 return ret;
2316 EXPORT_SYMBOL(target_get_sess_cmd);
2318 static void target_release_cmd_kref(struct kref *kref)
2320 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2321 struct se_session *se_sess = se_cmd->se_sess;
2323 if (list_empty(&se_cmd->se_cmd_list)) {
2324 spin_unlock(&se_sess->sess_cmd_lock);
2325 se_cmd->se_tfo->release_cmd(se_cmd);
2326 return;
2328 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2329 spin_unlock(&se_sess->sess_cmd_lock);
2330 complete(&se_cmd->cmd_wait_comp);
2331 return;
2333 list_del(&se_cmd->se_cmd_list);
2334 spin_unlock(&se_sess->sess_cmd_lock);
2336 se_cmd->se_tfo->release_cmd(se_cmd);
2339 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2340 * @se_sess: session to reference
2341 * @se_cmd: command descriptor to drop
2343 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2345 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2346 &se_sess->sess_cmd_lock);
2348 EXPORT_SYMBOL(target_put_sess_cmd);
2350 /* target_sess_cmd_list_set_waiting - Flag all commands in
2351 * sess_cmd_list to complete cmd_wait_comp. Set
2352 * sess_tearing_down so no more commands are queued.
2353 * @se_sess: session to flag
2355 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2357 struct se_cmd *se_cmd;
2358 unsigned long flags;
2360 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2361 if (se_sess->sess_tearing_down) {
2362 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2363 return;
2365 se_sess->sess_tearing_down = 1;
2366 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2368 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2369 se_cmd->cmd_wait_set = 1;
2371 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2373 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2375 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2376 * @se_sess: session to wait for active I/O
2378 void target_wait_for_sess_cmds(struct se_session *se_sess)
2380 struct se_cmd *se_cmd, *tmp_cmd;
2381 unsigned long flags;
2383 list_for_each_entry_safe(se_cmd, tmp_cmd,
2384 &se_sess->sess_wait_list, se_cmd_list) {
2385 list_del(&se_cmd->se_cmd_list);
2387 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2388 " %d\n", se_cmd, se_cmd->t_state,
2389 se_cmd->se_tfo->get_cmd_state(se_cmd));
2391 wait_for_completion(&se_cmd->cmd_wait_comp);
2392 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2393 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2394 se_cmd->se_tfo->get_cmd_state(se_cmd));
2396 se_cmd->se_tfo->release_cmd(se_cmd);
2399 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2400 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2401 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2404 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2406 static int transport_clear_lun_ref_thread(void *p)
2408 struct se_lun *lun = p;
2410 percpu_ref_kill(&lun->lun_ref);
2412 wait_for_completion(&lun->lun_ref_comp);
2413 complete(&lun->lun_shutdown_comp);
2415 return 0;
2418 int transport_clear_lun_ref(struct se_lun *lun)
2420 struct task_struct *kt;
2422 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2423 "tcm_cl_%u", lun->unpacked_lun);
2424 if (IS_ERR(kt)) {
2425 pr_err("Unable to start clear_lun thread\n");
2426 return PTR_ERR(kt);
2428 wait_for_completion(&lun->lun_shutdown_comp);
2430 return 0;
2434 * transport_wait_for_tasks - wait for completion to occur
2435 * @cmd: command to wait
2437 * Called from frontend fabric context to wait for storage engine
2438 * to pause and/or release frontend generated struct se_cmd.
2440 bool transport_wait_for_tasks(struct se_cmd *cmd)
2442 unsigned long flags;
2444 spin_lock_irqsave(&cmd->t_state_lock, flags);
2445 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2446 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2447 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2448 return false;
2451 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2452 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2453 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2454 return false;
2457 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2458 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459 return false;
2462 cmd->transport_state |= CMD_T_STOP;
2464 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2465 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2466 cmd, cmd->se_tfo->get_task_tag(cmd),
2467 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2469 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2471 wait_for_completion(&cmd->t_transport_stop_comp);
2473 spin_lock_irqsave(&cmd->t_state_lock, flags);
2474 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2476 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2477 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2478 cmd->se_tfo->get_task_tag(cmd));
2480 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2482 return true;
2484 EXPORT_SYMBOL(transport_wait_for_tasks);
2486 static int transport_get_sense_codes(
2487 struct se_cmd *cmd,
2488 u8 *asc,
2489 u8 *ascq)
2491 *asc = cmd->scsi_asc;
2492 *ascq = cmd->scsi_ascq;
2494 return 0;
2497 static
2498 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2500 /* Place failed LBA in sense data information descriptor 0. */
2501 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2502 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2503 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2504 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2506 /* Descriptor Information: failing sector */
2507 put_unaligned_be64(bad_sector, &buffer[12]);
2511 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2512 sense_reason_t reason, int from_transport)
2514 unsigned char *buffer = cmd->sense_buffer;
2515 unsigned long flags;
2516 u8 asc = 0, ascq = 0;
2518 spin_lock_irqsave(&cmd->t_state_lock, flags);
2519 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2520 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2521 return 0;
2523 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2524 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2526 if (!reason && from_transport)
2527 goto after_reason;
2529 if (!from_transport)
2530 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2533 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2534 * SENSE KEY values from include/scsi/scsi.h
2536 switch (reason) {
2537 case TCM_NO_SENSE:
2538 /* CURRENT ERROR */
2539 buffer[0] = 0x70;
2540 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2541 /* Not Ready */
2542 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2543 /* NO ADDITIONAL SENSE INFORMATION */
2544 buffer[SPC_ASC_KEY_OFFSET] = 0;
2545 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2546 break;
2547 case TCM_NON_EXISTENT_LUN:
2548 /* CURRENT ERROR */
2549 buffer[0] = 0x70;
2550 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2551 /* ILLEGAL REQUEST */
2552 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2553 /* LOGICAL UNIT NOT SUPPORTED */
2554 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2555 break;
2556 case TCM_UNSUPPORTED_SCSI_OPCODE:
2557 case TCM_SECTOR_COUNT_TOO_MANY:
2558 /* CURRENT ERROR */
2559 buffer[0] = 0x70;
2560 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2561 /* ILLEGAL REQUEST */
2562 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2563 /* INVALID COMMAND OPERATION CODE */
2564 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2565 break;
2566 case TCM_UNKNOWN_MODE_PAGE:
2567 /* CURRENT ERROR */
2568 buffer[0] = 0x70;
2569 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2570 /* ILLEGAL REQUEST */
2571 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2572 /* INVALID FIELD IN CDB */
2573 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2574 break;
2575 case TCM_CHECK_CONDITION_ABORT_CMD:
2576 /* CURRENT ERROR */
2577 buffer[0] = 0x70;
2578 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2579 /* ABORTED COMMAND */
2580 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2581 /* BUS DEVICE RESET FUNCTION OCCURRED */
2582 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2583 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2584 break;
2585 case TCM_INCORRECT_AMOUNT_OF_DATA:
2586 /* CURRENT ERROR */
2587 buffer[0] = 0x70;
2588 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2589 /* ABORTED COMMAND */
2590 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2591 /* WRITE ERROR */
2592 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2593 /* NOT ENOUGH UNSOLICITED DATA */
2594 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2595 break;
2596 case TCM_INVALID_CDB_FIELD:
2597 /* CURRENT ERROR */
2598 buffer[0] = 0x70;
2599 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2600 /* ILLEGAL REQUEST */
2601 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2602 /* INVALID FIELD IN CDB */
2603 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2604 break;
2605 case TCM_INVALID_PARAMETER_LIST:
2606 /* CURRENT ERROR */
2607 buffer[0] = 0x70;
2608 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2609 /* ILLEGAL REQUEST */
2610 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2611 /* INVALID FIELD IN PARAMETER LIST */
2612 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2613 break;
2614 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2615 /* CURRENT ERROR */
2616 buffer[0] = 0x70;
2617 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2618 /* ILLEGAL REQUEST */
2619 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2620 /* PARAMETER LIST LENGTH ERROR */
2621 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2622 break;
2623 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2624 /* CURRENT ERROR */
2625 buffer[0] = 0x70;
2626 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2627 /* ABORTED COMMAND */
2628 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2629 /* WRITE ERROR */
2630 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2631 /* UNEXPECTED_UNSOLICITED_DATA */
2632 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2633 break;
2634 case TCM_SERVICE_CRC_ERROR:
2635 /* CURRENT ERROR */
2636 buffer[0] = 0x70;
2637 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2638 /* ABORTED COMMAND */
2639 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2640 /* PROTOCOL SERVICE CRC ERROR */
2641 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2642 /* N/A */
2643 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2644 break;
2645 case TCM_SNACK_REJECTED:
2646 /* CURRENT ERROR */
2647 buffer[0] = 0x70;
2648 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2649 /* ABORTED COMMAND */
2650 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2651 /* READ ERROR */
2652 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2653 /* FAILED RETRANSMISSION REQUEST */
2654 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2655 break;
2656 case TCM_WRITE_PROTECTED:
2657 /* CURRENT ERROR */
2658 buffer[0] = 0x70;
2659 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2660 /* DATA PROTECT */
2661 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2662 /* WRITE PROTECTED */
2663 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2664 break;
2665 case TCM_ADDRESS_OUT_OF_RANGE:
2666 /* CURRENT ERROR */
2667 buffer[0] = 0x70;
2668 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2669 /* ILLEGAL REQUEST */
2670 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2671 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2672 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2673 break;
2674 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2675 /* CURRENT ERROR */
2676 buffer[0] = 0x70;
2677 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2678 /* UNIT ATTENTION */
2679 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2680 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2681 buffer[SPC_ASC_KEY_OFFSET] = asc;
2682 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2683 break;
2684 case TCM_CHECK_CONDITION_NOT_READY:
2685 /* CURRENT ERROR */
2686 buffer[0] = 0x70;
2687 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2688 /* Not Ready */
2689 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2690 transport_get_sense_codes(cmd, &asc, &ascq);
2691 buffer[SPC_ASC_KEY_OFFSET] = asc;
2692 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2693 break;
2694 case TCM_MISCOMPARE_VERIFY:
2695 /* CURRENT ERROR */
2696 buffer[0] = 0x70;
2697 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2698 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2699 /* MISCOMPARE DURING VERIFY OPERATION */
2700 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2701 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2702 break;
2703 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2704 /* CURRENT ERROR */
2705 buffer[0] = 0x70;
2706 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2707 /* ILLEGAL REQUEST */
2708 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2709 /* LOGICAL BLOCK GUARD CHECK FAILED */
2710 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2711 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2712 transport_err_sector_info(buffer, cmd->bad_sector);
2713 break;
2714 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2715 /* CURRENT ERROR */
2716 buffer[0] = 0x70;
2717 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2718 /* ILLEGAL REQUEST */
2719 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2720 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2721 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2722 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2723 transport_err_sector_info(buffer, cmd->bad_sector);
2724 break;
2725 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2726 /* CURRENT ERROR */
2727 buffer[0] = 0x70;
2728 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2729 /* ILLEGAL REQUEST */
2730 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2731 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2732 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2733 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2734 transport_err_sector_info(buffer, cmd->bad_sector);
2735 break;
2736 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2737 default:
2738 /* CURRENT ERROR */
2739 buffer[0] = 0x70;
2740 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2742 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2743 * Solaris initiators. Returning NOT READY instead means the
2744 * operations will be retried a finite number of times and we
2745 * can survive intermittent errors.
2747 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2748 /* LOGICAL UNIT COMMUNICATION FAILURE */
2749 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2750 break;
2753 * This code uses linux/include/scsi/scsi.h SAM status codes!
2755 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2757 * Automatically padded, this value is encoded in the fabric's
2758 * data_length response PDU containing the SCSI defined sense data.
2760 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2762 after_reason:
2763 trace_target_cmd_complete(cmd);
2764 return cmd->se_tfo->queue_status(cmd);
2766 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2768 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2770 if (!(cmd->transport_state & CMD_T_ABORTED))
2771 return 0;
2773 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2774 return 1;
2776 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2777 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2779 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2780 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2781 trace_target_cmd_complete(cmd);
2782 cmd->se_tfo->queue_status(cmd);
2784 return 1;
2786 EXPORT_SYMBOL(transport_check_aborted_status);
2788 void transport_send_task_abort(struct se_cmd *cmd)
2790 unsigned long flags;
2792 spin_lock_irqsave(&cmd->t_state_lock, flags);
2793 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2794 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2795 return;
2797 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2800 * If there are still expected incoming fabric WRITEs, we wait
2801 * until until they have completed before sending a TASK_ABORTED
2802 * response. This response with TASK_ABORTED status will be
2803 * queued back to fabric module by transport_check_aborted_status().
2805 if (cmd->data_direction == DMA_TO_DEVICE) {
2806 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2807 cmd->transport_state |= CMD_T_ABORTED;
2808 smp_mb__after_atomic_inc();
2809 return;
2812 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2814 transport_lun_remove_cmd(cmd);
2816 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2817 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2818 cmd->se_tfo->get_task_tag(cmd));
2820 trace_target_cmd_complete(cmd);
2821 cmd->se_tfo->queue_status(cmd);
2824 static void target_tmr_work(struct work_struct *work)
2826 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2827 struct se_device *dev = cmd->se_dev;
2828 struct se_tmr_req *tmr = cmd->se_tmr_req;
2829 int ret;
2831 switch (tmr->function) {
2832 case TMR_ABORT_TASK:
2833 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2834 break;
2835 case TMR_ABORT_TASK_SET:
2836 case TMR_CLEAR_ACA:
2837 case TMR_CLEAR_TASK_SET:
2838 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2839 break;
2840 case TMR_LUN_RESET:
2841 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2842 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2843 TMR_FUNCTION_REJECTED;
2844 break;
2845 case TMR_TARGET_WARM_RESET:
2846 tmr->response = TMR_FUNCTION_REJECTED;
2847 break;
2848 case TMR_TARGET_COLD_RESET:
2849 tmr->response = TMR_FUNCTION_REJECTED;
2850 break;
2851 default:
2852 pr_err("Uknown TMR function: 0x%02x.\n",
2853 tmr->function);
2854 tmr->response = TMR_FUNCTION_REJECTED;
2855 break;
2858 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2859 cmd->se_tfo->queue_tm_rsp(cmd);
2861 transport_cmd_check_stop_to_fabric(cmd);
2864 int transport_generic_handle_tmr(
2865 struct se_cmd *cmd)
2867 INIT_WORK(&cmd->work, target_tmr_work);
2868 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2869 return 0;
2871 EXPORT_SYMBOL(transport_generic_handle_tmr);