2 * linux/drivers/video/sa1100fb.c
4 * Copyright (C) 1999 Eric A. Thomas
5 * Based on acornfb.c Copyright (C) Russell King.
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file COPYING in the main directory of this archive for
11 * StrongARM 1100 LCD Controller Frame Buffer Driver
13 * Please direct your questions and comments on this driver to the following
16 * linux-arm-kernel@lists.arm.linux.org.uk
18 * Clean patches should be sent to the ARM Linux Patch System. Please see the
19 * following web page for more information:
21 * http://www.arm.linux.org.uk/developer/patches/info.shtml
26 * - With the Neponset plugged into an Assabet, LCD powerdown
27 * doesn't work (LCD stays powered up). Therefore we shouldn't
29 * - We don't limit the CPU clock rate nor the mode selection
30 * according to the available SDRAM bandwidth.
33 * - Linear grayscale palettes and the kernel.
34 * Such code does not belong in the kernel. The kernel frame buffer
35 * drivers do not expect a linear colourmap, but a colourmap based on
36 * the VT100 standard mapping.
38 * If your _userspace_ requires a linear colourmap, then the setup of
39 * such a colourmap belongs _in userspace_, not in the kernel. Code
40 * to set the colourmap correctly from user space has been sent to
41 * David Neuer. It's around 8 lines of C code, plus another 4 to
42 * detect if we are using grayscale.
44 * - The following must never be specified in a panel definition:
45 * LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
47 * - The following should be specified:
48 * either LCCR0_Color or LCCR0_Mono
49 * either LCCR0_Sngl or LCCR0_Dual
50 * either LCCR0_Act or LCCR0_Pas
51 * either LCCR3_OutEnH or LCCD3_OutEnL
52 * either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 * either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
57 * - Driver appears to be working for Brutus 320x200x8bpp mode. Other
58 * resolutions are working, but only the 8bpp mode is supported.
59 * Changes need to be made to the palette encode and decode routines
60 * to support 4 and 16 bpp modes.
61 * Driver is not designed to be a module. The FrameBuffer is statically
62 * allocated since dynamic allocation of a 300k buffer cannot be
66 * - FrameBuffer memory is now allocated at run-time when the
67 * driver is initialized.
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 * - Big cleanup for dynamic selection of machine type at run time.
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 * - Support for Bitsy aka Compaq iPAQ H3600 added.
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 * Jeff Sutherland <jsutherland@accelent.com>
77 * - Resolved an issue caused by a change made to the Assabet's PLD
78 * earlier this year which broke the framebuffer driver for newer
79 * Phase 4 Assabets. Some other parameters were changed to optimize
80 * for the Sharp display.
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 * - XP860 support added
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 * - Allows standard options to be passed on the kernel command line
87 * for most common passive displays.
90 * - s/save_flags_cli/local_irq_save/
91 * - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 * - Updated LART stuff. Fixed some minor bugs.
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 * - Pangolin support added
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 * - Huw Webpanel support added
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 * Cliff Brake <cbrake@accelent.com>
107 * - Added PM callback
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 * - Fix 16bpp so that (a) we use the right colours rather than some
111 * totally random colour depending on what was in page 0, and (b)
112 * we don't de-reference a NULL pointer.
113 * - remove duplicated implementation of consistent_alloc()
114 * - convert dma address types to dma_addr_t
115 * - remove unused 'montype' stuff
116 * - remove redundant zero inits of init_var after the initial
118 * - remove allow_modeset (acornfb idea does not belong here)
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 * - massive cleanup - move machine dependent data into structures
122 * - I've left various #warnings in - if you see one, and know
123 * the hardware concerned, please get in contact with me.
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 * - Fix LCCR1 HSW value, fix all machine type specifications to
127 * keep values in line. (Please check your machine type specs)
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 * - Fiddle with the LCD controller from task context only; mainly
131 * so that we can run with interrupts on, and sleep.
132 * - Convert #warnings into #errors. No pain, no gain. ;)
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 * - Make the palette BPS value for 12bpp come out correctly.
136 * - Take notice of "greyscale" on any colour depth.
137 * - Make truecolor visuals use the RGB channel encoding information.
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 * - Fix colourmap problems.
142 * 2001/07/13: <abraham@2d3d.co.za>
143 * - Added support for the ICP LCD-Kit01 on LART. This LCD is
144 * manufactured by Prime View, model no V16C6448AB
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 * - Hand merge version from handhelds.org CVS tree. See patch
148 * notes for 595/1 for more information.
149 * - Drop 12bpp (it's 16bpp with different colour register mappings).
150 * - This hardware can not do direct colour. Therefore we don't
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 * - Halve YRES on dual scan LCDs.
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 * - Add b/w iPAQ pixclock value.
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 * - Add patch 681/1 and clean up stork definitions.
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
182 #include <video/sa1100fb.h>
184 #include <mach/hardware.h>
185 #include <asm/mach-types.h>
186 #include <mach/shannon.h>
189 * Complain if VAR is out of range.
193 #include "sa1100fb.h"
195 static const struct sa1100fb_rgb rgb_4
= {
196 .red
= { .offset
= 0, .length
= 4, },
197 .green
= { .offset
= 0, .length
= 4, },
198 .blue
= { .offset
= 0, .length
= 4, },
199 .transp
= { .offset
= 0, .length
= 0, },
202 static const struct sa1100fb_rgb rgb_8
= {
203 .red
= { .offset
= 0, .length
= 8, },
204 .green
= { .offset
= 0, .length
= 8, },
205 .blue
= { .offset
= 0, .length
= 8, },
206 .transp
= { .offset
= 0, .length
= 0, },
209 static const struct sa1100fb_rgb def_rgb_16
= {
210 .red
= { .offset
= 11, .length
= 5, },
211 .green
= { .offset
= 5, .length
= 6, },
212 .blue
= { .offset
= 0, .length
= 5, },
213 .transp
= { .offset
= 0, .length
= 0, },
218 static int sa1100fb_activate_var(struct fb_var_screeninfo
*var
, struct sa1100fb_info
*);
219 static void set_ctrlr_state(struct sa1100fb_info
*fbi
, u_int state
);
221 static inline void sa1100fb_schedule_work(struct sa1100fb_info
*fbi
, u_int state
)
225 local_irq_save(flags
);
227 * We need to handle two requests being made at the same time.
228 * There are two important cases:
229 * 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230 * We must perform the unblanking, which will do our REENABLE for us.
231 * 2. When we are blanking, but immediately unblank before we have
232 * blanked. We do the "REENABLE" thing here as well, just to be sure.
234 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
236 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
239 if (state
!= (u_int
)-1) {
240 fbi
->task_state
= state
;
241 schedule_work(&fbi
->task
);
243 local_irq_restore(flags
);
246 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
249 chan
>>= 16 - bf
->length
;
250 return chan
<< bf
->offset
;
254 * Convert bits-per-pixel to a hardware palette PBS value.
256 static inline u_int
palette_pbs(struct fb_var_screeninfo
*var
)
259 switch (var
->bits_per_pixel
) {
260 case 4: ret
= 0 << 12; break;
261 case 8: ret
= 1 << 12; break;
262 case 16: ret
= 2 << 12; break;
268 sa1100fb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
269 u_int trans
, struct fb_info
*info
)
271 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
274 if (regno
< fbi
->palette_size
) {
275 val
= ((red
>> 4) & 0xf00);
276 val
|= ((green
>> 8) & 0x0f0);
277 val
|= ((blue
>> 12) & 0x00f);
280 val
|= palette_pbs(&fbi
->fb
.var
);
282 fbi
->palette_cpu
[regno
] = val
;
289 sa1100fb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
290 u_int trans
, struct fb_info
*info
)
292 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
297 * If inverse mode was selected, invert all the colours
298 * rather than the register number. The register number
299 * is what you poke into the framebuffer to produce the
300 * colour you requested.
302 if (fbi
->inf
->cmap_inverse
) {
304 green
= 0xffff - green
;
305 blue
= 0xffff - blue
;
309 * If greyscale is true, then we convert the RGB value
310 * to greyscale no mater what visual we are using.
312 if (fbi
->fb
.var
.grayscale
)
313 red
= green
= blue
= (19595 * red
+ 38470 * green
+
316 switch (fbi
->fb
.fix
.visual
) {
317 case FB_VISUAL_TRUECOLOR
:
319 * 12 or 16-bit True Colour. We encode the RGB value
320 * according to the RGB bitfield information.
323 u32
*pal
= fbi
->fb
.pseudo_palette
;
325 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
326 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
327 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
334 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
335 case FB_VISUAL_PSEUDOCOLOR
:
336 ret
= sa1100fb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
343 #ifdef CONFIG_CPU_FREQ
345 * sa1100fb_display_dma_period()
346 * Calculate the minimum period (in picoseconds) between two DMA
347 * requests for the LCD controller. If we hit this, it means we're
348 * doing nothing but LCD DMA.
350 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo
*var
)
353 * Period = pixclock * bits_per_byte * bytes_per_transfer
354 * / memory_bits_per_pixel;
356 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
361 * sa1100fb_check_var():
362 * Round up in the following order: bits_per_pixel, xres,
363 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
364 * bitfields, horizontal timing, vertical timing.
367 sa1100fb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
369 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
372 if (var
->xres
< MIN_XRES
)
373 var
->xres
= MIN_XRES
;
374 if (var
->yres
< MIN_YRES
)
375 var
->yres
= MIN_YRES
;
376 if (var
->xres
> fbi
->inf
->xres
)
377 var
->xres
= fbi
->inf
->xres
;
378 if (var
->yres
> fbi
->inf
->yres
)
379 var
->yres
= fbi
->inf
->yres
;
380 var
->xres_virtual
= max(var
->xres_virtual
, var
->xres
);
381 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
383 dev_dbg(fbi
->dev
, "var->bits_per_pixel=%d\n", var
->bits_per_pixel
);
384 switch (var
->bits_per_pixel
) {
399 * Copy the RGB parameters for this display
400 * from the machine specific parameters.
402 var
->red
= fbi
->rgb
[rgbidx
]->red
;
403 var
->green
= fbi
->rgb
[rgbidx
]->green
;
404 var
->blue
= fbi
->rgb
[rgbidx
]->blue
;
405 var
->transp
= fbi
->rgb
[rgbidx
]->transp
;
407 dev_dbg(fbi
->dev
, "RGBT length = %d:%d:%d:%d\n",
408 var
->red
.length
, var
->green
.length
, var
->blue
.length
,
411 dev_dbg(fbi
->dev
, "RGBT offset = %d:%d:%d:%d\n",
412 var
->red
.offset
, var
->green
.offset
, var
->blue
.offset
,
415 #ifdef CONFIG_CPU_FREQ
416 dev_dbg(fbi
->dev
, "dma period = %d ps, clock = %d kHz\n",
417 sa1100fb_display_dma_period(var
),
418 cpufreq_get(smp_processor_id()));
424 static void sa1100fb_set_visual(struct sa1100fb_info
*fbi
, u32 visual
)
426 if (fbi
->inf
->set_visual
)
427 fbi
->inf
->set_visual(visual
);
431 * sa1100fb_set_par():
432 * Set the user defined part of the display for the specified console
434 static int sa1100fb_set_par(struct fb_info
*info
)
436 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
437 struct fb_var_screeninfo
*var
= &info
->var
;
438 unsigned long palette_mem_size
;
440 dev_dbg(fbi
->dev
, "set_par\n");
442 if (var
->bits_per_pixel
== 16)
443 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
444 else if (!fbi
->inf
->cmap_static
)
445 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
448 * Some people have weird ideas about wanting static
449 * pseudocolor maps. I suspect their user space
450 * applications are broken.
452 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
455 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
456 var
->bits_per_pixel
/ 8;
457 fbi
->palette_size
= var
->bits_per_pixel
== 8 ? 256 : 16;
459 palette_mem_size
= fbi
->palette_size
* sizeof(u16
);
461 dev_dbg(fbi
->dev
, "palette_mem_size = 0x%08lx\n", palette_mem_size
);
463 fbi
->palette_cpu
= (u16
*)(fbi
->map_cpu
+ PAGE_SIZE
- palette_mem_size
);
464 fbi
->palette_dma
= fbi
->map_dma
+ PAGE_SIZE
- palette_mem_size
;
467 * Set (any) board control register to handle new color depth
469 sa1100fb_set_visual(fbi
, fbi
->fb
.fix
.visual
);
470 sa1100fb_activate_var(var
, fbi
);
477 sa1100fb_set_cmap(struct fb_cmap
*cmap
, int kspc
, int con
,
478 struct fb_info
*info
)
480 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
483 * Make sure the user isn't doing something stupid.
485 if (!kspc
&& (fbi
->fb
.var
.bits_per_pixel
== 16 || fbi
->inf
->cmap_static
))
488 return gen_set_cmap(cmap
, kspc
, con
, info
);
493 * Formal definition of the VESA spec:
495 * This refers to the state of the display when it is in full operation
497 * This defines an optional operating state of minimal power reduction with
498 * the shortest recovery time
500 * This refers to a level of power management in which substantial power
501 * reduction is achieved by the display. The display can have a longer
502 * recovery time from this state than from the Stand-by state
504 * This indicates that the display is consuming the lowest level of power
505 * and is non-operational. Recovery from this state may optionally require
506 * the user to manually power on the monitor
508 * Now, the fbdev driver adds an additional state, (blank), where they
509 * turn off the video (maybe by colormap tricks), but don't mess with the
510 * video itself: think of it semantically between on and Stand-By.
512 * So here's what we should do in our fbdev blank routine:
514 * VESA_NO_BLANKING (mode 0) Video on, front/back light on
515 * VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
516 * VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
517 * VESA_POWERDOWN (mode 3) Video off, front/back light off
519 * This will match the matrox implementation.
523 * Blank the display by setting all palette values to zero. Note, the
524 * 12 and 16 bpp modes don't really use the palette, so this will not
525 * blank the display in all modes.
527 static int sa1100fb_blank(int blank
, struct fb_info
*info
)
529 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
532 dev_dbg(fbi
->dev
, "sa1100fb_blank: blank=%d\n", blank
);
535 case FB_BLANK_POWERDOWN
:
536 case FB_BLANK_VSYNC_SUSPEND
:
537 case FB_BLANK_HSYNC_SUSPEND
:
538 case FB_BLANK_NORMAL
:
539 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
540 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
541 for (i
= 0; i
< fbi
->palette_size
; i
++)
542 sa1100fb_setpalettereg(i
, 0, 0, 0, 0, info
);
543 sa1100fb_schedule_work(fbi
, C_DISABLE
);
546 case FB_BLANK_UNBLANK
:
547 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
548 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
549 fb_set_cmap(&fbi
->fb
.cmap
, info
);
550 sa1100fb_schedule_work(fbi
, C_ENABLE
);
555 static int sa1100fb_mmap(struct fb_info
*info
,
556 struct vm_area_struct
*vma
)
558 struct sa1100fb_info
*fbi
= (struct sa1100fb_info
*)info
;
559 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
561 if (off
< info
->fix
.smem_len
) {
562 vma
->vm_pgoff
+= 1; /* skip over the palette */
563 return dma_mmap_writecombine(fbi
->dev
, vma
, fbi
->map_cpu
,
564 fbi
->map_dma
, fbi
->map_size
);
567 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
569 return vm_iomap_memory(vma
, info
->fix
.mmio_start
, info
->fix
.mmio_len
);
572 static struct fb_ops sa1100fb_ops
= {
573 .owner
= THIS_MODULE
,
574 .fb_check_var
= sa1100fb_check_var
,
575 .fb_set_par
= sa1100fb_set_par
,
576 // .fb_set_cmap = sa1100fb_set_cmap,
577 .fb_setcolreg
= sa1100fb_setcolreg
,
578 .fb_fillrect
= cfb_fillrect
,
579 .fb_copyarea
= cfb_copyarea
,
580 .fb_imageblit
= cfb_imageblit
,
581 .fb_blank
= sa1100fb_blank
,
582 .fb_mmap
= sa1100fb_mmap
,
586 * Calculate the PCD value from the clock rate (in picoseconds).
587 * We take account of the PPCR clock setting.
589 static inline unsigned int get_pcd(unsigned int pixclock
, unsigned int cpuclock
)
591 unsigned int pcd
= cpuclock
/ 100;
596 return pcd
+ 1; /* make up for integer math truncations */
600 * sa1100fb_activate_var():
601 * Configures LCD Controller based on entries in var parameter. Settings are
602 * only written to the controller if changes were made.
604 static int sa1100fb_activate_var(struct fb_var_screeninfo
*var
, struct sa1100fb_info
*fbi
)
606 struct sa1100fb_lcd_reg new_regs
;
607 u_int half_screen_size
, yres
, pcd
;
610 dev_dbg(fbi
->dev
, "Configuring SA1100 LCD\n");
612 dev_dbg(fbi
->dev
, "var: xres=%d hslen=%d lm=%d rm=%d\n",
613 var
->xres
, var
->hsync_len
,
614 var
->left_margin
, var
->right_margin
);
615 dev_dbg(fbi
->dev
, "var: yres=%d vslen=%d um=%d bm=%d\n",
616 var
->yres
, var
->vsync_len
,
617 var
->upper_margin
, var
->lower_margin
);
620 if (var
->xres
< 16 || var
->xres
> 1024)
621 dev_err(fbi
->dev
, "%s: invalid xres %d\n",
622 fbi
->fb
.fix
.id
, var
->xres
);
623 if (var
->hsync_len
< 1 || var
->hsync_len
> 64)
624 dev_err(fbi
->dev
, "%s: invalid hsync_len %d\n",
625 fbi
->fb
.fix
.id
, var
->hsync_len
);
626 if (var
->left_margin
< 1 || var
->left_margin
> 255)
627 dev_err(fbi
->dev
, "%s: invalid left_margin %d\n",
628 fbi
->fb
.fix
.id
, var
->left_margin
);
629 if (var
->right_margin
< 1 || var
->right_margin
> 255)
630 dev_err(fbi
->dev
, "%s: invalid right_margin %d\n",
631 fbi
->fb
.fix
.id
, var
->right_margin
);
632 if (var
->yres
< 1 || var
->yres
> 1024)
633 dev_err(fbi
->dev
, "%s: invalid yres %d\n",
634 fbi
->fb
.fix
.id
, var
->yres
);
635 if (var
->vsync_len
< 1 || var
->vsync_len
> 64)
636 dev_err(fbi
->dev
, "%s: invalid vsync_len %d\n",
637 fbi
->fb
.fix
.id
, var
->vsync_len
);
638 if (var
->upper_margin
< 0 || var
->upper_margin
> 255)
639 dev_err(fbi
->dev
, "%s: invalid upper_margin %d\n",
640 fbi
->fb
.fix
.id
, var
->upper_margin
);
641 if (var
->lower_margin
< 0 || var
->lower_margin
> 255)
642 dev_err(fbi
->dev
, "%s: invalid lower_margin %d\n",
643 fbi
->fb
.fix
.id
, var
->lower_margin
);
646 new_regs
.lccr0
= fbi
->inf
->lccr0
|
647 LCCR0_LEN
| LCCR0_LDM
| LCCR0_BAM
|
648 LCCR0_ERM
| LCCR0_LtlEnd
| LCCR0_DMADel(0);
651 LCCR1_DisWdth(var
->xres
) +
652 LCCR1_HorSnchWdth(var
->hsync_len
) +
653 LCCR1_BegLnDel(var
->left_margin
) +
654 LCCR1_EndLnDel(var
->right_margin
);
657 * If we have a dual scan LCD, then we need to halve
658 * the YRES parameter.
661 if (fbi
->inf
->lccr0
& LCCR0_Dual
)
665 LCCR2_DisHght(yres
) +
666 LCCR2_VrtSnchWdth(var
->vsync_len
) +
667 LCCR2_BegFrmDel(var
->upper_margin
) +
668 LCCR2_EndFrmDel(var
->lower_margin
);
670 pcd
= get_pcd(var
->pixclock
, cpufreq_get(0));
671 new_regs
.lccr3
= LCCR3_PixClkDiv(pcd
) | fbi
->inf
->lccr3
|
672 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
? LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
673 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
? LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
675 dev_dbg(fbi
->dev
, "nlccr0 = 0x%08lx\n", new_regs
.lccr0
);
676 dev_dbg(fbi
->dev
, "nlccr1 = 0x%08lx\n", new_regs
.lccr1
);
677 dev_dbg(fbi
->dev
, "nlccr2 = 0x%08lx\n", new_regs
.lccr2
);
678 dev_dbg(fbi
->dev
, "nlccr3 = 0x%08lx\n", new_regs
.lccr3
);
680 half_screen_size
= var
->bits_per_pixel
;
681 half_screen_size
= half_screen_size
* var
->xres
* var
->yres
/ 16;
683 /* Update shadow copy atomically */
684 local_irq_save(flags
);
685 fbi
->dbar1
= fbi
->palette_dma
;
686 fbi
->dbar2
= fbi
->screen_dma
+ half_screen_size
;
688 fbi
->reg_lccr0
= new_regs
.lccr0
;
689 fbi
->reg_lccr1
= new_regs
.lccr1
;
690 fbi
->reg_lccr2
= new_regs
.lccr2
;
691 fbi
->reg_lccr3
= new_regs
.lccr3
;
692 local_irq_restore(flags
);
695 * Only update the registers if the controller is enabled
696 * and something has changed.
698 if (readl_relaxed(fbi
->base
+ LCCR0
) != fbi
->reg_lccr0
||
699 readl_relaxed(fbi
->base
+ LCCR1
) != fbi
->reg_lccr1
||
700 readl_relaxed(fbi
->base
+ LCCR2
) != fbi
->reg_lccr2
||
701 readl_relaxed(fbi
->base
+ LCCR3
) != fbi
->reg_lccr3
||
702 readl_relaxed(fbi
->base
+ DBAR1
) != fbi
->dbar1
||
703 readl_relaxed(fbi
->base
+ DBAR2
) != fbi
->dbar2
)
704 sa1100fb_schedule_work(fbi
, C_REENABLE
);
710 * NOTE! The following functions are purely helpers for set_ctrlr_state.
711 * Do not call them directly; set_ctrlr_state does the correct serialisation
712 * to ensure that things happen in the right way 100% of time time.
715 static inline void __sa1100fb_backlight_power(struct sa1100fb_info
*fbi
, int on
)
717 dev_dbg(fbi
->dev
, "backlight o%s\n", on
? "n" : "ff");
719 if (fbi
->inf
->backlight_power
)
720 fbi
->inf
->backlight_power(on
);
723 static inline void __sa1100fb_lcd_power(struct sa1100fb_info
*fbi
, int on
)
725 dev_dbg(fbi
->dev
, "LCD power o%s\n", on
? "n" : "ff");
727 if (fbi
->inf
->lcd_power
)
728 fbi
->inf
->lcd_power(on
);
731 static void sa1100fb_setup_gpio(struct sa1100fb_info
*fbi
)
736 * Enable GPIO<9:2> for LCD use if:
737 * 1. Active display, or
738 * 2. Color Dual Passive display
740 * see table 11.8 on page 11-27 in the SA1100 manual
743 * SA1110 spec update nr. 25 says we can and should
744 * clear LDD15 to 12 for 4 or 8bpp modes with active
747 if ((fbi
->reg_lccr0
& LCCR0_CMS
) == LCCR0_Color
&&
748 (fbi
->reg_lccr0
& (LCCR0_Dual
|LCCR0_Act
)) != 0) {
749 mask
= GPIO_LDD11
| GPIO_LDD10
| GPIO_LDD9
| GPIO_LDD8
;
751 if (fbi
->fb
.var
.bits_per_pixel
> 8 ||
752 (fbi
->reg_lccr0
& (LCCR0_Dual
|LCCR0_Act
)) == LCCR0_Dual
)
753 mask
|= GPIO_LDD15
| GPIO_LDD14
| GPIO_LDD13
| GPIO_LDD12
;
761 * SA-1100 requires the GPIO direction register set
762 * appropriately for the alternate function. Hence
763 * we set it here via bitmask rather than excessive
764 * fiddling via the GPIO subsystem - and even then
765 * we'll still have to deal with GAFR.
767 local_irq_save(flags
);
770 local_irq_restore(flags
);
774 static void sa1100fb_enable_controller(struct sa1100fb_info
*fbi
)
776 dev_dbg(fbi
->dev
, "Enabling LCD controller\n");
779 * Make sure the mode bits are present in the first palette entry
781 fbi
->palette_cpu
[0] &= 0xcfff;
782 fbi
->palette_cpu
[0] |= palette_pbs(&fbi
->fb
.var
);
784 /* Sequence from 11.7.10 */
785 writel_relaxed(fbi
->reg_lccr3
, fbi
->base
+ LCCR3
);
786 writel_relaxed(fbi
->reg_lccr2
, fbi
->base
+ LCCR2
);
787 writel_relaxed(fbi
->reg_lccr1
, fbi
->base
+ LCCR1
);
788 writel_relaxed(fbi
->reg_lccr0
& ~LCCR0_LEN
, fbi
->base
+ LCCR0
);
789 writel_relaxed(fbi
->dbar1
, fbi
->base
+ DBAR1
);
790 writel_relaxed(fbi
->dbar2
, fbi
->base
+ DBAR2
);
791 writel_relaxed(fbi
->reg_lccr0
| LCCR0_LEN
, fbi
->base
+ LCCR0
);
793 if (machine_is_shannon())
794 gpio_set_value(SHANNON_GPIO_DISP_EN
, 1);
796 dev_dbg(fbi
->dev
, "DBAR1: 0x%08x\n", readl_relaxed(fbi
->base
+ DBAR1
));
797 dev_dbg(fbi
->dev
, "DBAR2: 0x%08x\n", readl_relaxed(fbi
->base
+ DBAR2
));
798 dev_dbg(fbi
->dev
, "LCCR0: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR0
));
799 dev_dbg(fbi
->dev
, "LCCR1: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR1
));
800 dev_dbg(fbi
->dev
, "LCCR2: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR2
));
801 dev_dbg(fbi
->dev
, "LCCR3: 0x%08x\n", readl_relaxed(fbi
->base
+ LCCR3
));
804 static void sa1100fb_disable_controller(struct sa1100fb_info
*fbi
)
806 DECLARE_WAITQUEUE(wait
, current
);
809 dev_dbg(fbi
->dev
, "Disabling LCD controller\n");
811 if (machine_is_shannon())
812 gpio_set_value(SHANNON_GPIO_DISP_EN
, 0);
814 set_current_state(TASK_UNINTERRUPTIBLE
);
815 add_wait_queue(&fbi
->ctrlr_wait
, &wait
);
817 /* Clear LCD Status Register */
818 writel_relaxed(~0, fbi
->base
+ LCSR
);
820 lccr0
= readl_relaxed(fbi
->base
+ LCCR0
);
821 lccr0
&= ~LCCR0_LDM
; /* Enable LCD Disable Done Interrupt */
822 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
823 lccr0
&= ~LCCR0_LEN
; /* Disable LCD Controller */
824 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
826 schedule_timeout(20 * HZ
/ 1000);
827 remove_wait_queue(&fbi
->ctrlr_wait
, &wait
);
831 * sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
833 static irqreturn_t
sa1100fb_handle_irq(int irq
, void *dev_id
)
835 struct sa1100fb_info
*fbi
= dev_id
;
836 unsigned int lcsr
= readl_relaxed(fbi
->base
+ LCSR
);
838 if (lcsr
& LCSR_LDD
) {
839 u32 lccr0
= readl_relaxed(fbi
->base
+ LCCR0
) | LCCR0_LDM
;
840 writel_relaxed(lccr0
, fbi
->base
+ LCCR0
);
841 wake_up(&fbi
->ctrlr_wait
);
844 writel_relaxed(lcsr
, fbi
->base
+ LCSR
);
849 * This function must be called from task context only, since it will
850 * sleep when disabling the LCD controller, or if we get two contending
851 * processes trying to alter state.
853 static void set_ctrlr_state(struct sa1100fb_info
*fbi
, u_int state
)
857 mutex_lock(&fbi
->ctrlr_lock
);
859 old_state
= fbi
->state
;
862 * Hack around fbcon initialisation.
864 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
868 case C_DISABLE_CLKCHANGE
:
870 * Disable controller for clock change. If the
871 * controller is already disabled, then do nothing.
873 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
875 sa1100fb_disable_controller(fbi
);
884 if (old_state
!= C_DISABLE
) {
887 __sa1100fb_backlight_power(fbi
, 0);
888 if (old_state
!= C_DISABLE_CLKCHANGE
)
889 sa1100fb_disable_controller(fbi
);
890 __sa1100fb_lcd_power(fbi
, 0);
894 case C_ENABLE_CLKCHANGE
:
896 * Enable the controller after clock change. Only
897 * do this if we were disabled for the clock change.
899 if (old_state
== C_DISABLE_CLKCHANGE
) {
900 fbi
->state
= C_ENABLE
;
901 sa1100fb_enable_controller(fbi
);
907 * Re-enable the controller only if it was already
908 * enabled. This is so we reprogram the control
911 if (old_state
== C_ENABLE
) {
912 sa1100fb_disable_controller(fbi
);
913 sa1100fb_setup_gpio(fbi
);
914 sa1100fb_enable_controller(fbi
);
920 * Re-enable the controller after PM. This is not
921 * perfect - think about the case where we were doing
922 * a clock change, and we suspended half-way through.
924 if (old_state
!= C_DISABLE_PM
)
930 * Power up the LCD screen, enable controller, and
931 * turn on the backlight.
933 if (old_state
!= C_ENABLE
) {
934 fbi
->state
= C_ENABLE
;
935 sa1100fb_setup_gpio(fbi
);
936 __sa1100fb_lcd_power(fbi
, 1);
937 sa1100fb_enable_controller(fbi
);
938 __sa1100fb_backlight_power(fbi
, 1);
942 mutex_unlock(&fbi
->ctrlr_lock
);
946 * Our LCD controller task (which is called when we blank or unblank)
949 static void sa1100fb_task(struct work_struct
*w
)
951 struct sa1100fb_info
*fbi
= container_of(w
, struct sa1100fb_info
, task
);
952 u_int state
= xchg(&fbi
->task_state
, -1);
954 set_ctrlr_state(fbi
, state
);
957 #ifdef CONFIG_CPU_FREQ
959 * Calculate the minimum DMA period over all displays that we own.
960 * This, together with the SDRAM bandwidth defines the slowest CPU
961 * frequency that can be selected.
963 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info
*fbi
)
966 unsigned int min_period
= (unsigned int)-1;
969 for (i
= 0; i
< MAX_NR_CONSOLES
; i
++) {
970 struct display
*disp
= &fb_display
[i
];
974 * Do we own this display?
976 if (disp
->fb_info
!= &fbi
->fb
)
980 * Ok, calculate its DMA period
982 period
= sa1100fb_display_dma_period(&disp
->var
);
983 if (period
< min_period
)
990 * FIXME: we need to verify _all_ consoles.
992 return sa1100fb_display_dma_period(&fbi
->fb
.var
);
997 * CPU clock speed change handler. We need to adjust the LCD timing
998 * parameters when the CPU clock is adjusted by the power management
1002 sa1100fb_freq_transition(struct notifier_block
*nb
, unsigned long val
,
1005 struct sa1100fb_info
*fbi
= TO_INF(nb
, freq_transition
);
1006 struct cpufreq_freqs
*f
= data
;
1010 case CPUFREQ_PRECHANGE
:
1011 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1014 case CPUFREQ_POSTCHANGE
:
1015 pcd
= get_pcd(fbi
->fb
.var
.pixclock
, f
->new);
1016 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) | LCCR3_PixClkDiv(pcd
);
1017 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1024 sa1100fb_freq_policy(struct notifier_block
*nb
, unsigned long val
,
1027 struct sa1100fb_info
*fbi
= TO_INF(nb
, freq_policy
);
1028 struct cpufreq_policy
*policy
= data
;
1031 case CPUFREQ_ADJUST
:
1032 case CPUFREQ_INCOMPATIBLE
:
1033 dev_dbg(fbi
->dev
, "min dma period: %d ps, "
1034 "new clock %d kHz\n", sa1100fb_min_dma_period(fbi
),
1036 /* todo: fill in min/max values */
1038 case CPUFREQ_NOTIFY
:
1040 /* todo: panic if min/max values aren't fulfilled
1041 * [can't really happen unless there's a bug in the
1042 * CPU policy verififcation process *
1052 * Power management hooks. Note that we won't be called from IRQ context,
1053 * unlike the blank functions above, so we may sleep.
1055 static int sa1100fb_suspend(struct platform_device
*dev
, pm_message_t state
)
1057 struct sa1100fb_info
*fbi
= platform_get_drvdata(dev
);
1059 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1063 static int sa1100fb_resume(struct platform_device
*dev
)
1065 struct sa1100fb_info
*fbi
= platform_get_drvdata(dev
);
1067 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1071 #define sa1100fb_suspend NULL
1072 #define sa1100fb_resume NULL
1076 * sa1100fb_map_video_memory():
1077 * Allocates the DRAM memory for the frame buffer. This buffer is
1078 * remapped into a non-cached, non-buffered, memory region to
1079 * allow palette and pixel writes to occur without flushing the
1080 * cache. Once this area is remapped, all virtual memory
1081 * access to the video memory should occur at the new region.
1083 static int sa1100fb_map_video_memory(struct sa1100fb_info
*fbi
)
1086 * We reserve one page for the palette, plus the size
1087 * of the framebuffer.
1089 fbi
->map_size
= PAGE_ALIGN(fbi
->fb
.fix
.smem_len
+ PAGE_SIZE
);
1090 fbi
->map_cpu
= dma_alloc_writecombine(fbi
->dev
, fbi
->map_size
,
1091 &fbi
->map_dma
, GFP_KERNEL
);
1094 fbi
->fb
.screen_base
= fbi
->map_cpu
+ PAGE_SIZE
;
1095 fbi
->screen_dma
= fbi
->map_dma
+ PAGE_SIZE
;
1097 * FIXME: this is actually the wrong thing to place in
1098 * smem_start. But fbdev suffers from the problem that
1099 * it needs an API which doesn't exist (in this case,
1100 * dma_writecombine_mmap)
1102 fbi
->fb
.fix
.smem_start
= fbi
->screen_dma
;
1105 return fbi
->map_cpu
? 0 : -ENOMEM
;
1108 /* Fake monspecs to fill in fbinfo structure */
1109 static struct fb_monspecs monspecs
= {
1117 static struct sa1100fb_info
*sa1100fb_init_fbinfo(struct device
*dev
)
1119 struct sa1100fb_mach_info
*inf
= dev_get_platdata(dev
);
1120 struct sa1100fb_info
*fbi
;
1123 fbi
= kmalloc(sizeof(struct sa1100fb_info
) + sizeof(u32
) * 16,
1128 memset(fbi
, 0, sizeof(struct sa1100fb_info
));
1131 strcpy(fbi
->fb
.fix
.id
, SA1100_NAME
);
1133 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1134 fbi
->fb
.fix
.type_aux
= 0;
1135 fbi
->fb
.fix
.xpanstep
= 0;
1136 fbi
->fb
.fix
.ypanstep
= 0;
1137 fbi
->fb
.fix
.ywrapstep
= 0;
1138 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1140 fbi
->fb
.var
.nonstd
= 0;
1141 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1142 fbi
->fb
.var
.height
= -1;
1143 fbi
->fb
.var
.width
= -1;
1144 fbi
->fb
.var
.accel_flags
= 0;
1145 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1147 fbi
->fb
.fbops
= &sa1100fb_ops
;
1148 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1149 fbi
->fb
.monspecs
= monspecs
;
1150 fbi
->fb
.pseudo_palette
= (fbi
+ 1);
1152 fbi
->rgb
[RGB_4
] = &rgb_4
;
1153 fbi
->rgb
[RGB_8
] = &rgb_8
;
1154 fbi
->rgb
[RGB_16
] = &def_rgb_16
;
1157 * People just don't seem to get this. We don't support
1158 * anything but correct entries now, so panic if someone
1159 * does something stupid.
1161 if (inf
->lccr3
& (LCCR3_VrtSnchL
|LCCR3_HorSnchL
|0xff) ||
1163 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1166 fbi
->fb
.var
.xres
= inf
->xres
;
1167 fbi
->fb
.var
.xres_virtual
= inf
->xres
;
1168 fbi
->fb
.var
.yres
= inf
->yres
;
1169 fbi
->fb
.var
.yres_virtual
= inf
->yres
;
1170 fbi
->fb
.var
.bits_per_pixel
= inf
->bpp
;
1171 fbi
->fb
.var
.pixclock
= inf
->pixclock
;
1172 fbi
->fb
.var
.hsync_len
= inf
->hsync_len
;
1173 fbi
->fb
.var
.left_margin
= inf
->left_margin
;
1174 fbi
->fb
.var
.right_margin
= inf
->right_margin
;
1175 fbi
->fb
.var
.vsync_len
= inf
->vsync_len
;
1176 fbi
->fb
.var
.upper_margin
= inf
->upper_margin
;
1177 fbi
->fb
.var
.lower_margin
= inf
->lower_margin
;
1178 fbi
->fb
.var
.sync
= inf
->sync
;
1179 fbi
->fb
.var
.grayscale
= inf
->cmap_greyscale
;
1180 fbi
->state
= C_STARTUP
;
1181 fbi
->task_state
= (u_char
)-1;
1182 fbi
->fb
.fix
.smem_len
= inf
->xres
* inf
->yres
*
1186 /* Copy the RGB bitfield overrides */
1187 for (i
= 0; i
< NR_RGB
; i
++)
1189 fbi
->rgb
[i
] = inf
->rgb
[i
];
1191 init_waitqueue_head(&fbi
->ctrlr_wait
);
1192 INIT_WORK(&fbi
->task
, sa1100fb_task
);
1193 mutex_init(&fbi
->ctrlr_lock
);
1198 static int sa1100fb_probe(struct platform_device
*pdev
)
1200 struct sa1100fb_info
*fbi
;
1201 struct resource
*res
;
1204 if (!dev_get_platdata(&pdev
->dev
)) {
1205 dev_err(&pdev
->dev
, "no platform LCD data\n");
1209 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1210 irq
= platform_get_irq(pdev
, 0);
1211 if (irq
< 0 || !res
)
1214 if (!request_mem_region(res
->start
, resource_size(res
), "LCD"))
1217 fbi
= sa1100fb_init_fbinfo(&pdev
->dev
);
1222 fbi
->base
= ioremap(res
->start
, resource_size(res
));
1226 /* Initialize video memory */
1227 ret
= sa1100fb_map_video_memory(fbi
);
1231 ret
= request_irq(irq
, sa1100fb_handle_irq
, 0, "LCD", fbi
);
1233 dev_err(&pdev
->dev
, "request_irq failed: %d\n", ret
);
1237 if (machine_is_shannon()) {
1238 ret
= gpio_request_one(SHANNON_GPIO_DISP_EN
,
1239 GPIOF_OUT_INIT_LOW
, "display enable");
1245 * This makes sure that our colour bitfield
1246 * descriptors are correctly initialised.
1248 sa1100fb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
1250 platform_set_drvdata(pdev
, fbi
);
1252 ret
= register_framebuffer(&fbi
->fb
);
1256 #ifdef CONFIG_CPU_FREQ
1257 fbi
->freq_transition
.notifier_call
= sa1100fb_freq_transition
;
1258 fbi
->freq_policy
.notifier_call
= sa1100fb_freq_policy
;
1259 cpufreq_register_notifier(&fbi
->freq_transition
, CPUFREQ_TRANSITION_NOTIFIER
);
1260 cpufreq_register_notifier(&fbi
->freq_policy
, CPUFREQ_POLICY_NOTIFIER
);
1263 /* This driver cannot be unloaded at the moment */
1267 if (machine_is_shannon())
1268 gpio_free(SHANNON_GPIO_DISP_EN
);
1275 release_mem_region(res
->start
, resource_size(res
));
1279 static struct platform_driver sa1100fb_driver
= {
1280 .probe
= sa1100fb_probe
,
1281 .suspend
= sa1100fb_suspend
,
1282 .resume
= sa1100fb_resume
,
1284 .name
= "sa11x0-fb",
1285 .owner
= THIS_MODULE
,
1289 int __init
sa1100fb_init(void)
1291 if (fb_get_options("sa1100fb", NULL
))
1294 return platform_driver_register(&sa1100fb_driver
);
1297 int __init
sa1100fb_setup(char *options
)
1302 if (!options
|| !*options
)
1305 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
1307 if (!strncmp(this_opt
, "bpp:", 4))
1308 current_par
.max_bpp
=
1309 simple_strtoul(this_opt
+ 4, NULL
, 0);
1311 if (!strncmp(this_opt
, "lccr0:", 6))
1313 simple_strtoul(this_opt
+ 6, NULL
, 0);
1314 if (!strncmp(this_opt
, "lccr1:", 6)) {
1316 simple_strtoul(this_opt
+ 6, NULL
, 0);
1317 current_par
.max_xres
=
1318 (lcd_shadow
.lccr1
& 0x3ff) + 16;
1320 if (!strncmp(this_opt
, "lccr2:", 6)) {
1322 simple_strtoul(this_opt
+ 6, NULL
, 0);
1323 current_par
.max_yres
=
1325 lccr0
& LCCR0_SDS
) ? ((lcd_shadow
.
1328 2 : ((lcd_shadow
.lccr2
& 0x3ff) + 1);
1330 if (!strncmp(this_opt
, "lccr3:", 6))
1332 simple_strtoul(this_opt
+ 6, NULL
, 0);
1338 module_init(sa1100fb_init
);
1339 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1340 MODULE_LICENSE("GPL");