fix a kmap leak in virtio_console
[linux/fpc-iii.git] / include / asm-generic / pgtable.h
blob8e4f41d9af4d47279e13a33edd317ce5de32e451
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
11 * On almost all architectures and configurations, 0 can be used as the
12 * upper ceiling to free_pgtables(): on many architectures it has the same
13 * effect as using TASK_SIZE. However, there is one configuration which
14 * must impose a more careful limit, to avoid freeing kernel pgtables.
16 #ifndef USER_PGTABLES_CEILING
17 #define USER_PGTABLES_CEILING 0UL
18 #endif
20 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
21 extern int ptep_set_access_flags(struct vm_area_struct *vma,
22 unsigned long address, pte_t *ptep,
23 pte_t entry, int dirty);
24 #endif
26 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
27 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
28 unsigned long address, pmd_t *pmdp,
29 pmd_t entry, int dirty);
30 #endif
32 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
33 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
34 unsigned long address,
35 pte_t *ptep)
37 pte_t pte = *ptep;
38 int r = 1;
39 if (!pte_young(pte))
40 r = 0;
41 else
42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
43 return r;
45 #endif
47 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
48 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
49 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
50 unsigned long address,
51 pmd_t *pmdp)
53 pmd_t pmd = *pmdp;
54 int r = 1;
55 if (!pmd_young(pmd))
56 r = 0;
57 else
58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
59 return r;
61 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
62 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
63 unsigned long address,
64 pmd_t *pmdp)
66 BUG();
67 return 0;
69 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
70 #endif
72 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
73 int ptep_clear_flush_young(struct vm_area_struct *vma,
74 unsigned long address, pte_t *ptep);
75 #endif
77 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
78 int pmdp_clear_flush_young(struct vm_area_struct *vma,
79 unsigned long address, pmd_t *pmdp);
80 #endif
82 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
83 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
84 unsigned long address,
85 pte_t *ptep)
87 pte_t pte = *ptep;
88 pte_clear(mm, address, ptep);
89 return pte;
91 #endif
93 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
94 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
95 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
96 unsigned long address,
97 pmd_t *pmdp)
99 pmd_t pmd = *pmdp;
100 pmd_clear(pmdp);
101 return pmd;
103 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
104 #endif
106 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
107 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
108 unsigned long address, pte_t *ptep,
109 int full)
111 pte_t pte;
112 pte = ptep_get_and_clear(mm, address, ptep);
113 return pte;
115 #endif
118 * Some architectures may be able to avoid expensive synchronization
119 * primitives when modifications are made to PTE's which are already
120 * not present, or in the process of an address space destruction.
122 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
123 static inline void pte_clear_not_present_full(struct mm_struct *mm,
124 unsigned long address,
125 pte_t *ptep,
126 int full)
128 pte_clear(mm, address, ptep);
130 #endif
132 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
133 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
134 unsigned long address,
135 pte_t *ptep);
136 #endif
138 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
139 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
140 unsigned long address,
141 pmd_t *pmdp);
142 #endif
144 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
145 struct mm_struct;
146 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
148 pte_t old_pte = *ptep;
149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
151 #endif
153 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
155 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
156 unsigned long address, pmd_t *pmdp)
158 pmd_t old_pmd = *pmdp;
159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
161 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
162 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
163 unsigned long address, pmd_t *pmdp)
165 BUG();
167 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
168 #endif
170 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
171 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
172 unsigned long address, pmd_t *pmdp);
173 #endif
175 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
176 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
177 pgtable_t pgtable);
178 #endif
180 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
181 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
182 #endif
184 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
185 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
186 pmd_t *pmdp);
187 #endif
189 #ifndef __HAVE_ARCH_PTE_SAME
190 static inline int pte_same(pte_t pte_a, pte_t pte_b)
192 return pte_val(pte_a) == pte_val(pte_b);
194 #endif
196 #ifndef __HAVE_ARCH_PMD_SAME
197 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
198 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
200 return pmd_val(pmd_a) == pmd_val(pmd_b);
202 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
203 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
205 BUG();
206 return 0;
208 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
209 #endif
211 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
212 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
213 #endif
215 #ifndef __HAVE_ARCH_MOVE_PTE
216 #define move_pte(pte, prot, old_addr, new_addr) (pte)
217 #endif
219 #ifndef pte_accessible
220 # define pte_accessible(mm, pte) ((void)(pte), 1)
221 #endif
223 #ifndef flush_tlb_fix_spurious_fault
224 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
225 #endif
227 #ifndef pgprot_noncached
228 #define pgprot_noncached(prot) (prot)
229 #endif
231 #ifndef pgprot_writecombine
232 #define pgprot_writecombine pgprot_noncached
233 #endif
236 * When walking page tables, get the address of the next boundary,
237 * or the end address of the range if that comes earlier. Although no
238 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
241 #define pgd_addr_end(addr, end) \
242 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
243 (__boundary - 1 < (end) - 1)? __boundary: (end); \
246 #ifndef pud_addr_end
247 #define pud_addr_end(addr, end) \
248 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
249 (__boundary - 1 < (end) - 1)? __boundary: (end); \
251 #endif
253 #ifndef pmd_addr_end
254 #define pmd_addr_end(addr, end) \
255 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
256 (__boundary - 1 < (end) - 1)? __boundary: (end); \
258 #endif
261 * When walking page tables, we usually want to skip any p?d_none entries;
262 * and any p?d_bad entries - reporting the error before resetting to none.
263 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
265 void pgd_clear_bad(pgd_t *);
266 void pud_clear_bad(pud_t *);
267 void pmd_clear_bad(pmd_t *);
269 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
271 if (pgd_none(*pgd))
272 return 1;
273 if (unlikely(pgd_bad(*pgd))) {
274 pgd_clear_bad(pgd);
275 return 1;
277 return 0;
280 static inline int pud_none_or_clear_bad(pud_t *pud)
282 if (pud_none(*pud))
283 return 1;
284 if (unlikely(pud_bad(*pud))) {
285 pud_clear_bad(pud);
286 return 1;
288 return 0;
291 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
293 if (pmd_none(*pmd))
294 return 1;
295 if (unlikely(pmd_bad(*pmd))) {
296 pmd_clear_bad(pmd);
297 return 1;
299 return 0;
302 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
303 unsigned long addr,
304 pte_t *ptep)
307 * Get the current pte state, but zero it out to make it
308 * non-present, preventing the hardware from asynchronously
309 * updating it.
311 return ptep_get_and_clear(mm, addr, ptep);
314 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
315 unsigned long addr,
316 pte_t *ptep, pte_t pte)
319 * The pte is non-present, so there's no hardware state to
320 * preserve.
322 set_pte_at(mm, addr, ptep, pte);
325 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
327 * Start a pte protection read-modify-write transaction, which
328 * protects against asynchronous hardware modifications to the pte.
329 * The intention is not to prevent the hardware from making pte
330 * updates, but to prevent any updates it may make from being lost.
332 * This does not protect against other software modifications of the
333 * pte; the appropriate pte lock must be held over the transation.
335 * Note that this interface is intended to be batchable, meaning that
336 * ptep_modify_prot_commit may not actually update the pte, but merely
337 * queue the update to be done at some later time. The update must be
338 * actually committed before the pte lock is released, however.
340 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
341 unsigned long addr,
342 pte_t *ptep)
344 return __ptep_modify_prot_start(mm, addr, ptep);
348 * Commit an update to a pte, leaving any hardware-controlled bits in
349 * the PTE unmodified.
351 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
352 unsigned long addr,
353 pte_t *ptep, pte_t pte)
355 __ptep_modify_prot_commit(mm, addr, ptep, pte);
357 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
358 #endif /* CONFIG_MMU */
361 * A facility to provide lazy MMU batching. This allows PTE updates and
362 * page invalidations to be delayed until a call to leave lazy MMU mode
363 * is issued. Some architectures may benefit from doing this, and it is
364 * beneficial for both shadow and direct mode hypervisors, which may batch
365 * the PTE updates which happen during this window. Note that using this
366 * interface requires that read hazards be removed from the code. A read
367 * hazard could result in the direct mode hypervisor case, since the actual
368 * write to the page tables may not yet have taken place, so reads though
369 * a raw PTE pointer after it has been modified are not guaranteed to be
370 * up to date. This mode can only be entered and left under the protection of
371 * the page table locks for all page tables which may be modified. In the UP
372 * case, this is required so that preemption is disabled, and in the SMP case,
373 * it must synchronize the delayed page table writes properly on other CPUs.
375 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
376 #define arch_enter_lazy_mmu_mode() do {} while (0)
377 #define arch_leave_lazy_mmu_mode() do {} while (0)
378 #define arch_flush_lazy_mmu_mode() do {} while (0)
379 #endif
382 * A facility to provide batching of the reload of page tables and
383 * other process state with the actual context switch code for
384 * paravirtualized guests. By convention, only one of the batched
385 * update (lazy) modes (CPU, MMU) should be active at any given time,
386 * entry should never be nested, and entry and exits should always be
387 * paired. This is for sanity of maintaining and reasoning about the
388 * kernel code. In this case, the exit (end of the context switch) is
389 * in architecture-specific code, and so doesn't need a generic
390 * definition.
392 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
393 #define arch_start_context_switch(prev) do {} while (0)
394 #endif
396 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
397 static inline int pte_soft_dirty(pte_t pte)
399 return 0;
402 static inline int pmd_soft_dirty(pmd_t pmd)
404 return 0;
407 static inline pte_t pte_mksoft_dirty(pte_t pte)
409 return pte;
412 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
414 return pmd;
417 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
419 return pte;
422 static inline int pte_swp_soft_dirty(pte_t pte)
424 return 0;
427 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
429 return pte;
432 static inline pte_t pte_file_clear_soft_dirty(pte_t pte)
434 return pte;
437 static inline pte_t pte_file_mksoft_dirty(pte_t pte)
439 return pte;
442 static inline int pte_file_soft_dirty(pte_t pte)
444 return 0;
446 #endif
448 #ifndef __HAVE_PFNMAP_TRACKING
450 * Interfaces that can be used by architecture code to keep track of
451 * memory type of pfn mappings specified by the remap_pfn_range,
452 * vm_insert_pfn.
456 * track_pfn_remap is called when a _new_ pfn mapping is being established
457 * by remap_pfn_range() for physical range indicated by pfn and size.
459 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
460 unsigned long pfn, unsigned long addr,
461 unsigned long size)
463 return 0;
467 * track_pfn_insert is called when a _new_ single pfn is established
468 * by vm_insert_pfn().
470 static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
471 unsigned long pfn)
473 return 0;
477 * track_pfn_copy is called when vma that is covering the pfnmap gets
478 * copied through copy_page_range().
480 static inline int track_pfn_copy(struct vm_area_struct *vma)
482 return 0;
486 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
487 * untrack can be called for a specific region indicated by pfn and size or
488 * can be for the entire vma (in which case pfn, size are zero).
490 static inline void untrack_pfn(struct vm_area_struct *vma,
491 unsigned long pfn, unsigned long size)
494 #else
495 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
496 unsigned long pfn, unsigned long addr,
497 unsigned long size);
498 extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
499 unsigned long pfn);
500 extern int track_pfn_copy(struct vm_area_struct *vma);
501 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
502 unsigned long size);
503 #endif
505 #ifdef __HAVE_COLOR_ZERO_PAGE
506 static inline int is_zero_pfn(unsigned long pfn)
508 extern unsigned long zero_pfn;
509 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
510 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
513 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
515 #else
516 static inline int is_zero_pfn(unsigned long pfn)
518 extern unsigned long zero_pfn;
519 return pfn == zero_pfn;
522 static inline unsigned long my_zero_pfn(unsigned long addr)
524 extern unsigned long zero_pfn;
525 return zero_pfn;
527 #endif
529 #ifdef CONFIG_MMU
531 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
532 static inline int pmd_trans_huge(pmd_t pmd)
534 return 0;
536 static inline int pmd_trans_splitting(pmd_t pmd)
538 return 0;
540 #ifndef __HAVE_ARCH_PMD_WRITE
541 static inline int pmd_write(pmd_t pmd)
543 BUG();
544 return 0;
546 #endif /* __HAVE_ARCH_PMD_WRITE */
547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
549 #ifndef pmd_read_atomic
550 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
553 * Depend on compiler for an atomic pmd read. NOTE: this is
554 * only going to work, if the pmdval_t isn't larger than
555 * an unsigned long.
557 return *pmdp;
559 #endif
561 #ifndef pmd_move_must_withdraw
562 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
563 spinlock_t *old_pmd_ptl)
566 * With split pmd lock we also need to move preallocated
567 * PTE page table if new_pmd is on different PMD page table.
569 return new_pmd_ptl != old_pmd_ptl;
571 #endif
574 * This function is meant to be used by sites walking pagetables with
575 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
576 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
577 * into a null pmd and the transhuge page fault can convert a null pmd
578 * into an hugepmd or into a regular pmd (if the hugepage allocation
579 * fails). While holding the mmap_sem in read mode the pmd becomes
580 * stable and stops changing under us only if it's not null and not a
581 * transhuge pmd. When those races occurs and this function makes a
582 * difference vs the standard pmd_none_or_clear_bad, the result is
583 * undefined so behaving like if the pmd was none is safe (because it
584 * can return none anyway). The compiler level barrier() is critically
585 * important to compute the two checks atomically on the same pmdval.
587 * For 32bit kernels with a 64bit large pmd_t this automatically takes
588 * care of reading the pmd atomically to avoid SMP race conditions
589 * against pmd_populate() when the mmap_sem is hold for reading by the
590 * caller (a special atomic read not done by "gcc" as in the generic
591 * version above, is also needed when THP is disabled because the page
592 * fault can populate the pmd from under us).
594 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
596 pmd_t pmdval = pmd_read_atomic(pmd);
598 * The barrier will stabilize the pmdval in a register or on
599 * the stack so that it will stop changing under the code.
601 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
602 * pmd_read_atomic is allowed to return a not atomic pmdval
603 * (for example pointing to an hugepage that has never been
604 * mapped in the pmd). The below checks will only care about
605 * the low part of the pmd with 32bit PAE x86 anyway, with the
606 * exception of pmd_none(). So the important thing is that if
607 * the low part of the pmd is found null, the high part will
608 * be also null or the pmd_none() check below would be
609 * confused.
611 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
612 barrier();
613 #endif
614 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
615 return 1;
616 if (unlikely(pmd_bad(pmdval))) {
617 pmd_clear_bad(pmd);
618 return 1;
620 return 0;
624 * This is a noop if Transparent Hugepage Support is not built into
625 * the kernel. Otherwise it is equivalent to
626 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
627 * places that already verified the pmd is not none and they want to
628 * walk ptes while holding the mmap sem in read mode (write mode don't
629 * need this). If THP is not enabled, the pmd can't go away under the
630 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
631 * run a pmd_trans_unstable before walking the ptes after
632 * split_huge_page_pmd returns (because it may have run when the pmd
633 * become null, but then a page fault can map in a THP and not a
634 * regular page).
636 static inline int pmd_trans_unstable(pmd_t *pmd)
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 return pmd_none_or_trans_huge_or_clear_bad(pmd);
640 #else
641 return 0;
642 #endif
645 #ifdef CONFIG_NUMA_BALANCING
646 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
648 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
649 * same bit too). It's set only when _PAGE_PRESET is not set and it's
650 * never set if _PAGE_PRESENT is set.
652 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
653 * fault triggers on those regions if pte/pmd_numa returns true
654 * (because _PAGE_PRESENT is not set).
656 #ifndef pte_numa
657 static inline int pte_numa(pte_t pte)
659 return (pte_flags(pte) &
660 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
662 #endif
664 #ifndef pmd_numa
665 static inline int pmd_numa(pmd_t pmd)
667 return (pmd_flags(pmd) &
668 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
670 #endif
673 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
674 * because they're called by the NUMA hinting minor page fault. If we
675 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
676 * would be forced to set it later while filling the TLB after we
677 * return to userland. That would trigger a second write to memory
678 * that we optimize away by setting _PAGE_ACCESSED here.
680 #ifndef pte_mknonnuma
681 static inline pte_t pte_mknonnuma(pte_t pte)
683 pte = pte_clear_flags(pte, _PAGE_NUMA);
684 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
686 #endif
688 #ifndef pmd_mknonnuma
689 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
691 pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
692 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
694 #endif
696 #ifndef pte_mknuma
697 static inline pte_t pte_mknuma(pte_t pte)
699 pte = pte_set_flags(pte, _PAGE_NUMA);
700 return pte_clear_flags(pte, _PAGE_PRESENT);
702 #endif
704 #ifndef pmd_mknuma
705 static inline pmd_t pmd_mknuma(pmd_t pmd)
707 pmd = pmd_set_flags(pmd, _PAGE_NUMA);
708 return pmd_clear_flags(pmd, _PAGE_PRESENT);
710 #endif
711 #else
712 extern int pte_numa(pte_t pte);
713 extern int pmd_numa(pmd_t pmd);
714 extern pte_t pte_mknonnuma(pte_t pte);
715 extern pmd_t pmd_mknonnuma(pmd_t pmd);
716 extern pte_t pte_mknuma(pte_t pte);
717 extern pmd_t pmd_mknuma(pmd_t pmd);
718 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
719 #else
720 static inline int pmd_numa(pmd_t pmd)
722 return 0;
725 static inline int pte_numa(pte_t pte)
727 return 0;
730 static inline pte_t pte_mknonnuma(pte_t pte)
732 return pte;
735 static inline pmd_t pmd_mknonnuma(pmd_t pmd)
737 return pmd;
740 static inline pte_t pte_mknuma(pte_t pte)
742 return pte;
745 static inline pmd_t pmd_mknuma(pmd_t pmd)
747 return pmd;
749 #endif /* CONFIG_NUMA_BALANCING */
751 #endif /* CONFIG_MMU */
753 #endif /* !__ASSEMBLY__ */
755 #ifndef io_remap_pfn_range
756 #define io_remap_pfn_range remap_pfn_range
757 #endif
759 #endif /* _ASM_GENERIC_PGTABLE_H */