2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/smpboot.h>
31 #include "../time/tick-internal.h"
33 #define RCU_KTHREAD_PRIO 1
35 #ifdef CONFIG_RCU_BOOST
36 #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38 #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
41 #ifdef CONFIG_RCU_NOCB_CPU
42 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
43 static bool have_rcu_nocb_mask
; /* Was rcu_nocb_mask allocated? */
44 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
45 static char __initdata nocb_buf
[NR_CPUS
* 5];
46 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
53 static void __init
rcu_bootup_announce_oddness(void)
55 #ifdef CONFIG_RCU_TRACE
56 pr_info("\tRCU debugfs-based tracing is enabled.\n");
58 #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
62 #ifdef CONFIG_RCU_FANOUT_EXACT
63 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65 #ifdef CONFIG_RCU_FAST_NO_HZ
66 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68 #ifdef CONFIG_PROVE_RCU
69 pr_info("\tRCU lockdep checking is enabled.\n");
71 #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72 pr_info("\tRCU torture testing starts during boot.\n");
74 #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77 #if defined(CONFIG_RCU_CPU_STALL_INFO)
78 pr_info("\tAdditional per-CPU info printed with stalls.\n");
80 #if NUM_RCU_LVL_4 != 0
81 pr_info("\tFour-level hierarchy is enabled.\n");
83 if (rcu_fanout_leaf
!= CONFIG_RCU_FANOUT_LEAF
)
84 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf
);
85 if (nr_cpu_ids
!= NR_CPUS
)
86 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS
, nr_cpu_ids
);
87 #ifdef CONFIG_RCU_NOCB_CPU
88 #ifndef CONFIG_RCU_NOCB_CPU_NONE
89 if (!have_rcu_nocb_mask
) {
90 zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
);
91 have_rcu_nocb_mask
= true;
93 #ifdef CONFIG_RCU_NOCB_CPU_ZERO
94 pr_info("\tOffload RCU callbacks from CPU 0\n");
95 cpumask_set_cpu(0, rcu_nocb_mask
);
96 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97 #ifdef CONFIG_RCU_NOCB_CPU_ALL
98 pr_info("\tOffload RCU callbacks from all CPUs\n");
99 cpumask_copy(rcu_nocb_mask
, cpu_possible_mask
);
100 #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101 #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102 if (have_rcu_nocb_mask
) {
103 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
104 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
108 cpulist_scnprintf(nocb_buf
, sizeof(nocb_buf
), rcu_nocb_mask
);
109 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf
);
111 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
113 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
116 #ifdef CONFIG_TREE_PREEMPT_RCU
118 RCU_STATE_INITIALIZER(rcu_preempt
, 'p', call_rcu
);
119 static struct rcu_state
*rcu_state
= &rcu_preempt_state
;
121 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
);
124 * Tell them what RCU they are running.
126 static void __init
rcu_bootup_announce(void)
128 pr_info("Preemptible hierarchical RCU implementation.\n");
129 rcu_bootup_announce_oddness();
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
136 long rcu_batches_completed_preempt(void)
138 return rcu_preempt_state
.completed
;
140 EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt
);
143 * Return the number of RCU batches processed thus far for debug & stats.
145 long rcu_batches_completed(void)
147 return rcu_batches_completed_preempt();
149 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
152 * Force a quiescent state for preemptible RCU.
154 void rcu_force_quiescent_state(void)
156 force_quiescent_state(&rcu_preempt_state
);
158 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
161 * Record a preemptible-RCU quiescent state for the specified CPU. Note
162 * that this just means that the task currently running on the CPU is
163 * not in a quiescent state. There might be any number of tasks blocked
164 * while in an RCU read-side critical section.
166 * Unlike the other rcu_*_qs() functions, callers to this function
167 * must disable irqs in order to protect the assignment to
168 * ->rcu_read_unlock_special.
170 static void rcu_preempt_qs(int cpu
)
172 struct rcu_data
*rdp
= &per_cpu(rcu_preempt_data
, cpu
);
174 if (rdp
->passed_quiesce
== 0)
175 trace_rcu_grace_period(TPS("rcu_preempt"), rdp
->gpnum
, TPS("cpuqs"));
176 rdp
->passed_quiesce
= 1;
177 current
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_NEED_QS
;
181 * We have entered the scheduler, and the current task might soon be
182 * context-switched away from. If this task is in an RCU read-side
183 * critical section, we will no longer be able to rely on the CPU to
184 * record that fact, so we enqueue the task on the blkd_tasks list.
185 * The task will dequeue itself when it exits the outermost enclosing
186 * RCU read-side critical section. Therefore, the current grace period
187 * cannot be permitted to complete until the blkd_tasks list entries
188 * predating the current grace period drain, in other words, until
189 * rnp->gp_tasks becomes NULL.
191 * Caller must disable preemption.
193 static void rcu_preempt_note_context_switch(int cpu
)
195 struct task_struct
*t
= current
;
197 struct rcu_data
*rdp
;
198 struct rcu_node
*rnp
;
200 if (t
->rcu_read_lock_nesting
> 0 &&
201 (t
->rcu_read_unlock_special
& RCU_READ_UNLOCK_BLOCKED
) == 0) {
203 /* Possibly blocking in an RCU read-side critical section. */
204 rdp
= per_cpu_ptr(rcu_preempt_state
.rda
, cpu
);
206 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
207 smp_mb__after_unlock_lock();
208 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_BLOCKED
;
209 t
->rcu_blocked_node
= rnp
;
212 * If this CPU has already checked in, then this task
213 * will hold up the next grace period rather than the
214 * current grace period. Queue the task accordingly.
215 * If the task is queued for the current grace period
216 * (i.e., this CPU has not yet passed through a quiescent
217 * state for the current grace period), then as long
218 * as that task remains queued, the current grace period
219 * cannot end. Note that there is some uncertainty as
220 * to exactly when the current grace period started.
221 * We take a conservative approach, which can result
222 * in unnecessarily waiting on tasks that started very
223 * slightly after the current grace period began. C'est
226 * But first, note that the current CPU must still be
229 WARN_ON_ONCE((rdp
->grpmask
& rnp
->qsmaskinit
) == 0);
230 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
231 if ((rnp
->qsmask
& rdp
->grpmask
) && rnp
->gp_tasks
!= NULL
) {
232 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
->prev
);
233 rnp
->gp_tasks
= &t
->rcu_node_entry
;
234 #ifdef CONFIG_RCU_BOOST
235 if (rnp
->boost_tasks
!= NULL
)
236 rnp
->boost_tasks
= rnp
->gp_tasks
;
237 #endif /* #ifdef CONFIG_RCU_BOOST */
239 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
240 if (rnp
->qsmask
& rdp
->grpmask
)
241 rnp
->gp_tasks
= &t
->rcu_node_entry
;
243 trace_rcu_preempt_task(rdp
->rsp
->name
,
245 (rnp
->qsmask
& rdp
->grpmask
)
248 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
249 } else if (t
->rcu_read_lock_nesting
< 0 &&
250 t
->rcu_read_unlock_special
) {
253 * Complete exit from RCU read-side critical section on
254 * behalf of preempted instance of __rcu_read_unlock().
256 rcu_read_unlock_special(t
);
260 * Either we were not in an RCU read-side critical section to
261 * begin with, or we have now recorded that critical section
262 * globally. Either way, we can now note a quiescent state
263 * for this CPU. Again, if we were in an RCU read-side critical
264 * section, and if that critical section was blocking the current
265 * grace period, then the fact that the task has been enqueued
266 * means that we continue to block the current grace period.
268 local_irq_save(flags
);
270 local_irq_restore(flags
);
274 * Check for preempted RCU readers blocking the current grace period
275 * for the specified rcu_node structure. If the caller needs a reliable
276 * answer, it must hold the rcu_node's ->lock.
278 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
280 return rnp
->gp_tasks
!= NULL
;
284 * Record a quiescent state for all tasks that were previously queued
285 * on the specified rcu_node structure and that were blocking the current
286 * RCU grace period. The caller must hold the specified rnp->lock with
287 * irqs disabled, and this lock is released upon return, but irqs remain
290 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
291 __releases(rnp
->lock
)
294 struct rcu_node
*rnp_p
;
296 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
297 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
298 return; /* Still need more quiescent states! */
304 * Either there is only one rcu_node in the tree,
305 * or tasks were kicked up to root rcu_node due to
306 * CPUs going offline.
308 rcu_report_qs_rsp(&rcu_preempt_state
, flags
);
312 /* Report up the rest of the hierarchy. */
314 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
315 raw_spin_lock(&rnp_p
->lock
); /* irqs already disabled. */
316 smp_mb__after_unlock_lock();
317 rcu_report_qs_rnp(mask
, &rcu_preempt_state
, rnp_p
, flags
);
321 * Advance a ->blkd_tasks-list pointer to the next entry, instead
322 * returning NULL if at the end of the list.
324 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
325 struct rcu_node
*rnp
)
327 struct list_head
*np
;
329 np
= t
->rcu_node_entry
.next
;
330 if (np
== &rnp
->blkd_tasks
)
336 * Handle special cases during rcu_read_unlock(), such as needing to
337 * notify RCU core processing or task having blocked during the RCU
338 * read-side critical section.
340 void rcu_read_unlock_special(struct task_struct
*t
)
346 struct list_head
*np
;
347 #ifdef CONFIG_RCU_BOOST
348 struct rt_mutex
*rbmp
= NULL
;
349 #endif /* #ifdef CONFIG_RCU_BOOST */
350 struct rcu_node
*rnp
;
353 /* NMI handlers cannot block and cannot safely manipulate state. */
357 local_irq_save(flags
);
360 * If RCU core is waiting for this CPU to exit critical section,
361 * let it know that we have done so.
363 special
= t
->rcu_read_unlock_special
;
364 if (special
& RCU_READ_UNLOCK_NEED_QS
) {
365 rcu_preempt_qs(smp_processor_id());
366 if (!t
->rcu_read_unlock_special
) {
367 local_irq_restore(flags
);
372 /* Hardware IRQ handlers cannot block, complain if they get here. */
373 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
374 local_irq_restore(flags
);
378 /* Clean up if blocked during RCU read-side critical section. */
379 if (special
& RCU_READ_UNLOCK_BLOCKED
) {
380 t
->rcu_read_unlock_special
&= ~RCU_READ_UNLOCK_BLOCKED
;
383 * Remove this task from the list it blocked on. The
384 * task can migrate while we acquire the lock, but at
385 * most one time. So at most two passes through loop.
388 rnp
= t
->rcu_blocked_node
;
389 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
390 smp_mb__after_unlock_lock();
391 if (rnp
== t
->rcu_blocked_node
)
393 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
395 empty
= !rcu_preempt_blocked_readers_cgp(rnp
);
396 empty_exp
= !rcu_preempted_readers_exp(rnp
);
397 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
398 np
= rcu_next_node_entry(t
, rnp
);
399 list_del_init(&t
->rcu_node_entry
);
400 t
->rcu_blocked_node
= NULL
;
401 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
403 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
405 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
407 #ifdef CONFIG_RCU_BOOST
408 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
409 rnp
->boost_tasks
= np
;
410 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
411 if (t
->rcu_boost_mutex
) {
412 rbmp
= t
->rcu_boost_mutex
;
413 t
->rcu_boost_mutex
= NULL
;
415 #endif /* #ifdef CONFIG_RCU_BOOST */
418 * If this was the last task on the current list, and if
419 * we aren't waiting on any CPUs, report the quiescent state.
420 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
421 * so we must take a snapshot of the expedited state.
423 empty_exp_now
= !rcu_preempted_readers_exp(rnp
);
424 if (!empty
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
425 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
432 rcu_report_unblock_qs_rnp(rnp
, flags
);
434 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
437 #ifdef CONFIG_RCU_BOOST
438 /* Unboost if we were boosted. */
440 rt_mutex_unlock(rbmp
);
441 #endif /* #ifdef CONFIG_RCU_BOOST */
444 * If this was the last task on the expedited lists,
445 * then we need to report up the rcu_node hierarchy.
447 if (!empty_exp
&& empty_exp_now
)
448 rcu_report_exp_rnp(&rcu_preempt_state
, rnp
, true);
450 local_irq_restore(flags
);
454 #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
457 * Dump detailed information for all tasks blocking the current RCU
458 * grace period on the specified rcu_node structure.
460 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
463 struct task_struct
*t
;
465 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
466 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
467 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
470 t
= list_entry(rnp
->gp_tasks
,
471 struct task_struct
, rcu_node_entry
);
472 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
)
474 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
478 * Dump detailed information for all tasks blocking the current RCU
481 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
483 struct rcu_node
*rnp
= rcu_get_root(rsp
);
485 rcu_print_detail_task_stall_rnp(rnp
);
486 rcu_for_each_leaf_node(rsp
, rnp
)
487 rcu_print_detail_task_stall_rnp(rnp
);
490 #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
492 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
496 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
498 #ifdef CONFIG_RCU_CPU_STALL_INFO
500 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
502 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
503 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
506 static void rcu_print_task_stall_end(void)
511 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
513 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
517 static void rcu_print_task_stall_end(void)
521 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
524 * Scan the current list of tasks blocked within RCU read-side critical
525 * sections, printing out the tid of each.
527 static int rcu_print_task_stall(struct rcu_node
*rnp
)
529 struct task_struct
*t
;
532 if (!rcu_preempt_blocked_readers_cgp(rnp
))
534 rcu_print_task_stall_begin(rnp
);
535 t
= list_entry(rnp
->gp_tasks
,
536 struct task_struct
, rcu_node_entry
);
537 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
538 pr_cont(" P%d", t
->pid
);
541 rcu_print_task_stall_end();
546 * Check that the list of blocked tasks for the newly completed grace
547 * period is in fact empty. It is a serious bug to complete a grace
548 * period that still has RCU readers blocked! This function must be
549 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
550 * must be held by the caller.
552 * Also, if there are blocked tasks on the list, they automatically
553 * block the newly created grace period, so set up ->gp_tasks accordingly.
555 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
557 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
558 if (!list_empty(&rnp
->blkd_tasks
))
559 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
560 WARN_ON_ONCE(rnp
->qsmask
);
563 #ifdef CONFIG_HOTPLUG_CPU
566 * Handle tasklist migration for case in which all CPUs covered by the
567 * specified rcu_node have gone offline. Move them up to the root
568 * rcu_node. The reason for not just moving them to the immediate
569 * parent is to remove the need for rcu_read_unlock_special() to
570 * make more than two attempts to acquire the target rcu_node's lock.
571 * Returns true if there were tasks blocking the current RCU grace
574 * Returns 1 if there was previously a task blocking the current grace
575 * period on the specified rcu_node structure.
577 * The caller must hold rnp->lock with irqs disabled.
579 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
580 struct rcu_node
*rnp
,
581 struct rcu_data
*rdp
)
583 struct list_head
*lp
;
584 struct list_head
*lp_root
;
586 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
587 struct task_struct
*t
;
589 if (rnp
== rnp_root
) {
590 WARN_ONCE(1, "Last CPU thought to be offlined?");
591 return 0; /* Shouldn't happen: at least one CPU online. */
594 /* If we are on an internal node, complain bitterly. */
595 WARN_ON_ONCE(rnp
!= rdp
->mynode
);
598 * Move tasks up to root rcu_node. Don't try to get fancy for
599 * this corner-case operation -- just put this node's tasks
600 * at the head of the root node's list, and update the root node's
601 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
602 * if non-NULL. This might result in waiting for more tasks than
603 * absolutely necessary, but this is a good performance/complexity
606 if (rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->qsmask
== 0)
607 retval
|= RCU_OFL_TASKS_NORM_GP
;
608 if (rcu_preempted_readers_exp(rnp
))
609 retval
|= RCU_OFL_TASKS_EXP_GP
;
610 lp
= &rnp
->blkd_tasks
;
611 lp_root
= &rnp_root
->blkd_tasks
;
612 while (!list_empty(lp
)) {
613 t
= list_entry(lp
->next
, typeof(*t
), rcu_node_entry
);
614 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
615 smp_mb__after_unlock_lock();
616 list_del(&t
->rcu_node_entry
);
617 t
->rcu_blocked_node
= rnp_root
;
618 list_add(&t
->rcu_node_entry
, lp_root
);
619 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
620 rnp_root
->gp_tasks
= rnp
->gp_tasks
;
621 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
622 rnp_root
->exp_tasks
= rnp
->exp_tasks
;
623 #ifdef CONFIG_RCU_BOOST
624 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
625 rnp_root
->boost_tasks
= rnp
->boost_tasks
;
626 #endif /* #ifdef CONFIG_RCU_BOOST */
627 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
630 rnp
->gp_tasks
= NULL
;
631 rnp
->exp_tasks
= NULL
;
632 #ifdef CONFIG_RCU_BOOST
633 rnp
->boost_tasks
= NULL
;
635 * In case root is being boosted and leaf was not. Make sure
636 * that we boost the tasks blocking the current grace period
639 raw_spin_lock(&rnp_root
->lock
); /* irqs already disabled */
640 smp_mb__after_unlock_lock();
641 if (rnp_root
->boost_tasks
!= NULL
&&
642 rnp_root
->boost_tasks
!= rnp_root
->gp_tasks
&&
643 rnp_root
->boost_tasks
!= rnp_root
->exp_tasks
)
644 rnp_root
->boost_tasks
= rnp_root
->gp_tasks
;
645 raw_spin_unlock(&rnp_root
->lock
); /* irqs still disabled */
646 #endif /* #ifdef CONFIG_RCU_BOOST */
651 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
654 * Check for a quiescent state from the current CPU. When a task blocks,
655 * the task is recorded in the corresponding CPU's rcu_node structure,
656 * which is checked elsewhere.
658 * Caller must disable hard irqs.
660 static void rcu_preempt_check_callbacks(int cpu
)
662 struct task_struct
*t
= current
;
664 if (t
->rcu_read_lock_nesting
== 0) {
668 if (t
->rcu_read_lock_nesting
> 0 &&
669 per_cpu(rcu_preempt_data
, cpu
).qs_pending
)
670 t
->rcu_read_unlock_special
|= RCU_READ_UNLOCK_NEED_QS
;
673 #ifdef CONFIG_RCU_BOOST
675 static void rcu_preempt_do_callbacks(void)
677 rcu_do_batch(&rcu_preempt_state
, this_cpu_ptr(&rcu_preempt_data
));
680 #endif /* #ifdef CONFIG_RCU_BOOST */
683 * Queue a preemptible-RCU callback for invocation after a grace period.
685 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
687 __call_rcu(head
, func
, &rcu_preempt_state
, -1, 0);
689 EXPORT_SYMBOL_GPL(call_rcu
);
692 * Queue an RCU callback for lazy invocation after a grace period.
693 * This will likely be later named something like "call_rcu_lazy()",
694 * but this change will require some way of tagging the lazy RCU
695 * callbacks in the list of pending callbacks. Until then, this
696 * function may only be called from __kfree_rcu().
698 void kfree_call_rcu(struct rcu_head
*head
,
699 void (*func
)(struct rcu_head
*rcu
))
701 __call_rcu(head
, func
, &rcu_preempt_state
, -1, 1);
703 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
706 * synchronize_rcu - wait until a grace period has elapsed.
708 * Control will return to the caller some time after a full grace
709 * period has elapsed, in other words after all currently executing RCU
710 * read-side critical sections have completed. Note, however, that
711 * upon return from synchronize_rcu(), the caller might well be executing
712 * concurrently with new RCU read-side critical sections that began while
713 * synchronize_rcu() was waiting. RCU read-side critical sections are
714 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
716 * See the description of synchronize_sched() for more detailed information
717 * on memory ordering guarantees.
719 void synchronize_rcu(void)
721 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
722 !lock_is_held(&rcu_lock_map
) &&
723 !lock_is_held(&rcu_sched_lock_map
),
724 "Illegal synchronize_rcu() in RCU read-side critical section");
725 if (!rcu_scheduler_active
)
728 synchronize_rcu_expedited();
730 wait_rcu_gp(call_rcu
);
732 EXPORT_SYMBOL_GPL(synchronize_rcu
);
734 static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq
);
735 static unsigned long sync_rcu_preempt_exp_count
;
736 static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex
);
739 * Return non-zero if there are any tasks in RCU read-side critical
740 * sections blocking the current preemptible-RCU expedited grace period.
741 * If there is no preemptible-RCU expedited grace period currently in
742 * progress, returns zero unconditionally.
744 static int rcu_preempted_readers_exp(struct rcu_node
*rnp
)
746 return rnp
->exp_tasks
!= NULL
;
750 * return non-zero if there is no RCU expedited grace period in progress
751 * for the specified rcu_node structure, in other words, if all CPUs and
752 * tasks covered by the specified rcu_node structure have done their bit
753 * for the current expedited grace period. Works only for preemptible
754 * RCU -- other RCU implementation use other means.
756 * Caller must hold sync_rcu_preempt_exp_mutex.
758 static int sync_rcu_preempt_exp_done(struct rcu_node
*rnp
)
760 return !rcu_preempted_readers_exp(rnp
) &&
761 ACCESS_ONCE(rnp
->expmask
) == 0;
765 * Report the exit from RCU read-side critical section for the last task
766 * that queued itself during or before the current expedited preemptible-RCU
767 * grace period. This event is reported either to the rcu_node structure on
768 * which the task was queued or to one of that rcu_node structure's ancestors,
769 * recursively up the tree. (Calm down, calm down, we do the recursion
772 * Most callers will set the "wake" flag, but the task initiating the
773 * expedited grace period need not wake itself.
775 * Caller must hold sync_rcu_preempt_exp_mutex.
777 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
783 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
784 smp_mb__after_unlock_lock();
786 if (!sync_rcu_preempt_exp_done(rnp
)) {
787 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
790 if (rnp
->parent
== NULL
) {
791 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
793 smp_mb(); /* EGP done before wake_up(). */
794 wake_up(&sync_rcu_preempt_exp_wq
);
799 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
801 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
802 smp_mb__after_unlock_lock();
803 rnp
->expmask
&= ~mask
;
808 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
809 * grace period for the specified rcu_node structure. If there are no such
810 * tasks, report it up the rcu_node hierarchy.
812 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
813 * CPU hotplug operations.
816 sync_rcu_preempt_exp_init(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
821 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
822 smp_mb__after_unlock_lock();
823 if (list_empty(&rnp
->blkd_tasks
)) {
824 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
826 rnp
->exp_tasks
= rnp
->blkd_tasks
.next
;
827 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
831 rcu_report_exp_rnp(rsp
, rnp
, false); /* Don't wake self. */
835 * synchronize_rcu_expedited - Brute-force RCU grace period
837 * Wait for an RCU-preempt grace period, but expedite it. The basic
838 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
839 * the ->blkd_tasks lists and wait for this list to drain. This consumes
840 * significant time on all CPUs and is unfriendly to real-time workloads,
841 * so is thus not recommended for any sort of common-case code.
842 * In fact, if you are using synchronize_rcu_expedited() in a loop,
843 * please restructure your code to batch your updates, and then Use a
844 * single synchronize_rcu() instead.
846 * Note that it is illegal to call this function while holding any lock
847 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
848 * to call this function from a CPU-hotplug notifier. Failing to observe
849 * these restriction will result in deadlock.
851 void synchronize_rcu_expedited(void)
854 struct rcu_node
*rnp
;
855 struct rcu_state
*rsp
= &rcu_preempt_state
;
859 smp_mb(); /* Caller's modifications seen first by other CPUs. */
860 snap
= ACCESS_ONCE(sync_rcu_preempt_exp_count
) + 1;
861 smp_mb(); /* Above access cannot bleed into critical section. */
864 * Block CPU-hotplug operations. This means that any CPU-hotplug
865 * operation that finds an rcu_node structure with tasks in the
866 * process of being boosted will know that all tasks blocking
867 * this expedited grace period will already be in the process of
868 * being boosted. This simplifies the process of moving tasks
869 * from leaf to root rcu_node structures.
874 * Acquire lock, falling back to synchronize_rcu() if too many
875 * lock-acquisition failures. Of course, if someone does the
876 * expedited grace period for us, just leave.
878 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex
)) {
879 if (ULONG_CMP_LT(snap
,
880 ACCESS_ONCE(sync_rcu_preempt_exp_count
))) {
882 goto mb_ret
; /* Others did our work for us. */
884 if (trycount
++ < 10) {
885 udelay(trycount
* num_online_cpus());
888 wait_rcu_gp(call_rcu
);
892 if (ULONG_CMP_LT(snap
, ACCESS_ONCE(sync_rcu_preempt_exp_count
))) {
894 goto unlock_mb_ret
; /* Others did our work for us. */
897 /* force all RCU readers onto ->blkd_tasks lists. */
898 synchronize_sched_expedited();
900 /* Initialize ->expmask for all non-leaf rcu_node structures. */
901 rcu_for_each_nonleaf_node_breadth_first(rsp
, rnp
) {
902 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
903 smp_mb__after_unlock_lock();
904 rnp
->expmask
= rnp
->qsmaskinit
;
905 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
908 /* Snapshot current state of ->blkd_tasks lists. */
909 rcu_for_each_leaf_node(rsp
, rnp
)
910 sync_rcu_preempt_exp_init(rsp
, rnp
);
911 if (NUM_RCU_NODES
> 1)
912 sync_rcu_preempt_exp_init(rsp
, rcu_get_root(rsp
));
916 /* Wait for snapshotted ->blkd_tasks lists to drain. */
917 rnp
= rcu_get_root(rsp
);
918 wait_event(sync_rcu_preempt_exp_wq
,
919 sync_rcu_preempt_exp_done(rnp
));
921 /* Clean up and exit. */
922 smp_mb(); /* ensure expedited GP seen before counter increment. */
923 ACCESS_ONCE(sync_rcu_preempt_exp_count
)++;
925 mutex_unlock(&sync_rcu_preempt_exp_mutex
);
927 smp_mb(); /* ensure subsequent action seen after grace period. */
929 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
932 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
934 * Note that this primitive does not necessarily wait for an RCU grace period
935 * to complete. For example, if there are no RCU callbacks queued anywhere
936 * in the system, then rcu_barrier() is within its rights to return
937 * immediately, without waiting for anything, much less an RCU grace period.
939 void rcu_barrier(void)
941 _rcu_barrier(&rcu_preempt_state
);
943 EXPORT_SYMBOL_GPL(rcu_barrier
);
946 * Initialize preemptible RCU's state structures.
948 static void __init
__rcu_init_preempt(void)
950 rcu_init_one(&rcu_preempt_state
, &rcu_preempt_data
);
954 * Check for a task exiting while in a preemptible-RCU read-side
955 * critical section, clean up if so. No need to issue warnings,
956 * as debug_check_no_locks_held() already does this if lockdep
961 struct task_struct
*t
= current
;
963 if (likely(list_empty(¤t
->rcu_node_entry
)))
965 t
->rcu_read_lock_nesting
= 1;
967 t
->rcu_read_unlock_special
= RCU_READ_UNLOCK_BLOCKED
;
971 #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
973 static struct rcu_state
*rcu_state
= &rcu_sched_state
;
976 * Tell them what RCU they are running.
978 static void __init
rcu_bootup_announce(void)
980 pr_info("Hierarchical RCU implementation.\n");
981 rcu_bootup_announce_oddness();
985 * Return the number of RCU batches processed thus far for debug & stats.
987 long rcu_batches_completed(void)
989 return rcu_batches_completed_sched();
991 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
994 * Force a quiescent state for RCU, which, because there is no preemptible
995 * RCU, becomes the same as rcu-sched.
997 void rcu_force_quiescent_state(void)
999 rcu_sched_force_quiescent_state();
1001 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
1004 * Because preemptible RCU does not exist, we never have to check for
1005 * CPUs being in quiescent states.
1007 static void rcu_preempt_note_context_switch(int cpu
)
1012 * Because preemptible RCU does not exist, there are never any preempted
1015 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
1020 #ifdef CONFIG_HOTPLUG_CPU
1022 /* Because preemptible RCU does not exist, no quieting of tasks. */
1023 static void rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
1025 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1028 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1031 * Because preemptible RCU does not exist, we never have to check for
1032 * tasks blocked within RCU read-side critical sections.
1034 static void rcu_print_detail_task_stall(struct rcu_state
*rsp
)
1039 * Because preemptible RCU does not exist, we never have to check for
1040 * tasks blocked within RCU read-side critical sections.
1042 static int rcu_print_task_stall(struct rcu_node
*rnp
)
1048 * Because there is no preemptible RCU, there can be no readers blocked,
1049 * so there is no need to check for blocked tasks. So check only for
1050 * bogus qsmask values.
1052 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
1054 WARN_ON_ONCE(rnp
->qsmask
);
1057 #ifdef CONFIG_HOTPLUG_CPU
1060 * Because preemptible RCU does not exist, it never needs to migrate
1061 * tasks that were blocked within RCU read-side critical sections, and
1062 * such non-existent tasks cannot possibly have been blocking the current
1065 static int rcu_preempt_offline_tasks(struct rcu_state
*rsp
,
1066 struct rcu_node
*rnp
,
1067 struct rcu_data
*rdp
)
1072 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1075 * Because preemptible RCU does not exist, it never has any callbacks
1078 static void rcu_preempt_check_callbacks(int cpu
)
1083 * Queue an RCU callback for lazy invocation after a grace period.
1084 * This will likely be later named something like "call_rcu_lazy()",
1085 * but this change will require some way of tagging the lazy RCU
1086 * callbacks in the list of pending callbacks. Until then, this
1087 * function may only be called from __kfree_rcu().
1089 * Because there is no preemptible RCU, we use RCU-sched instead.
1091 void kfree_call_rcu(struct rcu_head
*head
,
1092 void (*func
)(struct rcu_head
*rcu
))
1094 __call_rcu(head
, func
, &rcu_sched_state
, -1, 1);
1096 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
1099 * Wait for an rcu-preempt grace period, but make it happen quickly.
1100 * But because preemptible RCU does not exist, map to rcu-sched.
1102 void synchronize_rcu_expedited(void)
1104 synchronize_sched_expedited();
1106 EXPORT_SYMBOL_GPL(synchronize_rcu_expedited
);
1108 #ifdef CONFIG_HOTPLUG_CPU
1111 * Because preemptible RCU does not exist, there is never any need to
1112 * report on tasks preempted in RCU read-side critical sections during
1113 * expedited RCU grace periods.
1115 static void rcu_report_exp_rnp(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1120 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
1123 * Because preemptible RCU does not exist, rcu_barrier() is just
1124 * another name for rcu_barrier_sched().
1126 void rcu_barrier(void)
1128 rcu_barrier_sched();
1130 EXPORT_SYMBOL_GPL(rcu_barrier
);
1133 * Because preemptible RCU does not exist, it need not be initialized.
1135 static void __init
__rcu_init_preempt(void)
1140 * Because preemptible RCU does not exist, tasks cannot possibly exit
1141 * while in preemptible RCU read-side critical sections.
1147 #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1149 #ifdef CONFIG_RCU_BOOST
1151 #include "../locking/rtmutex_common.h"
1153 #ifdef CONFIG_RCU_TRACE
1155 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1157 if (list_empty(&rnp
->blkd_tasks
))
1158 rnp
->n_balk_blkd_tasks
++;
1159 else if (rnp
->exp_tasks
== NULL
&& rnp
->gp_tasks
== NULL
)
1160 rnp
->n_balk_exp_gp_tasks
++;
1161 else if (rnp
->gp_tasks
!= NULL
&& rnp
->boost_tasks
!= NULL
)
1162 rnp
->n_balk_boost_tasks
++;
1163 else if (rnp
->gp_tasks
!= NULL
&& rnp
->qsmask
!= 0)
1164 rnp
->n_balk_notblocked
++;
1165 else if (rnp
->gp_tasks
!= NULL
&&
1166 ULONG_CMP_LT(jiffies
, rnp
->boost_time
))
1167 rnp
->n_balk_notyet
++;
1172 #else /* #ifdef CONFIG_RCU_TRACE */
1174 static void rcu_initiate_boost_trace(struct rcu_node
*rnp
)
1178 #endif /* #else #ifdef CONFIG_RCU_TRACE */
1180 static void rcu_wake_cond(struct task_struct
*t
, int status
)
1183 * If the thread is yielding, only wake it when this
1184 * is invoked from idle
1186 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
1191 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1192 * or ->boost_tasks, advancing the pointer to the next task in the
1193 * ->blkd_tasks list.
1195 * Note that irqs must be enabled: boosting the task can block.
1196 * Returns 1 if there are more tasks needing to be boosted.
1198 static int rcu_boost(struct rcu_node
*rnp
)
1200 unsigned long flags
;
1201 struct rt_mutex mtx
;
1202 struct task_struct
*t
;
1203 struct list_head
*tb
;
1205 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
)
1206 return 0; /* Nothing left to boost. */
1208 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1209 smp_mb__after_unlock_lock();
1212 * Recheck under the lock: all tasks in need of boosting
1213 * might exit their RCU read-side critical sections on their own.
1215 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
1216 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1221 * Preferentially boost tasks blocking expedited grace periods.
1222 * This cannot starve the normal grace periods because a second
1223 * expedited grace period must boost all blocked tasks, including
1224 * those blocking the pre-existing normal grace period.
1226 if (rnp
->exp_tasks
!= NULL
) {
1227 tb
= rnp
->exp_tasks
;
1228 rnp
->n_exp_boosts
++;
1230 tb
= rnp
->boost_tasks
;
1231 rnp
->n_normal_boosts
++;
1233 rnp
->n_tasks_boosted
++;
1236 * We boost task t by manufacturing an rt_mutex that appears to
1237 * be held by task t. We leave a pointer to that rt_mutex where
1238 * task t can find it, and task t will release the mutex when it
1239 * exits its outermost RCU read-side critical section. Then
1240 * simply acquiring this artificial rt_mutex will boost task
1241 * t's priority. (Thanks to tglx for suggesting this approach!)
1243 * Note that task t must acquire rnp->lock to remove itself from
1244 * the ->blkd_tasks list, which it will do from exit() if from
1245 * nowhere else. We therefore are guaranteed that task t will
1246 * stay around at least until we drop rnp->lock. Note that
1247 * rnp->lock also resolves races between our priority boosting
1248 * and task t's exiting its outermost RCU read-side critical
1251 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1252 rt_mutex_init_proxy_locked(&mtx
, t
);
1253 t
->rcu_boost_mutex
= &mtx
;
1254 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1255 rt_mutex_lock(&mtx
); /* Side effect: boosts task t's priority. */
1256 rt_mutex_unlock(&mtx
); /* Keep lockdep happy. */
1258 return ACCESS_ONCE(rnp
->exp_tasks
) != NULL
||
1259 ACCESS_ONCE(rnp
->boost_tasks
) != NULL
;
1263 * Priority-boosting kthread. One per leaf rcu_node and one for the
1266 static int rcu_boost_kthread(void *arg
)
1268 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1272 trace_rcu_utilization(TPS("Start boost kthread@init"));
1274 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1275 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1276 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1277 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1278 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1279 more2boost
= rcu_boost(rnp
);
1285 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1286 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1287 schedule_timeout_interruptible(2);
1288 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1293 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1298 * Check to see if it is time to start boosting RCU readers that are
1299 * blocking the current grace period, and, if so, tell the per-rcu_node
1300 * kthread to start boosting them. If there is an expedited grace
1301 * period in progress, it is always time to boost.
1303 * The caller must hold rnp->lock, which this function releases.
1304 * The ->boost_kthread_task is immortal, so we don't need to worry
1305 * about it going away.
1307 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1309 struct task_struct
*t
;
1311 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1312 rnp
->n_balk_exp_gp_tasks
++;
1313 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1316 if (rnp
->exp_tasks
!= NULL
||
1317 (rnp
->gp_tasks
!= NULL
&&
1318 rnp
->boost_tasks
== NULL
&&
1320 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1321 if (rnp
->exp_tasks
== NULL
)
1322 rnp
->boost_tasks
= rnp
->gp_tasks
;
1323 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1324 t
= rnp
->boost_kthread_task
;
1326 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1328 rcu_initiate_boost_trace(rnp
);
1329 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1334 * Wake up the per-CPU kthread to invoke RCU callbacks.
1336 static void invoke_rcu_callbacks_kthread(void)
1338 unsigned long flags
;
1340 local_irq_save(flags
);
1341 __this_cpu_write(rcu_cpu_has_work
, 1);
1342 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1343 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1344 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1345 __this_cpu_read(rcu_cpu_kthread_status
));
1347 local_irq_restore(flags
);
1351 * Is the current CPU running the RCU-callbacks kthread?
1352 * Caller must have preemption disabled.
1354 static bool rcu_is_callbacks_kthread(void)
1356 return __this_cpu_read(rcu_cpu_kthread_task
) == current
;
1359 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1362 * Do priority-boost accounting for the start of a new grace period.
1364 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1366 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1370 * Create an RCU-boost kthread for the specified node if one does not
1371 * already exist. We only create this kthread for preemptible RCU.
1372 * Returns zero if all is well, a negated errno otherwise.
1374 static int rcu_spawn_one_boost_kthread(struct rcu_state
*rsp
,
1375 struct rcu_node
*rnp
)
1377 int rnp_index
= rnp
- &rsp
->node
[0];
1378 unsigned long flags
;
1379 struct sched_param sp
;
1380 struct task_struct
*t
;
1382 if (&rcu_preempt_state
!= rsp
)
1385 if (!rcu_scheduler_fully_active
|| rnp
->qsmaskinit
== 0)
1389 if (rnp
->boost_kthread_task
!= NULL
)
1391 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1392 "rcub/%d", rnp_index
);
1395 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1396 smp_mb__after_unlock_lock();
1397 rnp
->boost_kthread_task
= t
;
1398 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1399 sp
.sched_priority
= RCU_BOOST_PRIO
;
1400 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1401 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1405 static void rcu_kthread_do_work(void)
1407 rcu_do_batch(&rcu_sched_state
, this_cpu_ptr(&rcu_sched_data
));
1408 rcu_do_batch(&rcu_bh_state
, this_cpu_ptr(&rcu_bh_data
));
1409 rcu_preempt_do_callbacks();
1412 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1414 struct sched_param sp
;
1416 sp
.sched_priority
= RCU_KTHREAD_PRIO
;
1417 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1420 static void rcu_cpu_kthread_park(unsigned int cpu
)
1422 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1425 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1427 return __this_cpu_read(rcu_cpu_has_work
);
1431 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1432 * RCU softirq used in flavors and configurations of RCU that do not
1433 * support RCU priority boosting.
1435 static void rcu_cpu_kthread(unsigned int cpu
)
1437 unsigned int *statusp
= this_cpu_ptr(&rcu_cpu_kthread_status
);
1438 char work
, *workp
= this_cpu_ptr(&rcu_cpu_has_work
);
1441 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1442 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1444 *statusp
= RCU_KTHREAD_RUNNING
;
1445 this_cpu_inc(rcu_cpu_kthread_loops
);
1446 local_irq_disable();
1451 rcu_kthread_do_work();
1454 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1455 *statusp
= RCU_KTHREAD_WAITING
;
1459 *statusp
= RCU_KTHREAD_YIELDING
;
1460 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1461 schedule_timeout_interruptible(2);
1462 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1463 *statusp
= RCU_KTHREAD_WAITING
;
1467 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1468 * served by the rcu_node in question. The CPU hotplug lock is still
1469 * held, so the value of rnp->qsmaskinit will be stable.
1471 * We don't include outgoingcpu in the affinity set, use -1 if there is
1472 * no outgoing CPU. If there are no CPUs left in the affinity set,
1473 * this function allows the kthread to execute on any CPU.
1475 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1477 struct task_struct
*t
= rnp
->boost_kthread_task
;
1478 unsigned long mask
= rnp
->qsmaskinit
;
1484 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1486 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++, mask
>>= 1)
1487 if ((mask
& 0x1) && cpu
!= outgoingcpu
)
1488 cpumask_set_cpu(cpu
, cm
);
1489 if (cpumask_weight(cm
) == 0) {
1491 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++)
1492 cpumask_clear_cpu(cpu
, cm
);
1493 WARN_ON_ONCE(cpumask_weight(cm
) == 0);
1495 set_cpus_allowed_ptr(t
, cm
);
1496 free_cpumask_var(cm
);
1499 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1500 .store
= &rcu_cpu_kthread_task
,
1501 .thread_should_run
= rcu_cpu_kthread_should_run
,
1502 .thread_fn
= rcu_cpu_kthread
,
1503 .thread_comm
= "rcuc/%u",
1504 .setup
= rcu_cpu_kthread_setup
,
1505 .park
= rcu_cpu_kthread_park
,
1509 * Spawn all kthreads -- called as soon as the scheduler is running.
1511 static int __init
rcu_spawn_kthreads(void)
1513 struct rcu_node
*rnp
;
1516 rcu_scheduler_fully_active
= 1;
1517 for_each_possible_cpu(cpu
)
1518 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1519 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1520 rnp
= rcu_get_root(rcu_state
);
1521 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1522 if (NUM_RCU_NODES
> 1) {
1523 rcu_for_each_leaf_node(rcu_state
, rnp
)
1524 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1528 early_initcall(rcu_spawn_kthreads
);
1530 static void rcu_prepare_kthreads(int cpu
)
1532 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
1533 struct rcu_node
*rnp
= rdp
->mynode
;
1535 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1536 if (rcu_scheduler_fully_active
)
1537 (void)rcu_spawn_one_boost_kthread(rcu_state
, rnp
);
1540 #else /* #ifdef CONFIG_RCU_BOOST */
1542 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1544 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1547 static void invoke_rcu_callbacks_kthread(void)
1552 static bool rcu_is_callbacks_kthread(void)
1557 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1561 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1565 static int __init
rcu_scheduler_really_started(void)
1567 rcu_scheduler_fully_active
= 1;
1570 early_initcall(rcu_scheduler_really_started
);
1572 static void rcu_prepare_kthreads(int cpu
)
1576 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1578 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1581 * Check to see if any future RCU-related work will need to be done
1582 * by the current CPU, even if none need be done immediately, returning
1583 * 1 if so. This function is part of the RCU implementation; it is -not-
1584 * an exported member of the RCU API.
1586 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1587 * any flavor of RCU.
1589 int rcu_needs_cpu(int cpu
, unsigned long *delta_jiffies
)
1591 *delta_jiffies
= ULONG_MAX
;
1592 return rcu_cpu_has_callbacks(cpu
, NULL
);
1596 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1599 static void rcu_cleanup_after_idle(int cpu
)
1604 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1607 static void rcu_prepare_for_idle(int cpu
)
1612 * Don't bother keeping a running count of the number of RCU callbacks
1613 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1615 static void rcu_idle_count_callbacks_posted(void)
1619 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1622 * This code is invoked when a CPU goes idle, at which point we want
1623 * to have the CPU do everything required for RCU so that it can enter
1624 * the energy-efficient dyntick-idle mode. This is handled by a
1625 * state machine implemented by rcu_prepare_for_idle() below.
1627 * The following three proprocessor symbols control this state machine:
1629 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1630 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1631 * is sized to be roughly one RCU grace period. Those energy-efficiency
1632 * benchmarkers who might otherwise be tempted to set this to a large
1633 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1634 * system. And if you are -that- concerned about energy efficiency,
1635 * just power the system down and be done with it!
1636 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1637 * permitted to sleep in dyntick-idle mode with only lazy RCU
1638 * callbacks pending. Setting this too high can OOM your system.
1640 * The values below work well in practice. If future workloads require
1641 * adjustment, they can be converted into kernel config parameters, though
1642 * making the state machine smarter might be a better option.
1644 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1645 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1647 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1648 module_param(rcu_idle_gp_delay
, int, 0644);
1649 static int rcu_idle_lazy_gp_delay
= RCU_IDLE_LAZY_GP_DELAY
;
1650 module_param(rcu_idle_lazy_gp_delay
, int, 0644);
1652 extern int tick_nohz_active
;
1655 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1656 * only if it has been awhile since the last time we did so. Afterwards,
1657 * if there are any callbacks ready for immediate invocation, return true.
1659 static bool rcu_try_advance_all_cbs(void)
1661 bool cbs_ready
= false;
1662 struct rcu_data
*rdp
;
1663 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1664 struct rcu_node
*rnp
;
1665 struct rcu_state
*rsp
;
1667 /* Exit early if we advanced recently. */
1668 if (jiffies
== rdtp
->last_advance_all
)
1670 rdtp
->last_advance_all
= jiffies
;
1672 for_each_rcu_flavor(rsp
) {
1673 rdp
= this_cpu_ptr(rsp
->rda
);
1677 * Don't bother checking unless a grace period has
1678 * completed since we last checked and there are
1679 * callbacks not yet ready to invoke.
1681 if (rdp
->completed
!= rnp
->completed
&&
1682 rdp
->nxttail
[RCU_DONE_TAIL
] != rdp
->nxttail
[RCU_NEXT_TAIL
])
1683 note_gp_changes(rsp
, rdp
);
1685 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1692 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1693 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1694 * caller to set the timeout based on whether or not there are non-lazy
1697 * The caller must have disabled interrupts.
1699 int rcu_needs_cpu(int cpu
, unsigned long *dj
)
1701 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1703 /* Snapshot to detect later posting of non-lazy callback. */
1704 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1706 /* If no callbacks, RCU doesn't need the CPU. */
1707 if (!rcu_cpu_has_callbacks(cpu
, &rdtp
->all_lazy
)) {
1712 /* Attempt to advance callbacks. */
1713 if (rcu_try_advance_all_cbs()) {
1714 /* Some ready to invoke, so initiate later invocation. */
1718 rdtp
->last_accelerate
= jiffies
;
1720 /* Request timer delay depending on laziness, and round. */
1721 if (!rdtp
->all_lazy
) {
1722 *dj
= round_up(rcu_idle_gp_delay
+ jiffies
,
1723 rcu_idle_gp_delay
) - jiffies
;
1725 *dj
= round_jiffies(rcu_idle_lazy_gp_delay
+ jiffies
) - jiffies
;
1731 * Prepare a CPU for idle from an RCU perspective. The first major task
1732 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1733 * The second major task is to check to see if a non-lazy callback has
1734 * arrived at a CPU that previously had only lazy callbacks. The third
1735 * major task is to accelerate (that is, assign grace-period numbers to)
1736 * any recently arrived callbacks.
1738 * The caller must have disabled interrupts.
1740 static void rcu_prepare_for_idle(int cpu
)
1742 struct rcu_data
*rdp
;
1743 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1744 struct rcu_node
*rnp
;
1745 struct rcu_state
*rsp
;
1748 /* Handle nohz enablement switches conservatively. */
1749 tne
= ACCESS_ONCE(tick_nohz_active
);
1750 if (tne
!= rdtp
->tick_nohz_enabled_snap
) {
1751 if (rcu_cpu_has_callbacks(cpu
, NULL
))
1752 invoke_rcu_core(); /* force nohz to see update. */
1753 rdtp
->tick_nohz_enabled_snap
= tne
;
1759 /* If this is a no-CBs CPU, no callbacks, just return. */
1760 if (rcu_is_nocb_cpu(cpu
))
1764 * If a non-lazy callback arrived at a CPU having only lazy
1765 * callbacks, invoke RCU core for the side-effect of recalculating
1766 * idle duration on re-entry to idle.
1768 if (rdtp
->all_lazy
&&
1769 rdtp
->nonlazy_posted
!= rdtp
->nonlazy_posted_snap
) {
1770 rdtp
->all_lazy
= false;
1771 rdtp
->nonlazy_posted_snap
= rdtp
->nonlazy_posted
;
1777 * If we have not yet accelerated this jiffy, accelerate all
1778 * callbacks on this CPU.
1780 if (rdtp
->last_accelerate
== jiffies
)
1782 rdtp
->last_accelerate
= jiffies
;
1783 for_each_rcu_flavor(rsp
) {
1784 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1785 if (!*rdp
->nxttail
[RCU_DONE_TAIL
])
1788 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1789 smp_mb__after_unlock_lock();
1790 rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1791 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1796 * Clean up for exit from idle. Attempt to advance callbacks based on
1797 * any grace periods that elapsed while the CPU was idle, and if any
1798 * callbacks are now ready to invoke, initiate invocation.
1800 static void rcu_cleanup_after_idle(int cpu
)
1803 if (rcu_is_nocb_cpu(cpu
))
1805 if (rcu_try_advance_all_cbs())
1810 * Keep a running count of the number of non-lazy callbacks posted
1811 * on this CPU. This running counter (which is never decremented) allows
1812 * rcu_prepare_for_idle() to detect when something out of the idle loop
1813 * posts a callback, even if an equal number of callbacks are invoked.
1814 * Of course, callbacks should only be posted from within a trace event
1815 * designed to be called from idle or from within RCU_NONIDLE().
1817 static void rcu_idle_count_callbacks_posted(void)
1819 __this_cpu_add(rcu_dynticks
.nonlazy_posted
, 1);
1823 * Data for flushing lazy RCU callbacks at OOM time.
1825 static atomic_t oom_callback_count
;
1826 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq
);
1829 * RCU OOM callback -- decrement the outstanding count and deliver the
1830 * wake-up if we are the last one.
1832 static void rcu_oom_callback(struct rcu_head
*rhp
)
1834 if (atomic_dec_and_test(&oom_callback_count
))
1835 wake_up(&oom_callback_wq
);
1839 * Post an rcu_oom_notify callback on the current CPU if it has at
1840 * least one lazy callback. This will unnecessarily post callbacks
1841 * to CPUs that already have a non-lazy callback at the end of their
1842 * callback list, but this is an infrequent operation, so accept some
1843 * extra overhead to keep things simple.
1845 static void rcu_oom_notify_cpu(void *unused
)
1847 struct rcu_state
*rsp
;
1848 struct rcu_data
*rdp
;
1850 for_each_rcu_flavor(rsp
) {
1851 rdp
= __this_cpu_ptr(rsp
->rda
);
1852 if (rdp
->qlen_lazy
!= 0) {
1853 atomic_inc(&oom_callback_count
);
1854 rsp
->call(&rdp
->oom_head
, rcu_oom_callback
);
1860 * If low on memory, ensure that each CPU has a non-lazy callback.
1861 * This will wake up CPUs that have only lazy callbacks, in turn
1862 * ensuring that they free up the corresponding memory in a timely manner.
1863 * Because an uncertain amount of memory will be freed in some uncertain
1864 * timeframe, we do not claim to have freed anything.
1866 static int rcu_oom_notify(struct notifier_block
*self
,
1867 unsigned long notused
, void *nfreed
)
1871 /* Wait for callbacks from earlier instance to complete. */
1872 wait_event(oom_callback_wq
, atomic_read(&oom_callback_count
) == 0);
1873 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1876 * Prevent premature wakeup: ensure that all increments happen
1877 * before there is a chance of the counter reaching zero.
1879 atomic_set(&oom_callback_count
, 1);
1882 for_each_online_cpu(cpu
) {
1883 smp_call_function_single(cpu
, rcu_oom_notify_cpu
, NULL
, 1);
1888 /* Unconditionally decrement: no need to wake ourselves up. */
1889 atomic_dec(&oom_callback_count
);
1894 static struct notifier_block rcu_oom_nb
= {
1895 .notifier_call
= rcu_oom_notify
1898 static int __init
rcu_register_oom_notifier(void)
1900 register_oom_notifier(&rcu_oom_nb
);
1903 early_initcall(rcu_register_oom_notifier
);
1905 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1907 #ifdef CONFIG_RCU_CPU_STALL_INFO
1909 #ifdef CONFIG_RCU_FAST_NO_HZ
1911 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1913 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
1914 unsigned long nlpd
= rdtp
->nonlazy_posted
- rdtp
->nonlazy_posted_snap
;
1916 sprintf(cp
, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1917 rdtp
->last_accelerate
& 0xffff, jiffies
& 0xffff,
1919 rdtp
->all_lazy
? 'L' : '.',
1920 rdtp
->tick_nohz_enabled_snap
? '.' : 'D');
1923 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1925 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1930 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1932 /* Initiate the stall-info list. */
1933 static void print_cpu_stall_info_begin(void)
1939 * Print out diagnostic information for the specified stalled CPU.
1941 * If the specified CPU is aware of the current RCU grace period
1942 * (flavor specified by rsp), then print the number of scheduling
1943 * clock interrupts the CPU has taken during the time that it has
1944 * been aware. Otherwise, print the number of RCU grace periods
1945 * that this CPU is ignorant of, for example, "1" if the CPU was
1946 * aware of the previous grace period.
1948 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1950 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
1952 char fast_no_hz
[72];
1953 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1954 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
1956 unsigned long ticks_value
;
1958 if (rsp
->gpnum
== rdp
->gpnum
) {
1959 ticks_title
= "ticks this GP";
1960 ticks_value
= rdp
->ticks_this_gp
;
1962 ticks_title
= "GPs behind";
1963 ticks_value
= rsp
->gpnum
- rdp
->gpnum
;
1965 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
1966 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1967 cpu
, ticks_value
, ticks_title
,
1968 atomic_read(&rdtp
->dynticks
) & 0xfff,
1969 rdtp
->dynticks_nesting
, rdtp
->dynticks_nmi_nesting
,
1970 rdp
->softirq_snap
, kstat_softirqs_cpu(RCU_SOFTIRQ
, cpu
),
1974 /* Terminate the stall-info list. */
1975 static void print_cpu_stall_info_end(void)
1980 /* Zero ->ticks_this_gp for all flavors of RCU. */
1981 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1983 rdp
->ticks_this_gp
= 0;
1984 rdp
->softirq_snap
= kstat_softirqs_cpu(RCU_SOFTIRQ
, smp_processor_id());
1987 /* Increment ->ticks_this_gp for all flavors of RCU. */
1988 static void increment_cpu_stall_ticks(void)
1990 struct rcu_state
*rsp
;
1992 for_each_rcu_flavor(rsp
)
1993 __this_cpu_ptr(rsp
->rda
)->ticks_this_gp
++;
1996 #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1998 static void print_cpu_stall_info_begin(void)
2003 static void print_cpu_stall_info(struct rcu_state
*rsp
, int cpu
)
2005 pr_cont(" %d", cpu
);
2008 static void print_cpu_stall_info_end(void)
2013 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
2017 static void increment_cpu_stall_ticks(void)
2021 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2023 #ifdef CONFIG_RCU_NOCB_CPU
2026 * Offload callback processing from the boot-time-specified set of CPUs
2027 * specified by rcu_nocb_mask. For each CPU in the set, there is a
2028 * kthread created that pulls the callbacks from the corresponding CPU,
2029 * waits for a grace period to elapse, and invokes the callbacks.
2030 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2031 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2032 * has been specified, in which case each kthread actively polls its
2033 * CPU. (Which isn't so great for energy efficiency, but which does
2034 * reduce RCU's overhead on that CPU.)
2036 * This is intended to be used in conjunction with Frederic Weisbecker's
2037 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2038 * running CPU-bound user-mode computations.
2040 * Offloading of callback processing could also in theory be used as
2041 * an energy-efficiency measure because CPUs with no RCU callbacks
2042 * queued are more aggressive about entering dyntick-idle mode.
2046 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2047 static int __init
rcu_nocb_setup(char *str
)
2049 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
2050 have_rcu_nocb_mask
= true;
2051 cpulist_parse(str
, rcu_nocb_mask
);
2054 __setup("rcu_nocbs=", rcu_nocb_setup
);
2056 static int __init
parse_rcu_nocb_poll(char *arg
)
2061 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
2064 * Do any no-CBs CPUs need another grace period?
2066 * Interrupts must be disabled. If the caller does not hold the root
2067 * rnp_node structure's ->lock, the results are advisory only.
2069 static int rcu_nocb_needs_gp(struct rcu_state
*rsp
)
2071 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2073 return rnp
->need_future_gp
[(ACCESS_ONCE(rnp
->completed
) + 1) & 0x1];
2077 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2080 static void rcu_nocb_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
2082 wake_up_all(&rnp
->nocb_gp_wq
[rnp
->completed
& 0x1]);
2086 * Set the root rcu_node structure's ->need_future_gp field
2087 * based on the sum of those of all rcu_node structures. This does
2088 * double-count the root rcu_node structure's requests, but this
2089 * is necessary to handle the possibility of a rcu_nocb_kthread()
2090 * having awakened during the time that the rcu_node structures
2091 * were being updated for the end of the previous grace period.
2093 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
2095 rnp
->need_future_gp
[(rnp
->completed
+ 1) & 0x1] += nrq
;
2098 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2100 init_waitqueue_head(&rnp
->nocb_gp_wq
[0]);
2101 init_waitqueue_head(&rnp
->nocb_gp_wq
[1]);
2104 /* Is the specified CPU a no-CPUs CPU? */
2105 bool rcu_is_nocb_cpu(int cpu
)
2107 if (have_rcu_nocb_mask
)
2108 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
2113 * Enqueue the specified string of rcu_head structures onto the specified
2114 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2115 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2116 * counts are supplied by rhcount and rhcount_lazy.
2118 * If warranted, also wake up the kthread servicing this CPUs queues.
2120 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
2121 struct rcu_head
*rhp
,
2122 struct rcu_head
**rhtp
,
2123 int rhcount
, int rhcount_lazy
,
2124 unsigned long flags
)
2127 struct rcu_head
**old_rhpp
;
2128 struct task_struct
*t
;
2130 /* Enqueue the callback on the nocb list and update counts. */
2131 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
2132 ACCESS_ONCE(*old_rhpp
) = rhp
;
2133 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
2134 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
2136 /* If we are not being polled and there is a kthread, awaken it ... */
2137 t
= ACCESS_ONCE(rdp
->nocb_kthread
);
2138 if (rcu_nocb_poll
|| !t
) {
2139 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2140 TPS("WakeNotPoll"));
2143 len
= atomic_long_read(&rdp
->nocb_q_count
);
2144 if (old_rhpp
== &rdp
->nocb_head
) {
2145 if (!irqs_disabled_flags(flags
)) {
2146 wake_up(&rdp
->nocb_wq
); /* ... if queue was empty ... */
2147 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2150 rdp
->nocb_defer_wakeup
= true;
2151 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2152 TPS("WakeEmptyIsDeferred"));
2154 rdp
->qlen_last_fqs_check
= 0;
2155 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
2156 wake_up_process(t
); /* ... or if many callbacks queued. */
2157 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
2158 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WakeOvf"));
2160 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("WakeNot"));
2166 * This is a helper for __call_rcu(), which invokes this when the normal
2167 * callback queue is inoperable. If this is not a no-CBs CPU, this
2168 * function returns failure back to __call_rcu(), which can complain
2171 * Otherwise, this function queues the callback where the corresponding
2172 * "rcuo" kthread can find it.
2174 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2175 bool lazy
, unsigned long flags
)
2178 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2180 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
, flags
);
2181 if (__is_kfree_rcu_offset((unsigned long)rhp
->func
))
2182 trace_rcu_kfree_callback(rdp
->rsp
->name
, rhp
,
2183 (unsigned long)rhp
->func
,
2184 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
2185 -atomic_long_read(&rdp
->nocb_q_count
));
2187 trace_rcu_callback(rdp
->rsp
->name
, rhp
,
2188 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
2189 -atomic_long_read(&rdp
->nocb_q_count
));
2194 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2197 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2198 struct rcu_data
*rdp
,
2199 unsigned long flags
)
2201 long ql
= rsp
->qlen
;
2202 long qll
= rsp
->qlen_lazy
;
2204 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2205 if (!rcu_is_nocb_cpu(smp_processor_id()))
2210 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2211 if (rsp
->orphan_donelist
!= NULL
) {
2212 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_donelist
,
2213 rsp
->orphan_donetail
, ql
, qll
, flags
);
2215 rsp
->orphan_donelist
= NULL
;
2216 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
2218 if (rsp
->orphan_nxtlist
!= NULL
) {
2219 __call_rcu_nocb_enqueue(rdp
, rsp
->orphan_nxtlist
,
2220 rsp
->orphan_nxttail
, ql
, qll
, flags
);
2222 rsp
->orphan_nxtlist
= NULL
;
2223 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
2229 * If necessary, kick off a new grace period, and either way wait
2230 * for a subsequent grace period to complete.
2232 static void rcu_nocb_wait_gp(struct rcu_data
*rdp
)
2236 unsigned long flags
;
2237 struct rcu_node
*rnp
= rdp
->mynode
;
2239 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2240 smp_mb__after_unlock_lock();
2241 c
= rcu_start_future_gp(rnp
, rdp
);
2242 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2245 * Wait for the grace period. Do so interruptibly to avoid messing
2246 * up the load average.
2248 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("StartWait"));
2250 wait_event_interruptible(
2251 rnp
->nocb_gp_wq
[c
& 0x1],
2252 (d
= ULONG_CMP_GE(ACCESS_ONCE(rnp
->completed
), c
)));
2255 flush_signals(current
);
2256 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("ResumeWait"));
2258 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("EndWait"));
2259 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2263 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2264 * callbacks queued by the corresponding no-CBs CPU.
2266 static int rcu_nocb_kthread(void *arg
)
2270 struct rcu_head
*list
;
2271 struct rcu_head
*next
;
2272 struct rcu_head
**tail
;
2273 struct rcu_data
*rdp
= arg
;
2275 /* Each pass through this loop invokes one batch of callbacks */
2277 /* If not polling, wait for next batch of callbacks. */
2278 if (!rcu_nocb_poll
) {
2279 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2281 wait_event_interruptible(rdp
->nocb_wq
, rdp
->nocb_head
);
2282 /* Memory barrier provide by xchg() below. */
2283 } else if (firsttime
) {
2285 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2288 list
= ACCESS_ONCE(rdp
->nocb_head
);
2291 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2293 schedule_timeout_interruptible(1);
2294 flush_signals(current
);
2298 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2299 TPS("WokeNonEmpty"));
2302 * Extract queued callbacks, update counts, and wait
2303 * for a grace period to elapse.
2305 ACCESS_ONCE(rdp
->nocb_head
) = NULL
;
2306 tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2307 c
= atomic_long_xchg(&rdp
->nocb_q_count
, 0);
2308 cl
= atomic_long_xchg(&rdp
->nocb_q_count_lazy
, 0);
2309 ACCESS_ONCE(rdp
->nocb_p_count
) += c
;
2310 ACCESS_ONCE(rdp
->nocb_p_count_lazy
) += cl
;
2311 rcu_nocb_wait_gp(rdp
);
2313 /* Each pass through the following loop invokes a callback. */
2314 trace_rcu_batch_start(rdp
->rsp
->name
, cl
, c
, -1);
2318 /* Wait for enqueuing to complete, if needed. */
2319 while (next
== NULL
&& &list
->next
!= tail
) {
2320 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2322 schedule_timeout_interruptible(1);
2323 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
,
2327 debug_rcu_head_unqueue(list
);
2329 if (__rcu_reclaim(rdp
->rsp
->name
, list
))
2335 trace_rcu_batch_end(rdp
->rsp
->name
, c
, !!list
, 0, 0, 1);
2336 ACCESS_ONCE(rdp
->nocb_p_count
) -= c
;
2337 ACCESS_ONCE(rdp
->nocb_p_count_lazy
) -= cl
;
2338 rdp
->n_nocbs_invoked
+= c
;
2343 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2344 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2346 return ACCESS_ONCE(rdp
->nocb_defer_wakeup
);
2349 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2350 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2352 if (!rcu_nocb_need_deferred_wakeup(rdp
))
2354 ACCESS_ONCE(rdp
->nocb_defer_wakeup
) = false;
2355 wake_up(&rdp
->nocb_wq
);
2356 trace_rcu_nocb_wake(rdp
->rsp
->name
, rdp
->cpu
, TPS("DeferredWakeEmpty"));
2359 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2360 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2362 rdp
->nocb_tail
= &rdp
->nocb_head
;
2363 init_waitqueue_head(&rdp
->nocb_wq
);
2366 /* Create a kthread for each RCU flavor for each no-CBs CPU. */
2367 static void __init
rcu_spawn_nocb_kthreads(struct rcu_state
*rsp
)
2370 struct rcu_data
*rdp
;
2371 struct task_struct
*t
;
2373 if (rcu_nocb_mask
== NULL
)
2375 for_each_cpu(cpu
, rcu_nocb_mask
) {
2376 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2377 t
= kthread_run(rcu_nocb_kthread
, rdp
,
2378 "rcuo%c/%d", rsp
->abbr
, cpu
);
2380 ACCESS_ONCE(rdp
->nocb_kthread
) = t
;
2384 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2385 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2387 if (rcu_nocb_mask
== NULL
||
2388 !cpumask_test_cpu(rdp
->cpu
, rcu_nocb_mask
))
2390 rdp
->nxttail
[RCU_NEXT_TAIL
] = NULL
;
2394 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2396 static int rcu_nocb_needs_gp(struct rcu_state
*rsp
)
2401 static void rcu_nocb_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
2405 static void rcu_nocb_gp_set(struct rcu_node
*rnp
, int nrq
)
2409 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2413 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2414 bool lazy
, unsigned long flags
)
2419 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_state
*rsp
,
2420 struct rcu_data
*rdp
,
2421 unsigned long flags
)
2426 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2430 static bool rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2435 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2439 static void __init
rcu_spawn_nocb_kthreads(struct rcu_state
*rsp
)
2443 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2448 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2451 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2452 * arbitrarily long period of time with the scheduling-clock tick turned
2453 * off. RCU will be paying attention to this CPU because it is in the
2454 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2455 * machine because the scheduling-clock tick has been disabled. Therefore,
2456 * if an adaptive-ticks CPU is failing to respond to the current grace
2457 * period and has not be idle from an RCU perspective, kick it.
2459 static void rcu_kick_nohz_cpu(int cpu
)
2461 #ifdef CONFIG_NO_HZ_FULL
2462 if (tick_nohz_full_cpu(cpu
))
2463 smp_send_reschedule(cpu
);
2464 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2468 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2471 * Define RCU flavor that holds sysidle state. This needs to be the
2472 * most active flavor of RCU.
2474 #ifdef CONFIG_PREEMPT_RCU
2475 static struct rcu_state
*rcu_sysidle_state
= &rcu_preempt_state
;
2476 #else /* #ifdef CONFIG_PREEMPT_RCU */
2477 static struct rcu_state
*rcu_sysidle_state
= &rcu_sched_state
;
2478 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2480 static int full_sysidle_state
; /* Current system-idle state. */
2481 #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2482 #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2483 #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2484 #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2485 #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2488 * Invoked to note exit from irq or task transition to idle. Note that
2489 * usermode execution does -not- count as idle here! After all, we want
2490 * to detect full-system idle states, not RCU quiescent states and grace
2491 * periods. The caller must have disabled interrupts.
2493 static void rcu_sysidle_enter(struct rcu_dynticks
*rdtp
, int irq
)
2497 /* Adjust nesting, check for fully idle. */
2499 rdtp
->dynticks_idle_nesting
--;
2500 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
< 0);
2501 if (rdtp
->dynticks_idle_nesting
!= 0)
2502 return; /* Still not fully idle. */
2504 if ((rdtp
->dynticks_idle_nesting
& DYNTICK_TASK_NEST_MASK
) ==
2505 DYNTICK_TASK_NEST_VALUE
) {
2506 rdtp
->dynticks_idle_nesting
= 0;
2508 rdtp
->dynticks_idle_nesting
-= DYNTICK_TASK_NEST_VALUE
;
2509 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
< 0);
2510 return; /* Still not fully idle. */
2514 /* Record start of fully idle period. */
2516 ACCESS_ONCE(rdtp
->dynticks_idle_jiffies
) = j
;
2517 smp_mb__before_atomic_inc();
2518 atomic_inc(&rdtp
->dynticks_idle
);
2519 smp_mb__after_atomic_inc();
2520 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks_idle
) & 0x1);
2524 * Unconditionally force exit from full system-idle state. This is
2525 * invoked when a normal CPU exits idle, but must be called separately
2526 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2527 * is that the timekeeping CPU is permitted to take scheduling-clock
2528 * interrupts while the system is in system-idle state, and of course
2529 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2530 * interrupt from any other type of interrupt.
2532 void rcu_sysidle_force_exit(void)
2534 int oldstate
= ACCESS_ONCE(full_sysidle_state
);
2538 * Each pass through the following loop attempts to exit full
2539 * system-idle state. If contention proves to be a problem,
2540 * a trylock-based contention tree could be used here.
2542 while (oldstate
> RCU_SYSIDLE_SHORT
) {
2543 newoldstate
= cmpxchg(&full_sysidle_state
,
2544 oldstate
, RCU_SYSIDLE_NOT
);
2545 if (oldstate
== newoldstate
&&
2546 oldstate
== RCU_SYSIDLE_FULL_NOTED
) {
2547 rcu_kick_nohz_cpu(tick_do_timer_cpu
);
2548 return; /* We cleared it, done! */
2550 oldstate
= newoldstate
;
2552 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2556 * Invoked to note entry to irq or task transition from idle. Note that
2557 * usermode execution does -not- count as idle here! The caller must
2558 * have disabled interrupts.
2560 static void rcu_sysidle_exit(struct rcu_dynticks
*rdtp
, int irq
)
2562 /* Adjust nesting, check for already non-idle. */
2564 rdtp
->dynticks_idle_nesting
++;
2565 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
<= 0);
2566 if (rdtp
->dynticks_idle_nesting
!= 1)
2567 return; /* Already non-idle. */
2570 * Allow for irq misnesting. Yes, it really is possible
2571 * to enter an irq handler then never leave it, and maybe
2572 * also vice versa. Handle both possibilities.
2574 if (rdtp
->dynticks_idle_nesting
& DYNTICK_TASK_NEST_MASK
) {
2575 rdtp
->dynticks_idle_nesting
+= DYNTICK_TASK_NEST_VALUE
;
2576 WARN_ON_ONCE(rdtp
->dynticks_idle_nesting
<= 0);
2577 return; /* Already non-idle. */
2579 rdtp
->dynticks_idle_nesting
= DYNTICK_TASK_EXIT_IDLE
;
2583 /* Record end of idle period. */
2584 smp_mb__before_atomic_inc();
2585 atomic_inc(&rdtp
->dynticks_idle
);
2586 smp_mb__after_atomic_inc();
2587 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks_idle
) & 0x1));
2590 * If we are the timekeeping CPU, we are permitted to be non-idle
2591 * during a system-idle state. This must be the case, because
2592 * the timekeeping CPU has to take scheduling-clock interrupts
2593 * during the time that the system is transitioning to full
2594 * system-idle state. This means that the timekeeping CPU must
2595 * invoke rcu_sysidle_force_exit() directly if it does anything
2596 * more than take a scheduling-clock interrupt.
2598 if (smp_processor_id() == tick_do_timer_cpu
)
2601 /* Update system-idle state: We are clearly no longer fully idle! */
2602 rcu_sysidle_force_exit();
2606 * Check to see if the current CPU is idle. Note that usermode execution
2607 * does not count as idle. The caller must have disabled interrupts.
2609 static void rcu_sysidle_check_cpu(struct rcu_data
*rdp
, bool *isidle
,
2610 unsigned long *maxj
)
2614 struct rcu_dynticks
*rdtp
= rdp
->dynticks
;
2617 * If some other CPU has already reported non-idle, if this is
2618 * not the flavor of RCU that tracks sysidle state, or if this
2619 * is an offline or the timekeeping CPU, nothing to do.
2621 if (!*isidle
|| rdp
->rsp
!= rcu_sysidle_state
||
2622 cpu_is_offline(rdp
->cpu
) || rdp
->cpu
== tick_do_timer_cpu
)
2624 if (rcu_gp_in_progress(rdp
->rsp
))
2625 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu
);
2627 /* Pick up current idle and NMI-nesting counter and check. */
2628 cur
= atomic_read(&rdtp
->dynticks_idle
);
2630 *isidle
= false; /* We are not idle! */
2633 smp_mb(); /* Read counters before timestamps. */
2635 /* Pick up timestamps. */
2636 j
= ACCESS_ONCE(rdtp
->dynticks_idle_jiffies
);
2637 /* If this CPU entered idle more recently, update maxj timestamp. */
2638 if (ULONG_CMP_LT(*maxj
, j
))
2643 * Is this the flavor of RCU that is handling full-system idle?
2645 static bool is_sysidle_rcu_state(struct rcu_state
*rsp
)
2647 return rsp
== rcu_sysidle_state
;
2651 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2654 static void rcu_bind_gp_kthread(void)
2656 int cpu
= ACCESS_ONCE(tick_do_timer_cpu
);
2658 if (cpu
< 0 || cpu
>= nr_cpu_ids
)
2660 if (raw_smp_processor_id() != cpu
)
2661 set_cpus_allowed_ptr(current
, cpumask_of(cpu
));
2665 * Return a delay in jiffies based on the number of CPUs, rcu_node
2666 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2667 * systems more time to transition to full-idle state in order to
2668 * avoid the cache thrashing that otherwise occur on the state variable.
2669 * Really small systems (less than a couple of tens of CPUs) should
2670 * instead use a single global atomically incremented counter, and later
2671 * versions of this will automatically reconfigure themselves accordingly.
2673 static unsigned long rcu_sysidle_delay(void)
2675 if (nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
)
2677 return DIV_ROUND_UP(nr_cpu_ids
* HZ
, rcu_fanout_leaf
* 1000);
2681 * Advance the full-system-idle state. This is invoked when all of
2682 * the non-timekeeping CPUs are idle.
2684 static void rcu_sysidle(unsigned long j
)
2686 /* Check the current state. */
2687 switch (ACCESS_ONCE(full_sysidle_state
)) {
2688 case RCU_SYSIDLE_NOT
:
2690 /* First time all are idle, so note a short idle period. */
2691 ACCESS_ONCE(full_sysidle_state
) = RCU_SYSIDLE_SHORT
;
2694 case RCU_SYSIDLE_SHORT
:
2697 * Idle for a bit, time to advance to next state?
2698 * cmpxchg failure means race with non-idle, let them win.
2700 if (ULONG_CMP_GE(jiffies
, j
+ rcu_sysidle_delay()))
2701 (void)cmpxchg(&full_sysidle_state
,
2702 RCU_SYSIDLE_SHORT
, RCU_SYSIDLE_LONG
);
2705 case RCU_SYSIDLE_LONG
:
2708 * Do an additional check pass before advancing to full.
2709 * cmpxchg failure means race with non-idle, let them win.
2711 if (ULONG_CMP_GE(jiffies
, j
+ rcu_sysidle_delay()))
2712 (void)cmpxchg(&full_sysidle_state
,
2713 RCU_SYSIDLE_LONG
, RCU_SYSIDLE_FULL
);
2722 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2723 * back to the beginning.
2725 static void rcu_sysidle_cancel(void)
2728 ACCESS_ONCE(full_sysidle_state
) = RCU_SYSIDLE_NOT
;
2732 * Update the sysidle state based on the results of a force-quiescent-state
2733 * scan of the CPUs' dyntick-idle state.
2735 static void rcu_sysidle_report(struct rcu_state
*rsp
, int isidle
,
2736 unsigned long maxj
, bool gpkt
)
2738 if (rsp
!= rcu_sysidle_state
)
2739 return; /* Wrong flavor, ignore. */
2740 if (gpkt
&& nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
)
2741 return; /* Running state machine from timekeeping CPU. */
2743 rcu_sysidle(maxj
); /* More idle! */
2745 rcu_sysidle_cancel(); /* Idle is over. */
2749 * Wrapper for rcu_sysidle_report() when called from the grace-period
2750 * kthread's context.
2752 static void rcu_sysidle_report_gp(struct rcu_state
*rsp
, int isidle
,
2755 rcu_sysidle_report(rsp
, isidle
, maxj
, true);
2758 /* Callback and function for forcing an RCU grace period. */
2759 struct rcu_sysidle_head
{
2764 static void rcu_sysidle_cb(struct rcu_head
*rhp
)
2766 struct rcu_sysidle_head
*rshp
;
2769 * The following memory barrier is needed to replace the
2770 * memory barriers that would normally be in the memory
2773 smp_mb(); /* grace period precedes setting inuse. */
2775 rshp
= container_of(rhp
, struct rcu_sysidle_head
, rh
);
2776 ACCESS_ONCE(rshp
->inuse
) = 0;
2780 * Check to see if the system is fully idle, other than the timekeeping CPU.
2781 * The caller must have disabled interrupts.
2783 bool rcu_sys_is_idle(void)
2785 static struct rcu_sysidle_head rsh
;
2786 int rss
= ACCESS_ONCE(full_sysidle_state
);
2788 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu
))
2791 /* Handle small-system case by doing a full scan of CPUs. */
2792 if (nr_cpu_ids
<= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
) {
2793 int oldrss
= rss
- 1;
2796 * One pass to advance to each state up to _FULL.
2797 * Give up if any pass fails to advance the state.
2799 while (rss
< RCU_SYSIDLE_FULL
&& oldrss
< rss
) {
2802 unsigned long maxj
= jiffies
- ULONG_MAX
/ 4;
2803 struct rcu_data
*rdp
;
2805 /* Scan all the CPUs looking for nonidle CPUs. */
2806 for_each_possible_cpu(cpu
) {
2807 rdp
= per_cpu_ptr(rcu_sysidle_state
->rda
, cpu
);
2808 rcu_sysidle_check_cpu(rdp
, &isidle
, &maxj
);
2812 rcu_sysidle_report(rcu_sysidle_state
,
2813 isidle
, maxj
, false);
2815 rss
= ACCESS_ONCE(full_sysidle_state
);
2819 /* If this is the first observation of an idle period, record it. */
2820 if (rss
== RCU_SYSIDLE_FULL
) {
2821 rss
= cmpxchg(&full_sysidle_state
,
2822 RCU_SYSIDLE_FULL
, RCU_SYSIDLE_FULL_NOTED
);
2823 return rss
== RCU_SYSIDLE_FULL
;
2826 smp_mb(); /* ensure rss load happens before later caller actions. */
2828 /* If already fully idle, tell the caller (in case of races). */
2829 if (rss
== RCU_SYSIDLE_FULL_NOTED
)
2833 * If we aren't there yet, and a grace period is not in flight,
2834 * initiate a grace period. Either way, tell the caller that
2835 * we are not there yet. We use an xchg() rather than an assignment
2836 * to make up for the memory barriers that would otherwise be
2837 * provided by the memory allocator.
2839 if (nr_cpu_ids
> CONFIG_NO_HZ_FULL_SYSIDLE_SMALL
&&
2840 !rcu_gp_in_progress(rcu_sysidle_state
) &&
2841 !rsh
.inuse
&& xchg(&rsh
.inuse
, 1) == 0)
2842 call_rcu(&rsh
.rh
, rcu_sysidle_cb
);
2847 * Initialize dynticks sysidle state for CPUs coming online.
2849 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks
*rdtp
)
2851 rdtp
->dynticks_idle_nesting
= DYNTICK_TASK_NEST_VALUE
;
2854 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2856 static void rcu_sysidle_enter(struct rcu_dynticks
*rdtp
, int irq
)
2860 static void rcu_sysidle_exit(struct rcu_dynticks
*rdtp
, int irq
)
2864 static void rcu_sysidle_check_cpu(struct rcu_data
*rdp
, bool *isidle
,
2865 unsigned long *maxj
)
2869 static bool is_sysidle_rcu_state(struct rcu_state
*rsp
)
2874 static void rcu_bind_gp_kthread(void)
2878 static void rcu_sysidle_report_gp(struct rcu_state
*rsp
, int isidle
,
2883 static void rcu_sysidle_init_percpu_data(struct rcu_dynticks
*rdtp
)
2887 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2890 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2891 * grace-period kthread will do force_quiescent_state() processing?
2892 * The idea is to avoid waking up RCU core processing on such a
2893 * CPU unless the grace period has extended for too long.
2895 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2896 * CONFIG_RCU_NOCB_CPUs.
2898 static bool rcu_nohz_full_cpu(struct rcu_state
*rsp
)
2900 #ifdef CONFIG_NO_HZ_FULL
2901 if (tick_nohz_full_cpu(smp_processor_id()) &&
2902 (!rcu_gp_in_progress(rsp
) ||
2903 ULONG_CMP_LT(jiffies
, ACCESS_ONCE(rsp
->gp_start
) + HZ
)))
2905 #endif /* #ifdef CONFIG_NO_HZ_FULL */