4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct
*work
);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq
*s
)
39 ret
= trace_seq_puts(s
, "# compressed entry header\n");
40 ret
= trace_seq_puts(s
, "\ttype_len : 5 bits\n");
41 ret
= trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
42 ret
= trace_seq_puts(s
, "\tarray : 32 bits\n");
43 ret
= trace_seq_putc(s
, '\n');
44 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING
);
46 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND
);
48 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
71 * |reader| RING BUFFER
73 * +------+ +---+ +---+ +---+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
100 * +------------------------------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
108 * | New +---+ +---+ +---+
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
152 RB_BUFFERS_ON_BIT
= 0,
153 RB_BUFFERS_DISABLED_BIT
= 1,
157 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
158 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
161 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
169 * tracing_off_permanent - permanently disable ring buffers
171 * This function, once called, will disable all ring buffers
174 void tracing_off_permanent(void)
176 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
198 RB_LEN_TIME_EXTEND
= 8,
199 RB_LEN_TIME_STAMP
= 16,
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
205 static inline int rb_null_event(struct ring_buffer_event
*event
)
207 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
210 static void rb_event_set_padding(struct ring_buffer_event
*event
)
212 /* padding has a NULL time_delta */
213 event
->type_len
= RINGBUF_TYPE_PADDING
;
214 event
->time_delta
= 0;
218 rb_event_data_length(struct ring_buffer_event
*event
)
223 length
= event
->type_len
* RB_ALIGNMENT
;
225 length
= event
->array
[0];
226 return length
+ RB_EVNT_HDR_SIZE
;
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event
*event
)
237 switch (event
->type_len
) {
238 case RINGBUF_TYPE_PADDING
:
239 if (rb_null_event(event
))
242 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
244 case RINGBUF_TYPE_TIME_EXTEND
:
245 return RB_LEN_TIME_EXTEND
;
247 case RINGBUF_TYPE_TIME_STAMP
:
248 return RB_LEN_TIME_STAMP
;
250 case RINGBUF_TYPE_DATA
:
251 return rb_event_data_length(event
);
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event
*event
)
268 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
269 /* time extends include the data event after it */
270 len
= RB_LEN_TIME_EXTEND
;
271 event
= skip_time_extend(event
);
273 return len
+ rb_event_length(event
);
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
286 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
290 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
291 event
= skip_time_extend(event
);
293 length
= rb_event_length(event
);
294 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
296 length
-= RB_EVNT_HDR_SIZE
;
297 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
298 length
-= sizeof(event
->array
[0]);
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
303 /* inline for ring buffer fast paths */
305 rb_event_data(struct ring_buffer_event
*event
)
307 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
308 event
= skip_time_extend(event
);
309 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
310 /* If length is in len field, then array[0] has the data */
312 return (void *)&event
->array
[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event
->array
[1];
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
321 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
323 return rb_event_data(event
);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
339 struct buffer_data_page
{
340 u64 time_stamp
; /* page time stamp */
341 local_t commit
; /* write committed index */
342 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
354 struct list_head list
; /* list of buffer pages */
355 local_t write
; /* index for next write */
356 unsigned read
; /* index for next read */
357 local_t entries
; /* entries on this page */
358 unsigned long real_end
; /* real end of data */
359 struct buffer_data_page
*page
; /* Actual data page */
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
372 * The counter is 20 bits, and the state data is 12.
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
377 static void rb_init_page(struct buffer_data_page
*bpage
)
379 local_set(&bpage
->commit
, 0);
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
386 * Returns the amount of data on the page, including buffer page header.
388 size_t ring_buffer_page_len(void *page
)
390 return local_read(&((struct buffer_data_page
*)page
)->commit
)
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
398 static void free_buffer_page(struct buffer_page
*bpage
)
400 free_page((unsigned long)bpage
->page
);
405 * We need to fit the time_stamp delta into 27 bits.
407 static inline int test_time_stamp(u64 delta
)
409 if (delta
& TS_DELTA_TEST
)
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
419 int ring_buffer_print_page_header(struct trace_seq
*s
)
421 struct buffer_data_page field
;
424 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field
.time_stamp
),
427 (unsigned int)is_signed_type(u64
));
429 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field
), commit
),
432 (unsigned int)sizeof(field
.commit
),
433 (unsigned int)is_signed_type(long));
435 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field
), commit
),
439 (unsigned int)is_signed_type(long));
441 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field
), data
),
444 (unsigned int)BUF_PAGE_SIZE
,
445 (unsigned int)is_signed_type(char));
451 struct irq_work work
;
452 wait_queue_head_t waiters
;
453 bool waiters_pending
;
457 * head_page == tail_page && head == tail then buffer is empty.
459 struct ring_buffer_per_cpu
{
461 atomic_t record_disabled
;
462 struct ring_buffer
*buffer
;
463 raw_spinlock_t reader_lock
; /* serialize readers */
464 arch_spinlock_t lock
;
465 struct lock_class_key lock_key
;
466 unsigned int nr_pages
;
467 struct list_head
*pages
;
468 struct buffer_page
*head_page
; /* read from head */
469 struct buffer_page
*tail_page
; /* write to tail */
470 struct buffer_page
*commit_page
; /* committed pages */
471 struct buffer_page
*reader_page
;
472 unsigned long lost_events
;
473 unsigned long last_overrun
;
474 local_t entries_bytes
;
477 local_t commit_overrun
;
478 local_t dropped_events
;
482 unsigned long read_bytes
;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update
;
487 struct list_head new_pages
; /* new pages to add */
488 struct work_struct update_pages_work
;
489 struct completion update_done
;
491 struct rb_irq_work irq_work
;
497 atomic_t record_disabled
;
498 atomic_t resize_disabled
;
499 cpumask_var_t cpumask
;
501 struct lock_class_key
*reader_lock_key
;
505 struct ring_buffer_per_cpu
**buffers
;
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify
;
512 struct rb_irq_work irq_work
;
515 struct ring_buffer_iter
{
516 struct ring_buffer_per_cpu
*cpu_buffer
;
518 struct buffer_page
*head_page
;
519 struct buffer_page
*cache_reader_page
;
520 unsigned long cache_read
;
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
530 static void rb_wake_up_waiters(struct irq_work
*work
)
532 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
534 wake_up_all(&rbwork
->waiters
);
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
546 void ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
)
548 struct ring_buffer_per_cpu
*cpu_buffer
;
550 struct rb_irq_work
*work
;
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
557 if (cpu
== RING_BUFFER_ALL_CPUS
)
558 work
= &buffer
->irq_work
;
560 cpu_buffer
= buffer
->buffers
[cpu
];
561 work
= &cpu_buffer
->irq_work
;
565 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
587 work
->waiters_pending
= true;
589 if ((cpu
== RING_BUFFER_ALL_CPUS
&& ring_buffer_empty(buffer
)) ||
590 (cpu
!= RING_BUFFER_ALL_CPUS
&& ring_buffer_empty_cpu(buffer
, cpu
)))
593 finish_wait(&work
->waiters
, &wait
);
597 * ring_buffer_poll_wait - poll on buffer input
598 * @buffer: buffer to wait on
599 * @cpu: the cpu buffer to wait on
600 * @filp: the file descriptor
601 * @poll_table: The poll descriptor
603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604 * as data is added to any of the @buffer's cpu buffers. Otherwise
605 * it will wait for data to be added to a specific cpu buffer.
607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
610 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
611 struct file
*filp
, poll_table
*poll_table
)
613 struct ring_buffer_per_cpu
*cpu_buffer
;
614 struct rb_irq_work
*work
;
616 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
617 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
618 return POLLIN
| POLLRDNORM
;
620 if (cpu
== RING_BUFFER_ALL_CPUS
)
621 work
= &buffer
->irq_work
;
623 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
626 cpu_buffer
= buffer
->buffers
[cpu
];
627 work
= &cpu_buffer
->irq_work
;
630 work
->waiters_pending
= true;
631 poll_wait(filp
, &work
->waiters
, poll_table
);
633 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
634 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
635 return POLLIN
| POLLRDNORM
;
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond) \
642 int _____ret = unlikely(cond); \
644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 struct ring_buffer_per_cpu *__b = \
647 atomic_inc(&__b->buffer->record_disabled); \
649 atomic_inc(&b->record_disabled); \
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
658 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
660 /* shift to debug/test normalization and TIME_EXTENTS */
661 return buffer
->clock() << DEBUG_SHIFT
;
664 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
668 preempt_disable_notrace();
669 time
= rb_time_stamp(buffer
);
670 preempt_enable_no_resched_notrace();
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
676 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
679 /* Just stupid testing the normalize function and deltas */
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
685 * Making the ring buffer lockless makes things tricky.
686 * Although writes only happen on the CPU that they are on,
687 * and they only need to worry about interrupts. Reads can
690 * The reader page is always off the ring buffer, but when the
691 * reader finishes with a page, it needs to swap its page with
692 * a new one from the buffer. The reader needs to take from
693 * the head (writes go to the tail). But if a writer is in overwrite
694 * mode and wraps, it must push the head page forward.
696 * Here lies the problem.
698 * The reader must be careful to replace only the head page, and
699 * not another one. As described at the top of the file in the
700 * ASCII art, the reader sets its old page to point to the next
701 * page after head. It then sets the page after head to point to
702 * the old reader page. But if the writer moves the head page
703 * during this operation, the reader could end up with the tail.
705 * We use cmpxchg to help prevent this race. We also do something
706 * special with the page before head. We set the LSB to 1.
708 * When the writer must push the page forward, it will clear the
709 * bit that points to the head page, move the head, and then set
710 * the bit that points to the new head page.
712 * We also don't want an interrupt coming in and moving the head
713 * page on another writer. Thus we use the second LSB to catch
716 * head->list->prev->next bit 1 bit 0
719 * Points to head page 0 1
722 * Note we can not trust the prev pointer of the head page, because:
724 * +----+ +-----+ +-----+
725 * | |------>| T |---X--->| N |
727 * +----+ +-----+ +-----+
730 * +----------| R |----------+ |
734 * Key: ---X--> HEAD flag set in pointer
739 * (see __rb_reserve_next() to see where this happens)
741 * What the above shows is that the reader just swapped out
742 * the reader page with a page in the buffer, but before it
743 * could make the new header point back to the new page added
744 * it was preempted by a writer. The writer moved forward onto
745 * the new page added by the reader and is about to move forward
748 * You can see, it is legitimate for the previous pointer of
749 * the head (or any page) not to point back to itself. But only
753 #define RB_PAGE_NORMAL 0UL
754 #define RB_PAGE_HEAD 1UL
755 #define RB_PAGE_UPDATE 2UL
758 #define RB_FLAG_MASK 3UL
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED 4UL
764 * rb_list_head - remove any bit
766 static struct list_head
*rb_list_head(struct list_head
*list
)
768 unsigned long val
= (unsigned long)list
;
770 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
774 * rb_is_head_page - test if the given page is the head page
776 * Because the reader may move the head_page pointer, we can
777 * not trust what the head page is (it may be pointing to
778 * the reader page). But if the next page is a header page,
779 * its flags will be non zero.
782 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
783 struct buffer_page
*page
, struct list_head
*list
)
787 val
= (unsigned long)list
->next
;
789 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
790 return RB_PAGE_MOVED
;
792 return val
& RB_FLAG_MASK
;
798 * The unique thing about the reader page, is that, if the
799 * writer is ever on it, the previous pointer never points
800 * back to the reader page.
802 static int rb_is_reader_page(struct buffer_page
*page
)
804 struct list_head
*list
= page
->list
.prev
;
806 return rb_list_head(list
->next
) != &page
->list
;
810 * rb_set_list_to_head - set a list_head to be pointing to head.
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
813 struct list_head
*list
)
817 ptr
= (unsigned long *)&list
->next
;
818 *ptr
|= RB_PAGE_HEAD
;
819 *ptr
&= ~RB_PAGE_UPDATE
;
823 * rb_head_page_activate - sets up head page
825 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
827 struct buffer_page
*head
;
829 head
= cpu_buffer
->head_page
;
834 * Set the previous list pointer to have the HEAD flag.
836 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
839 static void rb_list_head_clear(struct list_head
*list
)
841 unsigned long *ptr
= (unsigned long *)&list
->next
;
843 *ptr
&= ~RB_FLAG_MASK
;
847 * rb_head_page_dactivate - clears head page ptr (for free list)
850 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
852 struct list_head
*hd
;
854 /* Go through the whole list and clear any pointers found. */
855 rb_list_head_clear(cpu_buffer
->pages
);
857 list_for_each(hd
, cpu_buffer
->pages
)
858 rb_list_head_clear(hd
);
861 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
862 struct buffer_page
*head
,
863 struct buffer_page
*prev
,
864 int old_flag
, int new_flag
)
866 struct list_head
*list
;
867 unsigned long val
= (unsigned long)&head
->list
;
872 val
&= ~RB_FLAG_MASK
;
874 ret
= cmpxchg((unsigned long *)&list
->next
,
875 val
| old_flag
, val
| new_flag
);
877 /* check if the reader took the page */
878 if ((ret
& ~RB_FLAG_MASK
) != val
)
879 return RB_PAGE_MOVED
;
881 return ret
& RB_FLAG_MASK
;
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
885 struct buffer_page
*head
,
886 struct buffer_page
*prev
,
889 return rb_head_page_set(cpu_buffer
, head
, prev
,
890 old_flag
, RB_PAGE_UPDATE
);
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
894 struct buffer_page
*head
,
895 struct buffer_page
*prev
,
898 return rb_head_page_set(cpu_buffer
, head
, prev
,
899 old_flag
, RB_PAGE_HEAD
);
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
903 struct buffer_page
*head
,
904 struct buffer_page
*prev
,
907 return rb_head_page_set(cpu_buffer
, head
, prev
,
908 old_flag
, RB_PAGE_NORMAL
);
911 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
912 struct buffer_page
**bpage
)
914 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
916 *bpage
= list_entry(p
, struct buffer_page
, list
);
919 static struct buffer_page
*
920 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
922 struct buffer_page
*head
;
923 struct buffer_page
*page
;
924 struct list_head
*list
;
927 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
931 list
= cpu_buffer
->pages
;
932 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
935 page
= head
= cpu_buffer
->head_page
;
937 * It is possible that the writer moves the header behind
938 * where we started, and we miss in one loop.
939 * A second loop should grab the header, but we'll do
940 * three loops just because I'm paranoid.
942 for (i
= 0; i
< 3; i
++) {
944 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
945 cpu_buffer
->head_page
= page
;
948 rb_inc_page(cpu_buffer
, &page
);
949 } while (page
!= head
);
952 RB_WARN_ON(cpu_buffer
, 1);
957 static int rb_head_page_replace(struct buffer_page
*old
,
958 struct buffer_page
*new)
960 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
964 val
= *ptr
& ~RB_FLAG_MASK
;
967 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
973 * rb_tail_page_update - move the tail page forward
975 * Returns 1 if moved tail page, 0 if someone else did.
977 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
978 struct buffer_page
*tail_page
,
979 struct buffer_page
*next_page
)
981 struct buffer_page
*old_tail
;
982 unsigned long old_entries
;
983 unsigned long old_write
;
987 * The tail page now needs to be moved forward.
989 * We need to reset the tail page, but without messing
990 * with possible erasing of data brought in by interrupts
991 * that have moved the tail page and are currently on it.
993 * We add a counter to the write field to denote this.
995 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
996 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
999 * Just make sure we have seen our old_write and synchronize
1000 * with any interrupts that come in.
1005 * If the tail page is still the same as what we think
1006 * it is, then it is up to us to update the tail
1009 if (tail_page
== cpu_buffer
->tail_page
) {
1010 /* Zero the write counter */
1011 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1012 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1015 * This will only succeed if an interrupt did
1016 * not come in and change it. In which case, we
1017 * do not want to modify it.
1019 * We add (void) to let the compiler know that we do not care
1020 * about the return value of these functions. We use the
1021 * cmpxchg to only update if an interrupt did not already
1022 * do it for us. If the cmpxchg fails, we don't care.
1024 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1025 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1028 * No need to worry about races with clearing out the commit.
1029 * it only can increment when a commit takes place. But that
1030 * only happens in the outer most nested commit.
1032 local_set(&next_page
->page
->commit
, 0);
1034 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
1035 tail_page
, next_page
);
1037 if (old_tail
== tail_page
)
1044 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1045 struct buffer_page
*bpage
)
1047 unsigned long val
= (unsigned long)bpage
;
1049 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1058 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1059 struct list_head
*list
)
1061 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1063 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1069 * rb_check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1072 * As a safety measure we check to make sure the data pages have not
1075 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1077 struct list_head
*head
= cpu_buffer
->pages
;
1078 struct buffer_page
*bpage
, *tmp
;
1080 /* Reset the head page if it exists */
1081 if (cpu_buffer
->head_page
)
1082 rb_set_head_page(cpu_buffer
);
1084 rb_head_page_deactivate(cpu_buffer
);
1086 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1088 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1091 if (rb_check_list(cpu_buffer
, head
))
1094 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1095 if (RB_WARN_ON(cpu_buffer
,
1096 bpage
->list
.next
->prev
!= &bpage
->list
))
1098 if (RB_WARN_ON(cpu_buffer
,
1099 bpage
->list
.prev
->next
!= &bpage
->list
))
1101 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1105 rb_head_page_activate(cpu_buffer
);
1110 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
1113 struct buffer_page
*bpage
, *tmp
;
1115 for (i
= 0; i
< nr_pages
; i
++) {
1118 * __GFP_NORETRY flag makes sure that the allocation fails
1119 * gracefully without invoking oom-killer and the system is
1122 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1123 GFP_KERNEL
| __GFP_NORETRY
,
1128 list_add(&bpage
->list
, pages
);
1130 page
= alloc_pages_node(cpu_to_node(cpu
),
1131 GFP_KERNEL
| __GFP_NORETRY
, 0);
1134 bpage
->page
= page_address(page
);
1135 rb_init_page(bpage
->page
);
1141 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1142 list_del_init(&bpage
->list
);
1143 free_buffer_page(bpage
);
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1156 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1160 * The ring buffer page list is a circular list that does not
1161 * start and end with a list head. All page list items point to
1164 cpu_buffer
->pages
= pages
.next
;
1167 cpu_buffer
->nr_pages
= nr_pages
;
1169 rb_check_pages(cpu_buffer
);
1174 static struct ring_buffer_per_cpu
*
1175 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1177 struct ring_buffer_per_cpu
*cpu_buffer
;
1178 struct buffer_page
*bpage
;
1182 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1183 GFP_KERNEL
, cpu_to_node(cpu
));
1187 cpu_buffer
->cpu
= cpu
;
1188 cpu_buffer
->buffer
= buffer
;
1189 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1190 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1191 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1192 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1193 init_completion(&cpu_buffer
->update_done
);
1194 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1195 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1197 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1198 GFP_KERNEL
, cpu_to_node(cpu
));
1200 goto fail_free_buffer
;
1202 rb_check_bpage(cpu_buffer
, bpage
);
1204 cpu_buffer
->reader_page
= bpage
;
1205 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1207 goto fail_free_reader
;
1208 bpage
->page
= page_address(page
);
1209 rb_init_page(bpage
->page
);
1211 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1212 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1214 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1216 goto fail_free_reader
;
1218 cpu_buffer
->head_page
1219 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1220 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1222 rb_head_page_activate(cpu_buffer
);
1227 free_buffer_page(cpu_buffer
->reader_page
);
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1236 struct list_head
*head
= cpu_buffer
->pages
;
1237 struct buffer_page
*bpage
, *tmp
;
1239 free_buffer_page(cpu_buffer
->reader_page
);
1241 rb_head_page_deactivate(cpu_buffer
);
1244 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1245 list_del_init(&bpage
->list
);
1246 free_buffer_page(bpage
);
1248 bpage
= list_entry(head
, struct buffer_page
, list
);
1249 free_buffer_page(bpage
);
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block
*self
,
1257 unsigned long action
, void *hcpu
);
1261 * __ring_buffer_alloc - allocate a new ring_buffer
1262 * @size: the size in bytes per cpu that is needed.
1263 * @flags: attributes to set for the ring buffer.
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1270 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1271 struct lock_class_key
*key
)
1273 struct ring_buffer
*buffer
;
1277 /* keep it in its own cache line */
1278 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1283 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1284 goto fail_free_buffer
;
1286 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1287 buffer
->flags
= flags
;
1288 buffer
->clock
= trace_clock_local
;
1289 buffer
->reader_lock_key
= key
;
1291 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1292 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1294 /* need at least two pages */
1299 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 * in early initcall, it will not be notified of secondary cpus.
1301 * In that off case, we need to allocate for all possible cpus.
1303 #ifdef CONFIG_HOTPLUG_CPU
1305 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1307 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1309 buffer
->cpus
= nr_cpu_ids
;
1311 bsize
= sizeof(void *) * nr_cpu_ids
;
1312 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1314 if (!buffer
->buffers
)
1315 goto fail_free_cpumask
;
1317 for_each_buffer_cpu(buffer
, cpu
) {
1318 buffer
->buffers
[cpu
] =
1319 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1320 if (!buffer
->buffers
[cpu
])
1321 goto fail_free_buffers
;
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1326 buffer
->cpu_notify
.priority
= 0;
1327 register_cpu_notifier(&buffer
->cpu_notify
);
1331 mutex_init(&buffer
->mutex
);
1336 for_each_buffer_cpu(buffer
, cpu
) {
1337 if (buffer
->buffers
[cpu
])
1338 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1340 kfree(buffer
->buffers
);
1343 free_cpumask_var(buffer
->cpumask
);
1350 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1353 * ring_buffer_free - free a ring buffer.
1354 * @buffer: the buffer to free.
1357 ring_buffer_free(struct ring_buffer
*buffer
)
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 unregister_cpu_notifier(&buffer
->cpu_notify
);
1367 for_each_buffer_cpu(buffer
, cpu
)
1368 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1372 kfree(buffer
->buffers
);
1373 free_cpumask_var(buffer
->cpumask
);
1377 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1379 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1382 buffer
->clock
= clock
;
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1387 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1389 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1392 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1394 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1398 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1400 struct list_head
*tail_page
, *to_remove
, *next_page
;
1401 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1402 struct buffer_page
*last_page
, *first_page
;
1403 unsigned int nr_removed
;
1404 unsigned long head_bit
;
1409 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1410 atomic_inc(&cpu_buffer
->record_disabled
);
1412 * We don't race with the readers since we have acquired the reader
1413 * lock. We also don't race with writers after disabling recording.
1414 * This makes it easy to figure out the first and the last page to be
1415 * removed from the list. We unlink all the pages in between including
1416 * the first and last pages. This is done in a busy loop so that we
1417 * lose the least number of traces.
1418 * The pages are freed after we restart recording and unlock readers.
1420 tail_page
= &cpu_buffer
->tail_page
->list
;
1423 * tail page might be on reader page, we remove the next page
1424 * from the ring buffer
1426 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1427 tail_page
= rb_list_head(tail_page
->next
);
1428 to_remove
= tail_page
;
1430 /* start of pages to remove */
1431 first_page
= list_entry(rb_list_head(to_remove
->next
),
1432 struct buffer_page
, list
);
1434 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1435 to_remove
= rb_list_head(to_remove
)->next
;
1436 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1439 next_page
= rb_list_head(to_remove
)->next
;
1442 * Now we remove all pages between tail_page and next_page.
1443 * Make sure that we have head_bit value preserved for the
1446 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1448 next_page
= rb_list_head(next_page
);
1449 next_page
->prev
= tail_page
;
1451 /* make sure pages points to a valid page in the ring buffer */
1452 cpu_buffer
->pages
= next_page
;
1454 /* update head page */
1456 cpu_buffer
->head_page
= list_entry(next_page
,
1457 struct buffer_page
, list
);
1460 * change read pointer to make sure any read iterators reset
1463 cpu_buffer
->read
= 0;
1465 /* pages are removed, resume tracing and then free the pages */
1466 atomic_dec(&cpu_buffer
->record_disabled
);
1467 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1469 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1471 /* last buffer page to remove */
1472 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1474 tmp_iter_page
= first_page
;
1477 to_remove_page
= tmp_iter_page
;
1478 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1480 /* update the counters */
1481 page_entries
= rb_page_entries(to_remove_page
);
1484 * If something was added to this page, it was full
1485 * since it is not the tail page. So we deduct the
1486 * bytes consumed in ring buffer from here.
1487 * Increment overrun to account for the lost events.
1489 local_add(page_entries
, &cpu_buffer
->overrun
);
1490 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1494 * We have already removed references to this list item, just
1495 * free up the buffer_page and its page
1497 free_buffer_page(to_remove_page
);
1500 } while (to_remove_page
!= last_page
);
1502 RB_WARN_ON(cpu_buffer
, nr_removed
);
1504 return nr_removed
== 0;
1508 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1510 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1511 int retries
, success
;
1513 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1515 * We are holding the reader lock, so the reader page won't be swapped
1516 * in the ring buffer. Now we are racing with the writer trying to
1517 * move head page and the tail page.
1518 * We are going to adapt the reader page update process where:
1519 * 1. We first splice the start and end of list of new pages between
1520 * the head page and its previous page.
1521 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 * start of new pages list.
1523 * 3. Finally, we update the head->prev to the end of new list.
1525 * We will try this process 10 times, to make sure that we don't keep
1531 struct list_head
*head_page
, *prev_page
, *r
;
1532 struct list_head
*last_page
, *first_page
;
1533 struct list_head
*head_page_with_bit
;
1535 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1538 prev_page
= head_page
->prev
;
1540 first_page
= pages
->next
;
1541 last_page
= pages
->prev
;
1543 head_page_with_bit
= (struct list_head
*)
1544 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1546 last_page
->next
= head_page_with_bit
;
1547 first_page
->prev
= prev_page
;
1549 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1551 if (r
== head_page_with_bit
) {
1553 * yay, we replaced the page pointer to our new list,
1554 * now, we just have to update to head page's prev
1555 * pointer to point to end of list
1557 head_page
->prev
= last_page
;
1564 INIT_LIST_HEAD(pages
);
1566 * If we weren't successful in adding in new pages, warn and stop
1569 RB_WARN_ON(cpu_buffer
, !success
);
1570 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1572 /* free pages if they weren't inserted */
1574 struct buffer_page
*bpage
, *tmp
;
1575 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1577 list_del_init(&bpage
->list
);
1578 free_buffer_page(bpage
);
1584 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1588 if (cpu_buffer
->nr_pages_to_update
> 0)
1589 success
= rb_insert_pages(cpu_buffer
);
1591 success
= rb_remove_pages(cpu_buffer
,
1592 -cpu_buffer
->nr_pages_to_update
);
1595 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1598 static void update_pages_handler(struct work_struct
*work
)
1600 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1601 struct ring_buffer_per_cpu
, update_pages_work
);
1602 rb_update_pages(cpu_buffer
);
1603 complete(&cpu_buffer
->update_done
);
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
1610 * @cpu_id: the cpu buffer to resize
1612 * Minimum size is 2 * BUF_PAGE_SIZE.
1614 * Returns 0 on success and < 0 on failure.
1616 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1619 struct ring_buffer_per_cpu
*cpu_buffer
;
1624 * Always succeed at resizing a non-existent buffer:
1629 /* Make sure the requested buffer exists */
1630 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1631 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1634 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1635 size
*= BUF_PAGE_SIZE
;
1637 /* we need a minimum of two pages */
1638 if (size
< BUF_PAGE_SIZE
* 2)
1639 size
= BUF_PAGE_SIZE
* 2;
1641 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1644 * Don't succeed if resizing is disabled, as a reader might be
1645 * manipulating the ring buffer and is expecting a sane state while
1648 if (atomic_read(&buffer
->resize_disabled
))
1651 /* prevent another thread from changing buffer sizes */
1652 mutex_lock(&buffer
->mutex
);
1654 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1655 /* calculate the pages to update */
1656 for_each_buffer_cpu(buffer
, cpu
) {
1657 cpu_buffer
= buffer
->buffers
[cpu
];
1659 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1660 cpu_buffer
->nr_pages
;
1662 * nothing more to do for removing pages or no update
1664 if (cpu_buffer
->nr_pages_to_update
<= 0)
1667 * to add pages, make sure all new pages can be
1668 * allocated without receiving ENOMEM
1670 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1671 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1672 &cpu_buffer
->new_pages
, cpu
)) {
1673 /* not enough memory for new pages */
1681 * Fire off all the required work handlers
1682 * We can't schedule on offline CPUs, but it's not necessary
1683 * since we can change their buffer sizes without any race.
1685 for_each_buffer_cpu(buffer
, cpu
) {
1686 cpu_buffer
= buffer
->buffers
[cpu
];
1687 if (!cpu_buffer
->nr_pages_to_update
)
1690 /* The update must run on the CPU that is being updated. */
1692 if (cpu
== smp_processor_id() || !cpu_online(cpu
)) {
1693 rb_update_pages(cpu_buffer
);
1694 cpu_buffer
->nr_pages_to_update
= 0;
1697 * Can not disable preemption for schedule_work_on()
1701 schedule_work_on(cpu
,
1702 &cpu_buffer
->update_pages_work
);
1708 /* wait for all the updates to complete */
1709 for_each_buffer_cpu(buffer
, cpu
) {
1710 cpu_buffer
= buffer
->buffers
[cpu
];
1711 if (!cpu_buffer
->nr_pages_to_update
)
1714 if (cpu_online(cpu
))
1715 wait_for_completion(&cpu_buffer
->update_done
);
1716 cpu_buffer
->nr_pages_to_update
= 0;
1721 /* Make sure this CPU has been intitialized */
1722 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1725 cpu_buffer
= buffer
->buffers
[cpu_id
];
1727 if (nr_pages
== cpu_buffer
->nr_pages
)
1730 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1731 cpu_buffer
->nr_pages
;
1733 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1734 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1735 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1736 &cpu_buffer
->new_pages
, cpu_id
)) {
1744 /* The update must run on the CPU that is being updated. */
1745 if (cpu_id
== smp_processor_id() || !cpu_online(cpu_id
))
1746 rb_update_pages(cpu_buffer
);
1749 * Can not disable preemption for schedule_work_on()
1753 schedule_work_on(cpu_id
,
1754 &cpu_buffer
->update_pages_work
);
1755 wait_for_completion(&cpu_buffer
->update_done
);
1760 cpu_buffer
->nr_pages_to_update
= 0;
1766 * The ring buffer resize can happen with the ring buffer
1767 * enabled, so that the update disturbs the tracing as little
1768 * as possible. But if the buffer is disabled, we do not need
1769 * to worry about that, and we can take the time to verify
1770 * that the buffer is not corrupt.
1772 if (atomic_read(&buffer
->record_disabled
)) {
1773 atomic_inc(&buffer
->record_disabled
);
1775 * Even though the buffer was disabled, we must make sure
1776 * that it is truly disabled before calling rb_check_pages.
1777 * There could have been a race between checking
1778 * record_disable and incrementing it.
1780 synchronize_sched();
1781 for_each_buffer_cpu(buffer
, cpu
) {
1782 cpu_buffer
= buffer
->buffers
[cpu
];
1783 rb_check_pages(cpu_buffer
);
1785 atomic_dec(&buffer
->record_disabled
);
1788 mutex_unlock(&buffer
->mutex
);
1792 for_each_buffer_cpu(buffer
, cpu
) {
1793 struct buffer_page
*bpage
, *tmp
;
1795 cpu_buffer
= buffer
->buffers
[cpu
];
1796 cpu_buffer
->nr_pages_to_update
= 0;
1798 if (list_empty(&cpu_buffer
->new_pages
))
1801 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1803 list_del_init(&bpage
->list
);
1804 free_buffer_page(bpage
);
1807 mutex_unlock(&buffer
->mutex
);
1810 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1812 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1814 mutex_lock(&buffer
->mutex
);
1816 buffer
->flags
|= RB_FL_OVERWRITE
;
1818 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1819 mutex_unlock(&buffer
->mutex
);
1821 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1823 static inline void *
1824 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1826 return bpage
->data
+ index
;
1829 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1831 return bpage
->page
->data
+ index
;
1834 static inline struct ring_buffer_event
*
1835 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1837 return __rb_page_index(cpu_buffer
->reader_page
,
1838 cpu_buffer
->reader_page
->read
);
1841 static inline struct ring_buffer_event
*
1842 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1844 return __rb_page_index(iter
->head_page
, iter
->head
);
1847 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1849 return local_read(&bpage
->page
->commit
);
1852 /* Size is determined by what has been committed */
1853 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1855 return rb_page_commit(bpage
);
1858 static inline unsigned
1859 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1861 return rb_page_commit(cpu_buffer
->commit_page
);
1864 static inline unsigned
1865 rb_event_index(struct ring_buffer_event
*event
)
1867 unsigned long addr
= (unsigned long)event
;
1869 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1873 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1874 struct ring_buffer_event
*event
)
1876 unsigned long addr
= (unsigned long)event
;
1877 unsigned long index
;
1879 index
= rb_event_index(event
);
1882 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1883 rb_commit_index(cpu_buffer
) == index
;
1887 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1889 unsigned long max_count
;
1892 * We only race with interrupts and NMIs on this CPU.
1893 * If we own the commit event, then we can commit
1894 * all others that interrupted us, since the interruptions
1895 * are in stack format (they finish before they come
1896 * back to us). This allows us to do a simple loop to
1897 * assign the commit to the tail.
1900 max_count
= cpu_buffer
->nr_pages
* 100;
1902 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1903 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1905 if (RB_WARN_ON(cpu_buffer
,
1906 rb_is_reader_page(cpu_buffer
->tail_page
)))
1908 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1909 rb_page_write(cpu_buffer
->commit_page
));
1910 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1911 cpu_buffer
->write_stamp
=
1912 cpu_buffer
->commit_page
->page
->time_stamp
;
1913 /* add barrier to keep gcc from optimizing too much */
1916 while (rb_commit_index(cpu_buffer
) !=
1917 rb_page_write(cpu_buffer
->commit_page
)) {
1919 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1920 rb_page_write(cpu_buffer
->commit_page
));
1921 RB_WARN_ON(cpu_buffer
,
1922 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1927 /* again, keep gcc from optimizing */
1931 * If an interrupt came in just after the first while loop
1932 * and pushed the tail page forward, we will be left with
1933 * a dangling commit that will never go forward.
1935 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1939 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1941 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1942 cpu_buffer
->reader_page
->read
= 0;
1945 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1947 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1950 * The iterator could be on the reader page (it starts there).
1951 * But the head could have moved, since the reader was
1952 * found. Check for this case and assign the iterator
1953 * to the head page instead of next.
1955 if (iter
->head_page
== cpu_buffer
->reader_page
)
1956 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1958 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1960 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1964 /* Slow path, do not inline */
1965 static noinline
struct ring_buffer_event
*
1966 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1968 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1970 /* Not the first event on the page? */
1971 if (rb_event_index(event
)) {
1972 event
->time_delta
= delta
& TS_MASK
;
1973 event
->array
[0] = delta
>> TS_SHIFT
;
1975 /* nope, just zero it */
1976 event
->time_delta
= 0;
1977 event
->array
[0] = 0;
1980 return skip_time_extend(event
);
1984 * rb_update_event - update event type and data
1985 * @event: the even to update
1986 * @type: the type of event
1987 * @length: the size of the event field in the ring buffer
1989 * Update the type and data fields of the event. The length
1990 * is the actual size that is written to the ring buffer,
1991 * and with this, we can determine what to place into the
1995 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1996 struct ring_buffer_event
*event
, unsigned length
,
1997 int add_timestamp
, u64 delta
)
1999 /* Only a commit updates the timestamp */
2000 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2004 * If we need to add a timestamp, then we
2005 * add it to the start of the resevered space.
2007 if (unlikely(add_timestamp
)) {
2008 event
= rb_add_time_stamp(event
, delta
);
2009 length
-= RB_LEN_TIME_EXTEND
;
2013 event
->time_delta
= delta
;
2014 length
-= RB_EVNT_HDR_SIZE
;
2015 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2016 event
->type_len
= 0;
2017 event
->array
[0] = length
;
2019 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2023 * rb_handle_head_page - writer hit the head page
2025 * Returns: +1 to retry page
2030 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
2031 struct buffer_page
*tail_page
,
2032 struct buffer_page
*next_page
)
2034 struct buffer_page
*new_head
;
2039 entries
= rb_page_entries(next_page
);
2042 * The hard part is here. We need to move the head
2043 * forward, and protect against both readers on
2044 * other CPUs and writers coming in via interrupts.
2046 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
2050 * type can be one of four:
2051 * NORMAL - an interrupt already moved it for us
2052 * HEAD - we are the first to get here.
2053 * UPDATE - we are the interrupt interrupting
2055 * MOVED - a reader on another CPU moved the next
2056 * pointer to its reader page. Give up
2063 * We changed the head to UPDATE, thus
2064 * it is our responsibility to update
2067 local_add(entries
, &cpu_buffer
->overrun
);
2068 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
2071 * The entries will be zeroed out when we move the
2075 /* still more to do */
2078 case RB_PAGE_UPDATE
:
2080 * This is an interrupt that interrupt the
2081 * previous update. Still more to do.
2084 case RB_PAGE_NORMAL
:
2086 * An interrupt came in before the update
2087 * and processed this for us.
2088 * Nothing left to do.
2093 * The reader is on another CPU and just did
2094 * a swap with our next_page.
2099 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2104 * Now that we are here, the old head pointer is
2105 * set to UPDATE. This will keep the reader from
2106 * swapping the head page with the reader page.
2107 * The reader (on another CPU) will spin till
2110 * We just need to protect against interrupts
2111 * doing the job. We will set the next pointer
2112 * to HEAD. After that, we set the old pointer
2113 * to NORMAL, but only if it was HEAD before.
2114 * otherwise we are an interrupt, and only
2115 * want the outer most commit to reset it.
2117 new_head
= next_page
;
2118 rb_inc_page(cpu_buffer
, &new_head
);
2120 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2124 * Valid returns are:
2125 * HEAD - an interrupt came in and already set it.
2126 * NORMAL - One of two things:
2127 * 1) We really set it.
2128 * 2) A bunch of interrupts came in and moved
2129 * the page forward again.
2133 case RB_PAGE_NORMAL
:
2137 RB_WARN_ON(cpu_buffer
, 1);
2142 * It is possible that an interrupt came in,
2143 * set the head up, then more interrupts came in
2144 * and moved it again. When we get back here,
2145 * the page would have been set to NORMAL but we
2146 * just set it back to HEAD.
2148 * How do you detect this? Well, if that happened
2149 * the tail page would have moved.
2151 if (ret
== RB_PAGE_NORMAL
) {
2153 * If the tail had moved passed next, then we need
2154 * to reset the pointer.
2156 if (cpu_buffer
->tail_page
!= tail_page
&&
2157 cpu_buffer
->tail_page
!= next_page
)
2158 rb_head_page_set_normal(cpu_buffer
, new_head
,
2164 * If this was the outer most commit (the one that
2165 * changed the original pointer from HEAD to UPDATE),
2166 * then it is up to us to reset it to NORMAL.
2168 if (type
== RB_PAGE_HEAD
) {
2169 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2172 if (RB_WARN_ON(cpu_buffer
,
2173 ret
!= RB_PAGE_UPDATE
))
2180 static unsigned rb_calculate_event_length(unsigned length
)
2182 struct ring_buffer_event event
; /* Used only for sizeof array */
2184 /* zero length can cause confusions */
2188 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2189 length
+= sizeof(event
.array
[0]);
2191 length
+= RB_EVNT_HDR_SIZE
;
2192 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2198 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2199 struct buffer_page
*tail_page
,
2200 unsigned long tail
, unsigned long length
)
2202 struct ring_buffer_event
*event
;
2205 * Only the event that crossed the page boundary
2206 * must fill the old tail_page with padding.
2208 if (tail
>= BUF_PAGE_SIZE
) {
2210 * If the page was filled, then we still need
2211 * to update the real_end. Reset it to zero
2212 * and the reader will ignore it.
2214 if (tail
== BUF_PAGE_SIZE
)
2215 tail_page
->real_end
= 0;
2217 local_sub(length
, &tail_page
->write
);
2221 event
= __rb_page_index(tail_page
, tail
);
2222 kmemcheck_annotate_bitfield(event
, bitfield
);
2224 /* account for padding bytes */
2225 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2228 * Save the original length to the meta data.
2229 * This will be used by the reader to add lost event
2232 tail_page
->real_end
= tail
;
2235 * If this event is bigger than the minimum size, then
2236 * we need to be careful that we don't subtract the
2237 * write counter enough to allow another writer to slip
2239 * We put in a discarded commit instead, to make sure
2240 * that this space is not used again.
2242 * If we are less than the minimum size, we don't need to
2245 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2246 /* No room for any events */
2248 /* Mark the rest of the page with padding */
2249 rb_event_set_padding(event
);
2251 /* Set the write back to the previous setting */
2252 local_sub(length
, &tail_page
->write
);
2256 /* Put in a discarded event */
2257 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2258 event
->type_len
= RINGBUF_TYPE_PADDING
;
2259 /* time delta must be non zero */
2260 event
->time_delta
= 1;
2262 /* Set write to end of buffer */
2263 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2264 local_sub(length
, &tail_page
->write
);
2268 * This is the slow path, force gcc not to inline it.
2270 static noinline
struct ring_buffer_event
*
2271 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2272 unsigned long length
, unsigned long tail
,
2273 struct buffer_page
*tail_page
, u64 ts
)
2275 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2276 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2277 struct buffer_page
*next_page
;
2280 next_page
= tail_page
;
2282 rb_inc_page(cpu_buffer
, &next_page
);
2285 * If for some reason, we had an interrupt storm that made
2286 * it all the way around the buffer, bail, and warn
2289 if (unlikely(next_page
== commit_page
)) {
2290 local_inc(&cpu_buffer
->commit_overrun
);
2295 * This is where the fun begins!
2297 * We are fighting against races between a reader that
2298 * could be on another CPU trying to swap its reader
2299 * page with the buffer head.
2301 * We are also fighting against interrupts coming in and
2302 * moving the head or tail on us as well.
2304 * If the next page is the head page then we have filled
2305 * the buffer, unless the commit page is still on the
2308 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2311 * If the commit is not on the reader page, then
2312 * move the header page.
2314 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2316 * If we are not in overwrite mode,
2317 * this is easy, just stop here.
2319 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2320 local_inc(&cpu_buffer
->dropped_events
);
2324 ret
= rb_handle_head_page(cpu_buffer
,
2333 * We need to be careful here too. The
2334 * commit page could still be on the reader
2335 * page. We could have a small buffer, and
2336 * have filled up the buffer with events
2337 * from interrupts and such, and wrapped.
2339 * Note, if the tail page is also the on the
2340 * reader_page, we let it move out.
2342 if (unlikely((cpu_buffer
->commit_page
!=
2343 cpu_buffer
->tail_page
) &&
2344 (cpu_buffer
->commit_page
==
2345 cpu_buffer
->reader_page
))) {
2346 local_inc(&cpu_buffer
->commit_overrun
);
2352 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2355 * Nested commits always have zero deltas, so
2356 * just reread the time stamp
2358 ts
= rb_time_stamp(buffer
);
2359 next_page
->page
->time_stamp
= ts
;
2364 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2366 /* fail and let the caller try again */
2367 return ERR_PTR(-EAGAIN
);
2371 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2376 static struct ring_buffer_event
*
2377 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2378 unsigned long length
, u64 ts
,
2379 u64 delta
, int add_timestamp
)
2381 struct buffer_page
*tail_page
;
2382 struct ring_buffer_event
*event
;
2383 unsigned long tail
, write
;
2386 * If the time delta since the last event is too big to
2387 * hold in the time field of the event, then we append a
2388 * TIME EXTEND event ahead of the data event.
2390 if (unlikely(add_timestamp
))
2391 length
+= RB_LEN_TIME_EXTEND
;
2393 tail_page
= cpu_buffer
->tail_page
;
2394 write
= local_add_return(length
, &tail_page
->write
);
2396 /* set write to only the index of the write */
2397 write
&= RB_WRITE_MASK
;
2398 tail
= write
- length
;
2400 /* See if we shot pass the end of this buffer page */
2401 if (unlikely(write
> BUF_PAGE_SIZE
))
2402 return rb_move_tail(cpu_buffer
, length
, tail
,
2405 /* We reserved something on the buffer */
2407 event
= __rb_page_index(tail_page
, tail
);
2408 kmemcheck_annotate_bitfield(event
, bitfield
);
2409 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2411 local_inc(&tail_page
->entries
);
2414 * If this is the first commit on the page, then update
2418 tail_page
->page
->time_stamp
= ts
;
2420 /* account for these added bytes */
2421 local_add(length
, &cpu_buffer
->entries_bytes
);
2427 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2428 struct ring_buffer_event
*event
)
2430 unsigned long new_index
, old_index
;
2431 struct buffer_page
*bpage
;
2432 unsigned long index
;
2435 new_index
= rb_event_index(event
);
2436 old_index
= new_index
+ rb_event_ts_length(event
);
2437 addr
= (unsigned long)event
;
2440 bpage
= cpu_buffer
->tail_page
;
2442 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2443 unsigned long write_mask
=
2444 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2445 unsigned long event_length
= rb_event_length(event
);
2447 * This is on the tail page. It is possible that
2448 * a write could come in and move the tail page
2449 * and write to the next page. That is fine
2450 * because we just shorten what is on this page.
2452 old_index
+= write_mask
;
2453 new_index
+= write_mask
;
2454 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2455 if (index
== old_index
) {
2456 /* update counters */
2457 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2462 /* could not discard */
2466 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2468 local_inc(&cpu_buffer
->committing
);
2469 local_inc(&cpu_buffer
->commits
);
2472 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2474 unsigned long commits
;
2476 if (RB_WARN_ON(cpu_buffer
,
2477 !local_read(&cpu_buffer
->committing
)))
2481 commits
= local_read(&cpu_buffer
->commits
);
2482 /* synchronize with interrupts */
2484 if (local_read(&cpu_buffer
->committing
) == 1)
2485 rb_set_commit_to_write(cpu_buffer
);
2487 local_dec(&cpu_buffer
->committing
);
2489 /* synchronize with interrupts */
2493 * Need to account for interrupts coming in between the
2494 * updating of the commit page and the clearing of the
2495 * committing counter.
2497 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2498 !local_read(&cpu_buffer
->committing
)) {
2499 local_inc(&cpu_buffer
->committing
);
2504 static struct ring_buffer_event
*
2505 rb_reserve_next_event(struct ring_buffer
*buffer
,
2506 struct ring_buffer_per_cpu
*cpu_buffer
,
2507 unsigned long length
)
2509 struct ring_buffer_event
*event
;
2515 rb_start_commit(cpu_buffer
);
2517 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2519 * Due to the ability to swap a cpu buffer from a buffer
2520 * it is possible it was swapped before we committed.
2521 * (committing stops a swap). We check for it here and
2522 * if it happened, we have to fail the write.
2525 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2526 local_dec(&cpu_buffer
->committing
);
2527 local_dec(&cpu_buffer
->commits
);
2532 length
= rb_calculate_event_length(length
);
2538 * We allow for interrupts to reenter here and do a trace.
2539 * If one does, it will cause this original code to loop
2540 * back here. Even with heavy interrupts happening, this
2541 * should only happen a few times in a row. If this happens
2542 * 1000 times in a row, there must be either an interrupt
2543 * storm or we have something buggy.
2546 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2549 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2550 diff
= ts
- cpu_buffer
->write_stamp
;
2552 /* make sure this diff is calculated here */
2555 /* Did the write stamp get updated already? */
2556 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2558 if (unlikely(test_time_stamp(delta
))) {
2559 int local_clock_stable
= 1;
2560 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2561 local_clock_stable
= sched_clock_stable();
2563 WARN_ONCE(delta
> (1ULL << 59),
2564 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2565 (unsigned long long)delta
,
2566 (unsigned long long)ts
,
2567 (unsigned long long)cpu_buffer
->write_stamp
,
2568 local_clock_stable
? "" :
2569 "If you just came from a suspend/resume,\n"
2570 "please switch to the trace global clock:\n"
2571 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2576 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2577 delta
, add_timestamp
);
2578 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2587 rb_end_commit(cpu_buffer
);
2591 #ifdef CONFIG_TRACING
2594 * The lock and unlock are done within a preempt disable section.
2595 * The current_context per_cpu variable can only be modified
2596 * by the current task between lock and unlock. But it can
2597 * be modified more than once via an interrupt. To pass this
2598 * information from the lock to the unlock without having to
2599 * access the 'in_interrupt()' functions again (which do show
2600 * a bit of overhead in something as critical as function tracing,
2601 * we use a bitmask trick.
2603 * bit 0 = NMI context
2604 * bit 1 = IRQ context
2605 * bit 2 = SoftIRQ context
2606 * bit 3 = normal context.
2608 * This works because this is the order of contexts that can
2609 * preempt other contexts. A SoftIRQ never preempts an IRQ
2612 * When the context is determined, the corresponding bit is
2613 * checked and set (if it was set, then a recursion of that context
2616 * On unlock, we need to clear this bit. To do so, just subtract
2617 * 1 from the current_context and AND it to itself.
2621 * 101 & 100 = 100 (clearing bit zero)
2624 * 1010 & 1001 = 1000 (clearing bit 1)
2626 * The least significant bit can be cleared this way, and it
2627 * just so happens that it is the same bit corresponding to
2628 * the current context.
2630 static DEFINE_PER_CPU(unsigned int, current_context
);
2632 static __always_inline
int trace_recursive_lock(void)
2634 unsigned int val
= this_cpu_read(current_context
);
2637 if (in_interrupt()) {
2647 if (unlikely(val
& (1 << bit
)))
2651 this_cpu_write(current_context
, val
);
2656 static __always_inline
void trace_recursive_unlock(void)
2658 unsigned int val
= this_cpu_read(current_context
);
2661 val
&= this_cpu_read(current_context
);
2662 this_cpu_write(current_context
, val
);
2667 #define trace_recursive_lock() (0)
2668 #define trace_recursive_unlock() do { } while (0)
2673 * ring_buffer_lock_reserve - reserve a part of the buffer
2674 * @buffer: the ring buffer to reserve from
2675 * @length: the length of the data to reserve (excluding event header)
2677 * Returns a reseverd event on the ring buffer to copy directly to.
2678 * The user of this interface will need to get the body to write into
2679 * and can use the ring_buffer_event_data() interface.
2681 * The length is the length of the data needed, not the event length
2682 * which also includes the event header.
2684 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2685 * If NULL is returned, then nothing has been allocated or locked.
2687 struct ring_buffer_event
*
2688 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2690 struct ring_buffer_per_cpu
*cpu_buffer
;
2691 struct ring_buffer_event
*event
;
2694 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2697 /* If we are tracing schedule, we don't want to recurse */
2698 preempt_disable_notrace();
2700 if (atomic_read(&buffer
->record_disabled
))
2703 if (trace_recursive_lock())
2706 cpu
= raw_smp_processor_id();
2708 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2711 cpu_buffer
= buffer
->buffers
[cpu
];
2713 if (atomic_read(&cpu_buffer
->record_disabled
))
2716 if (length
> BUF_MAX_DATA_SIZE
)
2719 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2726 trace_recursive_unlock();
2729 preempt_enable_notrace();
2732 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2735 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2736 struct ring_buffer_event
*event
)
2741 * The event first in the commit queue updates the
2744 if (rb_event_is_commit(cpu_buffer
, event
)) {
2746 * A commit event that is first on a page
2747 * updates the write timestamp with the page stamp
2749 if (!rb_event_index(event
))
2750 cpu_buffer
->write_stamp
=
2751 cpu_buffer
->commit_page
->page
->time_stamp
;
2752 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2753 delta
= event
->array
[0];
2755 delta
+= event
->time_delta
;
2756 cpu_buffer
->write_stamp
+= delta
;
2758 cpu_buffer
->write_stamp
+= event
->time_delta
;
2762 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2763 struct ring_buffer_event
*event
)
2765 local_inc(&cpu_buffer
->entries
);
2766 rb_update_write_stamp(cpu_buffer
, event
);
2767 rb_end_commit(cpu_buffer
);
2770 static __always_inline
void
2771 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2773 if (buffer
->irq_work
.waiters_pending
) {
2774 buffer
->irq_work
.waiters_pending
= false;
2775 /* irq_work_queue() supplies it's own memory barriers */
2776 irq_work_queue(&buffer
->irq_work
.work
);
2779 if (cpu_buffer
->irq_work
.waiters_pending
) {
2780 cpu_buffer
->irq_work
.waiters_pending
= false;
2781 /* irq_work_queue() supplies it's own memory barriers */
2782 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2787 * ring_buffer_unlock_commit - commit a reserved
2788 * @buffer: The buffer to commit to
2789 * @event: The event pointer to commit.
2791 * This commits the data to the ring buffer, and releases any locks held.
2793 * Must be paired with ring_buffer_lock_reserve.
2795 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2796 struct ring_buffer_event
*event
)
2798 struct ring_buffer_per_cpu
*cpu_buffer
;
2799 int cpu
= raw_smp_processor_id();
2801 cpu_buffer
= buffer
->buffers
[cpu
];
2803 rb_commit(cpu_buffer
, event
);
2805 rb_wakeups(buffer
, cpu_buffer
);
2807 trace_recursive_unlock();
2809 preempt_enable_notrace();
2813 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2815 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2817 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2818 event
= skip_time_extend(event
);
2820 /* array[0] holds the actual length for the discarded event */
2821 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2822 event
->type_len
= RINGBUF_TYPE_PADDING
;
2823 /* time delta must be non zero */
2824 if (!event
->time_delta
)
2825 event
->time_delta
= 1;
2829 * Decrement the entries to the page that an event is on.
2830 * The event does not even need to exist, only the pointer
2831 * to the page it is on. This may only be called before the commit
2835 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2836 struct ring_buffer_event
*event
)
2838 unsigned long addr
= (unsigned long)event
;
2839 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2840 struct buffer_page
*start
;
2844 /* Do the likely case first */
2845 if (likely(bpage
->page
== (void *)addr
)) {
2846 local_dec(&bpage
->entries
);
2851 * Because the commit page may be on the reader page we
2852 * start with the next page and check the end loop there.
2854 rb_inc_page(cpu_buffer
, &bpage
);
2857 if (bpage
->page
== (void *)addr
) {
2858 local_dec(&bpage
->entries
);
2861 rb_inc_page(cpu_buffer
, &bpage
);
2862 } while (bpage
!= start
);
2864 /* commit not part of this buffer?? */
2865 RB_WARN_ON(cpu_buffer
, 1);
2869 * ring_buffer_commit_discard - discard an event that has not been committed
2870 * @buffer: the ring buffer
2871 * @event: non committed event to discard
2873 * Sometimes an event that is in the ring buffer needs to be ignored.
2874 * This function lets the user discard an event in the ring buffer
2875 * and then that event will not be read later.
2877 * This function only works if it is called before the the item has been
2878 * committed. It will try to free the event from the ring buffer
2879 * if another event has not been added behind it.
2881 * If another event has been added behind it, it will set the event
2882 * up as discarded, and perform the commit.
2884 * If this function is called, do not call ring_buffer_unlock_commit on
2887 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2888 struct ring_buffer_event
*event
)
2890 struct ring_buffer_per_cpu
*cpu_buffer
;
2893 /* The event is discarded regardless */
2894 rb_event_discard(event
);
2896 cpu
= smp_processor_id();
2897 cpu_buffer
= buffer
->buffers
[cpu
];
2900 * This must only be called if the event has not been
2901 * committed yet. Thus we can assume that preemption
2902 * is still disabled.
2904 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2906 rb_decrement_entry(cpu_buffer
, event
);
2907 if (rb_try_to_discard(cpu_buffer
, event
))
2911 * The commit is still visible by the reader, so we
2912 * must still update the timestamp.
2914 rb_update_write_stamp(cpu_buffer
, event
);
2916 rb_end_commit(cpu_buffer
);
2918 trace_recursive_unlock();
2920 preempt_enable_notrace();
2923 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2926 * ring_buffer_write - write data to the buffer without reserving
2927 * @buffer: The ring buffer to write to.
2928 * @length: The length of the data being written (excluding the event header)
2929 * @data: The data to write to the buffer.
2931 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2932 * one function. If you already have the data to write to the buffer, it
2933 * may be easier to simply call this function.
2935 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2936 * and not the length of the event which would hold the header.
2938 int ring_buffer_write(struct ring_buffer
*buffer
,
2939 unsigned long length
,
2942 struct ring_buffer_per_cpu
*cpu_buffer
;
2943 struct ring_buffer_event
*event
;
2948 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2951 preempt_disable_notrace();
2953 if (atomic_read(&buffer
->record_disabled
))
2956 cpu
= raw_smp_processor_id();
2958 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2961 cpu_buffer
= buffer
->buffers
[cpu
];
2963 if (atomic_read(&cpu_buffer
->record_disabled
))
2966 if (length
> BUF_MAX_DATA_SIZE
)
2969 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2973 body
= rb_event_data(event
);
2975 memcpy(body
, data
, length
);
2977 rb_commit(cpu_buffer
, event
);
2979 rb_wakeups(buffer
, cpu_buffer
);
2983 preempt_enable_notrace();
2987 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2989 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2991 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2992 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2993 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2995 /* In case of error, head will be NULL */
2996 if (unlikely(!head
))
2999 return reader
->read
== rb_page_commit(reader
) &&
3000 (commit
== reader
||
3002 head
->read
== rb_page_commit(commit
)));
3006 * ring_buffer_record_disable - stop all writes into the buffer
3007 * @buffer: The ring buffer to stop writes to.
3009 * This prevents all writes to the buffer. Any attempt to write
3010 * to the buffer after this will fail and return NULL.
3012 * The caller should call synchronize_sched() after this.
3014 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3016 atomic_inc(&buffer
->record_disabled
);
3018 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3021 * ring_buffer_record_enable - enable writes to the buffer
3022 * @buffer: The ring buffer to enable writes
3024 * Note, multiple disables will need the same number of enables
3025 * to truly enable the writing (much like preempt_disable).
3027 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3029 atomic_dec(&buffer
->record_disabled
);
3031 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3034 * ring_buffer_record_off - stop all writes into the buffer
3035 * @buffer: The ring buffer to stop writes to.
3037 * This prevents all writes to the buffer. Any attempt to write
3038 * to the buffer after this will fail and return NULL.
3040 * This is different than ring_buffer_record_disable() as
3041 * it works like an on/off switch, where as the disable() version
3042 * must be paired with a enable().
3044 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3047 unsigned int new_rd
;
3050 rd
= atomic_read(&buffer
->record_disabled
);
3051 new_rd
= rd
| RB_BUFFER_OFF
;
3052 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3054 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3057 * ring_buffer_record_on - restart writes into the buffer
3058 * @buffer: The ring buffer to start writes to.
3060 * This enables all writes to the buffer that was disabled by
3061 * ring_buffer_record_off().
3063 * This is different than ring_buffer_record_enable() as
3064 * it works like an on/off switch, where as the enable() version
3065 * must be paired with a disable().
3067 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3070 unsigned int new_rd
;
3073 rd
= atomic_read(&buffer
->record_disabled
);
3074 new_rd
= rd
& ~RB_BUFFER_OFF
;
3075 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3077 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3080 * ring_buffer_record_is_on - return true if the ring buffer can write
3081 * @buffer: The ring buffer to see if write is enabled
3083 * Returns true if the ring buffer is in a state that it accepts writes.
3085 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3087 return !atomic_read(&buffer
->record_disabled
);
3091 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3092 * @buffer: The ring buffer to stop writes to.
3093 * @cpu: The CPU buffer to stop
3095 * This prevents all writes to the buffer. Any attempt to write
3096 * to the buffer after this will fail and return NULL.
3098 * The caller should call synchronize_sched() after this.
3100 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3102 struct ring_buffer_per_cpu
*cpu_buffer
;
3104 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3107 cpu_buffer
= buffer
->buffers
[cpu
];
3108 atomic_inc(&cpu_buffer
->record_disabled
);
3110 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3113 * ring_buffer_record_enable_cpu - enable writes to the buffer
3114 * @buffer: The ring buffer to enable writes
3115 * @cpu: The CPU to enable.
3117 * Note, multiple disables will need the same number of enables
3118 * to truly enable the writing (much like preempt_disable).
3120 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3122 struct ring_buffer_per_cpu
*cpu_buffer
;
3124 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3127 cpu_buffer
= buffer
->buffers
[cpu
];
3128 atomic_dec(&cpu_buffer
->record_disabled
);
3130 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3133 * The total entries in the ring buffer is the running counter
3134 * of entries entered into the ring buffer, minus the sum of
3135 * the entries read from the ring buffer and the number of
3136 * entries that were overwritten.
3138 static inline unsigned long
3139 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3141 return local_read(&cpu_buffer
->entries
) -
3142 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3146 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3147 * @buffer: The ring buffer
3148 * @cpu: The per CPU buffer to read from.
3150 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3152 unsigned long flags
;
3153 struct ring_buffer_per_cpu
*cpu_buffer
;
3154 struct buffer_page
*bpage
;
3157 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3160 cpu_buffer
= buffer
->buffers
[cpu
];
3161 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3163 * if the tail is on reader_page, oldest time stamp is on the reader
3166 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3167 bpage
= cpu_buffer
->reader_page
;
3169 bpage
= rb_set_head_page(cpu_buffer
);
3171 ret
= bpage
->page
->time_stamp
;
3172 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3176 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3179 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3180 * @buffer: The ring buffer
3181 * @cpu: The per CPU buffer to read from.
3183 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3185 struct ring_buffer_per_cpu
*cpu_buffer
;
3188 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3191 cpu_buffer
= buffer
->buffers
[cpu
];
3192 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3196 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3199 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3200 * @buffer: The ring buffer
3201 * @cpu: The per CPU buffer to get the entries from.
3203 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3205 struct ring_buffer_per_cpu
*cpu_buffer
;
3207 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3210 cpu_buffer
= buffer
->buffers
[cpu
];
3212 return rb_num_of_entries(cpu_buffer
);
3214 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3217 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3218 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3219 * @buffer: The ring buffer
3220 * @cpu: The per CPU buffer to get the number of overruns from
3222 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3224 struct ring_buffer_per_cpu
*cpu_buffer
;
3227 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3230 cpu_buffer
= buffer
->buffers
[cpu
];
3231 ret
= local_read(&cpu_buffer
->overrun
);
3235 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3238 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3239 * commits failing due to the buffer wrapping around while there are uncommitted
3240 * events, such as during an interrupt storm.
3241 * @buffer: The ring buffer
3242 * @cpu: The per CPU buffer to get the number of overruns from
3245 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3247 struct ring_buffer_per_cpu
*cpu_buffer
;
3250 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3253 cpu_buffer
= buffer
->buffers
[cpu
];
3254 ret
= local_read(&cpu_buffer
->commit_overrun
);
3258 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3261 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3262 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3263 * @buffer: The ring buffer
3264 * @cpu: The per CPU buffer to get the number of overruns from
3267 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3269 struct ring_buffer_per_cpu
*cpu_buffer
;
3272 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3275 cpu_buffer
= buffer
->buffers
[cpu
];
3276 ret
= local_read(&cpu_buffer
->dropped_events
);
3280 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3283 * ring_buffer_read_events_cpu - get the number of events successfully read
3284 * @buffer: The ring buffer
3285 * @cpu: The per CPU buffer to get the number of events read
3288 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3290 struct ring_buffer_per_cpu
*cpu_buffer
;
3292 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3295 cpu_buffer
= buffer
->buffers
[cpu
];
3296 return cpu_buffer
->read
;
3298 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3301 * ring_buffer_entries - get the number of entries in a buffer
3302 * @buffer: The ring buffer
3304 * Returns the total number of entries in the ring buffer
3307 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3309 struct ring_buffer_per_cpu
*cpu_buffer
;
3310 unsigned long entries
= 0;
3313 /* if you care about this being correct, lock the buffer */
3314 for_each_buffer_cpu(buffer
, cpu
) {
3315 cpu_buffer
= buffer
->buffers
[cpu
];
3316 entries
+= rb_num_of_entries(cpu_buffer
);
3321 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3324 * ring_buffer_overruns - get the number of overruns in buffer
3325 * @buffer: The ring buffer
3327 * Returns the total number of overruns in the ring buffer
3330 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3332 struct ring_buffer_per_cpu
*cpu_buffer
;
3333 unsigned long overruns
= 0;
3336 /* if you care about this being correct, lock the buffer */
3337 for_each_buffer_cpu(buffer
, cpu
) {
3338 cpu_buffer
= buffer
->buffers
[cpu
];
3339 overruns
+= local_read(&cpu_buffer
->overrun
);
3344 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3346 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3348 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3350 /* Iterator usage is expected to have record disabled */
3351 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
3352 iter
->head_page
= rb_set_head_page(cpu_buffer
);
3353 if (unlikely(!iter
->head_page
))
3355 iter
->head
= iter
->head_page
->read
;
3357 iter
->head_page
= cpu_buffer
->reader_page
;
3358 iter
->head
= cpu_buffer
->reader_page
->read
;
3361 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3363 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3364 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
3365 iter
->cache_read
= cpu_buffer
->read
;
3369 * ring_buffer_iter_reset - reset an iterator
3370 * @iter: The iterator to reset
3372 * Resets the iterator, so that it will start from the beginning
3375 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3377 struct ring_buffer_per_cpu
*cpu_buffer
;
3378 unsigned long flags
;
3383 cpu_buffer
= iter
->cpu_buffer
;
3385 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3386 rb_iter_reset(iter
);
3387 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3389 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3392 * ring_buffer_iter_empty - check if an iterator has no more to read
3393 * @iter: The iterator to check
3395 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3397 struct ring_buffer_per_cpu
*cpu_buffer
;
3399 cpu_buffer
= iter
->cpu_buffer
;
3401 return iter
->head_page
== cpu_buffer
->commit_page
&&
3402 iter
->head
== rb_commit_index(cpu_buffer
);
3404 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3407 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3408 struct ring_buffer_event
*event
)
3412 switch (event
->type_len
) {
3413 case RINGBUF_TYPE_PADDING
:
3416 case RINGBUF_TYPE_TIME_EXTEND
:
3417 delta
= event
->array
[0];
3419 delta
+= event
->time_delta
;
3420 cpu_buffer
->read_stamp
+= delta
;
3423 case RINGBUF_TYPE_TIME_STAMP
:
3424 /* FIXME: not implemented */
3427 case RINGBUF_TYPE_DATA
:
3428 cpu_buffer
->read_stamp
+= event
->time_delta
;
3438 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3439 struct ring_buffer_event
*event
)
3443 switch (event
->type_len
) {
3444 case RINGBUF_TYPE_PADDING
:
3447 case RINGBUF_TYPE_TIME_EXTEND
:
3448 delta
= event
->array
[0];
3450 delta
+= event
->time_delta
;
3451 iter
->read_stamp
+= delta
;
3454 case RINGBUF_TYPE_TIME_STAMP
:
3455 /* FIXME: not implemented */
3458 case RINGBUF_TYPE_DATA
:
3459 iter
->read_stamp
+= event
->time_delta
;
3468 static struct buffer_page
*
3469 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3471 struct buffer_page
*reader
= NULL
;
3472 unsigned long overwrite
;
3473 unsigned long flags
;
3477 local_irq_save(flags
);
3478 arch_spin_lock(&cpu_buffer
->lock
);
3482 * This should normally only loop twice. But because the
3483 * start of the reader inserts an empty page, it causes
3484 * a case where we will loop three times. There should be no
3485 * reason to loop four times (that I know of).
3487 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3492 reader
= cpu_buffer
->reader_page
;
3494 /* If there's more to read, return this page */
3495 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3498 /* Never should we have an index greater than the size */
3499 if (RB_WARN_ON(cpu_buffer
,
3500 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3503 /* check if we caught up to the tail */
3505 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3508 /* Don't bother swapping if the ring buffer is empty */
3509 if (rb_num_of_entries(cpu_buffer
) == 0)
3513 * Reset the reader page to size zero.
3515 local_set(&cpu_buffer
->reader_page
->write
, 0);
3516 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3517 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3518 cpu_buffer
->reader_page
->real_end
= 0;
3522 * Splice the empty reader page into the list around the head.
3524 reader
= rb_set_head_page(cpu_buffer
);
3527 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3528 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3531 * cpu_buffer->pages just needs to point to the buffer, it
3532 * has no specific buffer page to point to. Lets move it out
3533 * of our way so we don't accidentally swap it.
3535 cpu_buffer
->pages
= reader
->list
.prev
;
3537 /* The reader page will be pointing to the new head */
3538 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3541 * We want to make sure we read the overruns after we set up our
3542 * pointers to the next object. The writer side does a
3543 * cmpxchg to cross pages which acts as the mb on the writer
3544 * side. Note, the reader will constantly fail the swap
3545 * while the writer is updating the pointers, so this
3546 * guarantees that the overwrite recorded here is the one we
3547 * want to compare with the last_overrun.
3550 overwrite
= local_read(&(cpu_buffer
->overrun
));
3553 * Here's the tricky part.
3555 * We need to move the pointer past the header page.
3556 * But we can only do that if a writer is not currently
3557 * moving it. The page before the header page has the
3558 * flag bit '1' set if it is pointing to the page we want.
3559 * but if the writer is in the process of moving it
3560 * than it will be '2' or already moved '0'.
3563 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3566 * If we did not convert it, then we must try again.
3572 * Yeah! We succeeded in replacing the page.
3574 * Now make the new head point back to the reader page.
3576 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3577 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3579 /* Finally update the reader page to the new head */
3580 cpu_buffer
->reader_page
= reader
;
3581 rb_reset_reader_page(cpu_buffer
);
3583 if (overwrite
!= cpu_buffer
->last_overrun
) {
3584 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3585 cpu_buffer
->last_overrun
= overwrite
;
3591 arch_spin_unlock(&cpu_buffer
->lock
);
3592 local_irq_restore(flags
);
3597 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3599 struct ring_buffer_event
*event
;
3600 struct buffer_page
*reader
;
3603 reader
= rb_get_reader_page(cpu_buffer
);
3605 /* This function should not be called when buffer is empty */
3606 if (RB_WARN_ON(cpu_buffer
, !reader
))
3609 event
= rb_reader_event(cpu_buffer
);
3611 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3614 rb_update_read_stamp(cpu_buffer
, event
);
3616 length
= rb_event_length(event
);
3617 cpu_buffer
->reader_page
->read
+= length
;
3620 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3622 struct ring_buffer_per_cpu
*cpu_buffer
;
3623 struct ring_buffer_event
*event
;
3626 cpu_buffer
= iter
->cpu_buffer
;
3629 * Check if we are at the end of the buffer.
3631 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3632 /* discarded commits can make the page empty */
3633 if (iter
->head_page
== cpu_buffer
->commit_page
)
3639 event
= rb_iter_head_event(iter
);
3641 length
= rb_event_length(event
);
3644 * This should not be called to advance the header if we are
3645 * at the tail of the buffer.
3647 if (RB_WARN_ON(cpu_buffer
,
3648 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3649 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3652 rb_update_iter_read_stamp(iter
, event
);
3654 iter
->head
+= length
;
3656 /* check for end of page padding */
3657 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3658 (iter
->head_page
!= cpu_buffer
->commit_page
))
3662 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3664 return cpu_buffer
->lost_events
;
3667 static struct ring_buffer_event
*
3668 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3669 unsigned long *lost_events
)
3671 struct ring_buffer_event
*event
;
3672 struct buffer_page
*reader
;
3677 * We repeat when a time extend is encountered.
3678 * Since the time extend is always attached to a data event,
3679 * we should never loop more than once.
3680 * (We never hit the following condition more than twice).
3682 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3685 reader
= rb_get_reader_page(cpu_buffer
);
3689 event
= rb_reader_event(cpu_buffer
);
3691 switch (event
->type_len
) {
3692 case RINGBUF_TYPE_PADDING
:
3693 if (rb_null_event(event
))
3694 RB_WARN_ON(cpu_buffer
, 1);
3696 * Because the writer could be discarding every
3697 * event it creates (which would probably be bad)
3698 * if we were to go back to "again" then we may never
3699 * catch up, and will trigger the warn on, or lock
3700 * the box. Return the padding, and we will release
3701 * the current locks, and try again.
3705 case RINGBUF_TYPE_TIME_EXTEND
:
3706 /* Internal data, OK to advance */
3707 rb_advance_reader(cpu_buffer
);
3710 case RINGBUF_TYPE_TIME_STAMP
:
3711 /* FIXME: not implemented */
3712 rb_advance_reader(cpu_buffer
);
3715 case RINGBUF_TYPE_DATA
:
3717 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3718 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3719 cpu_buffer
->cpu
, ts
);
3722 *lost_events
= rb_lost_events(cpu_buffer
);
3731 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3733 static struct ring_buffer_event
*
3734 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3736 struct ring_buffer
*buffer
;
3737 struct ring_buffer_per_cpu
*cpu_buffer
;
3738 struct ring_buffer_event
*event
;
3741 cpu_buffer
= iter
->cpu_buffer
;
3742 buffer
= cpu_buffer
->buffer
;
3745 * Check if someone performed a consuming read to
3746 * the buffer. A consuming read invalidates the iterator
3747 * and we need to reset the iterator in this case.
3749 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3750 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3751 rb_iter_reset(iter
);
3754 if (ring_buffer_iter_empty(iter
))
3758 * We repeat when a time extend is encountered.
3759 * Since the time extend is always attached to a data event,
3760 * we should never loop more than once.
3761 * (We never hit the following condition more than twice).
3763 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3766 if (rb_per_cpu_empty(cpu_buffer
))
3769 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3774 event
= rb_iter_head_event(iter
);
3776 switch (event
->type_len
) {
3777 case RINGBUF_TYPE_PADDING
:
3778 if (rb_null_event(event
)) {
3782 rb_advance_iter(iter
);
3785 case RINGBUF_TYPE_TIME_EXTEND
:
3786 /* Internal data, OK to advance */
3787 rb_advance_iter(iter
);
3790 case RINGBUF_TYPE_TIME_STAMP
:
3791 /* FIXME: not implemented */
3792 rb_advance_iter(iter
);
3795 case RINGBUF_TYPE_DATA
:
3797 *ts
= iter
->read_stamp
+ event
->time_delta
;
3798 ring_buffer_normalize_time_stamp(buffer
,
3799 cpu_buffer
->cpu
, ts
);
3809 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3811 static inline int rb_ok_to_lock(void)
3814 * If an NMI die dumps out the content of the ring buffer
3815 * do not grab locks. We also permanently disable the ring
3816 * buffer too. A one time deal is all you get from reading
3817 * the ring buffer from an NMI.
3819 if (likely(!in_nmi()))
3822 tracing_off_permanent();
3827 * ring_buffer_peek - peek at the next event to be read
3828 * @buffer: The ring buffer to read
3829 * @cpu: The cpu to peak at
3830 * @ts: The timestamp counter of this event.
3831 * @lost_events: a variable to store if events were lost (may be NULL)
3833 * This will return the event that will be read next, but does
3834 * not consume the data.
3836 struct ring_buffer_event
*
3837 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3838 unsigned long *lost_events
)
3840 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3841 struct ring_buffer_event
*event
;
3842 unsigned long flags
;
3845 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3848 dolock
= rb_ok_to_lock();
3850 local_irq_save(flags
);
3852 raw_spin_lock(&cpu_buffer
->reader_lock
);
3853 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3854 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3855 rb_advance_reader(cpu_buffer
);
3857 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3858 local_irq_restore(flags
);
3860 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3867 * ring_buffer_iter_peek - peek at the next event to be read
3868 * @iter: The ring buffer iterator
3869 * @ts: The timestamp counter of this event.
3871 * This will return the event that will be read next, but does
3872 * not increment the iterator.
3874 struct ring_buffer_event
*
3875 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3877 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3878 struct ring_buffer_event
*event
;
3879 unsigned long flags
;
3882 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3883 event
= rb_iter_peek(iter
, ts
);
3884 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3886 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3893 * ring_buffer_consume - return an event and consume it
3894 * @buffer: The ring buffer to get the next event from
3895 * @cpu: the cpu to read the buffer from
3896 * @ts: a variable to store the timestamp (may be NULL)
3897 * @lost_events: a variable to store if events were lost (may be NULL)
3899 * Returns the next event in the ring buffer, and that event is consumed.
3900 * Meaning, that sequential reads will keep returning a different event,
3901 * and eventually empty the ring buffer if the producer is slower.
3903 struct ring_buffer_event
*
3904 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3905 unsigned long *lost_events
)
3907 struct ring_buffer_per_cpu
*cpu_buffer
;
3908 struct ring_buffer_event
*event
= NULL
;
3909 unsigned long flags
;
3912 dolock
= rb_ok_to_lock();
3915 /* might be called in atomic */
3918 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3921 cpu_buffer
= buffer
->buffers
[cpu
];
3922 local_irq_save(flags
);
3924 raw_spin_lock(&cpu_buffer
->reader_lock
);
3926 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3928 cpu_buffer
->lost_events
= 0;
3929 rb_advance_reader(cpu_buffer
);
3933 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3934 local_irq_restore(flags
);
3939 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3944 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3947 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3948 * @buffer: The ring buffer to read from
3949 * @cpu: The cpu buffer to iterate over
3951 * This performs the initial preparations necessary to iterate
3952 * through the buffer. Memory is allocated, buffer recording
3953 * is disabled, and the iterator pointer is returned to the caller.
3955 * Disabling buffer recordng prevents the reading from being
3956 * corrupted. This is not a consuming read, so a producer is not
3959 * After a sequence of ring_buffer_read_prepare calls, the user is
3960 * expected to make at least one call to ring_buffer_read_prepare_sync.
3961 * Afterwards, ring_buffer_read_start is invoked to get things going
3964 * This overall must be paired with ring_buffer_read_finish.
3966 struct ring_buffer_iter
*
3967 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3969 struct ring_buffer_per_cpu
*cpu_buffer
;
3970 struct ring_buffer_iter
*iter
;
3972 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3975 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3979 cpu_buffer
= buffer
->buffers
[cpu
];
3981 iter
->cpu_buffer
= cpu_buffer
;
3983 atomic_inc(&buffer
->resize_disabled
);
3984 atomic_inc(&cpu_buffer
->record_disabled
);
3988 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
3991 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3993 * All previously invoked ring_buffer_read_prepare calls to prepare
3994 * iterators will be synchronized. Afterwards, read_buffer_read_start
3995 * calls on those iterators are allowed.
3998 ring_buffer_read_prepare_sync(void)
4000 synchronize_sched();
4002 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4005 * ring_buffer_read_start - start a non consuming read of the buffer
4006 * @iter: The iterator returned by ring_buffer_read_prepare
4008 * This finalizes the startup of an iteration through the buffer.
4009 * The iterator comes from a call to ring_buffer_read_prepare and
4010 * an intervening ring_buffer_read_prepare_sync must have been
4013 * Must be paired with ring_buffer_read_finish.
4016 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4018 struct ring_buffer_per_cpu
*cpu_buffer
;
4019 unsigned long flags
;
4024 cpu_buffer
= iter
->cpu_buffer
;
4026 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4027 arch_spin_lock(&cpu_buffer
->lock
);
4028 rb_iter_reset(iter
);
4029 arch_spin_unlock(&cpu_buffer
->lock
);
4030 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4032 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4035 * ring_buffer_read_finish - finish reading the iterator of the buffer
4036 * @iter: The iterator retrieved by ring_buffer_start
4038 * This re-enables the recording to the buffer, and frees the
4042 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4044 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4045 unsigned long flags
;
4048 * Ring buffer is disabled from recording, here's a good place
4049 * to check the integrity of the ring buffer.
4050 * Must prevent readers from trying to read, as the check
4051 * clears the HEAD page and readers require it.
4053 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4054 rb_check_pages(cpu_buffer
);
4055 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4057 atomic_dec(&cpu_buffer
->record_disabled
);
4058 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4061 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4064 * ring_buffer_read - read the next item in the ring buffer by the iterator
4065 * @iter: The ring buffer iterator
4066 * @ts: The time stamp of the event read.
4068 * This reads the next event in the ring buffer and increments the iterator.
4070 struct ring_buffer_event
*
4071 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4073 struct ring_buffer_event
*event
;
4074 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4075 unsigned long flags
;
4077 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4079 event
= rb_iter_peek(iter
, ts
);
4083 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4086 rb_advance_iter(iter
);
4088 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4092 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4095 * ring_buffer_size - return the size of the ring buffer (in bytes)
4096 * @buffer: The ring buffer.
4098 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4101 * Earlier, this method returned
4102 * BUF_PAGE_SIZE * buffer->nr_pages
4103 * Since the nr_pages field is now removed, we have converted this to
4104 * return the per cpu buffer value.
4106 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4109 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4111 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4114 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4116 rb_head_page_deactivate(cpu_buffer
);
4118 cpu_buffer
->head_page
4119 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4120 local_set(&cpu_buffer
->head_page
->write
, 0);
4121 local_set(&cpu_buffer
->head_page
->entries
, 0);
4122 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4124 cpu_buffer
->head_page
->read
= 0;
4126 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4127 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4129 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4130 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4131 local_set(&cpu_buffer
->reader_page
->write
, 0);
4132 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4133 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4134 cpu_buffer
->reader_page
->read
= 0;
4136 local_set(&cpu_buffer
->entries_bytes
, 0);
4137 local_set(&cpu_buffer
->overrun
, 0);
4138 local_set(&cpu_buffer
->commit_overrun
, 0);
4139 local_set(&cpu_buffer
->dropped_events
, 0);
4140 local_set(&cpu_buffer
->entries
, 0);
4141 local_set(&cpu_buffer
->committing
, 0);
4142 local_set(&cpu_buffer
->commits
, 0);
4143 cpu_buffer
->read
= 0;
4144 cpu_buffer
->read_bytes
= 0;
4146 cpu_buffer
->write_stamp
= 0;
4147 cpu_buffer
->read_stamp
= 0;
4149 cpu_buffer
->lost_events
= 0;
4150 cpu_buffer
->last_overrun
= 0;
4152 rb_head_page_activate(cpu_buffer
);
4156 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4157 * @buffer: The ring buffer to reset a per cpu buffer of
4158 * @cpu: The CPU buffer to be reset
4160 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4162 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4163 unsigned long flags
;
4165 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4168 atomic_inc(&buffer
->resize_disabled
);
4169 atomic_inc(&cpu_buffer
->record_disabled
);
4171 /* Make sure all commits have finished */
4172 synchronize_sched();
4174 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4176 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4179 arch_spin_lock(&cpu_buffer
->lock
);
4181 rb_reset_cpu(cpu_buffer
);
4183 arch_spin_unlock(&cpu_buffer
->lock
);
4186 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4188 atomic_dec(&cpu_buffer
->record_disabled
);
4189 atomic_dec(&buffer
->resize_disabled
);
4191 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4194 * ring_buffer_reset - reset a ring buffer
4195 * @buffer: The ring buffer to reset all cpu buffers
4197 void ring_buffer_reset(struct ring_buffer
*buffer
)
4201 for_each_buffer_cpu(buffer
, cpu
)
4202 ring_buffer_reset_cpu(buffer
, cpu
);
4204 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4207 * rind_buffer_empty - is the ring buffer empty?
4208 * @buffer: The ring buffer to test
4210 int ring_buffer_empty(struct ring_buffer
*buffer
)
4212 struct ring_buffer_per_cpu
*cpu_buffer
;
4213 unsigned long flags
;
4218 dolock
= rb_ok_to_lock();
4220 /* yes this is racy, but if you don't like the race, lock the buffer */
4221 for_each_buffer_cpu(buffer
, cpu
) {
4222 cpu_buffer
= buffer
->buffers
[cpu
];
4223 local_irq_save(flags
);
4225 raw_spin_lock(&cpu_buffer
->reader_lock
);
4226 ret
= rb_per_cpu_empty(cpu_buffer
);
4228 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4229 local_irq_restore(flags
);
4237 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4240 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4241 * @buffer: The ring buffer
4242 * @cpu: The CPU buffer to test
4244 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4246 struct ring_buffer_per_cpu
*cpu_buffer
;
4247 unsigned long flags
;
4251 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4254 dolock
= rb_ok_to_lock();
4256 cpu_buffer
= buffer
->buffers
[cpu
];
4257 local_irq_save(flags
);
4259 raw_spin_lock(&cpu_buffer
->reader_lock
);
4260 ret
= rb_per_cpu_empty(cpu_buffer
);
4262 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4263 local_irq_restore(flags
);
4267 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4269 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4271 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4272 * @buffer_a: One buffer to swap with
4273 * @buffer_b: The other buffer to swap with
4275 * This function is useful for tracers that want to take a "snapshot"
4276 * of a CPU buffer and has another back up buffer lying around.
4277 * it is expected that the tracer handles the cpu buffer not being
4278 * used at the moment.
4280 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4281 struct ring_buffer
*buffer_b
, int cpu
)
4283 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4284 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4287 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4288 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4291 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4292 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4294 /* At least make sure the two buffers are somewhat the same */
4295 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4300 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
4303 if (atomic_read(&buffer_a
->record_disabled
))
4306 if (atomic_read(&buffer_b
->record_disabled
))
4309 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4312 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4316 * We can't do a synchronize_sched here because this
4317 * function can be called in atomic context.
4318 * Normally this will be called from the same CPU as cpu.
4319 * If not it's up to the caller to protect this.
4321 atomic_inc(&cpu_buffer_a
->record_disabled
);
4322 atomic_inc(&cpu_buffer_b
->record_disabled
);
4325 if (local_read(&cpu_buffer_a
->committing
))
4327 if (local_read(&cpu_buffer_b
->committing
))
4330 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4331 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4333 cpu_buffer_b
->buffer
= buffer_a
;
4334 cpu_buffer_a
->buffer
= buffer_b
;
4339 atomic_dec(&cpu_buffer_a
->record_disabled
);
4340 atomic_dec(&cpu_buffer_b
->record_disabled
);
4344 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4345 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4348 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4349 * @buffer: the buffer to allocate for.
4350 * @cpu: the cpu buffer to allocate.
4352 * This function is used in conjunction with ring_buffer_read_page.
4353 * When reading a full page from the ring buffer, these functions
4354 * can be used to speed up the process. The calling function should
4355 * allocate a few pages first with this function. Then when it
4356 * needs to get pages from the ring buffer, it passes the result
4357 * of this function into ring_buffer_read_page, which will swap
4358 * the page that was allocated, with the read page of the buffer.
4361 * The page allocated, or NULL on error.
4363 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4365 struct buffer_data_page
*bpage
;
4368 page
= alloc_pages_node(cpu_to_node(cpu
),
4369 GFP_KERNEL
| __GFP_NORETRY
, 0);
4373 bpage
= page_address(page
);
4375 rb_init_page(bpage
);
4379 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4382 * ring_buffer_free_read_page - free an allocated read page
4383 * @buffer: the buffer the page was allocate for
4384 * @data: the page to free
4386 * Free a page allocated from ring_buffer_alloc_read_page.
4388 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4390 free_page((unsigned long)data
);
4392 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4395 * ring_buffer_read_page - extract a page from the ring buffer
4396 * @buffer: buffer to extract from
4397 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4398 * @len: amount to extract
4399 * @cpu: the cpu of the buffer to extract
4400 * @full: should the extraction only happen when the page is full.
4402 * This function will pull out a page from the ring buffer and consume it.
4403 * @data_page must be the address of the variable that was returned
4404 * from ring_buffer_alloc_read_page. This is because the page might be used
4405 * to swap with a page in the ring buffer.
4408 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4411 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4413 * process_page(rpage, ret);
4415 * When @full is set, the function will not return true unless
4416 * the writer is off the reader page.
4418 * Note: it is up to the calling functions to handle sleeps and wakeups.
4419 * The ring buffer can be used anywhere in the kernel and can not
4420 * blindly call wake_up. The layer that uses the ring buffer must be
4421 * responsible for that.
4424 * >=0 if data has been transferred, returns the offset of consumed data.
4425 * <0 if no data has been transferred.
4427 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4428 void **data_page
, size_t len
, int cpu
, int full
)
4430 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4431 struct ring_buffer_event
*event
;
4432 struct buffer_data_page
*bpage
;
4433 struct buffer_page
*reader
;
4434 unsigned long missed_events
;
4435 unsigned long flags
;
4436 unsigned int commit
;
4441 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4445 * If len is not big enough to hold the page header, then
4446 * we can not copy anything.
4448 if (len
<= BUF_PAGE_HDR_SIZE
)
4451 len
-= BUF_PAGE_HDR_SIZE
;
4460 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4462 reader
= rb_get_reader_page(cpu_buffer
);
4466 event
= rb_reader_event(cpu_buffer
);
4468 read
= reader
->read
;
4469 commit
= rb_page_commit(reader
);
4471 /* Check if any events were dropped */
4472 missed_events
= cpu_buffer
->lost_events
;
4475 * If this page has been partially read or
4476 * if len is not big enough to read the rest of the page or
4477 * a writer is still on the page, then
4478 * we must copy the data from the page to the buffer.
4479 * Otherwise, we can simply swap the page with the one passed in.
4481 if (read
|| (len
< (commit
- read
)) ||
4482 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4483 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4484 unsigned int rpos
= read
;
4485 unsigned int pos
= 0;
4491 if (len
> (commit
- read
))
4492 len
= (commit
- read
);
4494 /* Always keep the time extend and data together */
4495 size
= rb_event_ts_length(event
);
4500 /* save the current timestamp, since the user will need it */
4501 save_timestamp
= cpu_buffer
->read_stamp
;
4503 /* Need to copy one event at a time */
4505 /* We need the size of one event, because
4506 * rb_advance_reader only advances by one event,
4507 * whereas rb_event_ts_length may include the size of
4508 * one or two events.
4509 * We have already ensured there's enough space if this
4510 * is a time extend. */
4511 size
= rb_event_length(event
);
4512 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4516 rb_advance_reader(cpu_buffer
);
4517 rpos
= reader
->read
;
4523 event
= rb_reader_event(cpu_buffer
);
4524 /* Always keep the time extend and data together */
4525 size
= rb_event_ts_length(event
);
4526 } while (len
>= size
);
4529 local_set(&bpage
->commit
, pos
);
4530 bpage
->time_stamp
= save_timestamp
;
4532 /* we copied everything to the beginning */
4535 /* update the entry counter */
4536 cpu_buffer
->read
+= rb_page_entries(reader
);
4537 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4539 /* swap the pages */
4540 rb_init_page(bpage
);
4541 bpage
= reader
->page
;
4542 reader
->page
= *data_page
;
4543 local_set(&reader
->write
, 0);
4544 local_set(&reader
->entries
, 0);
4549 * Use the real_end for the data size,
4550 * This gives us a chance to store the lost events
4553 if (reader
->real_end
)
4554 local_set(&bpage
->commit
, reader
->real_end
);
4558 cpu_buffer
->lost_events
= 0;
4560 commit
= local_read(&bpage
->commit
);
4562 * Set a flag in the commit field if we lost events
4564 if (missed_events
) {
4565 /* If there is room at the end of the page to save the
4566 * missed events, then record it there.
4568 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4569 memcpy(&bpage
->data
[commit
], &missed_events
,
4570 sizeof(missed_events
));
4571 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4572 commit
+= sizeof(missed_events
);
4574 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4578 * This page may be off to user land. Zero it out here.
4580 if (commit
< BUF_PAGE_SIZE
)
4581 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4584 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4589 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4591 #ifdef CONFIG_HOTPLUG_CPU
4592 static int rb_cpu_notify(struct notifier_block
*self
,
4593 unsigned long action
, void *hcpu
)
4595 struct ring_buffer
*buffer
=
4596 container_of(self
, struct ring_buffer
, cpu_notify
);
4597 long cpu
= (long)hcpu
;
4598 int cpu_i
, nr_pages_same
;
4599 unsigned int nr_pages
;
4602 case CPU_UP_PREPARE
:
4603 case CPU_UP_PREPARE_FROZEN
:
4604 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4609 /* check if all cpu sizes are same */
4610 for_each_buffer_cpu(buffer
, cpu_i
) {
4611 /* fill in the size from first enabled cpu */
4613 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4614 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4619 /* allocate minimum pages, user can later expand it */
4622 buffer
->buffers
[cpu
] =
4623 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4624 if (!buffer
->buffers
[cpu
]) {
4625 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4630 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4632 case CPU_DOWN_PREPARE
:
4633 case CPU_DOWN_PREPARE_FROZEN
:
4636 * If we were to free the buffer, then the user would
4637 * lose any trace that was in the buffer.
4647 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4649 * This is a basic integrity check of the ring buffer.
4650 * Late in the boot cycle this test will run when configured in.
4651 * It will kick off a thread per CPU that will go into a loop
4652 * writing to the per cpu ring buffer various sizes of data.
4653 * Some of the data will be large items, some small.
4655 * Another thread is created that goes into a spin, sending out
4656 * IPIs to the other CPUs to also write into the ring buffer.
4657 * this is to test the nesting ability of the buffer.
4659 * Basic stats are recorded and reported. If something in the
4660 * ring buffer should happen that's not expected, a big warning
4661 * is displayed and all ring buffers are disabled.
4663 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4665 struct rb_test_data
{
4666 struct ring_buffer
*buffer
;
4667 unsigned long events
;
4668 unsigned long bytes_written
;
4669 unsigned long bytes_alloc
;
4670 unsigned long bytes_dropped
;
4671 unsigned long events_nested
;
4672 unsigned long bytes_written_nested
;
4673 unsigned long bytes_alloc_nested
;
4674 unsigned long bytes_dropped_nested
;
4675 int min_size_nested
;
4676 int max_size_nested
;
4683 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4686 #define RB_TEST_BUFFER_SIZE 1048576
4688 static char rb_string
[] __initdata
=
4689 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4690 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4691 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4693 static bool rb_test_started __initdata
;
4700 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4702 struct ring_buffer_event
*event
;
4703 struct rb_item
*item
;
4710 /* Have nested writes different that what is written */
4711 cnt
= data
->cnt
+ (nested
? 27 : 0);
4713 /* Multiply cnt by ~e, to make some unique increment */
4714 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4716 len
= size
+ sizeof(struct rb_item
);
4718 started
= rb_test_started
;
4719 /* read rb_test_started before checking buffer enabled */
4722 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4724 /* Ignore dropped events before test starts. */
4727 data
->bytes_dropped
+= len
;
4729 data
->bytes_dropped_nested
+= len
;
4734 event_len
= ring_buffer_event_length(event
);
4736 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4739 item
= ring_buffer_event_data(event
);
4741 memcpy(item
->str
, rb_string
, size
);
4744 data
->bytes_alloc_nested
+= event_len
;
4745 data
->bytes_written_nested
+= len
;
4746 data
->events_nested
++;
4747 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4748 data
->min_size_nested
= len
;
4749 if (len
> data
->max_size_nested
)
4750 data
->max_size_nested
= len
;
4752 data
->bytes_alloc
+= event_len
;
4753 data
->bytes_written
+= len
;
4755 if (!data
->min_size
|| len
< data
->min_size
)
4756 data
->max_size
= len
;
4757 if (len
> data
->max_size
)
4758 data
->max_size
= len
;
4762 ring_buffer_unlock_commit(data
->buffer
, event
);
4767 static __init
int rb_test(void *arg
)
4769 struct rb_test_data
*data
= arg
;
4771 while (!kthread_should_stop()) {
4772 rb_write_something(data
, false);
4775 set_current_state(TASK_INTERRUPTIBLE
);
4776 /* Now sleep between a min of 100-300us and a max of 1ms */
4777 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4783 static __init
void rb_ipi(void *ignore
)
4785 struct rb_test_data
*data
;
4786 int cpu
= smp_processor_id();
4788 data
= &rb_data
[cpu
];
4789 rb_write_something(data
, true);
4792 static __init
int rb_hammer_test(void *arg
)
4794 while (!kthread_should_stop()) {
4796 /* Send an IPI to all cpus to write data! */
4797 smp_call_function(rb_ipi
, NULL
, 1);
4798 /* No sleep, but for non preempt, let others run */
4805 static __init
int test_ringbuffer(void)
4807 struct task_struct
*rb_hammer
;
4808 struct ring_buffer
*buffer
;
4812 pr_info("Running ring buffer tests...\n");
4814 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4815 if (WARN_ON(!buffer
))
4818 /* Disable buffer so that threads can't write to it yet */
4819 ring_buffer_record_off(buffer
);
4821 for_each_online_cpu(cpu
) {
4822 rb_data
[cpu
].buffer
= buffer
;
4823 rb_data
[cpu
].cpu
= cpu
;
4824 rb_data
[cpu
].cnt
= cpu
;
4825 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4826 "rbtester/%d", cpu
);
4827 if (WARN_ON(!rb_threads
[cpu
])) {
4828 pr_cont("FAILED\n");
4833 kthread_bind(rb_threads
[cpu
], cpu
);
4834 wake_up_process(rb_threads
[cpu
]);
4837 /* Now create the rb hammer! */
4838 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4839 if (WARN_ON(!rb_hammer
)) {
4840 pr_cont("FAILED\n");
4845 ring_buffer_record_on(buffer
);
4847 * Show buffer is enabled before setting rb_test_started.
4848 * Yes there's a small race window where events could be
4849 * dropped and the thread wont catch it. But when a ring
4850 * buffer gets enabled, there will always be some kind of
4851 * delay before other CPUs see it. Thus, we don't care about
4852 * those dropped events. We care about events dropped after
4853 * the threads see that the buffer is active.
4856 rb_test_started
= true;
4858 set_current_state(TASK_INTERRUPTIBLE
);
4859 /* Just run for 10 seconds */;
4860 schedule_timeout(10 * HZ
);
4862 kthread_stop(rb_hammer
);
4865 for_each_online_cpu(cpu
) {
4866 if (!rb_threads
[cpu
])
4868 kthread_stop(rb_threads
[cpu
]);
4871 ring_buffer_free(buffer
);
4876 pr_info("finished\n");
4877 for_each_online_cpu(cpu
) {
4878 struct ring_buffer_event
*event
;
4879 struct rb_test_data
*data
= &rb_data
[cpu
];
4880 struct rb_item
*item
;
4881 unsigned long total_events
;
4882 unsigned long total_dropped
;
4883 unsigned long total_written
;
4884 unsigned long total_alloc
;
4885 unsigned long total_read
= 0;
4886 unsigned long total_size
= 0;
4887 unsigned long total_len
= 0;
4888 unsigned long total_lost
= 0;
4891 int small_event_size
;
4895 total_events
= data
->events
+ data
->events_nested
;
4896 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4897 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4898 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4900 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4901 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4903 pr_info("CPU %d:\n", cpu
);
4904 pr_info(" events: %ld\n", total_events
);
4905 pr_info(" dropped bytes: %ld\n", total_dropped
);
4906 pr_info(" alloced bytes: %ld\n", total_alloc
);
4907 pr_info(" written bytes: %ld\n", total_written
);
4908 pr_info(" biggest event: %d\n", big_event_size
);
4909 pr_info(" smallest event: %d\n", small_event_size
);
4911 if (RB_WARN_ON(buffer
, total_dropped
))
4916 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4918 item
= ring_buffer_event_data(event
);
4919 total_len
+= ring_buffer_event_length(event
);
4920 total_size
+= item
->size
+ sizeof(struct rb_item
);
4921 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4922 pr_info("FAILED!\n");
4923 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4924 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4925 RB_WARN_ON(buffer
, 1);
4936 pr_info(" read events: %ld\n", total_read
);
4937 pr_info(" lost events: %ld\n", total_lost
);
4938 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4939 pr_info(" recorded len bytes: %ld\n", total_len
);
4940 pr_info(" recorded size bytes: %ld\n", total_size
);
4942 pr_info(" With dropped events, record len and size may not match\n"
4943 " alloced and written from above\n");
4945 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
4946 total_size
!= total_written
))
4949 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
4955 pr_info("Ring buffer PASSED!\n");
4957 ring_buffer_free(buffer
);
4961 late_initcall(test_ringbuffer
);
4962 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */