2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
66 #include <net/protocol.h>
69 #include <net/checksum.h>
70 #include <net/ip6_checksum.h>
73 #include <asm/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
77 struct kmem_cache
*skbuff_head_cache __read_mostly
;
78 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
81 * skb_panic - private function for out-of-line support
85 * @msg: skb_over_panic or skb_under_panic
87 * Out-of-line support for skb_put() and skb_push().
88 * Called via the wrapper skb_over_panic() or skb_under_panic().
89 * Keep out of line to prevent kernel bloat.
90 * __builtin_return_address is not used because it is not always reliable.
92 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
95 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
96 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
97 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
98 skb
->dev
? skb
->dev
->name
: "<NULL>");
102 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
104 skb_panic(skb
, sz
, addr
, __func__
);
107 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
109 skb_panic(skb
, sz
, addr
, __func__
);
113 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
114 * the caller if emergency pfmemalloc reserves are being used. If it is and
115 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
116 * may be used. Otherwise, the packet data may be discarded until enough
119 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
120 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
122 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
123 unsigned long ip
, bool *pfmemalloc
)
126 bool ret_pfmemalloc
= false;
129 * Try a regular allocation, when that fails and we're not entitled
130 * to the reserves, fail.
132 obj
= kmalloc_node_track_caller(size
,
133 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
135 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
138 /* Try again but now we are using pfmemalloc reserves */
139 ret_pfmemalloc
= true;
140 obj
= kmalloc_node_track_caller(size
, flags
, node
);
144 *pfmemalloc
= ret_pfmemalloc
;
149 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
150 * 'private' fields and also do memory statistics to find all the
155 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
160 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
161 gfp_mask
& ~__GFP_DMA
, node
);
166 * Only clear those fields we need to clear, not those that we will
167 * actually initialise below. Hence, don't put any more fields after
168 * the tail pointer in struct sk_buff!
170 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
172 skb
->truesize
= sizeof(struct sk_buff
);
173 atomic_set(&skb
->users
, 1);
175 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
181 * __alloc_skb - allocate a network buffer
182 * @size: size to allocate
183 * @gfp_mask: allocation mask
184 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
185 * instead of head cache and allocate a cloned (child) skb.
186 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
187 * allocations in case the data is required for writeback
188 * @node: numa node to allocate memory on
190 * Allocate a new &sk_buff. The returned buffer has no headroom and a
191 * tail room of at least size bytes. The object has a reference count
192 * of one. The return is the buffer. On a failure the return is %NULL.
194 * Buffers may only be allocated from interrupts using a @gfp_mask of
197 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
200 struct kmem_cache
*cache
;
201 struct skb_shared_info
*shinfo
;
206 cache
= (flags
& SKB_ALLOC_FCLONE
)
207 ? skbuff_fclone_cache
: skbuff_head_cache
;
209 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
210 gfp_mask
|= __GFP_MEMALLOC
;
213 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
218 /* We do our best to align skb_shared_info on a separate cache
219 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
220 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
221 * Both skb->head and skb_shared_info are cache line aligned.
223 size
= SKB_DATA_ALIGN(size
);
224 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
225 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
228 /* kmalloc(size) might give us more room than requested.
229 * Put skb_shared_info exactly at the end of allocated zone,
230 * to allow max possible filling before reallocation.
232 size
= SKB_WITH_OVERHEAD(ksize(data
));
233 prefetchw(data
+ size
);
236 * Only clear those fields we need to clear, not those that we will
237 * actually initialise below. Hence, don't put any more fields after
238 * the tail pointer in struct sk_buff!
240 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
241 /* Account for allocated memory : skb + skb->head */
242 skb
->truesize
= SKB_TRUESIZE(size
);
243 skb
->pfmemalloc
= pfmemalloc
;
244 atomic_set(&skb
->users
, 1);
247 skb_reset_tail_pointer(skb
);
248 skb
->end
= skb
->tail
+ size
;
249 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
250 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
252 /* make sure we initialize shinfo sequentially */
253 shinfo
= skb_shinfo(skb
);
254 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
255 atomic_set(&shinfo
->dataref
, 1);
256 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
258 if (flags
& SKB_ALLOC_FCLONE
) {
259 struct sk_buff
*child
= skb
+ 1;
260 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
262 kmemcheck_annotate_bitfield(child
, flags1
);
263 kmemcheck_annotate_bitfield(child
, flags2
);
264 skb
->fclone
= SKB_FCLONE_ORIG
;
265 atomic_set(fclone_ref
, 1);
267 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
268 child
->pfmemalloc
= pfmemalloc
;
273 kmem_cache_free(cache
, skb
);
277 EXPORT_SYMBOL(__alloc_skb
);
280 * build_skb - build a network buffer
281 * @data: data buffer provided by caller
282 * @frag_size: size of fragment, or 0 if head was kmalloced
284 * Allocate a new &sk_buff. Caller provides space holding head and
285 * skb_shared_info. @data must have been allocated by kmalloc() only if
286 * @frag_size is 0, otherwise data should come from the page allocator.
287 * The return is the new skb buffer.
288 * On a failure the return is %NULL, and @data is not freed.
290 * Before IO, driver allocates only data buffer where NIC put incoming frame
291 * Driver should add room at head (NET_SKB_PAD) and
292 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
293 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
294 * before giving packet to stack.
295 * RX rings only contains data buffers, not full skbs.
297 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
299 struct skb_shared_info
*shinfo
;
301 unsigned int size
= frag_size
? : ksize(data
);
303 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
307 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
309 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
310 skb
->truesize
= SKB_TRUESIZE(size
);
311 skb
->head_frag
= frag_size
!= 0;
312 atomic_set(&skb
->users
, 1);
315 skb_reset_tail_pointer(skb
);
316 skb
->end
= skb
->tail
+ size
;
317 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
318 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
320 /* make sure we initialize shinfo sequentially */
321 shinfo
= skb_shinfo(skb
);
322 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
323 atomic_set(&shinfo
->dataref
, 1);
324 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
328 EXPORT_SYMBOL(build_skb
);
330 struct netdev_alloc_cache
{
331 struct page_frag frag
;
332 /* we maintain a pagecount bias, so that we dont dirty cache line
333 * containing page->_count every time we allocate a fragment.
335 unsigned int pagecnt_bias
;
337 static DEFINE_PER_CPU(struct netdev_alloc_cache
, netdev_alloc_cache
);
339 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
341 struct netdev_alloc_cache
*nc
;
346 local_irq_save(flags
);
347 nc
= &__get_cpu_var(netdev_alloc_cache
);
348 if (unlikely(!nc
->frag
.page
)) {
350 for (order
= NETDEV_FRAG_PAGE_MAX_ORDER
; ;) {
351 gfp_t gfp
= gfp_mask
;
354 gfp
|= __GFP_COMP
| __GFP_NOWARN
;
355 nc
->frag
.page
= alloc_pages(gfp
, order
);
356 if (likely(nc
->frag
.page
))
361 nc
->frag
.size
= PAGE_SIZE
<< order
;
363 atomic_set(&nc
->frag
.page
->_count
, NETDEV_PAGECNT_MAX_BIAS
);
364 nc
->pagecnt_bias
= NETDEV_PAGECNT_MAX_BIAS
;
368 if (nc
->frag
.offset
+ fragsz
> nc
->frag
.size
) {
369 /* avoid unnecessary locked operations if possible */
370 if ((atomic_read(&nc
->frag
.page
->_count
) == nc
->pagecnt_bias
) ||
371 atomic_sub_and_test(nc
->pagecnt_bias
, &nc
->frag
.page
->_count
))
376 data
= page_address(nc
->frag
.page
) + nc
->frag
.offset
;
377 nc
->frag
.offset
+= fragsz
;
380 local_irq_restore(flags
);
385 * netdev_alloc_frag - allocate a page fragment
386 * @fragsz: fragment size
388 * Allocates a frag from a page for receive buffer.
389 * Uses GFP_ATOMIC allocations.
391 void *netdev_alloc_frag(unsigned int fragsz
)
393 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
395 EXPORT_SYMBOL(netdev_alloc_frag
);
398 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
399 * @dev: network device to receive on
400 * @length: length to allocate
401 * @gfp_mask: get_free_pages mask, passed to alloc_skb
403 * Allocate a new &sk_buff and assign it a usage count of one. The
404 * buffer has unspecified headroom built in. Users should allocate
405 * the headroom they think they need without accounting for the
406 * built in space. The built in space is used for optimisations.
408 * %NULL is returned if there is no free memory.
410 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
411 unsigned int length
, gfp_t gfp_mask
)
413 struct sk_buff
*skb
= NULL
;
414 unsigned int fragsz
= SKB_DATA_ALIGN(length
+ NET_SKB_PAD
) +
415 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
417 if (fragsz
<= PAGE_SIZE
&& !(gfp_mask
& (__GFP_WAIT
| GFP_DMA
))) {
420 if (sk_memalloc_socks())
421 gfp_mask
|= __GFP_MEMALLOC
;
423 data
= __netdev_alloc_frag(fragsz
, gfp_mask
);
426 skb
= build_skb(data
, fragsz
);
428 put_page(virt_to_head_page(data
));
431 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
,
432 SKB_ALLOC_RX
, NUMA_NO_NODE
);
435 skb_reserve(skb
, NET_SKB_PAD
);
440 EXPORT_SYMBOL(__netdev_alloc_skb
);
442 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
443 int size
, unsigned int truesize
)
445 skb_fill_page_desc(skb
, i
, page
, off
, size
);
447 skb
->data_len
+= size
;
448 skb
->truesize
+= truesize
;
450 EXPORT_SYMBOL(skb_add_rx_frag
);
452 void skb_coalesce_rx_frag(struct sk_buff
*skb
, int i
, int size
,
453 unsigned int truesize
)
455 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
457 skb_frag_size_add(frag
, size
);
459 skb
->data_len
+= size
;
460 skb
->truesize
+= truesize
;
462 EXPORT_SYMBOL(skb_coalesce_rx_frag
);
464 static void skb_drop_list(struct sk_buff
**listp
)
466 kfree_skb_list(*listp
);
470 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
472 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
475 static void skb_clone_fraglist(struct sk_buff
*skb
)
477 struct sk_buff
*list
;
479 skb_walk_frags(skb
, list
)
483 static void skb_free_head(struct sk_buff
*skb
)
486 put_page(virt_to_head_page(skb
->head
));
491 static void skb_release_data(struct sk_buff
*skb
)
494 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
495 &skb_shinfo(skb
)->dataref
)) {
496 if (skb_shinfo(skb
)->nr_frags
) {
498 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
499 skb_frag_unref(skb
, i
);
503 * If skb buf is from userspace, we need to notify the caller
504 * the lower device DMA has done;
506 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
507 struct ubuf_info
*uarg
;
509 uarg
= skb_shinfo(skb
)->destructor_arg
;
511 uarg
->callback(uarg
, true);
514 if (skb_has_frag_list(skb
))
515 skb_drop_fraglist(skb
);
522 * Free an skbuff by memory without cleaning the state.
524 static void kfree_skbmem(struct sk_buff
*skb
)
526 struct sk_buff
*other
;
527 atomic_t
*fclone_ref
;
529 switch (skb
->fclone
) {
530 case SKB_FCLONE_UNAVAILABLE
:
531 kmem_cache_free(skbuff_head_cache
, skb
);
534 case SKB_FCLONE_ORIG
:
535 fclone_ref
= (atomic_t
*) (skb
+ 2);
536 if (atomic_dec_and_test(fclone_ref
))
537 kmem_cache_free(skbuff_fclone_cache
, skb
);
540 case SKB_FCLONE_CLONE
:
541 fclone_ref
= (atomic_t
*) (skb
+ 1);
544 /* The clone portion is available for
545 * fast-cloning again.
547 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
549 if (atomic_dec_and_test(fclone_ref
))
550 kmem_cache_free(skbuff_fclone_cache
, other
);
555 static void skb_release_head_state(struct sk_buff
*skb
)
559 secpath_put(skb
->sp
);
561 if (skb
->destructor
) {
563 skb
->destructor(skb
);
565 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
566 nf_conntrack_put(skb
->nfct
);
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 nf_bridge_put(skb
->nf_bridge
);
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
574 #ifdef CONFIG_NET_CLS_ACT
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff
*skb
)
583 skb_release_head_state(skb
);
584 if (likely(skb
->head
))
585 skb_release_data(skb
);
589 * __kfree_skb - private function
592 * Free an sk_buff. Release anything attached to the buffer.
593 * Clean the state. This is an internal helper function. Users should
594 * always call kfree_skb
597 void __kfree_skb(struct sk_buff
*skb
)
599 skb_release_all(skb
);
602 EXPORT_SYMBOL(__kfree_skb
);
605 * kfree_skb - free an sk_buff
606 * @skb: buffer to free
608 * Drop a reference to the buffer and free it if the usage count has
611 void kfree_skb(struct sk_buff
*skb
)
615 if (likely(atomic_read(&skb
->users
) == 1))
617 else if (likely(!atomic_dec_and_test(&skb
->users
)))
619 trace_kfree_skb(skb
, __builtin_return_address(0));
622 EXPORT_SYMBOL(kfree_skb
);
624 void kfree_skb_list(struct sk_buff
*segs
)
627 struct sk_buff
*next
= segs
->next
;
633 EXPORT_SYMBOL(kfree_skb_list
);
636 * skb_tx_error - report an sk_buff xmit error
637 * @skb: buffer that triggered an error
639 * Report xmit error if a device callback is tracking this skb.
640 * skb must be freed afterwards.
642 void skb_tx_error(struct sk_buff
*skb
)
644 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
645 struct ubuf_info
*uarg
;
647 uarg
= skb_shinfo(skb
)->destructor_arg
;
649 uarg
->callback(uarg
, false);
650 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
653 EXPORT_SYMBOL(skb_tx_error
);
656 * consume_skb - free an skbuff
657 * @skb: buffer to free
659 * Drop a ref to the buffer and free it if the usage count has hit zero
660 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
661 * is being dropped after a failure and notes that
663 void consume_skb(struct sk_buff
*skb
)
667 if (likely(atomic_read(&skb
->users
) == 1))
669 else if (likely(!atomic_dec_and_test(&skb
->users
)))
671 trace_consume_skb(skb
);
674 EXPORT_SYMBOL(consume_skb
);
676 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
678 new->tstamp
= old
->tstamp
;
680 new->transport_header
= old
->transport_header
;
681 new->network_header
= old
->network_header
;
682 new->mac_header
= old
->mac_header
;
683 new->inner_protocol
= old
->inner_protocol
;
684 new->inner_transport_header
= old
->inner_transport_header
;
685 new->inner_network_header
= old
->inner_network_header
;
686 new->inner_mac_header
= old
->inner_mac_header
;
687 skb_dst_copy(new, old
);
688 skb_copy_hash(new, old
);
689 new->ooo_okay
= old
->ooo_okay
;
690 new->no_fcs
= old
->no_fcs
;
691 new->encapsulation
= old
->encapsulation
;
693 new->sp
= secpath_get(old
->sp
);
695 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
696 new->csum
= old
->csum
;
697 new->local_df
= old
->local_df
;
698 new->pkt_type
= old
->pkt_type
;
699 new->ip_summed
= old
->ip_summed
;
700 skb_copy_queue_mapping(new, old
);
701 new->priority
= old
->priority
;
702 #if IS_ENABLED(CONFIG_IP_VS)
703 new->ipvs_property
= old
->ipvs_property
;
705 new->pfmemalloc
= old
->pfmemalloc
;
706 new->protocol
= old
->protocol
;
707 new->mark
= old
->mark
;
708 new->skb_iif
= old
->skb_iif
;
710 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
711 new->nf_trace
= old
->nf_trace
;
713 #ifdef CONFIG_NET_SCHED
714 new->tc_index
= old
->tc_index
;
715 #ifdef CONFIG_NET_CLS_ACT
716 new->tc_verd
= old
->tc_verd
;
719 new->vlan_proto
= old
->vlan_proto
;
720 new->vlan_tci
= old
->vlan_tci
;
722 skb_copy_secmark(new, old
);
724 #ifdef CONFIG_NET_RX_BUSY_POLL
725 new->napi_id
= old
->napi_id
;
730 * You should not add any new code to this function. Add it to
731 * __copy_skb_header above instead.
733 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
735 #define C(x) n->x = skb->x
737 n
->next
= n
->prev
= NULL
;
739 __copy_skb_header(n
, skb
);
744 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
747 n
->destructor
= NULL
;
754 atomic_set(&n
->users
, 1);
756 atomic_inc(&(skb_shinfo(skb
)->dataref
));
764 * skb_morph - morph one skb into another
765 * @dst: the skb to receive the contents
766 * @src: the skb to supply the contents
768 * This is identical to skb_clone except that the target skb is
769 * supplied by the user.
771 * The target skb is returned upon exit.
773 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
775 skb_release_all(dst
);
776 return __skb_clone(dst
, src
);
778 EXPORT_SYMBOL_GPL(skb_morph
);
781 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
782 * @skb: the skb to modify
783 * @gfp_mask: allocation priority
785 * This must be called on SKBTX_DEV_ZEROCOPY skb.
786 * It will copy all frags into kernel and drop the reference
787 * to userspace pages.
789 * If this function is called from an interrupt gfp_mask() must be
792 * Returns 0 on success or a negative error code on failure
793 * to allocate kernel memory to copy to.
795 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
798 int num_frags
= skb_shinfo(skb
)->nr_frags
;
799 struct page
*page
, *head
= NULL
;
800 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
802 for (i
= 0; i
< num_frags
; i
++) {
804 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
806 page
= alloc_page(gfp_mask
);
809 struct page
*next
= (struct page
*)page_private(head
);
815 vaddr
= kmap_atomic(skb_frag_page(f
));
816 memcpy(page_address(page
),
817 vaddr
+ f
->page_offset
, skb_frag_size(f
));
818 kunmap_atomic(vaddr
);
819 set_page_private(page
, (unsigned long)head
);
823 /* skb frags release userspace buffers */
824 for (i
= 0; i
< num_frags
; i
++)
825 skb_frag_unref(skb
, i
);
827 uarg
->callback(uarg
, false);
829 /* skb frags point to kernel buffers */
830 for (i
= num_frags
- 1; i
>= 0; i
--) {
831 __skb_fill_page_desc(skb
, i
, head
, 0,
832 skb_shinfo(skb
)->frags
[i
].size
);
833 head
= (struct page
*)page_private(head
);
836 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
839 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
842 * skb_clone - duplicate an sk_buff
843 * @skb: buffer to clone
844 * @gfp_mask: allocation priority
846 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
847 * copies share the same packet data but not structure. The new
848 * buffer has a reference count of 1. If the allocation fails the
849 * function returns %NULL otherwise the new buffer is returned.
851 * If this function is called from an interrupt gfp_mask() must be
855 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
859 if (skb_orphan_frags(skb
, gfp_mask
))
863 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
864 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
865 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
866 n
->fclone
= SKB_FCLONE_CLONE
;
867 atomic_inc(fclone_ref
);
869 if (skb_pfmemalloc(skb
))
870 gfp_mask
|= __GFP_MEMALLOC
;
872 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
876 kmemcheck_annotate_bitfield(n
, flags1
);
877 kmemcheck_annotate_bitfield(n
, flags2
);
878 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
881 return __skb_clone(n
, skb
);
883 EXPORT_SYMBOL(skb_clone
);
885 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
887 /* Only adjust this if it actually is csum_start rather than csum */
888 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
889 skb
->csum_start
+= off
;
890 /* {transport,network,mac}_header and tail are relative to skb->head */
891 skb
->transport_header
+= off
;
892 skb
->network_header
+= off
;
893 if (skb_mac_header_was_set(skb
))
894 skb
->mac_header
+= off
;
895 skb
->inner_transport_header
+= off
;
896 skb
->inner_network_header
+= off
;
897 skb
->inner_mac_header
+= off
;
900 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
902 __copy_skb_header(new, old
);
904 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
905 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
906 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
909 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
911 if (skb_pfmemalloc(skb
))
917 * skb_copy - create private copy of an sk_buff
918 * @skb: buffer to copy
919 * @gfp_mask: allocation priority
921 * Make a copy of both an &sk_buff and its data. This is used when the
922 * caller wishes to modify the data and needs a private copy of the
923 * data to alter. Returns %NULL on failure or the pointer to the buffer
924 * on success. The returned buffer has a reference count of 1.
926 * As by-product this function converts non-linear &sk_buff to linear
927 * one, so that &sk_buff becomes completely private and caller is allowed
928 * to modify all the data of returned buffer. This means that this
929 * function is not recommended for use in circumstances when only
930 * header is going to be modified. Use pskb_copy() instead.
933 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
935 int headerlen
= skb_headroom(skb
);
936 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
937 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
938 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
943 /* Set the data pointer */
944 skb_reserve(n
, headerlen
);
945 /* Set the tail pointer and length */
946 skb_put(n
, skb
->len
);
948 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
951 copy_skb_header(n
, skb
);
954 EXPORT_SYMBOL(skb_copy
);
957 * __pskb_copy - create copy of an sk_buff with private head.
958 * @skb: buffer to copy
959 * @headroom: headroom of new skb
960 * @gfp_mask: allocation priority
962 * Make a copy of both an &sk_buff and part of its data, located
963 * in header. Fragmented data remain shared. This is used when
964 * the caller wishes to modify only header of &sk_buff and needs
965 * private copy of the header to alter. Returns %NULL on failure
966 * or the pointer to the buffer on success.
967 * The returned buffer has a reference count of 1.
970 struct sk_buff
*__pskb_copy(struct sk_buff
*skb
, int headroom
, gfp_t gfp_mask
)
972 unsigned int size
= skb_headlen(skb
) + headroom
;
973 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
974 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
979 /* Set the data pointer */
980 skb_reserve(n
, headroom
);
981 /* Set the tail pointer and length */
982 skb_put(n
, skb_headlen(skb
));
984 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
986 n
->truesize
+= skb
->data_len
;
987 n
->data_len
= skb
->data_len
;
990 if (skb_shinfo(skb
)->nr_frags
) {
993 if (skb_orphan_frags(skb
, gfp_mask
)) {
998 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
999 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1000 skb_frag_ref(skb
, i
);
1002 skb_shinfo(n
)->nr_frags
= i
;
1005 if (skb_has_frag_list(skb
)) {
1006 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1007 skb_clone_fraglist(n
);
1010 copy_skb_header(n
, skb
);
1014 EXPORT_SYMBOL(__pskb_copy
);
1017 * pskb_expand_head - reallocate header of &sk_buff
1018 * @skb: buffer to reallocate
1019 * @nhead: room to add at head
1020 * @ntail: room to add at tail
1021 * @gfp_mask: allocation priority
1023 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1024 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1025 * reference count of 1. Returns zero in the case of success or error,
1026 * if expansion failed. In the last case, &sk_buff is not changed.
1028 * All the pointers pointing into skb header may change and must be
1029 * reloaded after call to this function.
1032 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1037 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1042 if (skb_shared(skb
))
1045 size
= SKB_DATA_ALIGN(size
);
1047 if (skb_pfmemalloc(skb
))
1048 gfp_mask
|= __GFP_MEMALLOC
;
1049 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1050 gfp_mask
, NUMA_NO_NODE
, NULL
);
1053 size
= SKB_WITH_OVERHEAD(ksize(data
));
1055 /* Copy only real data... and, alas, header. This should be
1056 * optimized for the cases when header is void.
1058 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1060 memcpy((struct skb_shared_info
*)(data
+ size
),
1062 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1065 * if shinfo is shared we must drop the old head gracefully, but if it
1066 * is not we can just drop the old head and let the existing refcount
1067 * be since all we did is relocate the values
1069 if (skb_cloned(skb
)) {
1070 /* copy this zero copy skb frags */
1071 if (skb_orphan_frags(skb
, gfp_mask
))
1073 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1074 skb_frag_ref(skb
, i
);
1076 if (skb_has_frag_list(skb
))
1077 skb_clone_fraglist(skb
);
1079 skb_release_data(skb
);
1083 off
= (data
+ nhead
) - skb
->head
;
1088 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1092 skb
->end
= skb
->head
+ size
;
1095 skb_headers_offset_update(skb
, nhead
);
1099 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1107 EXPORT_SYMBOL(pskb_expand_head
);
1109 /* Make private copy of skb with writable head and some headroom */
1111 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1113 struct sk_buff
*skb2
;
1114 int delta
= headroom
- skb_headroom(skb
);
1117 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1119 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1120 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1128 EXPORT_SYMBOL(skb_realloc_headroom
);
1131 * skb_copy_expand - copy and expand sk_buff
1132 * @skb: buffer to copy
1133 * @newheadroom: new free bytes at head
1134 * @newtailroom: new free bytes at tail
1135 * @gfp_mask: allocation priority
1137 * Make a copy of both an &sk_buff and its data and while doing so
1138 * allocate additional space.
1140 * This is used when the caller wishes to modify the data and needs a
1141 * private copy of the data to alter as well as more space for new fields.
1142 * Returns %NULL on failure or the pointer to the buffer
1143 * on success. The returned buffer has a reference count of 1.
1145 * You must pass %GFP_ATOMIC as the allocation priority if this function
1146 * is called from an interrupt.
1148 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1149 int newheadroom
, int newtailroom
,
1153 * Allocate the copy buffer
1155 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1156 gfp_mask
, skb_alloc_rx_flag(skb
),
1158 int oldheadroom
= skb_headroom(skb
);
1159 int head_copy_len
, head_copy_off
;
1164 skb_reserve(n
, newheadroom
);
1166 /* Set the tail pointer and length */
1167 skb_put(n
, skb
->len
);
1169 head_copy_len
= oldheadroom
;
1171 if (newheadroom
<= head_copy_len
)
1172 head_copy_len
= newheadroom
;
1174 head_copy_off
= newheadroom
- head_copy_len
;
1176 /* Copy the linear header and data. */
1177 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1178 skb
->len
+ head_copy_len
))
1181 copy_skb_header(n
, skb
);
1183 skb_headers_offset_update(n
, newheadroom
- oldheadroom
);
1187 EXPORT_SYMBOL(skb_copy_expand
);
1190 * skb_pad - zero pad the tail of an skb
1191 * @skb: buffer to pad
1192 * @pad: space to pad
1194 * Ensure that a buffer is followed by a padding area that is zero
1195 * filled. Used by network drivers which may DMA or transfer data
1196 * beyond the buffer end onto the wire.
1198 * May return error in out of memory cases. The skb is freed on error.
1201 int skb_pad(struct sk_buff
*skb
, int pad
)
1206 /* If the skbuff is non linear tailroom is always zero.. */
1207 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1208 memset(skb
->data
+skb
->len
, 0, pad
);
1212 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1213 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1214 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1219 /* FIXME: The use of this function with non-linear skb's really needs
1222 err
= skb_linearize(skb
);
1226 memset(skb
->data
+ skb
->len
, 0, pad
);
1233 EXPORT_SYMBOL(skb_pad
);
1236 * pskb_put - add data to the tail of a potentially fragmented buffer
1237 * @skb: start of the buffer to use
1238 * @tail: tail fragment of the buffer to use
1239 * @len: amount of data to add
1241 * This function extends the used data area of the potentially
1242 * fragmented buffer. @tail must be the last fragment of @skb -- or
1243 * @skb itself. If this would exceed the total buffer size the kernel
1244 * will panic. A pointer to the first byte of the extra data is
1248 unsigned char *pskb_put(struct sk_buff
*skb
, struct sk_buff
*tail
, int len
)
1251 skb
->data_len
+= len
;
1254 return skb_put(tail
, len
);
1256 EXPORT_SYMBOL_GPL(pskb_put
);
1259 * skb_put - add data to a buffer
1260 * @skb: buffer to use
1261 * @len: amount of data to add
1263 * This function extends the used data area of the buffer. If this would
1264 * exceed the total buffer size the kernel will panic. A pointer to the
1265 * first byte of the extra data is returned.
1267 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1269 unsigned char *tmp
= skb_tail_pointer(skb
);
1270 SKB_LINEAR_ASSERT(skb
);
1273 if (unlikely(skb
->tail
> skb
->end
))
1274 skb_over_panic(skb
, len
, __builtin_return_address(0));
1277 EXPORT_SYMBOL(skb_put
);
1280 * skb_push - add data to the start of a buffer
1281 * @skb: buffer to use
1282 * @len: amount of data to add
1284 * This function extends the used data area of the buffer at the buffer
1285 * start. If this would exceed the total buffer headroom the kernel will
1286 * panic. A pointer to the first byte of the extra data is returned.
1288 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1292 if (unlikely(skb
->data
<skb
->head
))
1293 skb_under_panic(skb
, len
, __builtin_return_address(0));
1296 EXPORT_SYMBOL(skb_push
);
1299 * skb_pull - remove data from the start of a buffer
1300 * @skb: buffer to use
1301 * @len: amount of data to remove
1303 * This function removes data from the start of a buffer, returning
1304 * the memory to the headroom. A pointer to the next data in the buffer
1305 * is returned. Once the data has been pulled future pushes will overwrite
1308 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1310 return skb_pull_inline(skb
, len
);
1312 EXPORT_SYMBOL(skb_pull
);
1315 * skb_trim - remove end from a buffer
1316 * @skb: buffer to alter
1319 * Cut the length of a buffer down by removing data from the tail. If
1320 * the buffer is already under the length specified it is not modified.
1321 * The skb must be linear.
1323 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1326 __skb_trim(skb
, len
);
1328 EXPORT_SYMBOL(skb_trim
);
1330 /* Trims skb to length len. It can change skb pointers.
1333 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1335 struct sk_buff
**fragp
;
1336 struct sk_buff
*frag
;
1337 int offset
= skb_headlen(skb
);
1338 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1342 if (skb_cloned(skb
) &&
1343 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1350 for (; i
< nfrags
; i
++) {
1351 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1358 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1361 skb_shinfo(skb
)->nr_frags
= i
;
1363 for (; i
< nfrags
; i
++)
1364 skb_frag_unref(skb
, i
);
1366 if (skb_has_frag_list(skb
))
1367 skb_drop_fraglist(skb
);
1371 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1372 fragp
= &frag
->next
) {
1373 int end
= offset
+ frag
->len
;
1375 if (skb_shared(frag
)) {
1376 struct sk_buff
*nfrag
;
1378 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1379 if (unlikely(!nfrag
))
1382 nfrag
->next
= frag
->next
;
1394 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1398 skb_drop_list(&frag
->next
);
1403 if (len
> skb_headlen(skb
)) {
1404 skb
->data_len
-= skb
->len
- len
;
1409 skb_set_tail_pointer(skb
, len
);
1414 EXPORT_SYMBOL(___pskb_trim
);
1417 * __pskb_pull_tail - advance tail of skb header
1418 * @skb: buffer to reallocate
1419 * @delta: number of bytes to advance tail
1421 * The function makes a sense only on a fragmented &sk_buff,
1422 * it expands header moving its tail forward and copying necessary
1423 * data from fragmented part.
1425 * &sk_buff MUST have reference count of 1.
1427 * Returns %NULL (and &sk_buff does not change) if pull failed
1428 * or value of new tail of skb in the case of success.
1430 * All the pointers pointing into skb header may change and must be
1431 * reloaded after call to this function.
1434 /* Moves tail of skb head forward, copying data from fragmented part,
1435 * when it is necessary.
1436 * 1. It may fail due to malloc failure.
1437 * 2. It may change skb pointers.
1439 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1441 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1443 /* If skb has not enough free space at tail, get new one
1444 * plus 128 bytes for future expansions. If we have enough
1445 * room at tail, reallocate without expansion only if skb is cloned.
1447 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1449 if (eat
> 0 || skb_cloned(skb
)) {
1450 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1455 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1458 /* Optimization: no fragments, no reasons to preestimate
1459 * size of pulled pages. Superb.
1461 if (!skb_has_frag_list(skb
))
1464 /* Estimate size of pulled pages. */
1466 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1467 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1474 /* If we need update frag list, we are in troubles.
1475 * Certainly, it possible to add an offset to skb data,
1476 * but taking into account that pulling is expected to
1477 * be very rare operation, it is worth to fight against
1478 * further bloating skb head and crucify ourselves here instead.
1479 * Pure masohism, indeed. 8)8)
1482 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1483 struct sk_buff
*clone
= NULL
;
1484 struct sk_buff
*insp
= NULL
;
1489 if (list
->len
<= eat
) {
1490 /* Eaten as whole. */
1495 /* Eaten partially. */
1497 if (skb_shared(list
)) {
1498 /* Sucks! We need to fork list. :-( */
1499 clone
= skb_clone(list
, GFP_ATOMIC
);
1505 /* This may be pulled without
1509 if (!pskb_pull(list
, eat
)) {
1517 /* Free pulled out fragments. */
1518 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1519 skb_shinfo(skb
)->frag_list
= list
->next
;
1522 /* And insert new clone at head. */
1525 skb_shinfo(skb
)->frag_list
= clone
;
1528 /* Success! Now we may commit changes to skb data. */
1533 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1534 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1537 skb_frag_unref(skb
, i
);
1540 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1542 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1543 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1549 skb_shinfo(skb
)->nr_frags
= k
;
1552 skb
->data_len
-= delta
;
1554 return skb_tail_pointer(skb
);
1556 EXPORT_SYMBOL(__pskb_pull_tail
);
1559 * skb_copy_bits - copy bits from skb to kernel buffer
1561 * @offset: offset in source
1562 * @to: destination buffer
1563 * @len: number of bytes to copy
1565 * Copy the specified number of bytes from the source skb to the
1566 * destination buffer.
1569 * If its prototype is ever changed,
1570 * check arch/{*}/net/{*}.S files,
1571 * since it is called from BPF assembly code.
1573 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1575 int start
= skb_headlen(skb
);
1576 struct sk_buff
*frag_iter
;
1579 if (offset
> (int)skb
->len
- len
)
1583 if ((copy
= start
- offset
) > 0) {
1586 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1587 if ((len
-= copy
) == 0)
1593 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1595 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1597 WARN_ON(start
> offset
+ len
);
1599 end
= start
+ skb_frag_size(f
);
1600 if ((copy
= end
- offset
) > 0) {
1606 vaddr
= kmap_atomic(skb_frag_page(f
));
1608 vaddr
+ f
->page_offset
+ offset
- start
,
1610 kunmap_atomic(vaddr
);
1612 if ((len
-= copy
) == 0)
1620 skb_walk_frags(skb
, frag_iter
) {
1623 WARN_ON(start
> offset
+ len
);
1625 end
= start
+ frag_iter
->len
;
1626 if ((copy
= end
- offset
) > 0) {
1629 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1631 if ((len
-= copy
) == 0)
1645 EXPORT_SYMBOL(skb_copy_bits
);
1648 * Callback from splice_to_pipe(), if we need to release some pages
1649 * at the end of the spd in case we error'ed out in filling the pipe.
1651 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1653 put_page(spd
->pages
[i
]);
1656 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1657 unsigned int *offset
,
1660 struct page_frag
*pfrag
= sk_page_frag(sk
);
1662 if (!sk_page_frag_refill(sk
, pfrag
))
1665 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1667 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1668 page_address(page
) + *offset
, *len
);
1669 *offset
= pfrag
->offset
;
1670 pfrag
->offset
+= *len
;
1675 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1677 unsigned int offset
)
1679 return spd
->nr_pages
&&
1680 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1681 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1682 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1686 * Fill page/offset/length into spd, if it can hold more pages.
1688 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1689 struct pipe_inode_info
*pipe
, struct page
*page
,
1690 unsigned int *len
, unsigned int offset
,
1694 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1698 page
= linear_to_page(page
, len
, &offset
, sk
);
1702 if (spd_can_coalesce(spd
, page
, offset
)) {
1703 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1707 spd
->pages
[spd
->nr_pages
] = page
;
1708 spd
->partial
[spd
->nr_pages
].len
= *len
;
1709 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1715 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1716 unsigned int plen
, unsigned int *off
,
1718 struct splice_pipe_desc
*spd
, bool linear
,
1720 struct pipe_inode_info
*pipe
)
1725 /* skip this segment if already processed */
1731 /* ignore any bits we already processed */
1737 unsigned int flen
= min(*len
, plen
);
1739 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1745 } while (*len
&& plen
);
1751 * Map linear and fragment data from the skb to spd. It reports true if the
1752 * pipe is full or if we already spliced the requested length.
1754 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1755 unsigned int *offset
, unsigned int *len
,
1756 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1760 /* map the linear part :
1761 * If skb->head_frag is set, this 'linear' part is backed by a
1762 * fragment, and if the head is not shared with any clones then
1763 * we can avoid a copy since we own the head portion of this page.
1765 if (__splice_segment(virt_to_page(skb
->data
),
1766 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1769 skb_head_is_locked(skb
),
1774 * then map the fragments
1776 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1777 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1779 if (__splice_segment(skb_frag_page(f
),
1780 f
->page_offset
, skb_frag_size(f
),
1781 offset
, len
, spd
, false, sk
, pipe
))
1789 * Map data from the skb to a pipe. Should handle both the linear part,
1790 * the fragments, and the frag list. It does NOT handle frag lists within
1791 * the frag list, if such a thing exists. We'd probably need to recurse to
1792 * handle that cleanly.
1794 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1795 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1798 struct partial_page partial
[MAX_SKB_FRAGS
];
1799 struct page
*pages
[MAX_SKB_FRAGS
];
1800 struct splice_pipe_desc spd
= {
1803 .nr_pages_max
= MAX_SKB_FRAGS
,
1805 .ops
= &nosteal_pipe_buf_ops
,
1806 .spd_release
= sock_spd_release
,
1808 struct sk_buff
*frag_iter
;
1809 struct sock
*sk
= skb
->sk
;
1813 * __skb_splice_bits() only fails if the output has no room left,
1814 * so no point in going over the frag_list for the error case.
1816 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1822 * now see if we have a frag_list to map
1824 skb_walk_frags(skb
, frag_iter
) {
1827 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1834 * Drop the socket lock, otherwise we have reverse
1835 * locking dependencies between sk_lock and i_mutex
1836 * here as compared to sendfile(). We enter here
1837 * with the socket lock held, and splice_to_pipe() will
1838 * grab the pipe inode lock. For sendfile() emulation,
1839 * we call into ->sendpage() with the i_mutex lock held
1840 * and networking will grab the socket lock.
1843 ret
= splice_to_pipe(pipe
, &spd
);
1851 * skb_store_bits - store bits from kernel buffer to skb
1852 * @skb: destination buffer
1853 * @offset: offset in destination
1854 * @from: source buffer
1855 * @len: number of bytes to copy
1857 * Copy the specified number of bytes from the source buffer to the
1858 * destination skb. This function handles all the messy bits of
1859 * traversing fragment lists and such.
1862 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1864 int start
= skb_headlen(skb
);
1865 struct sk_buff
*frag_iter
;
1868 if (offset
> (int)skb
->len
- len
)
1871 if ((copy
= start
- offset
) > 0) {
1874 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1875 if ((len
-= copy
) == 0)
1881 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1882 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1885 WARN_ON(start
> offset
+ len
);
1887 end
= start
+ skb_frag_size(frag
);
1888 if ((copy
= end
- offset
) > 0) {
1894 vaddr
= kmap_atomic(skb_frag_page(frag
));
1895 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1897 kunmap_atomic(vaddr
);
1899 if ((len
-= copy
) == 0)
1907 skb_walk_frags(skb
, frag_iter
) {
1910 WARN_ON(start
> offset
+ len
);
1912 end
= start
+ frag_iter
->len
;
1913 if ((copy
= end
- offset
) > 0) {
1916 if (skb_store_bits(frag_iter
, offset
- start
,
1919 if ((len
-= copy
) == 0)
1932 EXPORT_SYMBOL(skb_store_bits
);
1934 /* Checksum skb data. */
1935 __wsum
__skb_checksum(const struct sk_buff
*skb
, int offset
, int len
,
1936 __wsum csum
, const struct skb_checksum_ops
*ops
)
1938 int start
= skb_headlen(skb
);
1939 int i
, copy
= start
- offset
;
1940 struct sk_buff
*frag_iter
;
1943 /* Checksum header. */
1947 csum
= ops
->update(skb
->data
+ offset
, copy
, csum
);
1948 if ((len
-= copy
) == 0)
1954 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1956 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1958 WARN_ON(start
> offset
+ len
);
1960 end
= start
+ skb_frag_size(frag
);
1961 if ((copy
= end
- offset
) > 0) {
1967 vaddr
= kmap_atomic(skb_frag_page(frag
));
1968 csum2
= ops
->update(vaddr
+ frag
->page_offset
+
1969 offset
- start
, copy
, 0);
1970 kunmap_atomic(vaddr
);
1971 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
1980 skb_walk_frags(skb
, frag_iter
) {
1983 WARN_ON(start
> offset
+ len
);
1985 end
= start
+ frag_iter
->len
;
1986 if ((copy
= end
- offset
) > 0) {
1990 csum2
= __skb_checksum(frag_iter
, offset
- start
,
1992 csum
= ops
->combine(csum
, csum2
, pos
, copy
);
1993 if ((len
-= copy
) == 0)
2004 EXPORT_SYMBOL(__skb_checksum
);
2006 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
2007 int len
, __wsum csum
)
2009 const struct skb_checksum_ops ops
= {
2010 .update
= csum_partial_ext
,
2011 .combine
= csum_block_add_ext
,
2014 return __skb_checksum(skb
, offset
, len
, csum
, &ops
);
2016 EXPORT_SYMBOL(skb_checksum
);
2018 /* Both of above in one bottle. */
2020 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2021 u8
*to
, int len
, __wsum csum
)
2023 int start
= skb_headlen(skb
);
2024 int i
, copy
= start
- offset
;
2025 struct sk_buff
*frag_iter
;
2032 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2034 if ((len
-= copy
) == 0)
2041 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2044 WARN_ON(start
> offset
+ len
);
2046 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2047 if ((copy
= end
- offset
) > 0) {
2050 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2054 vaddr
= kmap_atomic(skb_frag_page(frag
));
2055 csum2
= csum_partial_copy_nocheck(vaddr
+
2059 kunmap_atomic(vaddr
);
2060 csum
= csum_block_add(csum
, csum2
, pos
);
2070 skb_walk_frags(skb
, frag_iter
) {
2074 WARN_ON(start
> offset
+ len
);
2076 end
= start
+ frag_iter
->len
;
2077 if ((copy
= end
- offset
) > 0) {
2080 csum2
= skb_copy_and_csum_bits(frag_iter
,
2083 csum
= csum_block_add(csum
, csum2
, pos
);
2084 if ((len
-= copy
) == 0)
2095 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2098 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2099 * @from: source buffer
2101 * Calculates the amount of linear headroom needed in the 'to' skb passed
2102 * into skb_zerocopy().
2105 skb_zerocopy_headlen(const struct sk_buff
*from
)
2107 unsigned int hlen
= 0;
2109 if (!from
->head_frag
||
2110 skb_headlen(from
) < L1_CACHE_BYTES
||
2111 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
2112 hlen
= skb_headlen(from
);
2114 if (skb_has_frag_list(from
))
2119 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen
);
2122 * skb_zerocopy - Zero copy skb to skb
2123 * @to: destination buffer
2124 * @from: source buffer
2125 * @len: number of bytes to copy from source buffer
2126 * @hlen: size of linear headroom in destination buffer
2128 * Copies up to `len` bytes from `from` to `to` by creating references
2129 * to the frags in the source buffer.
2131 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2132 * headroom in the `to` buffer.
2135 skb_zerocopy(struct sk_buff
*to
, const struct sk_buff
*from
, int len
, int hlen
)
2138 int plen
= 0; /* length of skb->head fragment */
2140 unsigned int offset
;
2142 BUG_ON(!from
->head_frag
&& !hlen
);
2144 /* dont bother with small payloads */
2145 if (len
<= skb_tailroom(to
)) {
2146 skb_copy_bits(from
, 0, skb_put(to
, len
), len
);
2151 skb_copy_bits(from
, 0, skb_put(to
, hlen
), hlen
);
2154 plen
= min_t(int, skb_headlen(from
), len
);
2156 page
= virt_to_head_page(from
->head
);
2157 offset
= from
->data
- (unsigned char *)page_address(page
);
2158 __skb_fill_page_desc(to
, 0, page
, offset
, plen
);
2165 to
->truesize
+= len
+ plen
;
2166 to
->len
+= len
+ plen
;
2167 to
->data_len
+= len
+ plen
;
2169 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++) {
2172 skb_shinfo(to
)->frags
[j
] = skb_shinfo(from
)->frags
[i
];
2173 skb_shinfo(to
)->frags
[j
].size
= min_t(int, skb_shinfo(to
)->frags
[j
].size
, len
);
2174 len
-= skb_shinfo(to
)->frags
[j
].size
;
2175 skb_frag_ref(to
, j
);
2178 skb_shinfo(to
)->nr_frags
= j
;
2180 EXPORT_SYMBOL_GPL(skb_zerocopy
);
2182 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2187 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2188 csstart
= skb_checksum_start_offset(skb
);
2190 csstart
= skb_headlen(skb
);
2192 BUG_ON(csstart
> skb_headlen(skb
));
2194 skb_copy_from_linear_data(skb
, to
, csstart
);
2197 if (csstart
!= skb
->len
)
2198 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2199 skb
->len
- csstart
, 0);
2201 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2202 long csstuff
= csstart
+ skb
->csum_offset
;
2204 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2207 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2210 * skb_dequeue - remove from the head of the queue
2211 * @list: list to dequeue from
2213 * Remove the head of the list. The list lock is taken so the function
2214 * may be used safely with other locking list functions. The head item is
2215 * returned or %NULL if the list is empty.
2218 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2220 unsigned long flags
;
2221 struct sk_buff
*result
;
2223 spin_lock_irqsave(&list
->lock
, flags
);
2224 result
= __skb_dequeue(list
);
2225 spin_unlock_irqrestore(&list
->lock
, flags
);
2228 EXPORT_SYMBOL(skb_dequeue
);
2231 * skb_dequeue_tail - remove from the tail of the queue
2232 * @list: list to dequeue from
2234 * Remove the tail of the list. The list lock is taken so the function
2235 * may be used safely with other locking list functions. The tail item is
2236 * returned or %NULL if the list is empty.
2238 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2240 unsigned long flags
;
2241 struct sk_buff
*result
;
2243 spin_lock_irqsave(&list
->lock
, flags
);
2244 result
= __skb_dequeue_tail(list
);
2245 spin_unlock_irqrestore(&list
->lock
, flags
);
2248 EXPORT_SYMBOL(skb_dequeue_tail
);
2251 * skb_queue_purge - empty a list
2252 * @list: list to empty
2254 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2255 * the list and one reference dropped. This function takes the list
2256 * lock and is atomic with respect to other list locking functions.
2258 void skb_queue_purge(struct sk_buff_head
*list
)
2260 struct sk_buff
*skb
;
2261 while ((skb
= skb_dequeue(list
)) != NULL
)
2264 EXPORT_SYMBOL(skb_queue_purge
);
2267 * skb_queue_head - queue a buffer at the list head
2268 * @list: list to use
2269 * @newsk: buffer to queue
2271 * Queue a buffer at the start of the list. This function takes the
2272 * list lock and can be used safely with other locking &sk_buff functions
2275 * A buffer cannot be placed on two lists at the same time.
2277 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2279 unsigned long flags
;
2281 spin_lock_irqsave(&list
->lock
, flags
);
2282 __skb_queue_head(list
, newsk
);
2283 spin_unlock_irqrestore(&list
->lock
, flags
);
2285 EXPORT_SYMBOL(skb_queue_head
);
2288 * skb_queue_tail - queue a buffer at the list tail
2289 * @list: list to use
2290 * @newsk: buffer to queue
2292 * Queue a buffer at the tail of the list. This function takes the
2293 * list lock and can be used safely with other locking &sk_buff functions
2296 * A buffer cannot be placed on two lists at the same time.
2298 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2300 unsigned long flags
;
2302 spin_lock_irqsave(&list
->lock
, flags
);
2303 __skb_queue_tail(list
, newsk
);
2304 spin_unlock_irqrestore(&list
->lock
, flags
);
2306 EXPORT_SYMBOL(skb_queue_tail
);
2309 * skb_unlink - remove a buffer from a list
2310 * @skb: buffer to remove
2311 * @list: list to use
2313 * Remove a packet from a list. The list locks are taken and this
2314 * function is atomic with respect to other list locked calls
2316 * You must know what list the SKB is on.
2318 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2320 unsigned long flags
;
2322 spin_lock_irqsave(&list
->lock
, flags
);
2323 __skb_unlink(skb
, list
);
2324 spin_unlock_irqrestore(&list
->lock
, flags
);
2326 EXPORT_SYMBOL(skb_unlink
);
2329 * skb_append - append a buffer
2330 * @old: buffer to insert after
2331 * @newsk: buffer to insert
2332 * @list: list to use
2334 * Place a packet after a given packet in a list. The list locks are taken
2335 * and this function is atomic with respect to other list locked calls.
2336 * A buffer cannot be placed on two lists at the same time.
2338 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2340 unsigned long flags
;
2342 spin_lock_irqsave(&list
->lock
, flags
);
2343 __skb_queue_after(list
, old
, newsk
);
2344 spin_unlock_irqrestore(&list
->lock
, flags
);
2346 EXPORT_SYMBOL(skb_append
);
2349 * skb_insert - insert a buffer
2350 * @old: buffer to insert before
2351 * @newsk: buffer to insert
2352 * @list: list to use
2354 * Place a packet before a given packet in a list. The list locks are
2355 * taken and this function is atomic with respect to other list locked
2358 * A buffer cannot be placed on two lists at the same time.
2360 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2362 unsigned long flags
;
2364 spin_lock_irqsave(&list
->lock
, flags
);
2365 __skb_insert(newsk
, old
->prev
, old
, list
);
2366 spin_unlock_irqrestore(&list
->lock
, flags
);
2368 EXPORT_SYMBOL(skb_insert
);
2370 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2371 struct sk_buff
* skb1
,
2372 const u32 len
, const int pos
)
2376 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2378 /* And move data appendix as is. */
2379 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2380 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2382 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2383 skb_shinfo(skb
)->nr_frags
= 0;
2384 skb1
->data_len
= skb
->data_len
;
2385 skb1
->len
+= skb1
->data_len
;
2388 skb_set_tail_pointer(skb
, len
);
2391 static inline void skb_split_no_header(struct sk_buff
*skb
,
2392 struct sk_buff
* skb1
,
2393 const u32 len
, int pos
)
2396 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2398 skb_shinfo(skb
)->nr_frags
= 0;
2399 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2401 skb
->data_len
= len
- pos
;
2403 for (i
= 0; i
< nfrags
; i
++) {
2404 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2406 if (pos
+ size
> len
) {
2407 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2411 * We have two variants in this case:
2412 * 1. Move all the frag to the second
2413 * part, if it is possible. F.e.
2414 * this approach is mandatory for TUX,
2415 * where splitting is expensive.
2416 * 2. Split is accurately. We make this.
2418 skb_frag_ref(skb
, i
);
2419 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2420 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2421 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2422 skb_shinfo(skb
)->nr_frags
++;
2426 skb_shinfo(skb
)->nr_frags
++;
2429 skb_shinfo(skb1
)->nr_frags
= k
;
2433 * skb_split - Split fragmented skb to two parts at length len.
2434 * @skb: the buffer to split
2435 * @skb1: the buffer to receive the second part
2436 * @len: new length for skb
2438 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2440 int pos
= skb_headlen(skb
);
2442 skb_shinfo(skb1
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2443 if (len
< pos
) /* Split line is inside header. */
2444 skb_split_inside_header(skb
, skb1
, len
, pos
);
2445 else /* Second chunk has no header, nothing to copy. */
2446 skb_split_no_header(skb
, skb1
, len
, pos
);
2448 EXPORT_SYMBOL(skb_split
);
2450 /* Shifting from/to a cloned skb is a no-go.
2452 * Caller cannot keep skb_shinfo related pointers past calling here!
2454 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2456 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2460 * skb_shift - Shifts paged data partially from skb to another
2461 * @tgt: buffer into which tail data gets added
2462 * @skb: buffer from which the paged data comes from
2463 * @shiftlen: shift up to this many bytes
2465 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2466 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2467 * It's up to caller to free skb if everything was shifted.
2469 * If @tgt runs out of frags, the whole operation is aborted.
2471 * Skb cannot include anything else but paged data while tgt is allowed
2472 * to have non-paged data as well.
2474 * TODO: full sized shift could be optimized but that would need
2475 * specialized skb free'er to handle frags without up-to-date nr_frags.
2477 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2479 int from
, to
, merge
, todo
;
2480 struct skb_frag_struct
*fragfrom
, *fragto
;
2482 BUG_ON(shiftlen
> skb
->len
);
2483 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2487 to
= skb_shinfo(tgt
)->nr_frags
;
2488 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2490 /* Actual merge is delayed until the point when we know we can
2491 * commit all, so that we don't have to undo partial changes
2494 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2495 fragfrom
->page_offset
)) {
2500 todo
-= skb_frag_size(fragfrom
);
2502 if (skb_prepare_for_shift(skb
) ||
2503 skb_prepare_for_shift(tgt
))
2506 /* All previous frag pointers might be stale! */
2507 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2508 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2510 skb_frag_size_add(fragto
, shiftlen
);
2511 skb_frag_size_sub(fragfrom
, shiftlen
);
2512 fragfrom
->page_offset
+= shiftlen
;
2520 /* Skip full, not-fitting skb to avoid expensive operations */
2521 if ((shiftlen
== skb
->len
) &&
2522 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2525 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2528 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2529 if (to
== MAX_SKB_FRAGS
)
2532 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2533 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2535 if (todo
>= skb_frag_size(fragfrom
)) {
2536 *fragto
= *fragfrom
;
2537 todo
-= skb_frag_size(fragfrom
);
2542 __skb_frag_ref(fragfrom
);
2543 fragto
->page
= fragfrom
->page
;
2544 fragto
->page_offset
= fragfrom
->page_offset
;
2545 skb_frag_size_set(fragto
, todo
);
2547 fragfrom
->page_offset
+= todo
;
2548 skb_frag_size_sub(fragfrom
, todo
);
2556 /* Ready to "commit" this state change to tgt */
2557 skb_shinfo(tgt
)->nr_frags
= to
;
2560 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2561 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2563 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2564 __skb_frag_unref(fragfrom
);
2567 /* Reposition in the original skb */
2569 while (from
< skb_shinfo(skb
)->nr_frags
)
2570 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2571 skb_shinfo(skb
)->nr_frags
= to
;
2573 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2576 /* Most likely the tgt won't ever need its checksum anymore, skb on
2577 * the other hand might need it if it needs to be resent
2579 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2580 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2582 /* Yak, is it really working this way? Some helper please? */
2583 skb
->len
-= shiftlen
;
2584 skb
->data_len
-= shiftlen
;
2585 skb
->truesize
-= shiftlen
;
2586 tgt
->len
+= shiftlen
;
2587 tgt
->data_len
+= shiftlen
;
2588 tgt
->truesize
+= shiftlen
;
2594 * skb_prepare_seq_read - Prepare a sequential read of skb data
2595 * @skb: the buffer to read
2596 * @from: lower offset of data to be read
2597 * @to: upper offset of data to be read
2598 * @st: state variable
2600 * Initializes the specified state variable. Must be called before
2601 * invoking skb_seq_read() for the first time.
2603 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2604 unsigned int to
, struct skb_seq_state
*st
)
2606 st
->lower_offset
= from
;
2607 st
->upper_offset
= to
;
2608 st
->root_skb
= st
->cur_skb
= skb
;
2609 st
->frag_idx
= st
->stepped_offset
= 0;
2610 st
->frag_data
= NULL
;
2612 EXPORT_SYMBOL(skb_prepare_seq_read
);
2615 * skb_seq_read - Sequentially read skb data
2616 * @consumed: number of bytes consumed by the caller so far
2617 * @data: destination pointer for data to be returned
2618 * @st: state variable
2620 * Reads a block of skb data at @consumed relative to the
2621 * lower offset specified to skb_prepare_seq_read(). Assigns
2622 * the head of the data block to @data and returns the length
2623 * of the block or 0 if the end of the skb data or the upper
2624 * offset has been reached.
2626 * The caller is not required to consume all of the data
2627 * returned, i.e. @consumed is typically set to the number
2628 * of bytes already consumed and the next call to
2629 * skb_seq_read() will return the remaining part of the block.
2631 * Note 1: The size of each block of data returned can be arbitrary,
2632 * this limitation is the cost for zerocopy seqeuental
2633 * reads of potentially non linear data.
2635 * Note 2: Fragment lists within fragments are not implemented
2636 * at the moment, state->root_skb could be replaced with
2637 * a stack for this purpose.
2639 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2640 struct skb_seq_state
*st
)
2642 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2645 if (unlikely(abs_offset
>= st
->upper_offset
)) {
2646 if (st
->frag_data
) {
2647 kunmap_atomic(st
->frag_data
);
2648 st
->frag_data
= NULL
;
2654 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2656 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2657 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2658 return block_limit
- abs_offset
;
2661 if (st
->frag_idx
== 0 && !st
->frag_data
)
2662 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2664 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2665 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2666 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2668 if (abs_offset
< block_limit
) {
2670 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2672 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2673 (abs_offset
- st
->stepped_offset
);
2675 return block_limit
- abs_offset
;
2678 if (st
->frag_data
) {
2679 kunmap_atomic(st
->frag_data
);
2680 st
->frag_data
= NULL
;
2684 st
->stepped_offset
+= skb_frag_size(frag
);
2687 if (st
->frag_data
) {
2688 kunmap_atomic(st
->frag_data
);
2689 st
->frag_data
= NULL
;
2692 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2693 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2696 } else if (st
->cur_skb
->next
) {
2697 st
->cur_skb
= st
->cur_skb
->next
;
2704 EXPORT_SYMBOL(skb_seq_read
);
2707 * skb_abort_seq_read - Abort a sequential read of skb data
2708 * @st: state variable
2710 * Must be called if skb_seq_read() was not called until it
2713 void skb_abort_seq_read(struct skb_seq_state
*st
)
2716 kunmap_atomic(st
->frag_data
);
2718 EXPORT_SYMBOL(skb_abort_seq_read
);
2720 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2722 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2723 struct ts_config
*conf
,
2724 struct ts_state
*state
)
2726 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2729 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2731 skb_abort_seq_read(TS_SKB_CB(state
));
2735 * skb_find_text - Find a text pattern in skb data
2736 * @skb: the buffer to look in
2737 * @from: search offset
2739 * @config: textsearch configuration
2740 * @state: uninitialized textsearch state variable
2742 * Finds a pattern in the skb data according to the specified
2743 * textsearch configuration. Use textsearch_next() to retrieve
2744 * subsequent occurrences of the pattern. Returns the offset
2745 * to the first occurrence or UINT_MAX if no match was found.
2747 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2748 unsigned int to
, struct ts_config
*config
,
2749 struct ts_state
*state
)
2753 config
->get_next_block
= skb_ts_get_next_block
;
2754 config
->finish
= skb_ts_finish
;
2756 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2758 ret
= textsearch_find(config
, state
);
2759 return (ret
<= to
- from
? ret
: UINT_MAX
);
2761 EXPORT_SYMBOL(skb_find_text
);
2764 * skb_append_datato_frags - append the user data to a skb
2765 * @sk: sock structure
2766 * @skb: skb structure to be appened with user data.
2767 * @getfrag: call back function to be used for getting the user data
2768 * @from: pointer to user message iov
2769 * @length: length of the iov message
2771 * Description: This procedure append the user data in the fragment part
2772 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2774 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2775 int (*getfrag
)(void *from
, char *to
, int offset
,
2776 int len
, int odd
, struct sk_buff
*skb
),
2777 void *from
, int length
)
2779 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2783 struct page_frag
*pfrag
= ¤t
->task_frag
;
2786 /* Return error if we don't have space for new frag */
2787 if (frg_cnt
>= MAX_SKB_FRAGS
)
2790 if (!sk_page_frag_refill(sk
, pfrag
))
2793 /* copy the user data to page */
2794 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
2796 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
2797 offset
, copy
, 0, skb
);
2801 /* copy was successful so update the size parameters */
2802 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
2805 pfrag
->offset
+= copy
;
2806 get_page(pfrag
->page
);
2808 skb
->truesize
+= copy
;
2809 atomic_add(copy
, &sk
->sk_wmem_alloc
);
2811 skb
->data_len
+= copy
;
2815 } while (length
> 0);
2819 EXPORT_SYMBOL(skb_append_datato_frags
);
2822 * skb_pull_rcsum - pull skb and update receive checksum
2823 * @skb: buffer to update
2824 * @len: length of data pulled
2826 * This function performs an skb_pull on the packet and updates
2827 * the CHECKSUM_COMPLETE checksum. It should be used on
2828 * receive path processing instead of skb_pull unless you know
2829 * that the checksum difference is zero (e.g., a valid IP header)
2830 * or you are setting ip_summed to CHECKSUM_NONE.
2832 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2834 BUG_ON(len
> skb
->len
);
2836 BUG_ON(skb
->len
< skb
->data_len
);
2837 skb_postpull_rcsum(skb
, skb
->data
, len
);
2838 return skb
->data
+= len
;
2840 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2843 * skb_segment - Perform protocol segmentation on skb.
2844 * @skb: buffer to segment
2845 * @features: features for the output path (see dev->features)
2847 * This function performs segmentation on the given skb. It returns
2848 * a pointer to the first in a list of new skbs for the segments.
2849 * In case of error it returns ERR_PTR(err).
2851 struct sk_buff
*skb_segment(struct sk_buff
*skb
, netdev_features_t features
)
2853 struct sk_buff
*segs
= NULL
;
2854 struct sk_buff
*tail
= NULL
;
2855 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2856 skb_frag_t
*skb_frag
= skb_shinfo(skb
)->frags
;
2857 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2858 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2859 unsigned int offset
= doffset
;
2860 unsigned int tnl_hlen
= skb_tnl_header_len(skb
);
2861 unsigned int headroom
;
2865 int sg
= !!(features
& NETIF_F_SG
);
2866 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2871 proto
= skb_network_protocol(skb
);
2872 if (unlikely(!proto
))
2873 return ERR_PTR(-EINVAL
);
2875 csum
= !!can_checksum_protocol(features
, proto
);
2876 __skb_push(skb
, doffset
);
2877 headroom
= skb_headroom(skb
);
2878 pos
= skb_headlen(skb
);
2881 struct sk_buff
*nskb
;
2886 len
= skb
->len
- offset
;
2890 hsize
= skb_headlen(skb
) - offset
;
2893 if (hsize
> len
|| !sg
)
2896 if (!hsize
&& i
>= nfrags
&& skb_headlen(fskb
) &&
2897 (skb_headlen(fskb
) == len
|| sg
)) {
2898 BUG_ON(skb_headlen(fskb
) > len
);
2901 nfrags
= skb_shinfo(fskb
)->nr_frags
;
2902 skb_frag
= skb_shinfo(fskb
)->frags
;
2903 pos
+= skb_headlen(fskb
);
2905 while (pos
< offset
+ len
) {
2906 BUG_ON(i
>= nfrags
);
2908 size
= skb_frag_size(skb_frag
);
2909 if (pos
+ size
> offset
+ len
)
2917 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2920 if (unlikely(!nskb
))
2923 if (unlikely(pskb_trim(nskb
, len
))) {
2928 hsize
= skb_end_offset(nskb
);
2929 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2934 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
2935 skb_release_head_state(nskb
);
2936 __skb_push(nskb
, doffset
);
2938 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
2939 GFP_ATOMIC
, skb_alloc_rx_flag(skb
),
2942 if (unlikely(!nskb
))
2945 skb_reserve(nskb
, headroom
);
2946 __skb_put(nskb
, doffset
);
2955 __copy_skb_header(nskb
, skb
);
2956 nskb
->mac_len
= skb
->mac_len
;
2958 skb_headers_offset_update(nskb
, skb_headroom(nskb
) - headroom
);
2960 skb_copy_from_linear_data_offset(skb
, -tnl_hlen
,
2961 nskb
->data
- tnl_hlen
,
2962 doffset
+ tnl_hlen
);
2964 if (nskb
->len
== len
+ doffset
)
2965 goto perform_csum_check
;
2968 nskb
->ip_summed
= CHECKSUM_NONE
;
2969 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2975 frag
= skb_shinfo(nskb
)->frags
;
2977 skb_copy_from_linear_data_offset(skb
, offset
,
2978 skb_put(nskb
, hsize
), hsize
);
2980 skb_shinfo(nskb
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2982 while (pos
< offset
+ len
) {
2984 BUG_ON(skb_headlen(fskb
));
2987 nfrags
= skb_shinfo(fskb
)->nr_frags
;
2988 skb_frag
= skb_shinfo(fskb
)->frags
;
2995 if (unlikely(skb_shinfo(nskb
)->nr_frags
>=
2997 net_warn_ratelimited(
2998 "skb_segment: too many frags: %u %u\n",
3004 __skb_frag_ref(frag
);
3005 size
= skb_frag_size(frag
);
3008 frag
->page_offset
+= offset
- pos
;
3009 skb_frag_size_sub(frag
, offset
- pos
);
3012 skb_shinfo(nskb
)->nr_frags
++;
3014 if (pos
+ size
<= offset
+ len
) {
3019 skb_frag_size_sub(frag
, pos
+ size
- (offset
+ len
));
3027 nskb
->data_len
= len
- hsize
;
3028 nskb
->len
+= nskb
->data_len
;
3029 nskb
->truesize
+= nskb
->data_len
;
3033 nskb
->csum
= skb_checksum(nskb
, doffset
,
3034 nskb
->len
- doffset
, 0);
3035 nskb
->ip_summed
= CHECKSUM_NONE
;
3037 } while ((offset
+= len
) < skb
->len
);
3042 kfree_skb_list(segs
);
3043 return ERR_PTR(err
);
3045 EXPORT_SYMBOL_GPL(skb_segment
);
3047 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
3049 struct skb_shared_info
*pinfo
, *skbinfo
= skb_shinfo(skb
);
3050 unsigned int offset
= skb_gro_offset(skb
);
3051 unsigned int headlen
= skb_headlen(skb
);
3052 struct sk_buff
*nskb
, *lp
, *p
= *head
;
3053 unsigned int len
= skb_gro_len(skb
);
3054 unsigned int delta_truesize
;
3055 unsigned int headroom
;
3057 if (unlikely(p
->len
+ len
>= 65536))
3060 lp
= NAPI_GRO_CB(p
)->last
?: p
;
3061 pinfo
= skb_shinfo(lp
);
3063 if (headlen
<= offset
) {
3066 int i
= skbinfo
->nr_frags
;
3067 int nr_frags
= pinfo
->nr_frags
+ i
;
3069 if (nr_frags
> MAX_SKB_FRAGS
)
3073 pinfo
->nr_frags
= nr_frags
;
3074 skbinfo
->nr_frags
= 0;
3076 frag
= pinfo
->frags
+ nr_frags
;
3077 frag2
= skbinfo
->frags
+ i
;
3082 frag
->page_offset
+= offset
;
3083 skb_frag_size_sub(frag
, offset
);
3085 /* all fragments truesize : remove (head size + sk_buff) */
3086 delta_truesize
= skb
->truesize
-
3087 SKB_TRUESIZE(skb_end_offset(skb
));
3089 skb
->truesize
-= skb
->data_len
;
3090 skb
->len
-= skb
->data_len
;
3093 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
3095 } else if (skb
->head_frag
) {
3096 int nr_frags
= pinfo
->nr_frags
;
3097 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
3098 struct page
*page
= virt_to_head_page(skb
->head
);
3099 unsigned int first_size
= headlen
- offset
;
3100 unsigned int first_offset
;
3102 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
3105 first_offset
= skb
->data
-
3106 (unsigned char *)page_address(page
) +
3109 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
3111 frag
->page
.p
= page
;
3112 frag
->page_offset
= first_offset
;
3113 skb_frag_size_set(frag
, first_size
);
3115 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
3116 /* We dont need to clear skbinfo->nr_frags here */
3118 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3119 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
3122 if (pinfo
->frag_list
)
3124 if (skb_gro_len(p
) != pinfo
->gso_size
)
3127 headroom
= skb_headroom(p
);
3128 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
3129 if (unlikely(!nskb
))
3132 __copy_skb_header(nskb
, p
);
3133 nskb
->mac_len
= p
->mac_len
;
3135 skb_reserve(nskb
, headroom
);
3136 __skb_put(nskb
, skb_gro_offset(p
));
3138 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
3139 skb_set_network_header(nskb
, skb_network_offset(p
));
3140 skb_set_transport_header(nskb
, skb_transport_offset(p
));
3142 __skb_pull(p
, skb_gro_offset(p
));
3143 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
3144 p
->data
- skb_mac_header(p
));
3146 skb_shinfo(nskb
)->frag_list
= p
;
3147 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
3148 pinfo
->gso_size
= 0;
3149 skb_header_release(p
);
3150 NAPI_GRO_CB(nskb
)->last
= p
;
3152 nskb
->data_len
+= p
->len
;
3153 nskb
->truesize
+= p
->truesize
;
3154 nskb
->len
+= p
->len
;
3157 nskb
->next
= p
->next
;
3163 delta_truesize
= skb
->truesize
;
3164 if (offset
> headlen
) {
3165 unsigned int eat
= offset
- headlen
;
3167 skbinfo
->frags
[0].page_offset
+= eat
;
3168 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3169 skb
->data_len
-= eat
;
3174 __skb_pull(skb
, offset
);
3176 if (!NAPI_GRO_CB(p
)->last
)
3177 skb_shinfo(p
)->frag_list
= skb
;
3179 NAPI_GRO_CB(p
)->last
->next
= skb
;
3180 NAPI_GRO_CB(p
)->last
= skb
;
3181 skb_header_release(skb
);
3185 NAPI_GRO_CB(p
)->count
++;
3187 p
->truesize
+= delta_truesize
;
3190 lp
->data_len
+= len
;
3191 lp
->truesize
+= delta_truesize
;
3194 NAPI_GRO_CB(skb
)->same_flow
= 1;
3197 EXPORT_SYMBOL_GPL(skb_gro_receive
);
3199 void __init
skb_init(void)
3201 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3202 sizeof(struct sk_buff
),
3204 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3206 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3207 (2*sizeof(struct sk_buff
)) +
3210 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3215 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3216 * @skb: Socket buffer containing the buffers to be mapped
3217 * @sg: The scatter-gather list to map into
3218 * @offset: The offset into the buffer's contents to start mapping
3219 * @len: Length of buffer space to be mapped
3221 * Fill the specified scatter-gather list with mappings/pointers into a
3222 * region of the buffer space attached to a socket buffer.
3225 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3227 int start
= skb_headlen(skb
);
3228 int i
, copy
= start
- offset
;
3229 struct sk_buff
*frag_iter
;
3235 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3237 if ((len
-= copy
) == 0)
3242 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3245 WARN_ON(start
> offset
+ len
);
3247 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3248 if ((copy
= end
- offset
) > 0) {
3249 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3253 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3254 frag
->page_offset
+offset
-start
);
3263 skb_walk_frags(skb
, frag_iter
) {
3266 WARN_ON(start
> offset
+ len
);
3268 end
= start
+ frag_iter
->len
;
3269 if ((copy
= end
- offset
) > 0) {
3272 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3274 if ((len
-= copy
) == 0)
3284 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3286 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
3288 sg_mark_end(&sg
[nsg
- 1]);
3292 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3295 * skb_cow_data - Check that a socket buffer's data buffers are writable
3296 * @skb: The socket buffer to check.
3297 * @tailbits: Amount of trailing space to be added
3298 * @trailer: Returned pointer to the skb where the @tailbits space begins
3300 * Make sure that the data buffers attached to a socket buffer are
3301 * writable. If they are not, private copies are made of the data buffers
3302 * and the socket buffer is set to use these instead.
3304 * If @tailbits is given, make sure that there is space to write @tailbits
3305 * bytes of data beyond current end of socket buffer. @trailer will be
3306 * set to point to the skb in which this space begins.
3308 * The number of scatterlist elements required to completely map the
3309 * COW'd and extended socket buffer will be returned.
3311 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3315 struct sk_buff
*skb1
, **skb_p
;
3317 /* If skb is cloned or its head is paged, reallocate
3318 * head pulling out all the pages (pages are considered not writable
3319 * at the moment even if they are anonymous).
3321 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3322 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3325 /* Easy case. Most of packets will go this way. */
3326 if (!skb_has_frag_list(skb
)) {
3327 /* A little of trouble, not enough of space for trailer.
3328 * This should not happen, when stack is tuned to generate
3329 * good frames. OK, on miss we reallocate and reserve even more
3330 * space, 128 bytes is fair. */
3332 if (skb_tailroom(skb
) < tailbits
&&
3333 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3341 /* Misery. We are in troubles, going to mincer fragments... */
3344 skb_p
= &skb_shinfo(skb
)->frag_list
;
3347 while ((skb1
= *skb_p
) != NULL
) {
3350 /* The fragment is partially pulled by someone,
3351 * this can happen on input. Copy it and everything
3354 if (skb_shared(skb1
))
3357 /* If the skb is the last, worry about trailer. */
3359 if (skb1
->next
== NULL
&& tailbits
) {
3360 if (skb_shinfo(skb1
)->nr_frags
||
3361 skb_has_frag_list(skb1
) ||
3362 skb_tailroom(skb1
) < tailbits
)
3363 ntail
= tailbits
+ 128;
3369 skb_shinfo(skb1
)->nr_frags
||
3370 skb_has_frag_list(skb1
)) {
3371 struct sk_buff
*skb2
;
3373 /* Fuck, we are miserable poor guys... */
3375 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3377 skb2
= skb_copy_expand(skb1
,
3381 if (unlikely(skb2
== NULL
))
3385 skb_set_owner_w(skb2
, skb1
->sk
);
3387 /* Looking around. Are we still alive?
3388 * OK, link new skb, drop old one */
3390 skb2
->next
= skb1
->next
;
3397 skb_p
= &skb1
->next
;
3402 EXPORT_SYMBOL_GPL(skb_cow_data
);
3404 static void sock_rmem_free(struct sk_buff
*skb
)
3406 struct sock
*sk
= skb
->sk
;
3408 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3412 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3414 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3418 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3419 (unsigned int)sk
->sk_rcvbuf
)
3424 skb
->destructor
= sock_rmem_free
;
3425 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3427 /* before exiting rcu section, make sure dst is refcounted */
3430 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3431 if (!sock_flag(sk
, SOCK_DEAD
))
3432 sk
->sk_data_ready(sk
, len
);
3435 EXPORT_SYMBOL(sock_queue_err_skb
);
3437 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3438 struct skb_shared_hwtstamps
*hwtstamps
)
3440 struct sock
*sk
= orig_skb
->sk
;
3441 struct sock_exterr_skb
*serr
;
3442 struct sk_buff
*skb
;
3449 *skb_hwtstamps(orig_skb
) =
3453 * no hardware time stamps available,
3454 * so keep the shared tx_flags and only
3455 * store software time stamp
3457 orig_skb
->tstamp
= ktime_get_real();
3460 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3464 serr
= SKB_EXT_ERR(skb
);
3465 memset(serr
, 0, sizeof(*serr
));
3466 serr
->ee
.ee_errno
= ENOMSG
;
3467 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3469 err
= sock_queue_err_skb(sk
, skb
);
3474 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3476 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3478 struct sock
*sk
= skb
->sk
;
3479 struct sock_exterr_skb
*serr
;
3482 skb
->wifi_acked_valid
= 1;
3483 skb
->wifi_acked
= acked
;
3485 serr
= SKB_EXT_ERR(skb
);
3486 memset(serr
, 0, sizeof(*serr
));
3487 serr
->ee
.ee_errno
= ENOMSG
;
3488 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3490 err
= sock_queue_err_skb(sk
, skb
);
3494 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3498 * skb_partial_csum_set - set up and verify partial csum values for packet
3499 * @skb: the skb to set
3500 * @start: the number of bytes after skb->data to start checksumming.
3501 * @off: the offset from start to place the checksum.
3503 * For untrusted partially-checksummed packets, we need to make sure the values
3504 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3506 * This function checks and sets those values and skb->ip_summed: if this
3507 * returns false you should drop the packet.
3509 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3511 if (unlikely(start
> skb_headlen(skb
)) ||
3512 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3513 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3514 start
, off
, skb_headlen(skb
));
3517 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3518 skb
->csum_start
= skb_headroom(skb
) + start
;
3519 skb
->csum_offset
= off
;
3520 skb_set_transport_header(skb
, start
);
3523 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3525 static int skb_maybe_pull_tail(struct sk_buff
*skb
, unsigned int len
,
3528 if (skb_headlen(skb
) >= len
)
3531 /* If we need to pullup then pullup to the max, so we
3532 * won't need to do it again.
3537 if (__pskb_pull_tail(skb
, max
- skb_headlen(skb
)) == NULL
)
3540 if (skb_headlen(skb
) < len
)
3546 /* This value should be large enough to cover a tagged ethernet header plus
3547 * maximally sized IP and TCP or UDP headers.
3549 #define MAX_IP_HDR_LEN 128
3551 static int skb_checksum_setup_ip(struct sk_buff
*skb
, bool recalculate
)
3559 err
= skb_maybe_pull_tail(skb
,
3560 sizeof(struct iphdr
),
3565 if (ip_hdr(skb
)->frag_off
& htons(IP_OFFSET
| IP_MF
))
3568 off
= ip_hdrlen(skb
);
3575 switch (ip_hdr(skb
)->protocol
) {
3577 err
= skb_maybe_pull_tail(skb
,
3578 off
+ sizeof(struct tcphdr
),
3583 if (!skb_partial_csum_set(skb
, off
,
3584 offsetof(struct tcphdr
, check
))) {
3590 tcp_hdr(skb
)->check
=
3591 ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3597 err
= skb_maybe_pull_tail(skb
,
3598 off
+ sizeof(struct udphdr
),
3603 if (!skb_partial_csum_set(skb
, off
,
3604 offsetof(struct udphdr
, check
))) {
3610 udp_hdr(skb
)->check
=
3611 ~csum_tcpudp_magic(ip_hdr(skb
)->saddr
,
3626 /* This value should be large enough to cover a tagged ethernet header plus
3627 * an IPv6 header, all options, and a maximal TCP or UDP header.
3629 #define MAX_IPV6_HDR_LEN 256
3631 #define OPT_HDR(type, skb, off) \
3632 (type *)(skb_network_header(skb) + (off))
3634 static int skb_checksum_setup_ipv6(struct sk_buff
*skb
, bool recalculate
)
3646 off
= sizeof(struct ipv6hdr
);
3648 err
= skb_maybe_pull_tail(skb
, off
, MAX_IPV6_HDR_LEN
);
3652 nexthdr
= ipv6_hdr(skb
)->nexthdr
;
3654 len
= sizeof(struct ipv6hdr
) + ntohs(ipv6_hdr(skb
)->payload_len
);
3655 while (off
<= len
&& !done
) {
3657 case IPPROTO_DSTOPTS
:
3658 case IPPROTO_HOPOPTS
:
3659 case IPPROTO_ROUTING
: {
3660 struct ipv6_opt_hdr
*hp
;
3662 err
= skb_maybe_pull_tail(skb
,
3664 sizeof(struct ipv6_opt_hdr
),
3669 hp
= OPT_HDR(struct ipv6_opt_hdr
, skb
, off
);
3670 nexthdr
= hp
->nexthdr
;
3671 off
+= ipv6_optlen(hp
);
3675 struct ip_auth_hdr
*hp
;
3677 err
= skb_maybe_pull_tail(skb
,
3679 sizeof(struct ip_auth_hdr
),
3684 hp
= OPT_HDR(struct ip_auth_hdr
, skb
, off
);
3685 nexthdr
= hp
->nexthdr
;
3686 off
+= ipv6_authlen(hp
);
3689 case IPPROTO_FRAGMENT
: {
3690 struct frag_hdr
*hp
;
3692 err
= skb_maybe_pull_tail(skb
,
3694 sizeof(struct frag_hdr
),
3699 hp
= OPT_HDR(struct frag_hdr
, skb
, off
);
3701 if (hp
->frag_off
& htons(IP6_OFFSET
| IP6_MF
))
3704 nexthdr
= hp
->nexthdr
;
3705 off
+= sizeof(struct frag_hdr
);
3716 if (!done
|| fragment
)
3721 err
= skb_maybe_pull_tail(skb
,
3722 off
+ sizeof(struct tcphdr
),
3727 if (!skb_partial_csum_set(skb
, off
,
3728 offsetof(struct tcphdr
, check
))) {
3734 tcp_hdr(skb
)->check
=
3735 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3736 &ipv6_hdr(skb
)->daddr
,
3741 err
= skb_maybe_pull_tail(skb
,
3742 off
+ sizeof(struct udphdr
),
3747 if (!skb_partial_csum_set(skb
, off
,
3748 offsetof(struct udphdr
, check
))) {
3754 udp_hdr(skb
)->check
=
3755 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3756 &ipv6_hdr(skb
)->daddr
,
3771 * skb_checksum_setup - set up partial checksum offset
3772 * @skb: the skb to set up
3773 * @recalculate: if true the pseudo-header checksum will be recalculated
3775 int skb_checksum_setup(struct sk_buff
*skb
, bool recalculate
)
3779 switch (skb
->protocol
) {
3780 case htons(ETH_P_IP
):
3781 err
= skb_checksum_setup_ip(skb
, recalculate
);
3784 case htons(ETH_P_IPV6
):
3785 err
= skb_checksum_setup_ipv6(skb
, recalculate
);
3795 EXPORT_SYMBOL(skb_checksum_setup
);
3797 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3799 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3802 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
3804 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
3807 skb_release_head_state(skb
);
3808 kmem_cache_free(skbuff_head_cache
, skb
);
3813 EXPORT_SYMBOL(kfree_skb_partial
);
3816 * skb_try_coalesce - try to merge skb to prior one
3818 * @from: buffer to add
3819 * @fragstolen: pointer to boolean
3820 * @delta_truesize: how much more was allocated than was requested
3822 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
3823 bool *fragstolen
, int *delta_truesize
)
3825 int i
, delta
, len
= from
->len
;
3827 *fragstolen
= false;
3832 if (len
<= skb_tailroom(to
)) {
3833 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
3834 *delta_truesize
= 0;
3838 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
3841 if (skb_headlen(from
) != 0) {
3843 unsigned int offset
;
3845 if (skb_shinfo(to
)->nr_frags
+
3846 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
3849 if (skb_head_is_locked(from
))
3852 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3854 page
= virt_to_head_page(from
->head
);
3855 offset
= from
->data
- (unsigned char *)page_address(page
);
3857 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
3858 page
, offset
, skb_headlen(from
));
3861 if (skb_shinfo(to
)->nr_frags
+
3862 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
3865 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
3868 WARN_ON_ONCE(delta
< len
);
3870 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
3871 skb_shinfo(from
)->frags
,
3872 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
3873 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
3875 if (!skb_cloned(from
))
3876 skb_shinfo(from
)->nr_frags
= 0;
3878 /* if the skb is not cloned this does nothing
3879 * since we set nr_frags to 0.
3881 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
3882 skb_frag_ref(from
, i
);
3884 to
->truesize
+= delta
;
3886 to
->data_len
+= len
;
3888 *delta_truesize
= delta
;
3891 EXPORT_SYMBOL(skb_try_coalesce
);
3894 * skb_scrub_packet - scrub an skb
3896 * @skb: buffer to clean
3897 * @xnet: packet is crossing netns
3899 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
3900 * into/from a tunnel. Some information have to be cleared during these
3902 * skb_scrub_packet can also be used to clean a skb before injecting it in
3903 * another namespace (@xnet == true). We have to clear all information in the
3904 * skb that could impact namespace isolation.
3906 void skb_scrub_packet(struct sk_buff
*skb
, bool xnet
)
3910 skb
->tstamp
.tv64
= 0;
3911 skb
->pkt_type
= PACKET_HOST
;
3918 nf_reset_trace(skb
);
3920 EXPORT_SYMBOL_GPL(skb_scrub_packet
);
3923 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
3927 * skb_gso_transport_seglen is used to determine the real size of the
3928 * individual segments, including Layer4 headers (TCP/UDP).
3930 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
3932 unsigned int skb_gso_transport_seglen(const struct sk_buff
*skb
)
3934 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3935 unsigned int hdr_len
;
3937 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
3938 hdr_len
= tcp_hdrlen(skb
);
3940 hdr_len
= sizeof(struct udphdr
);
3941 return hdr_len
+ shinfo
->gso_size
;
3943 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen
);