2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
275 #include <net/xfrm.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
284 int sysctl_tcp_fin_timeout __read_mostly
= TCP_FIN_TIMEOUT
;
286 int sysctl_tcp_min_tso_segs __read_mostly
= 2;
288 int sysctl_tcp_autocorking __read_mostly
= 1;
290 struct percpu_counter tcp_orphan_count
;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
293 long sysctl_tcp_mem
[3] __read_mostly
;
294 int sysctl_tcp_wmem
[3] __read_mostly
;
295 int sysctl_tcp_rmem
[3] __read_mostly
;
297 EXPORT_SYMBOL(sysctl_tcp_mem
);
298 EXPORT_SYMBOL(sysctl_tcp_rmem
);
299 EXPORT_SYMBOL(sysctl_tcp_wmem
);
301 atomic_long_t tcp_memory_allocated
; /* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated
);
305 * Current number of TCP sockets.
307 struct percpu_counter tcp_sockets_allocated
;
308 EXPORT_SYMBOL(tcp_sockets_allocated
);
313 struct tcp_splice_state
{
314 struct pipe_inode_info
*pipe
;
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
325 int tcp_memory_pressure __read_mostly
;
326 EXPORT_SYMBOL(tcp_memory_pressure
);
328 void tcp_enter_memory_pressure(struct sock
*sk
)
330 if (!tcp_memory_pressure
) {
331 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
332 tcp_memory_pressure
= 1;
335 EXPORT_SYMBOL(tcp_enter_memory_pressure
);
337 /* Convert seconds to retransmits based on initial and max timeout */
338 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
343 int period
= timeout
;
346 while (seconds
> period
&& res
< 255) {
349 if (timeout
> rto_max
)
357 /* Convert retransmits to seconds based on initial and max timeout */
358 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
366 if (timeout
> rto_max
)
374 /* Address-family independent initialization for a tcp_sock.
376 * NOTE: A lot of things set to zero explicitly by call to
377 * sk_alloc() so need not be done here.
379 void tcp_init_sock(struct sock
*sk
)
381 struct inet_connection_sock
*icsk
= inet_csk(sk
);
382 struct tcp_sock
*tp
= tcp_sk(sk
);
384 __skb_queue_head_init(&tp
->out_of_order_queue
);
385 tcp_init_xmit_timers(sk
);
386 tcp_prequeue_init(tp
);
387 INIT_LIST_HEAD(&tp
->tsq_node
);
389 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
390 tp
->mdev
= TCP_TIMEOUT_INIT
;
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
397 tp
->snd_cwnd
= TCP_INIT_CWND
;
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
402 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
403 tp
->snd_cwnd_clamp
= ~0;
404 tp
->mss_cache
= TCP_MSS_DEFAULT
;
406 tp
->reordering
= sysctl_tcp_reordering
;
407 tcp_enable_early_retrans(tp
);
408 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
412 sk
->sk_state
= TCP_CLOSE
;
414 sk
->sk_write_space
= sk_stream_write_space
;
415 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
417 icsk
->icsk_sync_mss
= tcp_sync_mss
;
419 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
420 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
423 sock_update_memcg(sk
);
424 sk_sockets_allocated_inc(sk
);
427 EXPORT_SYMBOL(tcp_init_sock
);
430 * Wait for a TCP event.
432 * Note that we don't need to lock the socket, as the upper poll layers
433 * take care of normal races (between the test and the event) and we don't
434 * go look at any of the socket buffers directly.
436 unsigned int tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
439 struct sock
*sk
= sock
->sk
;
440 const struct tcp_sock
*tp
= tcp_sk(sk
);
442 sock_rps_record_flow(sk
);
444 sock_poll_wait(file
, sk_sleep(sk
), wait
);
445 if (sk
->sk_state
== TCP_LISTEN
)
446 return inet_csk_listen_poll(sk
);
448 /* Socket is not locked. We are protected from async events
449 * by poll logic and correct handling of state changes
450 * made by other threads is impossible in any case.
456 * POLLHUP is certainly not done right. But poll() doesn't
457 * have a notion of HUP in just one direction, and for a
458 * socket the read side is more interesting.
460 * Some poll() documentation says that POLLHUP is incompatible
461 * with the POLLOUT/POLLWR flags, so somebody should check this
462 * all. But careful, it tends to be safer to return too many
463 * bits than too few, and you can easily break real applications
464 * if you don't tell them that something has hung up!
468 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
469 * our fs/select.c). It means that after we received EOF,
470 * poll always returns immediately, making impossible poll() on write()
471 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
472 * if and only if shutdown has been made in both directions.
473 * Actually, it is interesting to look how Solaris and DUX
474 * solve this dilemma. I would prefer, if POLLHUP were maskable,
475 * then we could set it on SND_SHUTDOWN. BTW examples given
476 * in Stevens' books assume exactly this behaviour, it explains
477 * why POLLHUP is incompatible with POLLOUT. --ANK
479 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
480 * blocking on fresh not-connected or disconnected socket. --ANK
482 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| sk
->sk_state
== TCP_CLOSE
)
484 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
485 mask
|= POLLIN
| POLLRDNORM
| POLLRDHUP
;
487 /* Connected or passive Fast Open socket? */
488 if (sk
->sk_state
!= TCP_SYN_SENT
&&
489 (sk
->sk_state
!= TCP_SYN_RECV
|| tp
->fastopen_rsk
!= NULL
)) {
490 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
492 if (tp
->urg_seq
== tp
->copied_seq
&&
493 !sock_flag(sk
, SOCK_URGINLINE
) &&
497 /* Potential race condition. If read of tp below will
498 * escape above sk->sk_state, we can be illegally awaken
499 * in SYN_* states. */
500 if (tp
->rcv_nxt
- tp
->copied_seq
>= target
)
501 mask
|= POLLIN
| POLLRDNORM
;
503 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
504 if (sk_stream_is_writeable(sk
)) {
505 mask
|= POLLOUT
| POLLWRNORM
;
506 } else { /* send SIGIO later */
507 set_bit(SOCK_ASYNC_NOSPACE
,
508 &sk
->sk_socket
->flags
);
509 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
511 /* Race breaker. If space is freed after
512 * wspace test but before the flags are set,
513 * IO signal will be lost.
515 if (sk_stream_is_writeable(sk
))
516 mask
|= POLLOUT
| POLLWRNORM
;
519 mask
|= POLLOUT
| POLLWRNORM
;
521 if (tp
->urg_data
& TCP_URG_VALID
)
524 /* This barrier is coupled with smp_wmb() in tcp_reset() */
531 EXPORT_SYMBOL(tcp_poll
);
533 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
535 struct tcp_sock
*tp
= tcp_sk(sk
);
541 if (sk
->sk_state
== TCP_LISTEN
)
544 slow
= lock_sock_fast(sk
);
545 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
547 else if (sock_flag(sk
, SOCK_URGINLINE
) ||
549 before(tp
->urg_seq
, tp
->copied_seq
) ||
550 !before(tp
->urg_seq
, tp
->rcv_nxt
)) {
552 answ
= tp
->rcv_nxt
- tp
->copied_seq
;
554 /* Subtract 1, if FIN was received */
555 if (answ
&& sock_flag(sk
, SOCK_DONE
))
558 answ
= tp
->urg_seq
- tp
->copied_seq
;
559 unlock_sock_fast(sk
, slow
);
562 answ
= tp
->urg_data
&& tp
->urg_seq
== tp
->copied_seq
;
565 if (sk
->sk_state
== TCP_LISTEN
)
568 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
571 answ
= tp
->write_seq
- tp
->snd_una
;
574 if (sk
->sk_state
== TCP_LISTEN
)
577 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
580 answ
= tp
->write_seq
- tp
->snd_nxt
;
586 return put_user(answ
, (int __user
*)arg
);
588 EXPORT_SYMBOL(tcp_ioctl
);
590 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
592 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
593 tp
->pushed_seq
= tp
->write_seq
;
596 static inline bool forced_push(const struct tcp_sock
*tp
)
598 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
601 static inline void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
603 struct tcp_sock
*tp
= tcp_sk(sk
);
604 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
607 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
608 tcb
->tcp_flags
= TCPHDR_ACK
;
610 skb_header_release(skb
);
611 tcp_add_write_queue_tail(sk
, skb
);
612 sk
->sk_wmem_queued
+= skb
->truesize
;
613 sk_mem_charge(sk
, skb
->truesize
);
614 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
615 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
618 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
621 tp
->snd_up
= tp
->write_seq
;
624 /* If a not yet filled skb is pushed, do not send it if
625 * we have data packets in Qdisc or NIC queues :
626 * Because TX completion will happen shortly, it gives a chance
627 * to coalesce future sendmsg() payload into this skb, without
628 * need for a timer, and with no latency trade off.
629 * As packets containing data payload have a bigger truesize
630 * than pure acks (dataless) packets, the last checks prevent
631 * autocorking if we only have an ACK in Qdisc/NIC queues,
632 * or if TX completion was delayed after we processed ACK packet.
634 static bool tcp_should_autocork(struct sock
*sk
, struct sk_buff
*skb
,
637 return skb
->len
< size_goal
&&
638 sysctl_tcp_autocorking
&&
639 skb
!= tcp_write_queue_head(sk
) &&
640 atomic_read(&sk
->sk_wmem_alloc
) > skb
->truesize
;
643 static void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
644 int nonagle
, int size_goal
)
646 struct tcp_sock
*tp
= tcp_sk(sk
);
649 if (!tcp_send_head(sk
))
652 skb
= tcp_write_queue_tail(sk
);
653 if (!(flags
& MSG_MORE
) || forced_push(tp
))
654 tcp_mark_push(tp
, skb
);
656 tcp_mark_urg(tp
, flags
);
658 if (tcp_should_autocork(sk
, skb
, size_goal
)) {
660 /* avoid atomic op if TSQ_THROTTLED bit is already set */
661 if (!test_bit(TSQ_THROTTLED
, &tp
->tsq_flags
)) {
662 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPAUTOCORKING
);
663 set_bit(TSQ_THROTTLED
, &tp
->tsq_flags
);
665 /* It is possible TX completion already happened
666 * before we set TSQ_THROTTLED.
668 if (atomic_read(&sk
->sk_wmem_alloc
) > skb
->truesize
)
672 if (flags
& MSG_MORE
)
673 nonagle
= TCP_NAGLE_CORK
;
675 __tcp_push_pending_frames(sk
, mss_now
, nonagle
);
678 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
679 unsigned int offset
, size_t len
)
681 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
684 ret
= skb_splice_bits(skb
, offset
, tss
->pipe
, min(rd_desc
->count
, len
),
687 rd_desc
->count
-= ret
;
691 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
693 /* Store TCP splice context information in read_descriptor_t. */
694 read_descriptor_t rd_desc
= {
699 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
703 * tcp_splice_read - splice data from TCP socket to a pipe
704 * @sock: socket to splice from
705 * @ppos: position (not valid)
706 * @pipe: pipe to splice to
707 * @len: number of bytes to splice
708 * @flags: splice modifier flags
711 * Will read pages from given socket and fill them into a pipe.
714 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
715 struct pipe_inode_info
*pipe
, size_t len
,
718 struct sock
*sk
= sock
->sk
;
719 struct tcp_splice_state tss
= {
728 sock_rps_record_flow(sk
);
730 * We can't seek on a socket input
739 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
741 ret
= __tcp_splice_read(sk
, &tss
);
747 if (sock_flag(sk
, SOCK_DONE
))
750 ret
= sock_error(sk
);
753 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
755 if (sk
->sk_state
== TCP_CLOSE
) {
757 * This occurs when user tries to read
758 * from never connected socket.
760 if (!sock_flag(sk
, SOCK_DONE
))
768 sk_wait_data(sk
, &timeo
);
769 if (signal_pending(current
)) {
770 ret
= sock_intr_errno(timeo
);
783 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
784 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
785 signal_pending(current
))
796 EXPORT_SYMBOL(tcp_splice_read
);
798 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
)
802 /* The TCP header must be at least 32-bit aligned. */
803 size
= ALIGN(size
, 4);
805 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
807 if (sk_wmem_schedule(sk
, skb
->truesize
)) {
808 skb_reserve(skb
, sk
->sk_prot
->max_header
);
810 * Make sure that we have exactly size bytes
811 * available to the caller, no more, no less.
813 skb
->reserved_tailroom
= skb
->end
- skb
->tail
- size
;
818 sk
->sk_prot
->enter_memory_pressure(sk
);
819 sk_stream_moderate_sndbuf(sk
);
824 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
827 struct tcp_sock
*tp
= tcp_sk(sk
);
828 u32 xmit_size_goal
, old_size_goal
;
830 xmit_size_goal
= mss_now
;
832 if (large_allowed
&& sk_can_gso(sk
)) {
835 /* Maybe we should/could use sk->sk_prot->max_header here ? */
836 hlen
= inet_csk(sk
)->icsk_af_ops
->net_header_len
+
837 inet_csk(sk
)->icsk_ext_hdr_len
+
840 /* Goal is to send at least one packet per ms,
841 * not one big TSO packet every 100 ms.
842 * This preserves ACK clocking and is consistent
843 * with tcp_tso_should_defer() heuristic.
845 gso_size
= sk
->sk_pacing_rate
/ (2 * MSEC_PER_SEC
);
846 gso_size
= max_t(u32
, gso_size
,
847 sysctl_tcp_min_tso_segs
* mss_now
);
849 xmit_size_goal
= min_t(u32
, gso_size
,
850 sk
->sk_gso_max_size
- 1 - hlen
);
852 xmit_size_goal
= tcp_bound_to_half_wnd(tp
, xmit_size_goal
);
854 /* We try hard to avoid divides here */
855 old_size_goal
= tp
->xmit_size_goal_segs
* mss_now
;
857 if (likely(old_size_goal
<= xmit_size_goal
&&
858 old_size_goal
+ mss_now
> xmit_size_goal
)) {
859 xmit_size_goal
= old_size_goal
;
861 tp
->xmit_size_goal_segs
=
862 min_t(u16
, xmit_size_goal
/ mss_now
,
863 sk
->sk_gso_max_segs
);
864 xmit_size_goal
= tp
->xmit_size_goal_segs
* mss_now
;
868 return max(xmit_size_goal
, mss_now
);
871 static int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
875 mss_now
= tcp_current_mss(sk
);
876 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
881 static ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
*page
, int offset
,
882 size_t size
, int flags
)
884 struct tcp_sock
*tp
= tcp_sk(sk
);
885 int mss_now
, size_goal
;
888 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
890 /* Wait for a connection to finish. One exception is TCP Fast Open
891 * (passive side) where data is allowed to be sent before a connection
892 * is fully established.
894 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
895 !tcp_passive_fastopen(sk
)) {
896 if ((err
= sk_stream_wait_connect(sk
, &timeo
)) != 0)
900 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
902 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
906 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
910 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
914 if (!tcp_send_head(sk
) || (copy
= size_goal
- skb
->len
) <= 0) {
916 if (!sk_stream_memory_free(sk
))
917 goto wait_for_sndbuf
;
919 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
);
921 goto wait_for_memory
;
930 i
= skb_shinfo(skb
)->nr_frags
;
931 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
932 if (!can_coalesce
&& i
>= MAX_SKB_FRAGS
) {
933 tcp_mark_push(tp
, skb
);
936 if (!sk_wmem_schedule(sk
, copy
))
937 goto wait_for_memory
;
940 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
943 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
945 skb_shinfo(skb
)->tx_flags
|= SKBTX_SHARED_FRAG
;
948 skb
->data_len
+= copy
;
949 skb
->truesize
+= copy
;
950 sk
->sk_wmem_queued
+= copy
;
951 sk_mem_charge(sk
, copy
);
952 skb
->ip_summed
= CHECKSUM_PARTIAL
;
953 tp
->write_seq
+= copy
;
954 TCP_SKB_CB(skb
)->end_seq
+= copy
;
955 skb_shinfo(skb
)->gso_segs
= 0;
958 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
965 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
968 if (forced_push(tp
)) {
969 tcp_mark_push(tp
, skb
);
970 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
971 } else if (skb
== tcp_send_head(sk
))
972 tcp_push_one(sk
, mss_now
);
976 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
978 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
979 TCP_NAGLE_PUSH
, size_goal
);
981 if ((err
= sk_stream_wait_memory(sk
, &timeo
)) != 0)
984 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
988 if (copied
&& !(flags
& MSG_SENDPAGE_NOTLAST
))
989 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
996 return sk_stream_error(sk
, flags
, err
);
999 int tcp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1000 size_t size
, int flags
)
1004 if (!(sk
->sk_route_caps
& NETIF_F_SG
) ||
1005 !(sk
->sk_route_caps
& NETIF_F_ALL_CSUM
))
1006 return sock_no_sendpage(sk
->sk_socket
, page
, offset
, size
,
1010 res
= do_tcp_sendpages(sk
, page
, offset
, size
, flags
);
1014 EXPORT_SYMBOL(tcp_sendpage
);
1016 static inline int select_size(const struct sock
*sk
, bool sg
)
1018 const struct tcp_sock
*tp
= tcp_sk(sk
);
1019 int tmp
= tp
->mss_cache
;
1022 if (sk_can_gso(sk
)) {
1023 /* Small frames wont use a full page:
1024 * Payload will immediately follow tcp header.
1026 tmp
= SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER
);
1028 int pgbreak
= SKB_MAX_HEAD(MAX_TCP_HEADER
);
1030 if (tmp
>= pgbreak
&&
1031 tmp
<= pgbreak
+ (MAX_SKB_FRAGS
- 1) * PAGE_SIZE
)
1039 void tcp_free_fastopen_req(struct tcp_sock
*tp
)
1041 if (tp
->fastopen_req
!= NULL
) {
1042 kfree(tp
->fastopen_req
);
1043 tp
->fastopen_req
= NULL
;
1047 static int tcp_sendmsg_fastopen(struct sock
*sk
, struct msghdr
*msg
, int *size
)
1049 struct tcp_sock
*tp
= tcp_sk(sk
);
1052 if (!(sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
))
1054 if (tp
->fastopen_req
!= NULL
)
1055 return -EALREADY
; /* Another Fast Open is in progress */
1057 tp
->fastopen_req
= kzalloc(sizeof(struct tcp_fastopen_request
),
1059 if (unlikely(tp
->fastopen_req
== NULL
))
1061 tp
->fastopen_req
->data
= msg
;
1063 flags
= (msg
->msg_flags
& MSG_DONTWAIT
) ? O_NONBLOCK
: 0;
1064 err
= __inet_stream_connect(sk
->sk_socket
, msg
->msg_name
,
1065 msg
->msg_namelen
, flags
);
1066 *size
= tp
->fastopen_req
->copied
;
1067 tcp_free_fastopen_req(tp
);
1071 int tcp_sendmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1075 struct tcp_sock
*tp
= tcp_sk(sk
);
1076 struct sk_buff
*skb
;
1077 int iovlen
, flags
, err
, copied
= 0;
1078 int mss_now
= 0, size_goal
, copied_syn
= 0, offset
= 0;
1084 flags
= msg
->msg_flags
;
1085 if (flags
& MSG_FASTOPEN
) {
1086 err
= tcp_sendmsg_fastopen(sk
, msg
, &copied_syn
);
1087 if (err
== -EINPROGRESS
&& copied_syn
> 0)
1091 offset
= copied_syn
;
1094 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1096 /* Wait for a connection to finish. One exception is TCP Fast Open
1097 * (passive side) where data is allowed to be sent before a connection
1098 * is fully established.
1100 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1101 !tcp_passive_fastopen(sk
)) {
1102 if ((err
= sk_stream_wait_connect(sk
, &timeo
)) != 0)
1106 if (unlikely(tp
->repair
)) {
1107 if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
1108 copied
= tcp_send_rcvq(sk
, msg
, size
);
1113 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1116 /* 'common' sending to sendq */
1119 /* This should be in poll */
1120 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1122 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1124 /* Ok commence sending. */
1125 iovlen
= msg
->msg_iovlen
;
1130 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1133 sg
= !!(sk
->sk_route_caps
& NETIF_F_SG
);
1135 while (--iovlen
>= 0) {
1136 size_t seglen
= iov
->iov_len
;
1137 unsigned char __user
*from
= iov
->iov_base
;
1140 if (unlikely(offset
> 0)) { /* Skip bytes copied in SYN */
1141 if (offset
>= seglen
) {
1150 while (seglen
> 0) {
1152 int max
= size_goal
;
1154 skb
= tcp_write_queue_tail(sk
);
1155 if (tcp_send_head(sk
)) {
1156 if (skb
->ip_summed
== CHECKSUM_NONE
)
1158 copy
= max
- skb
->len
;
1163 /* Allocate new segment. If the interface is SG,
1164 * allocate skb fitting to single page.
1166 if (!sk_stream_memory_free(sk
))
1167 goto wait_for_sndbuf
;
1169 skb
= sk_stream_alloc_skb(sk
,
1170 select_size(sk
, sg
),
1173 goto wait_for_memory
;
1176 * All packets are restored as if they have
1177 * already been sent.
1180 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1183 * Check whether we can use HW checksum.
1185 if (sk
->sk_route_caps
& NETIF_F_ALL_CSUM
)
1186 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1188 skb_entail(sk
, skb
);
1193 /* Try to append data to the end of skb. */
1197 /* Where to copy to? */
1198 if (skb_availroom(skb
) > 0) {
1199 /* We have some space in skb head. Superb! */
1200 copy
= min_t(int, copy
, skb_availroom(skb
));
1201 err
= skb_add_data_nocache(sk
, skb
, from
, copy
);
1206 int i
= skb_shinfo(skb
)->nr_frags
;
1207 struct page_frag
*pfrag
= sk_page_frag(sk
);
1209 if (!sk_page_frag_refill(sk
, pfrag
))
1210 goto wait_for_memory
;
1212 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1214 if (i
== MAX_SKB_FRAGS
|| !sg
) {
1215 tcp_mark_push(tp
, skb
);
1221 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1223 if (!sk_wmem_schedule(sk
, copy
))
1224 goto wait_for_memory
;
1226 err
= skb_copy_to_page_nocache(sk
, from
, skb
,
1233 /* Update the skb. */
1235 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1237 skb_fill_page_desc(skb
, i
, pfrag
->page
,
1238 pfrag
->offset
, copy
);
1239 get_page(pfrag
->page
);
1241 pfrag
->offset
+= copy
;
1245 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1247 tp
->write_seq
+= copy
;
1248 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1249 skb_shinfo(skb
)->gso_segs
= 0;
1253 if ((seglen
-= copy
) == 0 && iovlen
== 0)
1256 if (skb
->len
< max
|| (flags
& MSG_OOB
) || unlikely(tp
->repair
))
1259 if (forced_push(tp
)) {
1260 tcp_mark_push(tp
, skb
);
1261 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1262 } else if (skb
== tcp_send_head(sk
))
1263 tcp_push_one(sk
, mss_now
);
1267 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1270 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1271 TCP_NAGLE_PUSH
, size_goal
);
1273 if ((err
= sk_stream_wait_memory(sk
, &timeo
)) != 0)
1276 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1282 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1284 return copied
+ copied_syn
;
1288 tcp_unlink_write_queue(skb
, sk
);
1289 /* It is the one place in all of TCP, except connection
1290 * reset, where we can be unlinking the send_head.
1292 tcp_check_send_head(sk
, skb
);
1293 sk_wmem_free_skb(sk
, skb
);
1297 if (copied
+ copied_syn
)
1300 err
= sk_stream_error(sk
, flags
, err
);
1304 EXPORT_SYMBOL(tcp_sendmsg
);
1307 * Handle reading urgent data. BSD has very simple semantics for
1308 * this, no blocking and very strange errors 8)
1311 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1313 struct tcp_sock
*tp
= tcp_sk(sk
);
1315 /* No URG data to read. */
1316 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1317 tp
->urg_data
== TCP_URG_READ
)
1318 return -EINVAL
; /* Yes this is right ! */
1320 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1323 if (tp
->urg_data
& TCP_URG_VALID
) {
1325 char c
= tp
->urg_data
;
1327 if (!(flags
& MSG_PEEK
))
1328 tp
->urg_data
= TCP_URG_READ
;
1330 /* Read urgent data. */
1331 msg
->msg_flags
|= MSG_OOB
;
1334 if (!(flags
& MSG_TRUNC
))
1335 err
= memcpy_toiovec(msg
->msg_iov
, &c
, 1);
1338 msg
->msg_flags
|= MSG_TRUNC
;
1340 return err
? -EFAULT
: len
;
1343 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1346 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1347 * the available implementations agree in this case:
1348 * this call should never block, independent of the
1349 * blocking state of the socket.
1350 * Mike <pall@rz.uni-karlsruhe.de>
1355 static int tcp_peek_sndq(struct sock
*sk
, struct msghdr
*msg
, int len
)
1357 struct sk_buff
*skb
;
1358 int copied
= 0, err
= 0;
1360 /* XXX -- need to support SO_PEEK_OFF */
1362 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
1363 err
= skb_copy_datagram_iovec(skb
, 0, msg
->msg_iov
, skb
->len
);
1370 return err
?: copied
;
1373 /* Clean up the receive buffer for full frames taken by the user,
1374 * then send an ACK if necessary. COPIED is the number of bytes
1375 * tcp_recvmsg has given to the user so far, it speeds up the
1376 * calculation of whether or not we must ACK for the sake of
1379 void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1381 struct tcp_sock
*tp
= tcp_sk(sk
);
1382 bool time_to_ack
= false;
1384 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1386 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1387 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1388 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1390 if (inet_csk_ack_scheduled(sk
)) {
1391 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1392 /* Delayed ACKs frequently hit locked sockets during bulk
1394 if (icsk
->icsk_ack
.blocked
||
1395 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1396 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1398 * If this read emptied read buffer, we send ACK, if
1399 * connection is not bidirectional, user drained
1400 * receive buffer and there was a small segment
1404 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1405 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1406 !icsk
->icsk_ack
.pingpong
)) &&
1407 !atomic_read(&sk
->sk_rmem_alloc
)))
1411 /* We send an ACK if we can now advertise a non-zero window
1412 * which has been raised "significantly".
1414 * Even if window raised up to infinity, do not send window open ACK
1415 * in states, where we will not receive more. It is useless.
1417 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1418 __u32 rcv_window_now
= tcp_receive_window(tp
);
1420 /* Optimize, __tcp_select_window() is not cheap. */
1421 if (2*rcv_window_now
<= tp
->window_clamp
) {
1422 __u32 new_window
= __tcp_select_window(sk
);
1424 /* Send ACK now, if this read freed lots of space
1425 * in our buffer. Certainly, new_window is new window.
1426 * We can advertise it now, if it is not less than current one.
1427 * "Lots" means "at least twice" here.
1429 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1437 static void tcp_prequeue_process(struct sock
*sk
)
1439 struct sk_buff
*skb
;
1440 struct tcp_sock
*tp
= tcp_sk(sk
);
1442 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPPREQUEUED
);
1444 /* RX process wants to run with disabled BHs, though it is not
1447 while ((skb
= __skb_dequeue(&tp
->ucopy
.prequeue
)) != NULL
)
1448 sk_backlog_rcv(sk
, skb
);
1451 /* Clear memory counter. */
1452 tp
->ucopy
.memory
= 0;
1455 #ifdef CONFIG_NET_DMA
1456 static void tcp_service_net_dma(struct sock
*sk
, bool wait
)
1458 dma_cookie_t done
, used
;
1459 dma_cookie_t last_issued
;
1460 struct tcp_sock
*tp
= tcp_sk(sk
);
1462 if (!tp
->ucopy
.dma_chan
)
1465 last_issued
= tp
->ucopy
.dma_cookie
;
1466 dma_async_issue_pending(tp
->ucopy
.dma_chan
);
1469 if (dma_async_is_tx_complete(tp
->ucopy
.dma_chan
,
1471 &used
) == DMA_COMPLETE
) {
1472 /* Safe to free early-copied skbs now */
1473 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1476 struct sk_buff
*skb
;
1477 while ((skb
= skb_peek(&sk
->sk_async_wait_queue
)) &&
1478 (dma_async_is_complete(skb
->dma_cookie
, done
,
1479 used
) == DMA_COMPLETE
)) {
1480 __skb_dequeue(&sk
->sk_async_wait_queue
);
1488 static struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1490 struct sk_buff
*skb
;
1493 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1494 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1495 if (tcp_hdr(skb
)->syn
)
1497 if (offset
< skb
->len
|| tcp_hdr(skb
)->fin
) {
1501 /* This looks weird, but this can happen if TCP collapsing
1502 * splitted a fat GRO packet, while we released socket lock
1503 * in skb_splice_bits()
1505 sk_eat_skb(sk
, skb
, false);
1511 * This routine provides an alternative to tcp_recvmsg() for routines
1512 * that would like to handle copying from skbuffs directly in 'sendfile'
1515 * - It is assumed that the socket was locked by the caller.
1516 * - The routine does not block.
1517 * - At present, there is no support for reading OOB data
1518 * or for 'peeking' the socket using this routine
1519 * (although both would be easy to implement).
1521 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1522 sk_read_actor_t recv_actor
)
1524 struct sk_buff
*skb
;
1525 struct tcp_sock
*tp
= tcp_sk(sk
);
1526 u32 seq
= tp
->copied_seq
;
1530 if (sk
->sk_state
== TCP_LISTEN
)
1532 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1533 if (offset
< skb
->len
) {
1537 len
= skb
->len
- offset
;
1538 /* Stop reading if we hit a patch of urgent data */
1540 u32 urg_offset
= tp
->urg_seq
- seq
;
1541 if (urg_offset
< len
)
1546 used
= recv_actor(desc
, skb
, offset
, len
);
1551 } else if (used
<= len
) {
1556 /* If recv_actor drops the lock (e.g. TCP splice
1557 * receive) the skb pointer might be invalid when
1558 * getting here: tcp_collapse might have deleted it
1559 * while aggregating skbs from the socket queue.
1561 skb
= tcp_recv_skb(sk
, seq
- 1, &offset
);
1564 /* TCP coalescing might have appended data to the skb.
1565 * Try to splice more frags
1567 if (offset
+ 1 != skb
->len
)
1570 if (tcp_hdr(skb
)->fin
) {
1571 sk_eat_skb(sk
, skb
, false);
1575 sk_eat_skb(sk
, skb
, false);
1578 tp
->copied_seq
= seq
;
1580 tp
->copied_seq
= seq
;
1582 tcp_rcv_space_adjust(sk
);
1584 /* Clean up data we have read: This will do ACK frames. */
1586 tcp_recv_skb(sk
, seq
, &offset
);
1587 tcp_cleanup_rbuf(sk
, copied
);
1591 EXPORT_SYMBOL(tcp_read_sock
);
1594 * This routine copies from a sock struct into the user buffer.
1596 * Technical note: in 2.3 we work on _locked_ socket, so that
1597 * tricks with *seq access order and skb->users are not required.
1598 * Probably, code can be easily improved even more.
1601 int tcp_recvmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1602 size_t len
, int nonblock
, int flags
, int *addr_len
)
1604 struct tcp_sock
*tp
= tcp_sk(sk
);
1610 int target
; /* Read at least this many bytes */
1612 struct task_struct
*user_recv
= NULL
;
1613 bool copied_early
= false;
1614 struct sk_buff
*skb
;
1617 if (sk_can_busy_loop(sk
) && skb_queue_empty(&sk
->sk_receive_queue
) &&
1618 (sk
->sk_state
== TCP_ESTABLISHED
))
1619 sk_busy_loop(sk
, nonblock
);
1624 if (sk
->sk_state
== TCP_LISTEN
)
1627 timeo
= sock_rcvtimeo(sk
, nonblock
);
1629 /* Urgent data needs to be handled specially. */
1630 if (flags
& MSG_OOB
)
1633 if (unlikely(tp
->repair
)) {
1635 if (!(flags
& MSG_PEEK
))
1638 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
1642 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1645 /* 'common' recv queue MSG_PEEK-ing */
1648 seq
= &tp
->copied_seq
;
1649 if (flags
& MSG_PEEK
) {
1650 peek_seq
= tp
->copied_seq
;
1654 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1656 #ifdef CONFIG_NET_DMA
1657 tp
->ucopy
.dma_chan
= NULL
;
1659 skb
= skb_peek_tail(&sk
->sk_receive_queue
);
1664 available
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- (*seq
);
1665 if ((available
< target
) &&
1666 (len
> sysctl_tcp_dma_copybreak
) && !(flags
& MSG_PEEK
) &&
1667 !sysctl_tcp_low_latency
&&
1668 net_dma_find_channel()) {
1670 tp
->ucopy
.pinned_list
=
1671 dma_pin_iovec_pages(msg
->msg_iov
, len
);
1681 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1682 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
1685 if (signal_pending(current
)) {
1686 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
1691 /* Next get a buffer. */
1693 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1694 /* Now that we have two receive queues this
1697 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
1698 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1699 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
1703 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
1704 if (tcp_hdr(skb
)->syn
)
1706 if (offset
< skb
->len
)
1708 if (tcp_hdr(skb
)->fin
)
1710 WARN(!(flags
& MSG_PEEK
),
1711 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1712 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
1715 /* Well, if we have backlog, try to process it now yet. */
1717 if (copied
>= target
&& !sk
->sk_backlog
.tail
)
1722 sk
->sk_state
== TCP_CLOSE
||
1723 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1725 signal_pending(current
))
1728 if (sock_flag(sk
, SOCK_DONE
))
1732 copied
= sock_error(sk
);
1736 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1739 if (sk
->sk_state
== TCP_CLOSE
) {
1740 if (!sock_flag(sk
, SOCK_DONE
)) {
1741 /* This occurs when user tries to read
1742 * from never connected socket.
1755 if (signal_pending(current
)) {
1756 copied
= sock_intr_errno(timeo
);
1761 tcp_cleanup_rbuf(sk
, copied
);
1763 if (!sysctl_tcp_low_latency
&& tp
->ucopy
.task
== user_recv
) {
1764 /* Install new reader */
1765 if (!user_recv
&& !(flags
& (MSG_TRUNC
| MSG_PEEK
))) {
1766 user_recv
= current
;
1767 tp
->ucopy
.task
= user_recv
;
1768 tp
->ucopy
.iov
= msg
->msg_iov
;
1771 tp
->ucopy
.len
= len
;
1773 WARN_ON(tp
->copied_seq
!= tp
->rcv_nxt
&&
1774 !(flags
& (MSG_PEEK
| MSG_TRUNC
)));
1776 /* Ugly... If prequeue is not empty, we have to
1777 * process it before releasing socket, otherwise
1778 * order will be broken at second iteration.
1779 * More elegant solution is required!!!
1781 * Look: we have the following (pseudo)queues:
1783 * 1. packets in flight
1788 * Each queue can be processed only if the next ones
1789 * are empty. At this point we have empty receive_queue.
1790 * But prequeue _can_ be not empty after 2nd iteration,
1791 * when we jumped to start of loop because backlog
1792 * processing added something to receive_queue.
1793 * We cannot release_sock(), because backlog contains
1794 * packets arrived _after_ prequeued ones.
1796 * Shortly, algorithm is clear --- to process all
1797 * the queues in order. We could make it more directly,
1798 * requeueing packets from backlog to prequeue, if
1799 * is not empty. It is more elegant, but eats cycles,
1802 if (!skb_queue_empty(&tp
->ucopy
.prequeue
))
1805 /* __ Set realtime policy in scheduler __ */
1808 #ifdef CONFIG_NET_DMA
1809 if (tp
->ucopy
.dma_chan
) {
1810 if (tp
->rcv_wnd
== 0 &&
1811 !skb_queue_empty(&sk
->sk_async_wait_queue
)) {
1812 tcp_service_net_dma(sk
, true);
1813 tcp_cleanup_rbuf(sk
, copied
);
1815 dma_async_issue_pending(tp
->ucopy
.dma_chan
);
1818 if (copied
>= target
) {
1819 /* Do not sleep, just process backlog. */
1823 sk_wait_data(sk
, &timeo
);
1825 #ifdef CONFIG_NET_DMA
1826 tcp_service_net_dma(sk
, false); /* Don't block */
1827 tp
->ucopy
.wakeup
= 0;
1833 /* __ Restore normal policy in scheduler __ */
1835 if ((chunk
= len
- tp
->ucopy
.len
) != 0) {
1836 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG
, chunk
);
1841 if (tp
->rcv_nxt
== tp
->copied_seq
&&
1842 !skb_queue_empty(&tp
->ucopy
.prequeue
)) {
1844 tcp_prequeue_process(sk
);
1846 if ((chunk
= len
- tp
->ucopy
.len
) != 0) {
1847 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE
, chunk
);
1853 if ((flags
& MSG_PEEK
) &&
1854 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
1855 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1857 task_pid_nr(current
));
1858 peek_seq
= tp
->copied_seq
;
1863 /* Ok so how much can we use? */
1864 used
= skb
->len
- offset
;
1868 /* Do we have urgent data here? */
1870 u32 urg_offset
= tp
->urg_seq
- *seq
;
1871 if (urg_offset
< used
) {
1873 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
1886 if (!(flags
& MSG_TRUNC
)) {
1887 #ifdef CONFIG_NET_DMA
1888 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1889 tp
->ucopy
.dma_chan
= net_dma_find_channel();
1891 if (tp
->ucopy
.dma_chan
) {
1892 tp
->ucopy
.dma_cookie
= dma_skb_copy_datagram_iovec(
1893 tp
->ucopy
.dma_chan
, skb
, offset
,
1895 tp
->ucopy
.pinned_list
);
1897 if (tp
->ucopy
.dma_cookie
< 0) {
1899 pr_alert("%s: dma_cookie < 0\n",
1902 /* Exception. Bailout! */
1908 dma_async_issue_pending(tp
->ucopy
.dma_chan
);
1910 if ((offset
+ used
) == skb
->len
)
1911 copied_early
= true;
1916 err
= skb_copy_datagram_iovec(skb
, offset
,
1917 msg
->msg_iov
, used
);
1919 /* Exception. Bailout! */
1931 tcp_rcv_space_adjust(sk
);
1934 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
1936 tcp_fast_path_check(sk
);
1938 if (used
+ offset
< skb
->len
)
1941 if (tcp_hdr(skb
)->fin
)
1943 if (!(flags
& MSG_PEEK
)) {
1944 sk_eat_skb(sk
, skb
, copied_early
);
1945 copied_early
= false;
1950 /* Process the FIN. */
1952 if (!(flags
& MSG_PEEK
)) {
1953 sk_eat_skb(sk
, skb
, copied_early
);
1954 copied_early
= false;
1960 if (!skb_queue_empty(&tp
->ucopy
.prequeue
)) {
1963 tp
->ucopy
.len
= copied
> 0 ? len
: 0;
1965 tcp_prequeue_process(sk
);
1967 if (copied
> 0 && (chunk
= len
- tp
->ucopy
.len
) != 0) {
1968 NET_ADD_STATS_USER(sock_net(sk
), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE
, chunk
);
1974 tp
->ucopy
.task
= NULL
;
1978 #ifdef CONFIG_NET_DMA
1979 tcp_service_net_dma(sk
, true); /* Wait for queue to drain */
1980 tp
->ucopy
.dma_chan
= NULL
;
1982 if (tp
->ucopy
.pinned_list
) {
1983 dma_unpin_iovec_pages(tp
->ucopy
.pinned_list
);
1984 tp
->ucopy
.pinned_list
= NULL
;
1988 /* According to UNIX98, msg_name/msg_namelen are ignored
1989 * on connected socket. I was just happy when found this 8) --ANK
1992 /* Clean up data we have read: This will do ACK frames. */
1993 tcp_cleanup_rbuf(sk
, copied
);
2003 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
2007 err
= tcp_peek_sndq(sk
, msg
, len
);
2010 EXPORT_SYMBOL(tcp_recvmsg
);
2012 void tcp_set_state(struct sock
*sk
, int state
)
2014 int oldstate
= sk
->sk_state
;
2017 case TCP_ESTABLISHED
:
2018 if (oldstate
!= TCP_ESTABLISHED
)
2019 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2023 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
2024 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
2026 sk
->sk_prot
->unhash(sk
);
2027 if (inet_csk(sk
)->icsk_bind_hash
&&
2028 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
2032 if (oldstate
== TCP_ESTABLISHED
)
2033 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2036 /* Change state AFTER socket is unhashed to avoid closed
2037 * socket sitting in hash tables.
2039 sk
->sk_state
= state
;
2042 SOCK_DEBUG(sk
, "TCP sk=%p, State %s -> %s\n", sk
, statename
[oldstate
], statename
[state
]);
2045 EXPORT_SYMBOL_GPL(tcp_set_state
);
2048 * State processing on a close. This implements the state shift for
2049 * sending our FIN frame. Note that we only send a FIN for some
2050 * states. A shutdown() may have already sent the FIN, or we may be
2054 static const unsigned char new_state
[16] = {
2055 /* current state: new state: action: */
2056 /* (Invalid) */ TCP_CLOSE
,
2057 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2058 /* TCP_SYN_SENT */ TCP_CLOSE
,
2059 /* TCP_SYN_RECV */ TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2060 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1
,
2061 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2
,
2062 /* TCP_TIME_WAIT */ TCP_CLOSE
,
2063 /* TCP_CLOSE */ TCP_CLOSE
,
2064 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK
| TCP_ACTION_FIN
,
2065 /* TCP_LAST_ACK */ TCP_LAST_ACK
,
2066 /* TCP_LISTEN */ TCP_CLOSE
,
2067 /* TCP_CLOSING */ TCP_CLOSING
,
2070 static int tcp_close_state(struct sock
*sk
)
2072 int next
= (int)new_state
[sk
->sk_state
];
2073 int ns
= next
& TCP_STATE_MASK
;
2075 tcp_set_state(sk
, ns
);
2077 return next
& TCP_ACTION_FIN
;
2081 * Shutdown the sending side of a connection. Much like close except
2082 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2085 void tcp_shutdown(struct sock
*sk
, int how
)
2087 /* We need to grab some memory, and put together a FIN,
2088 * and then put it into the queue to be sent.
2089 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2091 if (!(how
& SEND_SHUTDOWN
))
2094 /* If we've already sent a FIN, or it's a closed state, skip this. */
2095 if ((1 << sk
->sk_state
) &
2096 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
2097 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
2098 /* Clear out any half completed packets. FIN if needed. */
2099 if (tcp_close_state(sk
))
2103 EXPORT_SYMBOL(tcp_shutdown
);
2105 bool tcp_check_oom(struct sock
*sk
, int shift
)
2107 bool too_many_orphans
, out_of_socket_memory
;
2109 too_many_orphans
= tcp_too_many_orphans(sk
, shift
);
2110 out_of_socket_memory
= tcp_out_of_memory(sk
);
2112 if (too_many_orphans
)
2113 net_info_ratelimited("too many orphaned sockets\n");
2114 if (out_of_socket_memory
)
2115 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2116 return too_many_orphans
|| out_of_socket_memory
;
2119 void tcp_close(struct sock
*sk
, long timeout
)
2121 struct sk_buff
*skb
;
2122 int data_was_unread
= 0;
2126 sk
->sk_shutdown
= SHUTDOWN_MASK
;
2128 if (sk
->sk_state
== TCP_LISTEN
) {
2129 tcp_set_state(sk
, TCP_CLOSE
);
2132 inet_csk_listen_stop(sk
);
2134 goto adjudge_to_death
;
2137 /* We need to flush the recv. buffs. We do this only on the
2138 * descriptor close, not protocol-sourced closes, because the
2139 * reader process may not have drained the data yet!
2141 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
2142 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
-
2144 data_was_unread
+= len
;
2150 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2151 if (sk
->sk_state
== TCP_CLOSE
)
2152 goto adjudge_to_death
;
2154 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2155 * data was lost. To witness the awful effects of the old behavior of
2156 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2157 * GET in an FTP client, suspend the process, wait for the client to
2158 * advertise a zero window, then kill -9 the FTP client, wheee...
2159 * Note: timeout is always zero in such a case.
2161 if (unlikely(tcp_sk(sk
)->repair
)) {
2162 sk
->sk_prot
->disconnect(sk
, 0);
2163 } else if (data_was_unread
) {
2164 /* Unread data was tossed, zap the connection. */
2165 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
2166 tcp_set_state(sk
, TCP_CLOSE
);
2167 tcp_send_active_reset(sk
, sk
->sk_allocation
);
2168 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
2169 /* Check zero linger _after_ checking for unread data. */
2170 sk
->sk_prot
->disconnect(sk
, 0);
2171 NET_INC_STATS_USER(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
2172 } else if (tcp_close_state(sk
)) {
2173 /* We FIN if the application ate all the data before
2174 * zapping the connection.
2177 /* RED-PEN. Formally speaking, we have broken TCP state
2178 * machine. State transitions:
2180 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2181 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2182 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2184 * are legal only when FIN has been sent (i.e. in window),
2185 * rather than queued out of window. Purists blame.
2187 * F.e. "RFC state" is ESTABLISHED,
2188 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2190 * The visible declinations are that sometimes
2191 * we enter time-wait state, when it is not required really
2192 * (harmless), do not send active resets, when they are
2193 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2194 * they look as CLOSING or LAST_ACK for Linux)
2195 * Probably, I missed some more holelets.
2197 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2198 * in a single packet! (May consider it later but will
2199 * probably need API support or TCP_CORK SYN-ACK until
2200 * data is written and socket is closed.)
2205 sk_stream_wait_close(sk
, timeout
);
2208 state
= sk
->sk_state
;
2212 /* It is the last release_sock in its life. It will remove backlog. */
2216 /* Now socket is owned by kernel and we acquire BH lock
2217 to finish close. No need to check for user refs.
2221 WARN_ON(sock_owned_by_user(sk
));
2223 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
2225 /* Have we already been destroyed by a softirq or backlog? */
2226 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
2229 /* This is a (useful) BSD violating of the RFC. There is a
2230 * problem with TCP as specified in that the other end could
2231 * keep a socket open forever with no application left this end.
2232 * We use a 3 minute timeout (about the same as BSD) then kill
2233 * our end. If they send after that then tough - BUT: long enough
2234 * that we won't make the old 4*rto = almost no time - whoops
2237 * Nope, it was not mistake. It is really desired behaviour
2238 * f.e. on http servers, when such sockets are useless, but
2239 * consume significant resources. Let's do it with special
2240 * linger2 option. --ANK
2243 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
2244 struct tcp_sock
*tp
= tcp_sk(sk
);
2245 if (tp
->linger2
< 0) {
2246 tcp_set_state(sk
, TCP_CLOSE
);
2247 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2248 NET_INC_STATS_BH(sock_net(sk
),
2249 LINUX_MIB_TCPABORTONLINGER
);
2251 const int tmo
= tcp_fin_time(sk
);
2253 if (tmo
> TCP_TIMEWAIT_LEN
) {
2254 inet_csk_reset_keepalive_timer(sk
,
2255 tmo
- TCP_TIMEWAIT_LEN
);
2257 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
2262 if (sk
->sk_state
!= TCP_CLOSE
) {
2264 if (tcp_check_oom(sk
, 0)) {
2265 tcp_set_state(sk
, TCP_CLOSE
);
2266 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2267 NET_INC_STATS_BH(sock_net(sk
),
2268 LINUX_MIB_TCPABORTONMEMORY
);
2272 if (sk
->sk_state
== TCP_CLOSE
) {
2273 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
2274 /* We could get here with a non-NULL req if the socket is
2275 * aborted (e.g., closed with unread data) before 3WHS
2279 reqsk_fastopen_remove(sk
, req
, false);
2280 inet_csk_destroy_sock(sk
);
2282 /* Otherwise, socket is reprieved until protocol close. */
2289 EXPORT_SYMBOL(tcp_close
);
2291 /* These states need RST on ABORT according to RFC793 */
2293 static inline bool tcp_need_reset(int state
)
2295 return (1 << state
) &
2296 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2297 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2300 int tcp_disconnect(struct sock
*sk
, int flags
)
2302 struct inet_sock
*inet
= inet_sk(sk
);
2303 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2304 struct tcp_sock
*tp
= tcp_sk(sk
);
2306 int old_state
= sk
->sk_state
;
2308 if (old_state
!= TCP_CLOSE
)
2309 tcp_set_state(sk
, TCP_CLOSE
);
2311 /* ABORT function of RFC793 */
2312 if (old_state
== TCP_LISTEN
) {
2313 inet_csk_listen_stop(sk
);
2314 } else if (unlikely(tp
->repair
)) {
2315 sk
->sk_err
= ECONNABORTED
;
2316 } else if (tcp_need_reset(old_state
) ||
2317 (tp
->snd_nxt
!= tp
->write_seq
&&
2318 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2319 /* The last check adjusts for discrepancy of Linux wrt. RFC
2322 tcp_send_active_reset(sk
, gfp_any());
2323 sk
->sk_err
= ECONNRESET
;
2324 } else if (old_state
== TCP_SYN_SENT
)
2325 sk
->sk_err
= ECONNRESET
;
2327 tcp_clear_xmit_timers(sk
);
2328 __skb_queue_purge(&sk
->sk_receive_queue
);
2329 tcp_write_queue_purge(sk
);
2330 __skb_queue_purge(&tp
->out_of_order_queue
);
2331 #ifdef CONFIG_NET_DMA
2332 __skb_queue_purge(&sk
->sk_async_wait_queue
);
2335 inet
->inet_dport
= 0;
2337 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2338 inet_reset_saddr(sk
);
2340 sk
->sk_shutdown
= 0;
2341 sock_reset_flag(sk
, SOCK_DONE
);
2343 if ((tp
->write_seq
+= tp
->max_window
+ 2) == 0)
2345 icsk
->icsk_backoff
= 0;
2347 icsk
->icsk_probes_out
= 0;
2348 tp
->packets_out
= 0;
2349 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2350 tp
->snd_cwnd_cnt
= 0;
2351 tp
->window_clamp
= 0;
2352 tcp_set_ca_state(sk
, TCP_CA_Open
);
2353 tcp_clear_retrans(tp
);
2354 inet_csk_delack_init(sk
);
2355 tcp_init_send_head(sk
);
2356 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2359 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
2361 sk
->sk_error_report(sk
);
2364 EXPORT_SYMBOL(tcp_disconnect
);
2366 void tcp_sock_destruct(struct sock
*sk
)
2368 inet_sock_destruct(sk
);
2370 kfree(inet_csk(sk
)->icsk_accept_queue
.fastopenq
);
2373 static inline bool tcp_can_repair_sock(const struct sock
*sk
)
2375 return ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
) &&
2376 ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_ESTABLISHED
));
2379 static int tcp_repair_options_est(struct tcp_sock
*tp
,
2380 struct tcp_repair_opt __user
*optbuf
, unsigned int len
)
2382 struct tcp_repair_opt opt
;
2384 while (len
>= sizeof(opt
)) {
2385 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2391 switch (opt
.opt_code
) {
2393 tp
->rx_opt
.mss_clamp
= opt
.opt_val
;
2397 u16 snd_wscale
= opt
.opt_val
& 0xFFFF;
2398 u16 rcv_wscale
= opt
.opt_val
>> 16;
2400 if (snd_wscale
> 14 || rcv_wscale
> 14)
2403 tp
->rx_opt
.snd_wscale
= snd_wscale
;
2404 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2405 tp
->rx_opt
.wscale_ok
= 1;
2408 case TCPOPT_SACK_PERM
:
2409 if (opt
.opt_val
!= 0)
2412 tp
->rx_opt
.sack_ok
|= TCP_SACK_SEEN
;
2413 if (sysctl_tcp_fack
)
2414 tcp_enable_fack(tp
);
2416 case TCPOPT_TIMESTAMP
:
2417 if (opt
.opt_val
!= 0)
2420 tp
->rx_opt
.tstamp_ok
= 1;
2429 * Socket option code for TCP.
2431 static int do_tcp_setsockopt(struct sock
*sk
, int level
,
2432 int optname
, char __user
*optval
, unsigned int optlen
)
2434 struct tcp_sock
*tp
= tcp_sk(sk
);
2435 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2439 /* These are data/string values, all the others are ints */
2441 case TCP_CONGESTION
: {
2442 char name
[TCP_CA_NAME_MAX
];
2447 val
= strncpy_from_user(name
, optval
,
2448 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
2454 err
= tcp_set_congestion_control(sk
, name
);
2463 if (optlen
< sizeof(int))
2466 if (get_user(val
, (int __user
*)optval
))
2473 /* Values greater than interface MTU won't take effect. However
2474 * at the point when this call is done we typically don't yet
2475 * know which interface is going to be used */
2476 if (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
) {
2480 tp
->rx_opt
.user_mss
= val
;
2485 /* TCP_NODELAY is weaker than TCP_CORK, so that
2486 * this option on corked socket is remembered, but
2487 * it is not activated until cork is cleared.
2489 * However, when TCP_NODELAY is set we make
2490 * an explicit push, which overrides even TCP_CORK
2491 * for currently queued segments.
2493 tp
->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
2494 tcp_push_pending_frames(sk
);
2496 tp
->nonagle
&= ~TCP_NAGLE_OFF
;
2500 case TCP_THIN_LINEAR_TIMEOUTS
:
2501 if (val
< 0 || val
> 1)
2507 case TCP_THIN_DUPACK
:
2508 if (val
< 0 || val
> 1)
2511 tp
->thin_dupack
= val
;
2512 if (tp
->thin_dupack
)
2513 tcp_disable_early_retrans(tp
);
2518 if (!tcp_can_repair_sock(sk
))
2520 else if (val
== 1) {
2522 sk
->sk_reuse
= SK_FORCE_REUSE
;
2523 tp
->repair_queue
= TCP_NO_QUEUE
;
2524 } else if (val
== 0) {
2526 sk
->sk_reuse
= SK_NO_REUSE
;
2527 tcp_send_window_probe(sk
);
2533 case TCP_REPAIR_QUEUE
:
2536 else if (val
< TCP_QUEUES_NR
)
2537 tp
->repair_queue
= val
;
2543 if (sk
->sk_state
!= TCP_CLOSE
)
2545 else if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2546 tp
->write_seq
= val
;
2547 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
2553 case TCP_REPAIR_OPTIONS
:
2556 else if (sk
->sk_state
== TCP_ESTABLISHED
)
2557 err
= tcp_repair_options_est(tp
,
2558 (struct tcp_repair_opt __user
*)optval
,
2565 /* When set indicates to always queue non-full frames.
2566 * Later the user clears this option and we transmit
2567 * any pending partial frames in the queue. This is
2568 * meant to be used alongside sendfile() to get properly
2569 * filled frames when the user (for example) must write
2570 * out headers with a write() call first and then use
2571 * sendfile to send out the data parts.
2573 * TCP_CORK can be set together with TCP_NODELAY and it is
2574 * stronger than TCP_NODELAY.
2577 tp
->nonagle
|= TCP_NAGLE_CORK
;
2579 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
2580 if (tp
->nonagle
&TCP_NAGLE_OFF
)
2581 tp
->nonagle
|= TCP_NAGLE_PUSH
;
2582 tcp_push_pending_frames(sk
);
2587 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
2590 tp
->keepalive_time
= val
* HZ
;
2591 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
2592 !((1 << sk
->sk_state
) &
2593 (TCPF_CLOSE
| TCPF_LISTEN
))) {
2594 u32 elapsed
= keepalive_time_elapsed(tp
);
2595 if (tp
->keepalive_time
> elapsed
)
2596 elapsed
= tp
->keepalive_time
- elapsed
;
2599 inet_csk_reset_keepalive_timer(sk
, elapsed
);
2604 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
2607 tp
->keepalive_intvl
= val
* HZ
;
2610 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
2613 tp
->keepalive_probes
= val
;
2616 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
2619 icsk
->icsk_syn_retries
= val
;
2625 else if (val
> sysctl_tcp_fin_timeout
/ HZ
)
2628 tp
->linger2
= val
* HZ
;
2631 case TCP_DEFER_ACCEPT
:
2632 /* Translate value in seconds to number of retransmits */
2633 icsk
->icsk_accept_queue
.rskq_defer_accept
=
2634 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
2638 case TCP_WINDOW_CLAMP
:
2640 if (sk
->sk_state
!= TCP_CLOSE
) {
2644 tp
->window_clamp
= 0;
2646 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
2647 SOCK_MIN_RCVBUF
/ 2 : val
;
2652 icsk
->icsk_ack
.pingpong
= 1;
2654 icsk
->icsk_ack
.pingpong
= 0;
2655 if ((1 << sk
->sk_state
) &
2656 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
2657 inet_csk_ack_scheduled(sk
)) {
2658 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
2659 tcp_cleanup_rbuf(sk
, 1);
2661 icsk
->icsk_ack
.pingpong
= 1;
2666 #ifdef CONFIG_TCP_MD5SIG
2668 /* Read the IP->Key mappings from userspace */
2669 err
= tp
->af_specific
->md5_parse(sk
, optval
, optlen
);
2672 case TCP_USER_TIMEOUT
:
2673 /* Cap the max timeout in ms TCP will retry/retrans
2674 * before giving up and aborting (ETIMEDOUT) a connection.
2679 icsk
->icsk_user_timeout
= msecs_to_jiffies(val
);
2683 if (val
>= 0 && ((1 << sk
->sk_state
) & (TCPF_CLOSE
|
2685 err
= fastopen_init_queue(sk
, val
);
2693 tp
->tsoffset
= val
- tcp_time_stamp
;
2695 case TCP_NOTSENT_LOWAT
:
2696 tp
->notsent_lowat
= val
;
2697 sk
->sk_write_space(sk
);
2708 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2709 unsigned int optlen
)
2711 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2713 if (level
!= SOL_TCP
)
2714 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
2716 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2718 EXPORT_SYMBOL(tcp_setsockopt
);
2720 #ifdef CONFIG_COMPAT
2721 int compat_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
2722 char __user
*optval
, unsigned int optlen
)
2724 if (level
!= SOL_TCP
)
2725 return inet_csk_compat_setsockopt(sk
, level
, optname
,
2727 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2729 EXPORT_SYMBOL(compat_tcp_setsockopt
);
2732 /* Return information about state of tcp endpoint in API format. */
2733 void tcp_get_info(const struct sock
*sk
, struct tcp_info
*info
)
2735 const struct tcp_sock
*tp
= tcp_sk(sk
);
2736 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2737 u32 now
= tcp_time_stamp
;
2739 memset(info
, 0, sizeof(*info
));
2741 info
->tcpi_state
= sk
->sk_state
;
2742 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
2743 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
2744 info
->tcpi_probes
= icsk
->icsk_probes_out
;
2745 info
->tcpi_backoff
= icsk
->icsk_backoff
;
2747 if (tp
->rx_opt
.tstamp_ok
)
2748 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
2749 if (tcp_is_sack(tp
))
2750 info
->tcpi_options
|= TCPI_OPT_SACK
;
2751 if (tp
->rx_opt
.wscale_ok
) {
2752 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
2753 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
2754 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
2757 if (tp
->ecn_flags
& TCP_ECN_OK
)
2758 info
->tcpi_options
|= TCPI_OPT_ECN
;
2759 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
2760 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
2761 if (tp
->syn_data_acked
)
2762 info
->tcpi_options
|= TCPI_OPT_SYN_DATA
;
2764 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
2765 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
2766 info
->tcpi_snd_mss
= tp
->mss_cache
;
2767 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
2769 if (sk
->sk_state
== TCP_LISTEN
) {
2770 info
->tcpi_unacked
= sk
->sk_ack_backlog
;
2771 info
->tcpi_sacked
= sk
->sk_max_ack_backlog
;
2773 info
->tcpi_unacked
= tp
->packets_out
;
2774 info
->tcpi_sacked
= tp
->sacked_out
;
2776 info
->tcpi_lost
= tp
->lost_out
;
2777 info
->tcpi_retrans
= tp
->retrans_out
;
2778 info
->tcpi_fackets
= tp
->fackets_out
;
2780 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
2781 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
2782 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
2784 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
2785 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
2786 info
->tcpi_rtt
= jiffies_to_usecs(tp
->srtt
)>>3;
2787 info
->tcpi_rttvar
= jiffies_to_usecs(tp
->mdev
)>>2;
2788 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
2789 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
2790 info
->tcpi_advmss
= tp
->advmss
;
2791 info
->tcpi_reordering
= tp
->reordering
;
2793 info
->tcpi_rcv_rtt
= jiffies_to_usecs(tp
->rcv_rtt_est
.rtt
)>>3;
2794 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
2796 info
->tcpi_total_retrans
= tp
->total_retrans
;
2798 EXPORT_SYMBOL_GPL(tcp_get_info
);
2800 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
2801 int optname
, char __user
*optval
, int __user
*optlen
)
2803 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2804 struct tcp_sock
*tp
= tcp_sk(sk
);
2807 if (get_user(len
, optlen
))
2810 len
= min_t(unsigned int, len
, sizeof(int));
2817 val
= tp
->mss_cache
;
2818 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
2819 val
= tp
->rx_opt
.user_mss
;
2821 val
= tp
->rx_opt
.mss_clamp
;
2824 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
2827 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
2830 val
= keepalive_time_when(tp
) / HZ
;
2833 val
= keepalive_intvl_when(tp
) / HZ
;
2836 val
= keepalive_probes(tp
);
2839 val
= icsk
->icsk_syn_retries
? : sysctl_tcp_syn_retries
;
2844 val
= (val
? : sysctl_tcp_fin_timeout
) / HZ
;
2846 case TCP_DEFER_ACCEPT
:
2847 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
2848 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
2850 case TCP_WINDOW_CLAMP
:
2851 val
= tp
->window_clamp
;
2854 struct tcp_info info
;
2856 if (get_user(len
, optlen
))
2859 tcp_get_info(sk
, &info
);
2861 len
= min_t(unsigned int, len
, sizeof(info
));
2862 if (put_user(len
, optlen
))
2864 if (copy_to_user(optval
, &info
, len
))
2869 val
= !icsk
->icsk_ack
.pingpong
;
2872 case TCP_CONGESTION
:
2873 if (get_user(len
, optlen
))
2875 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
2876 if (put_user(len
, optlen
))
2878 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
2882 case TCP_THIN_LINEAR_TIMEOUTS
:
2885 case TCP_THIN_DUPACK
:
2886 val
= tp
->thin_dupack
;
2893 case TCP_REPAIR_QUEUE
:
2895 val
= tp
->repair_queue
;
2901 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2902 val
= tp
->write_seq
;
2903 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
2909 case TCP_USER_TIMEOUT
:
2910 val
= jiffies_to_msecs(icsk
->icsk_user_timeout
);
2913 val
= tcp_time_stamp
+ tp
->tsoffset
;
2915 case TCP_NOTSENT_LOWAT
:
2916 val
= tp
->notsent_lowat
;
2919 return -ENOPROTOOPT
;
2922 if (put_user(len
, optlen
))
2924 if (copy_to_user(optval
, &val
, len
))
2929 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2932 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2934 if (level
!= SOL_TCP
)
2935 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
2937 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
2939 EXPORT_SYMBOL(tcp_getsockopt
);
2941 #ifdef CONFIG_COMPAT
2942 int compat_tcp_getsockopt(struct sock
*sk
, int level
, int optname
,
2943 char __user
*optval
, int __user
*optlen
)
2945 if (level
!= SOL_TCP
)
2946 return inet_csk_compat_getsockopt(sk
, level
, optname
,
2948 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
2950 EXPORT_SYMBOL(compat_tcp_getsockopt
);
2953 #ifdef CONFIG_TCP_MD5SIG
2954 static struct tcp_md5sig_pool __percpu
*tcp_md5sig_pool __read_mostly
;
2955 static DEFINE_MUTEX(tcp_md5sig_mutex
);
2957 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu
*pool
)
2961 for_each_possible_cpu(cpu
) {
2962 struct tcp_md5sig_pool
*p
= per_cpu_ptr(pool
, cpu
);
2964 if (p
->md5_desc
.tfm
)
2965 crypto_free_hash(p
->md5_desc
.tfm
);
2970 static void __tcp_alloc_md5sig_pool(void)
2973 struct tcp_md5sig_pool __percpu
*pool
;
2975 pool
= alloc_percpu(struct tcp_md5sig_pool
);
2979 for_each_possible_cpu(cpu
) {
2980 struct crypto_hash
*hash
;
2982 hash
= crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC
);
2983 if (IS_ERR_OR_NULL(hash
))
2986 per_cpu_ptr(pool
, cpu
)->md5_desc
.tfm
= hash
;
2988 /* before setting tcp_md5sig_pool, we must commit all writes
2989 * to memory. See ACCESS_ONCE() in tcp_get_md5sig_pool()
2992 tcp_md5sig_pool
= pool
;
2995 __tcp_free_md5sig_pool(pool
);
2998 bool tcp_alloc_md5sig_pool(void)
3000 if (unlikely(!tcp_md5sig_pool
)) {
3001 mutex_lock(&tcp_md5sig_mutex
);
3003 if (!tcp_md5sig_pool
)
3004 __tcp_alloc_md5sig_pool();
3006 mutex_unlock(&tcp_md5sig_mutex
);
3008 return tcp_md5sig_pool
!= NULL
;
3010 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
3014 * tcp_get_md5sig_pool - get md5sig_pool for this user
3016 * We use percpu structure, so if we succeed, we exit with preemption
3017 * and BH disabled, to make sure another thread or softirq handling
3018 * wont try to get same context.
3020 struct tcp_md5sig_pool
*tcp_get_md5sig_pool(void)
3022 struct tcp_md5sig_pool __percpu
*p
;
3025 p
= ACCESS_ONCE(tcp_md5sig_pool
);
3027 return __this_cpu_ptr(p
);
3032 EXPORT_SYMBOL(tcp_get_md5sig_pool
);
3034 int tcp_md5_hash_header(struct tcp_md5sig_pool
*hp
,
3035 const struct tcphdr
*th
)
3037 struct scatterlist sg
;
3041 /* We are not allowed to change tcphdr, make a local copy */
3042 memcpy(&hdr
, th
, sizeof(hdr
));
3045 /* options aren't included in the hash */
3046 sg_init_one(&sg
, &hdr
, sizeof(hdr
));
3047 err
= crypto_hash_update(&hp
->md5_desc
, &sg
, sizeof(hdr
));
3050 EXPORT_SYMBOL(tcp_md5_hash_header
);
3052 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
3053 const struct sk_buff
*skb
, unsigned int header_len
)
3055 struct scatterlist sg
;
3056 const struct tcphdr
*tp
= tcp_hdr(skb
);
3057 struct hash_desc
*desc
= &hp
->md5_desc
;
3059 const unsigned int head_data_len
= skb_headlen(skb
) > header_len
?
3060 skb_headlen(skb
) - header_len
: 0;
3061 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
3062 struct sk_buff
*frag_iter
;
3064 sg_init_table(&sg
, 1);
3066 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
3067 if (crypto_hash_update(desc
, &sg
, head_data_len
))
3070 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
3071 const struct skb_frag_struct
*f
= &shi
->frags
[i
];
3072 unsigned int offset
= f
->page_offset
;
3073 struct page
*page
= skb_frag_page(f
) + (offset
>> PAGE_SHIFT
);
3075 sg_set_page(&sg
, page
, skb_frag_size(f
),
3076 offset_in_page(offset
));
3077 if (crypto_hash_update(desc
, &sg
, skb_frag_size(f
)))
3081 skb_walk_frags(skb
, frag_iter
)
3082 if (tcp_md5_hash_skb_data(hp
, frag_iter
, 0))
3087 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
3089 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, const struct tcp_md5sig_key
*key
)
3091 struct scatterlist sg
;
3093 sg_init_one(&sg
, key
->key
, key
->keylen
);
3094 return crypto_hash_update(&hp
->md5_desc
, &sg
, key
->keylen
);
3096 EXPORT_SYMBOL(tcp_md5_hash_key
);
3100 void tcp_done(struct sock
*sk
)
3102 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
3104 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
3105 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
3107 tcp_set_state(sk
, TCP_CLOSE
);
3108 tcp_clear_xmit_timers(sk
);
3110 reqsk_fastopen_remove(sk
, req
, false);
3112 sk
->sk_shutdown
= SHUTDOWN_MASK
;
3114 if (!sock_flag(sk
, SOCK_DEAD
))
3115 sk
->sk_state_change(sk
);
3117 inet_csk_destroy_sock(sk
);
3119 EXPORT_SYMBOL_GPL(tcp_done
);
3121 extern struct tcp_congestion_ops tcp_reno
;
3123 static __initdata
unsigned long thash_entries
;
3124 static int __init
set_thash_entries(char *str
)
3131 ret
= kstrtoul(str
, 0, &thash_entries
);
3137 __setup("thash_entries=", set_thash_entries
);
3139 static void tcp_init_mem(void)
3141 unsigned long limit
= nr_free_buffer_pages() / 8;
3142 limit
= max(limit
, 128UL);
3143 sysctl_tcp_mem
[0] = limit
/ 4 * 3;
3144 sysctl_tcp_mem
[1] = limit
;
3145 sysctl_tcp_mem
[2] = sysctl_tcp_mem
[0] * 2;
3148 void __init
tcp_init(void)
3150 struct sk_buff
*skb
= NULL
;
3151 unsigned long limit
;
3152 int max_rshare
, max_wshare
, cnt
;
3155 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) > sizeof(skb
->cb
));
3157 percpu_counter_init(&tcp_sockets_allocated
, 0);
3158 percpu_counter_init(&tcp_orphan_count
, 0);
3159 tcp_hashinfo
.bind_bucket_cachep
=
3160 kmem_cache_create("tcp_bind_bucket",
3161 sizeof(struct inet_bind_bucket
), 0,
3162 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3164 /* Size and allocate the main established and bind bucket
3167 * The methodology is similar to that of the buffer cache.
3169 tcp_hashinfo
.ehash
=
3170 alloc_large_system_hash("TCP established",
3171 sizeof(struct inet_ehash_bucket
),
3173 17, /* one slot per 128 KB of memory */
3176 &tcp_hashinfo
.ehash_mask
,
3178 thash_entries
? 0 : 512 * 1024);
3179 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++)
3180 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
3182 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
3183 panic("TCP: failed to alloc ehash_locks");
3184 tcp_hashinfo
.bhash
=
3185 alloc_large_system_hash("TCP bind",
3186 sizeof(struct inet_bind_hashbucket
),
3187 tcp_hashinfo
.ehash_mask
+ 1,
3188 17, /* one slot per 128 KB of memory */
3190 &tcp_hashinfo
.bhash_size
,
3194 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
3195 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
3196 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
3197 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
3201 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
3203 tcp_death_row
.sysctl_max_tw_buckets
= cnt
/ 2;
3204 sysctl_tcp_max_orphans
= cnt
/ 2;
3205 sysctl_max_syn_backlog
= max(128, cnt
/ 256);
3208 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3209 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
3210 max_wshare
= min(4UL*1024*1024, limit
);
3211 max_rshare
= min(6UL*1024*1024, limit
);
3213 sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
3214 sysctl_tcp_wmem
[1] = 16*1024;
3215 sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
3217 sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
3218 sysctl_tcp_rmem
[1] = 87380;
3219 sysctl_tcp_rmem
[2] = max(87380, max_rshare
);
3221 pr_info("Hash tables configured (established %u bind %u)\n",
3222 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
3226 tcp_register_congestion_control(&tcp_reno
);