2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 int selinux_policycap_netpeer
;
74 int selinux_policycap_openperm
;
75 int selinux_policycap_alwaysnetwork
;
77 static DEFINE_RWLOCK(policy_rwlock
);
79 static struct sidtab sidtab
;
80 struct policydb policydb
;
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
89 static u32 latest_granting
;
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context
*context
, char **scontext
,
95 static void context_struct_compute_av(struct context
*scontext
,
96 struct context
*tcontext
,
98 struct av_decision
*avd
);
100 struct selinux_mapping
{
101 u16 value
; /* policy value */
103 u32 perms
[sizeof(u32
) * 8];
106 static struct selinux_mapping
*current_mapping
;
107 static u16 current_mapping_size
;
109 static int selinux_set_mapping(struct policydb
*pol
,
110 struct security_class_mapping
*map
,
111 struct selinux_mapping
**out_map_p
,
114 struct selinux_mapping
*out_map
= NULL
;
115 size_t size
= sizeof(struct selinux_mapping
);
118 bool print_unknown_handle
= false;
120 /* Find number of classes in the input mapping */
127 /* Allocate space for the class records, plus one for class zero */
128 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
132 /* Store the raw class and permission values */
134 while (map
[j
].name
) {
135 struct security_class_mapping
*p_in
= map
+ (j
++);
136 struct selinux_mapping
*p_out
= out_map
+ j
;
138 /* An empty class string skips ahead */
139 if (!strcmp(p_in
->name
, "")) {
140 p_out
->num_perms
= 0;
144 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
147 "SELinux: Class %s not defined in policy.\n",
149 if (pol
->reject_unknown
)
151 p_out
->num_perms
= 0;
152 print_unknown_handle
= true;
157 while (p_in
->perms
&& p_in
->perms
[k
]) {
158 /* An empty permission string skips ahead */
159 if (!*p_in
->perms
[k
]) {
163 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
165 if (!p_out
->perms
[k
]) {
167 "SELinux: Permission %s in class %s not defined in policy.\n",
168 p_in
->perms
[k
], p_in
->name
);
169 if (pol
->reject_unknown
)
171 print_unknown_handle
= true;
176 p_out
->num_perms
= k
;
179 if (print_unknown_handle
)
180 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
181 pol
->allow_unknown
? "allowed" : "denied");
183 *out_map_p
= out_map
;
192 * Get real, policy values from mapped values
195 static u16
unmap_class(u16 tclass
)
197 if (tclass
< current_mapping_size
)
198 return current_mapping
[tclass
].value
;
204 * Get kernel value for class from its policy value
206 static u16
map_class(u16 pol_value
)
210 for (i
= 1; i
< current_mapping_size
; i
++) {
211 if (current_mapping
[i
].value
== pol_value
)
215 return SECCLASS_NULL
;
218 static void map_decision(u16 tclass
, struct av_decision
*avd
,
221 if (tclass
< current_mapping_size
) {
222 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
225 for (i
= 0, result
= 0; i
< n
; i
++) {
226 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
228 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
231 avd
->allowed
= result
;
233 for (i
= 0, result
= 0; i
< n
; i
++)
234 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
236 avd
->auditallow
= result
;
238 for (i
= 0, result
= 0; i
< n
; i
++) {
239 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
241 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
245 * In case the kernel has a bug and requests a permission
246 * between num_perms and the maximum permission number, we
247 * should audit that denial
249 for (; i
< (sizeof(u32
)*8); i
++)
251 avd
->auditdeny
= result
;
255 int security_mls_enabled(void)
257 return policydb
.mls_enabled
;
261 * Return the boolean value of a constraint expression
262 * when it is applied to the specified source and target
265 * xcontext is a special beast... It is used by the validatetrans rules
266 * only. For these rules, scontext is the context before the transition,
267 * tcontext is the context after the transition, and xcontext is the context
268 * of the process performing the transition. All other callers of
269 * constraint_expr_eval should pass in NULL for xcontext.
271 static int constraint_expr_eval(struct context
*scontext
,
272 struct context
*tcontext
,
273 struct context
*xcontext
,
274 struct constraint_expr
*cexpr
)
278 struct role_datum
*r1
, *r2
;
279 struct mls_level
*l1
, *l2
;
280 struct constraint_expr
*e
;
281 int s
[CEXPR_MAXDEPTH
];
284 for (e
= cexpr
; e
; e
= e
->next
) {
285 switch (e
->expr_type
) {
301 if (sp
== (CEXPR_MAXDEPTH
- 1))
305 val1
= scontext
->user
;
306 val2
= tcontext
->user
;
309 val1
= scontext
->type
;
310 val2
= tcontext
->type
;
313 val1
= scontext
->role
;
314 val2
= tcontext
->role
;
315 r1
= policydb
.role_val_to_struct
[val1
- 1];
316 r2
= policydb
.role_val_to_struct
[val2
- 1];
319 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
323 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
327 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
329 !ebitmap_get_bit(&r2
->dominates
,
337 l1
= &(scontext
->range
.level
[0]);
338 l2
= &(tcontext
->range
.level
[0]);
341 l1
= &(scontext
->range
.level
[0]);
342 l2
= &(tcontext
->range
.level
[1]);
345 l1
= &(scontext
->range
.level
[1]);
346 l2
= &(tcontext
->range
.level
[0]);
349 l1
= &(scontext
->range
.level
[1]);
350 l2
= &(tcontext
->range
.level
[1]);
353 l1
= &(scontext
->range
.level
[0]);
354 l2
= &(scontext
->range
.level
[1]);
357 l1
= &(tcontext
->range
.level
[0]);
358 l2
= &(tcontext
->range
.level
[1]);
363 s
[++sp
] = mls_level_eq(l1
, l2
);
366 s
[++sp
] = !mls_level_eq(l1
, l2
);
369 s
[++sp
] = mls_level_dom(l1
, l2
);
372 s
[++sp
] = mls_level_dom(l2
, l1
);
375 s
[++sp
] = mls_level_incomp(l2
, l1
);
389 s
[++sp
] = (val1
== val2
);
392 s
[++sp
] = (val1
!= val2
);
400 if (sp
== (CEXPR_MAXDEPTH
-1))
403 if (e
->attr
& CEXPR_TARGET
)
405 else if (e
->attr
& CEXPR_XTARGET
) {
412 if (e
->attr
& CEXPR_USER
)
414 else if (e
->attr
& CEXPR_ROLE
)
416 else if (e
->attr
& CEXPR_TYPE
)
425 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
428 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
446 * security_dump_masked_av - dumps masked permissions during
447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
451 struct perm_datum
*pdatum
= d
;
452 char **permission_names
= args
;
454 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
456 permission_names
[pdatum
->value
- 1] = (char *)k
;
461 static void security_dump_masked_av(struct context
*scontext
,
462 struct context
*tcontext
,
467 struct common_datum
*common_dat
;
468 struct class_datum
*tclass_dat
;
469 struct audit_buffer
*ab
;
471 char *scontext_name
= NULL
;
472 char *tcontext_name
= NULL
;
473 char *permission_names
[32];
476 bool need_comma
= false;
481 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
482 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
483 common_dat
= tclass_dat
->comdatum
;
485 /* init permission_names */
487 hashtab_map(common_dat
->permissions
.table
,
488 dump_masked_av_helper
, permission_names
) < 0)
491 if (hashtab_map(tclass_dat
->permissions
.table
,
492 dump_masked_av_helper
, permission_names
) < 0)
495 /* get scontext/tcontext in text form */
496 if (context_struct_to_string(scontext
,
497 &scontext_name
, &length
) < 0)
500 if (context_struct_to_string(tcontext
,
501 &tcontext_name
, &length
) < 0)
504 /* audit a message */
505 ab
= audit_log_start(current
->audit_context
,
506 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
510 audit_log_format(ab
, "op=security_compute_av reason=%s "
511 "scontext=%s tcontext=%s tclass=%s perms=",
512 reason
, scontext_name
, tcontext_name
, tclass_name
);
514 for (index
= 0; index
< 32; index
++) {
515 u32 mask
= (1 << index
);
517 if ((mask
& permissions
) == 0)
520 audit_log_format(ab
, "%s%s",
521 need_comma
? "," : "",
522 permission_names
[index
]
523 ? permission_names
[index
] : "????");
528 /* release scontext/tcontext */
529 kfree(tcontext_name
);
530 kfree(scontext_name
);
536 * security_boundary_permission - drops violated permissions
537 * on boundary constraint.
539 static void type_attribute_bounds_av(struct context
*scontext
,
540 struct context
*tcontext
,
542 struct av_decision
*avd
)
544 struct context lo_scontext
;
545 struct context lo_tcontext
;
546 struct av_decision lo_avd
;
547 struct type_datum
*source
;
548 struct type_datum
*target
;
551 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
555 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
559 if (source
->bounds
) {
560 memset(&lo_avd
, 0, sizeof(lo_avd
));
562 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
563 lo_scontext
.type
= source
->bounds
;
565 context_struct_compute_av(&lo_scontext
,
569 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
570 return; /* no masked permission */
571 masked
= ~lo_avd
.allowed
& avd
->allowed
;
574 if (target
->bounds
) {
575 memset(&lo_avd
, 0, sizeof(lo_avd
));
577 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
578 lo_tcontext
.type
= target
->bounds
;
580 context_struct_compute_av(scontext
,
584 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
585 return; /* no masked permission */
586 masked
= ~lo_avd
.allowed
& avd
->allowed
;
589 if (source
->bounds
&& target
->bounds
) {
590 memset(&lo_avd
, 0, sizeof(lo_avd
));
592 * lo_scontext and lo_tcontext are already
596 context_struct_compute_av(&lo_scontext
,
600 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
601 return; /* no masked permission */
602 masked
= ~lo_avd
.allowed
& avd
->allowed
;
606 /* mask violated permissions */
607 avd
->allowed
&= ~masked
;
609 /* audit masked permissions */
610 security_dump_masked_av(scontext
, tcontext
,
611 tclass
, masked
, "bounds");
616 * Compute access vectors based on a context structure pair for
617 * the permissions in a particular class.
619 static void context_struct_compute_av(struct context
*scontext
,
620 struct context
*tcontext
,
622 struct av_decision
*avd
)
624 struct constraint_node
*constraint
;
625 struct role_allow
*ra
;
626 struct avtab_key avkey
;
627 struct avtab_node
*node
;
628 struct class_datum
*tclass_datum
;
629 struct ebitmap
*sattr
, *tattr
;
630 struct ebitmap_node
*snode
, *tnode
;
635 avd
->auditdeny
= 0xffffffff;
637 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
638 if (printk_ratelimit())
639 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
643 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
646 * If a specific type enforcement rule was defined for
647 * this permission check, then use it.
649 avkey
.target_class
= tclass
;
650 avkey
.specified
= AVTAB_AV
;
651 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
653 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
655 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
656 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
657 avkey
.source_type
= i
+ 1;
658 avkey
.target_type
= j
+ 1;
659 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
661 node
= avtab_search_node_next(node
, avkey
.specified
)) {
662 if (node
->key
.specified
== AVTAB_ALLOWED
)
663 avd
->allowed
|= node
->datum
.data
;
664 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
665 avd
->auditallow
|= node
->datum
.data
;
666 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
667 avd
->auditdeny
&= node
->datum
.data
;
670 /* Check conditional av table for additional permissions */
671 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
677 * Remove any permissions prohibited by a constraint (this includes
680 constraint
= tclass_datum
->constraints
;
682 if ((constraint
->permissions
& (avd
->allowed
)) &&
683 !constraint_expr_eval(scontext
, tcontext
, NULL
,
685 avd
->allowed
&= ~(constraint
->permissions
);
687 constraint
= constraint
->next
;
691 * If checking process transition permission and the
692 * role is changing, then check the (current_role, new_role)
695 if (tclass
== policydb
.process_class
&&
696 (avd
->allowed
& policydb
.process_trans_perms
) &&
697 scontext
->role
!= tcontext
->role
) {
698 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
699 if (scontext
->role
== ra
->role
&&
700 tcontext
->role
== ra
->new_role
)
704 avd
->allowed
&= ~policydb
.process_trans_perms
;
708 * If the given source and target types have boundary
709 * constraint, lazy checks have to mask any violated
710 * permission and notice it to userspace via audit.
712 type_attribute_bounds_av(scontext
, tcontext
,
716 static int security_validtrans_handle_fail(struct context
*ocontext
,
717 struct context
*ncontext
,
718 struct context
*tcontext
,
721 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
722 u32 olen
, nlen
, tlen
;
724 if (context_struct_to_string(ocontext
, &o
, &olen
))
726 if (context_struct_to_string(ncontext
, &n
, &nlen
))
728 if (context_struct_to_string(tcontext
, &t
, &tlen
))
730 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
731 "security_validate_transition: denied for"
732 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
733 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
739 if (!selinux_enforcing
)
744 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
747 struct context
*ocontext
;
748 struct context
*ncontext
;
749 struct context
*tcontext
;
750 struct class_datum
*tclass_datum
;
751 struct constraint_node
*constraint
;
758 read_lock(&policy_rwlock
);
760 tclass
= unmap_class(orig_tclass
);
762 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
763 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
768 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
770 ocontext
= sidtab_search(&sidtab
, oldsid
);
772 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
778 ncontext
= sidtab_search(&sidtab
, newsid
);
780 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
786 tcontext
= sidtab_search(&sidtab
, tasksid
);
788 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
794 constraint
= tclass_datum
->validatetrans
;
796 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
798 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
802 constraint
= constraint
->next
;
806 read_unlock(&policy_rwlock
);
811 * security_bounded_transition - check whether the given
812 * transition is directed to bounded, or not.
813 * It returns 0, if @newsid is bounded by @oldsid.
814 * Otherwise, it returns error code.
816 * @oldsid : current security identifier
817 * @newsid : destinated security identifier
819 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
821 struct context
*old_context
, *new_context
;
822 struct type_datum
*type
;
826 read_lock(&policy_rwlock
);
829 old_context
= sidtab_search(&sidtab
, old_sid
);
831 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
837 new_context
= sidtab_search(&sidtab
, new_sid
);
839 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
845 /* type/domain unchanged */
846 if (old_context
->type
== new_context
->type
)
849 index
= new_context
->type
;
851 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
855 /* not bounded anymore */
860 /* @newsid is bounded by @oldsid */
862 if (type
->bounds
== old_context
->type
)
865 index
= type
->bounds
;
869 char *old_name
= NULL
;
870 char *new_name
= NULL
;
873 if (!context_struct_to_string(old_context
,
874 &old_name
, &length
) &&
875 !context_struct_to_string(new_context
,
876 &new_name
, &length
)) {
877 audit_log(current
->audit_context
,
878 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
879 "op=security_bounded_transition "
881 "oldcontext=%s newcontext=%s",
888 read_unlock(&policy_rwlock
);
893 static void avd_init(struct av_decision
*avd
)
897 avd
->auditdeny
= 0xffffffff;
898 avd
->seqno
= latest_granting
;
904 * security_compute_av - Compute access vector decisions.
905 * @ssid: source security identifier
906 * @tsid: target security identifier
907 * @tclass: target security class
908 * @avd: access vector decisions
910 * Compute a set of access vector decisions based on the
911 * SID pair (@ssid, @tsid) for the permissions in @tclass.
913 void security_compute_av(u32 ssid
,
916 struct av_decision
*avd
)
919 struct context
*scontext
= NULL
, *tcontext
= NULL
;
921 read_lock(&policy_rwlock
);
926 scontext
= sidtab_search(&sidtab
, ssid
);
928 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
933 /* permissive domain? */
934 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
935 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
937 tcontext
= sidtab_search(&sidtab
, tsid
);
939 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
944 tclass
= unmap_class(orig_tclass
);
945 if (unlikely(orig_tclass
&& !tclass
)) {
946 if (policydb
.allow_unknown
)
950 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
951 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
953 read_unlock(&policy_rwlock
);
956 avd
->allowed
= 0xffffffff;
960 void security_compute_av_user(u32 ssid
,
963 struct av_decision
*avd
)
965 struct context
*scontext
= NULL
, *tcontext
= NULL
;
967 read_lock(&policy_rwlock
);
972 scontext
= sidtab_search(&sidtab
, ssid
);
974 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
979 /* permissive domain? */
980 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
981 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
983 tcontext
= sidtab_search(&sidtab
, tsid
);
985 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
990 if (unlikely(!tclass
)) {
991 if (policydb
.allow_unknown
)
996 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
998 read_unlock(&policy_rwlock
);
1001 avd
->allowed
= 0xffffffff;
1006 * Write the security context string representation of
1007 * the context structure `context' into a dynamically
1008 * allocated string of the correct size. Set `*scontext'
1009 * to point to this string and set `*scontext_len' to
1010 * the length of the string.
1012 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1021 *scontext_len
= context
->len
;
1023 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1030 /* Compute the size of the context. */
1031 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1032 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1033 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1034 *scontext_len
+= mls_compute_context_len(context
);
1039 /* Allocate space for the context; caller must free this space. */
1040 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1043 *scontext
= scontextp
;
1046 * Copy the user name, role name and type name into the context.
1048 sprintf(scontextp
, "%s:%s:%s",
1049 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1050 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1051 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1052 scontextp
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) +
1053 1 + strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) +
1054 1 + strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1056 mls_sid_to_context(context
, &scontextp
);
1063 #include "initial_sid_to_string.h"
1065 const char *security_get_initial_sid_context(u32 sid
)
1067 if (unlikely(sid
> SECINITSID_NUM
))
1069 return initial_sid_to_string
[sid
];
1072 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1073 u32
*scontext_len
, int force
)
1075 struct context
*context
;
1082 if (!ss_initialized
) {
1083 if (sid
<= SECINITSID_NUM
) {
1086 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1089 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1094 strcpy(scontextp
, initial_sid_to_string
[sid
]);
1095 *scontext
= scontextp
;
1098 printk(KERN_ERR
"SELinux: %s: called before initial "
1099 "load_policy on unknown SID %d\n", __func__
, sid
);
1103 read_lock(&policy_rwlock
);
1105 context
= sidtab_search_force(&sidtab
, sid
);
1107 context
= sidtab_search(&sidtab
, sid
);
1109 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1114 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1116 read_unlock(&policy_rwlock
);
1123 * security_sid_to_context - Obtain a context for a given SID.
1124 * @sid: security identifier, SID
1125 * @scontext: security context
1126 * @scontext_len: length in bytes
1128 * Write the string representation of the context associated with @sid
1129 * into a dynamically allocated string of the correct size. Set @scontext
1130 * to point to this string and set @scontext_len to the length of the string.
1132 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1134 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1137 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1139 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1143 * Caveat: Mutates scontext.
1145 static int string_to_context_struct(struct policydb
*pol
,
1146 struct sidtab
*sidtabp
,
1149 struct context
*ctx
,
1152 struct role_datum
*role
;
1153 struct type_datum
*typdatum
;
1154 struct user_datum
*usrdatum
;
1155 char *scontextp
, *p
, oldc
;
1160 /* Parse the security context. */
1163 scontextp
= (char *) scontext
;
1165 /* Extract the user. */
1167 while (*p
&& *p
!= ':')
1175 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1179 ctx
->user
= usrdatum
->value
;
1183 while (*p
&& *p
!= ':')
1191 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1194 ctx
->role
= role
->value
;
1198 while (*p
&& *p
!= ':')
1203 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1204 if (!typdatum
|| typdatum
->attribute
)
1207 ctx
->type
= typdatum
->value
;
1209 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1214 if ((p
- scontext
) < scontext_len
)
1217 /* Check the validity of the new context. */
1218 if (!policydb_context_isvalid(pol
, ctx
))
1223 context_destroy(ctx
);
1227 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1228 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1231 char *scontext2
, *str
= NULL
;
1232 struct context context
;
1235 if (!ss_initialized
) {
1238 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1239 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1244 *sid
= SECINITSID_KERNEL
;
1249 /* Copy the string so that we can modify the copy as we parse it. */
1250 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1253 memcpy(scontext2
, scontext
, scontext_len
);
1254 scontext2
[scontext_len
] = 0;
1257 /* Save another copy for storing in uninterpreted form */
1259 str
= kstrdup(scontext2
, gfp_flags
);
1264 read_lock(&policy_rwlock
);
1265 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1266 scontext_len
, &context
, def_sid
);
1267 if (rc
== -EINVAL
&& force
) {
1269 context
.len
= scontext_len
;
1273 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1274 context_destroy(&context
);
1276 read_unlock(&policy_rwlock
);
1284 * security_context_to_sid - Obtain a SID for a given security context.
1285 * @scontext: security context
1286 * @scontext_len: length in bytes
1287 * @sid: security identifier, SID
1289 * Obtains a SID associated with the security context that
1290 * has the string representation specified by @scontext.
1291 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1292 * memory is available, or 0 on success.
1294 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
1296 return security_context_to_sid_core(scontext
, scontext_len
,
1297 sid
, SECSID_NULL
, GFP_KERNEL
, 0);
1301 * security_context_to_sid_default - Obtain a SID for a given security context,
1302 * falling back to specified default if needed.
1304 * @scontext: security context
1305 * @scontext_len: length in bytes
1306 * @sid: security identifier, SID
1307 * @def_sid: default SID to assign on error
1309 * Obtains a SID associated with the security context that
1310 * has the string representation specified by @scontext.
1311 * The default SID is passed to the MLS layer to be used to allow
1312 * kernel labeling of the MLS field if the MLS field is not present
1313 * (for upgrading to MLS without full relabel).
1314 * Implicitly forces adding of the context even if it cannot be mapped yet.
1315 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1316 * memory is available, or 0 on success.
1318 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1319 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1321 return security_context_to_sid_core(scontext
, scontext_len
,
1322 sid
, def_sid
, gfp_flags
, 1);
1325 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1328 return security_context_to_sid_core(scontext
, scontext_len
,
1329 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1332 static int compute_sid_handle_invalid_context(
1333 struct context
*scontext
,
1334 struct context
*tcontext
,
1336 struct context
*newcontext
)
1338 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1339 u32 slen
, tlen
, nlen
;
1341 if (context_struct_to_string(scontext
, &s
, &slen
))
1343 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1345 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1347 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1348 "security_compute_sid: invalid context %s"
1352 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1357 if (!selinux_enforcing
)
1362 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1363 u32 stype
, u32 ttype
, u16 tclass
,
1364 const char *objname
)
1366 struct filename_trans ft
;
1367 struct filename_trans_datum
*otype
;
1370 * Most filename trans rules are going to live in specific directories
1371 * like /dev or /var/run. This bitmap will quickly skip rule searches
1372 * if the ttype does not contain any rules.
1374 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1382 otype
= hashtab_search(p
->filename_trans
, &ft
);
1384 newcontext
->type
= otype
->otype
;
1387 static int security_compute_sid(u32 ssid
,
1391 const char *objname
,
1395 struct class_datum
*cladatum
= NULL
;
1396 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1397 struct role_trans
*roletr
= NULL
;
1398 struct avtab_key avkey
;
1399 struct avtab_datum
*avdatum
;
1400 struct avtab_node
*node
;
1405 if (!ss_initialized
) {
1406 switch (orig_tclass
) {
1407 case SECCLASS_PROCESS
: /* kernel value */
1417 context_init(&newcontext
);
1419 read_lock(&policy_rwlock
);
1422 tclass
= unmap_class(orig_tclass
);
1423 sock
= security_is_socket_class(orig_tclass
);
1425 tclass
= orig_tclass
;
1426 sock
= security_is_socket_class(map_class(tclass
));
1429 scontext
= sidtab_search(&sidtab
, ssid
);
1431 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1436 tcontext
= sidtab_search(&sidtab
, tsid
);
1438 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1444 if (tclass
&& tclass
<= policydb
.p_classes
.nprim
)
1445 cladatum
= policydb
.class_val_to_struct
[tclass
- 1];
1447 /* Set the user identity. */
1448 switch (specified
) {
1449 case AVTAB_TRANSITION
:
1451 if (cladatum
&& cladatum
->default_user
== DEFAULT_TARGET
) {
1452 newcontext
.user
= tcontext
->user
;
1454 /* notice this gets both DEFAULT_SOURCE and unset */
1455 /* Use the process user identity. */
1456 newcontext
.user
= scontext
->user
;
1460 /* Use the related object owner. */
1461 newcontext
.user
= tcontext
->user
;
1465 /* Set the role to default values. */
1466 if (cladatum
&& cladatum
->default_role
== DEFAULT_SOURCE
) {
1467 newcontext
.role
= scontext
->role
;
1468 } else if (cladatum
&& cladatum
->default_role
== DEFAULT_TARGET
) {
1469 newcontext
.role
= tcontext
->role
;
1471 if ((tclass
== policydb
.process_class
) || (sock
== true))
1472 newcontext
.role
= scontext
->role
;
1474 newcontext
.role
= OBJECT_R_VAL
;
1477 /* Set the type to default values. */
1478 if (cladatum
&& cladatum
->default_type
== DEFAULT_SOURCE
) {
1479 newcontext
.type
= scontext
->type
;
1480 } else if (cladatum
&& cladatum
->default_type
== DEFAULT_TARGET
) {
1481 newcontext
.type
= tcontext
->type
;
1483 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1484 /* Use the type of process. */
1485 newcontext
.type
= scontext
->type
;
1487 /* Use the type of the related object. */
1488 newcontext
.type
= tcontext
->type
;
1492 /* Look for a type transition/member/change rule. */
1493 avkey
.source_type
= scontext
->type
;
1494 avkey
.target_type
= tcontext
->type
;
1495 avkey
.target_class
= tclass
;
1496 avkey
.specified
= specified
;
1497 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1499 /* If no permanent rule, also check for enabled conditional rules */
1501 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1502 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1503 if (node
->key
.specified
& AVTAB_ENABLED
) {
1504 avdatum
= &node
->datum
;
1511 /* Use the type from the type transition/member/change rule. */
1512 newcontext
.type
= avdatum
->data
;
1515 /* if we have a objname this is a file trans check so check those rules */
1517 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1518 tcontext
->type
, tclass
, objname
);
1520 /* Check for class-specific changes. */
1521 if (specified
& AVTAB_TRANSITION
) {
1522 /* Look for a role transition rule. */
1523 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1524 if ((roletr
->role
== scontext
->role
) &&
1525 (roletr
->type
== tcontext
->type
) &&
1526 (roletr
->tclass
== tclass
)) {
1527 /* Use the role transition rule. */
1528 newcontext
.role
= roletr
->new_role
;
1534 /* Set the MLS attributes.
1535 This is done last because it may allocate memory. */
1536 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1541 /* Check the validity of the context. */
1542 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1543 rc
= compute_sid_handle_invalid_context(scontext
,
1550 /* Obtain the sid for the context. */
1551 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1553 read_unlock(&policy_rwlock
);
1554 context_destroy(&newcontext
);
1560 * security_transition_sid - Compute the SID for a new subject/object.
1561 * @ssid: source security identifier
1562 * @tsid: target security identifier
1563 * @tclass: target security class
1564 * @out_sid: security identifier for new subject/object
1566 * Compute a SID to use for labeling a new subject or object in the
1567 * class @tclass based on a SID pair (@ssid, @tsid).
1568 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1569 * if insufficient memory is available, or %0 if the new SID was
1570 * computed successfully.
1572 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1573 const struct qstr
*qstr
, u32
*out_sid
)
1575 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1576 qstr
? qstr
->name
: NULL
, out_sid
, true);
1579 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1580 const char *objname
, u32
*out_sid
)
1582 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1583 objname
, out_sid
, false);
1587 * security_member_sid - Compute the SID for member selection.
1588 * @ssid: source security identifier
1589 * @tsid: target security identifier
1590 * @tclass: target security class
1591 * @out_sid: security identifier for selected member
1593 * Compute a SID to use when selecting a member of a polyinstantiated
1594 * object of class @tclass based on a SID pair (@ssid, @tsid).
1595 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1596 * if insufficient memory is available, or %0 if the SID was
1597 * computed successfully.
1599 int security_member_sid(u32 ssid
,
1604 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1609 * security_change_sid - Compute the SID for object relabeling.
1610 * @ssid: source security identifier
1611 * @tsid: target security identifier
1612 * @tclass: target security class
1613 * @out_sid: security identifier for selected member
1615 * Compute a SID to use for relabeling an object of class @tclass
1616 * based on a SID pair (@ssid, @tsid).
1617 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1618 * if insufficient memory is available, or %0 if the SID was
1619 * computed successfully.
1621 int security_change_sid(u32 ssid
,
1626 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1630 /* Clone the SID into the new SID table. */
1631 static int clone_sid(u32 sid
,
1632 struct context
*context
,
1635 struct sidtab
*s
= arg
;
1637 if (sid
> SECINITSID_NUM
)
1638 return sidtab_insert(s
, sid
, context
);
1643 static inline int convert_context_handle_invalid_context(struct context
*context
)
1648 if (selinux_enforcing
)
1651 if (!context_struct_to_string(context
, &s
, &len
)) {
1652 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1658 struct convert_context_args
{
1659 struct policydb
*oldp
;
1660 struct policydb
*newp
;
1664 * Convert the values in the security context
1665 * structure `c' from the values specified
1666 * in the policy `p->oldp' to the values specified
1667 * in the policy `p->newp'. Verify that the
1668 * context is valid under the new policy.
1670 static int convert_context(u32 key
,
1674 struct convert_context_args
*args
;
1675 struct context oldc
;
1676 struct ocontext
*oc
;
1677 struct mls_range
*range
;
1678 struct role_datum
*role
;
1679 struct type_datum
*typdatum
;
1680 struct user_datum
*usrdatum
;
1685 if (key
<= SECINITSID_NUM
)
1694 s
= kstrdup(c
->str
, GFP_KERNEL
);
1698 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1699 c
->len
, &ctx
, SECSID_NULL
);
1702 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1704 /* Replace string with mapped representation. */
1706 memcpy(c
, &ctx
, sizeof(*c
));
1708 } else if (rc
== -EINVAL
) {
1709 /* Retain string representation for later mapping. */
1713 /* Other error condition, e.g. ENOMEM. */
1714 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1720 rc
= context_cpy(&oldc
, c
);
1724 /* Convert the user. */
1726 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1727 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1730 c
->user
= usrdatum
->value
;
1732 /* Convert the role. */
1734 role
= hashtab_search(args
->newp
->p_roles
.table
,
1735 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1738 c
->role
= role
->value
;
1740 /* Convert the type. */
1742 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1743 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1746 c
->type
= typdatum
->value
;
1748 /* Convert the MLS fields if dealing with MLS policies */
1749 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1750 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1753 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1755 * Switching between MLS and non-MLS policy:
1756 * free any storage used by the MLS fields in the
1757 * context for all existing entries in the sidtab.
1759 mls_context_destroy(c
);
1760 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1762 * Switching between non-MLS and MLS policy:
1763 * ensure that the MLS fields of the context for all
1764 * existing entries in the sidtab are filled in with a
1765 * suitable default value, likely taken from one of the
1768 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1769 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1773 printk(KERN_ERR
"SELinux: unable to look up"
1774 " the initial SIDs list\n");
1777 range
= &oc
->context
[0].range
;
1778 rc
= mls_range_set(c
, range
);
1783 /* Check the validity of the new context. */
1784 if (!policydb_context_isvalid(args
->newp
, c
)) {
1785 rc
= convert_context_handle_invalid_context(&oldc
);
1790 context_destroy(&oldc
);
1796 /* Map old representation to string and save it. */
1797 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1800 context_destroy(&oldc
);
1804 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1810 static void security_load_policycaps(void)
1812 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1813 POLICYDB_CAPABILITY_NETPEER
);
1814 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1815 POLICYDB_CAPABILITY_OPENPERM
);
1816 selinux_policycap_alwaysnetwork
= ebitmap_get_bit(&policydb
.policycaps
,
1817 POLICYDB_CAPABILITY_ALWAYSNETWORK
);
1820 static int security_preserve_bools(struct policydb
*p
);
1823 * security_load_policy - Load a security policy configuration.
1824 * @data: binary policy data
1825 * @len: length of data in bytes
1827 * Load a new set of security policy configuration data,
1828 * validate it and convert the SID table as necessary.
1829 * This function will flush the access vector cache after
1830 * loading the new policy.
1832 int security_load_policy(void *data
, size_t len
)
1834 struct policydb
*oldpolicydb
, *newpolicydb
;
1835 struct sidtab oldsidtab
, newsidtab
;
1836 struct selinux_mapping
*oldmap
, *map
= NULL
;
1837 struct convert_context_args args
;
1841 struct policy_file file
= { data
, len
}, *fp
= &file
;
1843 oldpolicydb
= kzalloc(2 * sizeof(*oldpolicydb
), GFP_KERNEL
);
1848 newpolicydb
= oldpolicydb
+ 1;
1850 if (!ss_initialized
) {
1852 rc
= policydb_read(&policydb
, fp
);
1854 avtab_cache_destroy();
1859 rc
= selinux_set_mapping(&policydb
, secclass_map
,
1861 ¤t_mapping_size
);
1863 policydb_destroy(&policydb
);
1864 avtab_cache_destroy();
1868 rc
= policydb_load_isids(&policydb
, &sidtab
);
1870 policydb_destroy(&policydb
);
1871 avtab_cache_destroy();
1875 security_load_policycaps();
1877 seqno
= ++latest_granting
;
1878 selinux_complete_init();
1879 avc_ss_reset(seqno
);
1880 selnl_notify_policyload(seqno
);
1881 selinux_status_update_policyload(seqno
);
1882 selinux_netlbl_cache_invalidate();
1883 selinux_xfrm_notify_policyload();
1888 sidtab_hash_eval(&sidtab
, "sids");
1891 rc
= policydb_read(newpolicydb
, fp
);
1895 newpolicydb
->len
= len
;
1896 /* If switching between different policy types, log MLS status */
1897 if (policydb
.mls_enabled
&& !newpolicydb
->mls_enabled
)
1898 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
1899 else if (!policydb
.mls_enabled
&& newpolicydb
->mls_enabled
)
1900 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
1902 rc
= policydb_load_isids(newpolicydb
, &newsidtab
);
1904 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
1905 policydb_destroy(newpolicydb
);
1909 rc
= selinux_set_mapping(newpolicydb
, secclass_map
, &map
, &map_size
);
1913 rc
= security_preserve_bools(newpolicydb
);
1915 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1919 /* Clone the SID table. */
1920 sidtab_shutdown(&sidtab
);
1922 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
1927 * Convert the internal representations of contexts
1928 * in the new SID table.
1930 args
.oldp
= &policydb
;
1931 args
.newp
= newpolicydb
;
1932 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1934 printk(KERN_ERR
"SELinux: unable to convert the internal"
1935 " representation of contexts in the new SID"
1940 /* Save the old policydb and SID table to free later. */
1941 memcpy(oldpolicydb
, &policydb
, sizeof(policydb
));
1942 sidtab_set(&oldsidtab
, &sidtab
);
1944 /* Install the new policydb and SID table. */
1945 write_lock_irq(&policy_rwlock
);
1946 memcpy(&policydb
, newpolicydb
, sizeof(policydb
));
1947 sidtab_set(&sidtab
, &newsidtab
);
1948 security_load_policycaps();
1949 oldmap
= current_mapping
;
1950 current_mapping
= map
;
1951 current_mapping_size
= map_size
;
1952 seqno
= ++latest_granting
;
1953 write_unlock_irq(&policy_rwlock
);
1955 /* Free the old policydb and SID table. */
1956 policydb_destroy(oldpolicydb
);
1957 sidtab_destroy(&oldsidtab
);
1960 avc_ss_reset(seqno
);
1961 selnl_notify_policyload(seqno
);
1962 selinux_status_update_policyload(seqno
);
1963 selinux_netlbl_cache_invalidate();
1964 selinux_xfrm_notify_policyload();
1971 sidtab_destroy(&newsidtab
);
1972 policydb_destroy(newpolicydb
);
1979 size_t security_policydb_len(void)
1983 read_lock(&policy_rwlock
);
1985 read_unlock(&policy_rwlock
);
1991 * security_port_sid - Obtain the SID for a port.
1992 * @protocol: protocol number
1993 * @port: port number
1994 * @out_sid: security identifier
1996 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
2001 read_lock(&policy_rwlock
);
2003 c
= policydb
.ocontexts
[OCON_PORT
];
2005 if (c
->u
.port
.protocol
== protocol
&&
2006 c
->u
.port
.low_port
<= port
&&
2007 c
->u
.port
.high_port
>= port
)
2014 rc
= sidtab_context_to_sid(&sidtab
,
2020 *out_sid
= c
->sid
[0];
2022 *out_sid
= SECINITSID_PORT
;
2026 read_unlock(&policy_rwlock
);
2031 * security_netif_sid - Obtain the SID for a network interface.
2032 * @name: interface name
2033 * @if_sid: interface SID
2035 int security_netif_sid(char *name
, u32
*if_sid
)
2040 read_lock(&policy_rwlock
);
2042 c
= policydb
.ocontexts
[OCON_NETIF
];
2044 if (strcmp(name
, c
->u
.name
) == 0)
2050 if (!c
->sid
[0] || !c
->sid
[1]) {
2051 rc
= sidtab_context_to_sid(&sidtab
,
2056 rc
= sidtab_context_to_sid(&sidtab
,
2062 *if_sid
= c
->sid
[0];
2064 *if_sid
= SECINITSID_NETIF
;
2067 read_unlock(&policy_rwlock
);
2071 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2075 for (i
= 0; i
< 4; i
++)
2076 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2085 * security_node_sid - Obtain the SID for a node (host).
2086 * @domain: communication domain aka address family
2088 * @addrlen: address length in bytes
2089 * @out_sid: security identifier
2091 int security_node_sid(u16 domain
,
2099 read_lock(&policy_rwlock
);
2106 if (addrlen
!= sizeof(u32
))
2109 addr
= *((u32
*)addrp
);
2111 c
= policydb
.ocontexts
[OCON_NODE
];
2113 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2122 if (addrlen
!= sizeof(u64
) * 2)
2124 c
= policydb
.ocontexts
[OCON_NODE6
];
2126 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2135 *out_sid
= SECINITSID_NODE
;
2141 rc
= sidtab_context_to_sid(&sidtab
,
2147 *out_sid
= c
->sid
[0];
2149 *out_sid
= SECINITSID_NODE
;
2154 read_unlock(&policy_rwlock
);
2161 * security_get_user_sids - Obtain reachable SIDs for a user.
2162 * @fromsid: starting SID
2163 * @username: username
2164 * @sids: array of reachable SIDs for user
2165 * @nel: number of elements in @sids
2167 * Generate the set of SIDs for legal security contexts
2168 * for a given user that can be reached by @fromsid.
2169 * Set *@sids to point to a dynamically allocated
2170 * array containing the set of SIDs. Set *@nel to the
2171 * number of elements in the array.
2174 int security_get_user_sids(u32 fromsid
,
2179 struct context
*fromcon
, usercon
;
2180 u32
*mysids
= NULL
, *mysids2
, sid
;
2181 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2182 struct user_datum
*user
;
2183 struct role_datum
*role
;
2184 struct ebitmap_node
*rnode
, *tnode
;
2190 if (!ss_initialized
)
2193 read_lock(&policy_rwlock
);
2195 context_init(&usercon
);
2198 fromcon
= sidtab_search(&sidtab
, fromsid
);
2203 user
= hashtab_search(policydb
.p_users
.table
, username
);
2207 usercon
.user
= user
->value
;
2210 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2214 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2215 role
= policydb
.role_val_to_struct
[i
];
2216 usercon
.role
= i
+ 1;
2217 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2218 usercon
.type
= j
+ 1;
2220 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2223 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2226 if (mynel
< maxnel
) {
2227 mysids
[mynel
++] = sid
;
2231 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2234 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2237 mysids
[mynel
++] = sid
;
2243 read_unlock(&policy_rwlock
);
2250 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2255 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2256 struct av_decision dummy_avd
;
2257 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2258 SECCLASS_PROCESS
, /* kernel value */
2259 PROCESS__TRANSITION
, AVC_STRICT
,
2262 mysids2
[j
++] = mysids
[i
];
2274 * security_genfs_sid - Obtain a SID for a file in a filesystem
2275 * @fstype: filesystem type
2276 * @path: path from root of mount
2277 * @sclass: file security class
2278 * @sid: SID for path
2280 * Obtain a SID to use for a file in a filesystem that
2281 * cannot support xattr or use a fixed labeling behavior like
2282 * transition SIDs or task SIDs.
2284 int security_genfs_sid(const char *fstype
,
2291 struct genfs
*genfs
;
2295 while (path
[0] == '/' && path
[1] == '/')
2298 read_lock(&policy_rwlock
);
2300 sclass
= unmap_class(orig_sclass
);
2301 *sid
= SECINITSID_UNLABELED
;
2303 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2304 cmp
= strcmp(fstype
, genfs
->fstype
);
2313 for (c
= genfs
->head
; c
; c
= c
->next
) {
2314 len
= strlen(c
->u
.name
);
2315 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2316 (strncmp(c
->u
.name
, path
, len
) == 0))
2325 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2333 read_unlock(&policy_rwlock
);
2338 * security_fs_use - Determine how to handle labeling for a filesystem.
2339 * @sb: superblock in question
2341 int security_fs_use(struct super_block
*sb
)
2345 struct superblock_security_struct
*sbsec
= sb
->s_security
;
2346 const char *fstype
= sb
->s_type
->name
;
2348 read_lock(&policy_rwlock
);
2350 c
= policydb
.ocontexts
[OCON_FSUSE
];
2352 if (strcmp(fstype
, c
->u
.name
) == 0)
2358 sbsec
->behavior
= c
->v
.behavior
;
2360 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2365 sbsec
->sid
= c
->sid
[0];
2367 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, &sbsec
->sid
);
2369 sbsec
->behavior
= SECURITY_FS_USE_NONE
;
2372 sbsec
->behavior
= SECURITY_FS_USE_GENFS
;
2377 read_unlock(&policy_rwlock
);
2381 int security_get_bools(int *len
, char ***names
, int **values
)
2385 read_lock(&policy_rwlock
);
2390 *len
= policydb
.p_bools
.nprim
;
2395 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2400 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2404 for (i
= 0; i
< *len
; i
++) {
2407 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2408 name_len
= strlen(sym_name(&policydb
, SYM_BOOLS
, i
)) + 1;
2411 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2415 strncpy((*names
)[i
], sym_name(&policydb
, SYM_BOOLS
, i
), name_len
);
2416 (*names
)[i
][name_len
- 1] = 0;
2420 read_unlock(&policy_rwlock
);
2424 for (i
= 0; i
< *len
; i
++)
2432 int security_set_bools(int len
, int *values
)
2435 int lenp
, seqno
= 0;
2436 struct cond_node
*cur
;
2438 write_lock_irq(&policy_rwlock
);
2441 lenp
= policydb
.p_bools
.nprim
;
2445 for (i
= 0; i
< len
; i
++) {
2446 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2447 audit_log(current
->audit_context
, GFP_ATOMIC
,
2448 AUDIT_MAC_CONFIG_CHANGE
,
2449 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2450 sym_name(&policydb
, SYM_BOOLS
, i
),
2452 policydb
.bool_val_to_struct
[i
]->state
,
2453 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
2454 audit_get_sessionid(current
));
2457 policydb
.bool_val_to_struct
[i
]->state
= 1;
2459 policydb
.bool_val_to_struct
[i
]->state
= 0;
2462 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2463 rc
= evaluate_cond_node(&policydb
, cur
);
2468 seqno
= ++latest_granting
;
2471 write_unlock_irq(&policy_rwlock
);
2473 avc_ss_reset(seqno
);
2474 selnl_notify_policyload(seqno
);
2475 selinux_status_update_policyload(seqno
);
2476 selinux_xfrm_notify_policyload();
2481 int security_get_bool_value(int bool)
2486 read_lock(&policy_rwlock
);
2489 len
= policydb
.p_bools
.nprim
;
2493 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2495 read_unlock(&policy_rwlock
);
2499 static int security_preserve_bools(struct policydb
*p
)
2501 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2502 char **bnames
= NULL
;
2503 struct cond_bool_datum
*booldatum
;
2504 struct cond_node
*cur
;
2506 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2509 for (i
= 0; i
< nbools
; i
++) {
2510 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2512 booldatum
->state
= bvalues
[i
];
2514 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2515 rc
= evaluate_cond_node(p
, cur
);
2522 for (i
= 0; i
< nbools
; i
++)
2531 * security_sid_mls_copy() - computes a new sid based on the given
2532 * sid and the mls portion of mls_sid.
2534 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2536 struct context
*context1
;
2537 struct context
*context2
;
2538 struct context newcon
;
2544 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2549 context_init(&newcon
);
2551 read_lock(&policy_rwlock
);
2554 context1
= sidtab_search(&sidtab
, sid
);
2556 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2562 context2
= sidtab_search(&sidtab
, mls_sid
);
2564 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2569 newcon
.user
= context1
->user
;
2570 newcon
.role
= context1
->role
;
2571 newcon
.type
= context1
->type
;
2572 rc
= mls_context_cpy(&newcon
, context2
);
2576 /* Check the validity of the new context. */
2577 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2578 rc
= convert_context_handle_invalid_context(&newcon
);
2580 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2581 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2582 "security_sid_mls_copy: invalid context %s", s
);
2589 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2591 read_unlock(&policy_rwlock
);
2592 context_destroy(&newcon
);
2598 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2599 * @nlbl_sid: NetLabel SID
2600 * @nlbl_type: NetLabel labeling protocol type
2601 * @xfrm_sid: XFRM SID
2604 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2605 * resolved into a single SID it is returned via @peer_sid and the function
2606 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2607 * returns a negative value. A table summarizing the behavior is below:
2609 * | function return | @sid
2610 * ------------------------------+-----------------+-----------------
2611 * no peer labels | 0 | SECSID_NULL
2612 * single peer label | 0 | <peer_label>
2613 * multiple, consistent labels | 0 | <peer_label>
2614 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2617 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2622 struct context
*nlbl_ctx
;
2623 struct context
*xfrm_ctx
;
2625 *peer_sid
= SECSID_NULL
;
2627 /* handle the common (which also happens to be the set of easy) cases
2628 * right away, these two if statements catch everything involving a
2629 * single or absent peer SID/label */
2630 if (xfrm_sid
== SECSID_NULL
) {
2631 *peer_sid
= nlbl_sid
;
2634 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2635 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2637 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2638 *peer_sid
= xfrm_sid
;
2642 /* we don't need to check ss_initialized here since the only way both
2643 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2644 * security server was initialized and ss_initialized was true */
2645 if (!policydb
.mls_enabled
)
2648 read_lock(&policy_rwlock
);
2651 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2653 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2654 __func__
, nlbl_sid
);
2658 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2660 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2661 __func__
, xfrm_sid
);
2664 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2668 /* at present NetLabel SIDs/labels really only carry MLS
2669 * information so if the MLS portion of the NetLabel SID
2670 * matches the MLS portion of the labeled XFRM SID/label
2671 * then pass along the XFRM SID as it is the most
2673 *peer_sid
= xfrm_sid
;
2675 read_unlock(&policy_rwlock
);
2679 static int get_classes_callback(void *k
, void *d
, void *args
)
2681 struct class_datum
*datum
= d
;
2682 char *name
= k
, **classes
= args
;
2683 int value
= datum
->value
- 1;
2685 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2686 if (!classes
[value
])
2692 int security_get_classes(char ***classes
, int *nclasses
)
2696 read_lock(&policy_rwlock
);
2699 *nclasses
= policydb
.p_classes
.nprim
;
2700 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2704 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2708 for (i
= 0; i
< *nclasses
; i
++)
2709 kfree((*classes
)[i
]);
2714 read_unlock(&policy_rwlock
);
2718 static int get_permissions_callback(void *k
, void *d
, void *args
)
2720 struct perm_datum
*datum
= d
;
2721 char *name
= k
, **perms
= args
;
2722 int value
= datum
->value
- 1;
2724 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2731 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2734 struct class_datum
*match
;
2736 read_lock(&policy_rwlock
);
2739 match
= hashtab_search(policydb
.p_classes
.table
, class);
2741 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2747 *nperms
= match
->permissions
.nprim
;
2748 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2752 if (match
->comdatum
) {
2753 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2754 get_permissions_callback
, *perms
);
2759 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2765 read_unlock(&policy_rwlock
);
2769 read_unlock(&policy_rwlock
);
2770 for (i
= 0; i
< *nperms
; i
++)
2776 int security_get_reject_unknown(void)
2778 return policydb
.reject_unknown
;
2781 int security_get_allow_unknown(void)
2783 return policydb
.allow_unknown
;
2787 * security_policycap_supported - Check for a specific policy capability
2788 * @req_cap: capability
2791 * This function queries the currently loaded policy to see if it supports the
2792 * capability specified by @req_cap. Returns true (1) if the capability is
2793 * supported, false (0) if it isn't supported.
2796 int security_policycap_supported(unsigned int req_cap
)
2800 read_lock(&policy_rwlock
);
2801 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2802 read_unlock(&policy_rwlock
);
2807 struct selinux_audit_rule
{
2809 struct context au_ctxt
;
2812 void selinux_audit_rule_free(void *vrule
)
2814 struct selinux_audit_rule
*rule
= vrule
;
2817 context_destroy(&rule
->au_ctxt
);
2822 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2824 struct selinux_audit_rule
*tmprule
;
2825 struct role_datum
*roledatum
;
2826 struct type_datum
*typedatum
;
2827 struct user_datum
*userdatum
;
2828 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2833 if (!ss_initialized
)
2837 case AUDIT_SUBJ_USER
:
2838 case AUDIT_SUBJ_ROLE
:
2839 case AUDIT_SUBJ_TYPE
:
2840 case AUDIT_OBJ_USER
:
2841 case AUDIT_OBJ_ROLE
:
2842 case AUDIT_OBJ_TYPE
:
2843 /* only 'equals' and 'not equals' fit user, role, and type */
2844 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
2847 case AUDIT_SUBJ_SEN
:
2848 case AUDIT_SUBJ_CLR
:
2849 case AUDIT_OBJ_LEV_LOW
:
2850 case AUDIT_OBJ_LEV_HIGH
:
2851 /* we do not allow a range, indicated by the presence of '-' */
2852 if (strchr(rulestr
, '-'))
2856 /* only the above fields are valid */
2860 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2864 context_init(&tmprule
->au_ctxt
);
2866 read_lock(&policy_rwlock
);
2868 tmprule
->au_seqno
= latest_granting
;
2871 case AUDIT_SUBJ_USER
:
2872 case AUDIT_OBJ_USER
:
2874 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2877 tmprule
->au_ctxt
.user
= userdatum
->value
;
2879 case AUDIT_SUBJ_ROLE
:
2880 case AUDIT_OBJ_ROLE
:
2882 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2885 tmprule
->au_ctxt
.role
= roledatum
->value
;
2887 case AUDIT_SUBJ_TYPE
:
2888 case AUDIT_OBJ_TYPE
:
2890 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2893 tmprule
->au_ctxt
.type
= typedatum
->value
;
2895 case AUDIT_SUBJ_SEN
:
2896 case AUDIT_SUBJ_CLR
:
2897 case AUDIT_OBJ_LEV_LOW
:
2898 case AUDIT_OBJ_LEV_HIGH
:
2899 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2906 read_unlock(&policy_rwlock
);
2909 selinux_audit_rule_free(tmprule
);
2918 /* Check to see if the rule contains any selinux fields */
2919 int selinux_audit_rule_known(struct audit_krule
*rule
)
2923 for (i
= 0; i
< rule
->field_count
; i
++) {
2924 struct audit_field
*f
= &rule
->fields
[i
];
2926 case AUDIT_SUBJ_USER
:
2927 case AUDIT_SUBJ_ROLE
:
2928 case AUDIT_SUBJ_TYPE
:
2929 case AUDIT_SUBJ_SEN
:
2930 case AUDIT_SUBJ_CLR
:
2931 case AUDIT_OBJ_USER
:
2932 case AUDIT_OBJ_ROLE
:
2933 case AUDIT_OBJ_TYPE
:
2934 case AUDIT_OBJ_LEV_LOW
:
2935 case AUDIT_OBJ_LEV_HIGH
:
2943 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2944 struct audit_context
*actx
)
2946 struct context
*ctxt
;
2947 struct mls_level
*level
;
2948 struct selinux_audit_rule
*rule
= vrule
;
2951 if (unlikely(!rule
)) {
2952 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
2956 read_lock(&policy_rwlock
);
2958 if (rule
->au_seqno
< latest_granting
) {
2963 ctxt
= sidtab_search(&sidtab
, sid
);
2964 if (unlikely(!ctxt
)) {
2965 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
2971 /* a field/op pair that is not caught here will simply fall through
2974 case AUDIT_SUBJ_USER
:
2975 case AUDIT_OBJ_USER
:
2978 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2980 case Audit_not_equal
:
2981 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2985 case AUDIT_SUBJ_ROLE
:
2986 case AUDIT_OBJ_ROLE
:
2989 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2991 case Audit_not_equal
:
2992 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2996 case AUDIT_SUBJ_TYPE
:
2997 case AUDIT_OBJ_TYPE
:
3000 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
3002 case Audit_not_equal
:
3003 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
3007 case AUDIT_SUBJ_SEN
:
3008 case AUDIT_SUBJ_CLR
:
3009 case AUDIT_OBJ_LEV_LOW
:
3010 case AUDIT_OBJ_LEV_HIGH
:
3011 level
= ((field
== AUDIT_SUBJ_SEN
||
3012 field
== AUDIT_OBJ_LEV_LOW
) ?
3013 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
3016 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3019 case Audit_not_equal
:
3020 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3024 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3026 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3030 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3034 match
= (mls_level_dom(level
,
3035 &rule
->au_ctxt
.range
.level
[0]) &&
3036 !mls_level_eq(level
,
3037 &rule
->au_ctxt
.range
.level
[0]));
3040 match
= mls_level_dom(level
,
3041 &rule
->au_ctxt
.range
.level
[0]);
3047 read_unlock(&policy_rwlock
);
3051 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3053 static int aurule_avc_callback(u32 event
)
3057 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3058 err
= aurule_callback();
3062 static int __init
aurule_init(void)
3066 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
);
3068 panic("avc_add_callback() failed, error %d\n", err
);
3072 __initcall(aurule_init
);
3074 #ifdef CONFIG_NETLABEL
3076 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3077 * @secattr: the NetLabel packet security attributes
3078 * @sid: the SELinux SID
3081 * Attempt to cache the context in @ctx, which was derived from the packet in
3082 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3083 * already been initialized.
3086 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3091 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3092 if (sid_cache
== NULL
)
3094 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3095 if (secattr
->cache
== NULL
) {
3101 secattr
->cache
->free
= kfree
;
3102 secattr
->cache
->data
= sid_cache
;
3103 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3107 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3108 * @secattr: the NetLabel packet security attributes
3109 * @sid: the SELinux SID
3112 * Convert the given NetLabel security attributes in @secattr into a
3113 * SELinux SID. If the @secattr field does not contain a full SELinux
3114 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3115 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3116 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3117 * conversion for future lookups. Returns zero on success, negative values on
3121 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3125 struct context
*ctx
;
3126 struct context ctx_new
;
3128 if (!ss_initialized
) {
3133 read_lock(&policy_rwlock
);
3135 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3136 *sid
= *(u32
*)secattr
->cache
->data
;
3137 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3138 *sid
= secattr
->attr
.secid
;
3139 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3141 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3145 context_init(&ctx_new
);
3146 ctx_new
.user
= ctx
->user
;
3147 ctx_new
.role
= ctx
->role
;
3148 ctx_new
.type
= ctx
->type
;
3149 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3150 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3151 rc
= ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
3152 secattr
->attr
.mls
.cat
);
3155 memcpy(&ctx_new
.range
.level
[1].cat
,
3156 &ctx_new
.range
.level
[0].cat
,
3157 sizeof(ctx_new
.range
.level
[0].cat
));
3160 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3163 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3167 security_netlbl_cache_add(secattr
, *sid
);
3169 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3173 read_unlock(&policy_rwlock
);
3176 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3178 read_unlock(&policy_rwlock
);
3183 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3184 * @sid: the SELinux SID
3185 * @secattr: the NetLabel packet security attributes
3188 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3189 * Returns zero on success, negative values on failure.
3192 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3195 struct context
*ctx
;
3197 if (!ss_initialized
)
3200 read_lock(&policy_rwlock
);
3203 ctx
= sidtab_search(&sidtab
, sid
);
3208 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3210 if (secattr
->domain
== NULL
)
3213 secattr
->attr
.secid
= sid
;
3214 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3215 mls_export_netlbl_lvl(ctx
, secattr
);
3216 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3218 read_unlock(&policy_rwlock
);
3221 #endif /* CONFIG_NETLABEL */
3224 * security_read_policy - read the policy.
3225 * @data: binary policy data
3226 * @len: length of data in bytes
3229 int security_read_policy(void **data
, size_t *len
)
3232 struct policy_file fp
;
3234 if (!ss_initialized
)
3237 *len
= security_policydb_len();
3239 *data
= vmalloc_user(*len
);
3246 read_lock(&policy_rwlock
);
3247 rc
= policydb_write(&policydb
, &fp
);
3248 read_unlock(&policy_rwlock
);
3253 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;