KVM: arm/arm64: vgic: Avoid injecting reserved IRQ numbers
[linux/fpc-iii.git] / fs / namespace.c
bloba19d05c4ebe5fb470ffc5c8eb99b07722877d5de
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
43 __setup("mhash_entries=", set_mhash_entries);
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
53 __setup("mphash_entries=", set_mphash_entries);
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
100 static int mnt_alloc_id(struct mount *mnt)
102 int res;
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
114 return res;
117 static void mnt_free_id(struct mount *mnt)
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
128 * Allocate a new peer group ID
130 * mnt_group_ida is protected by namespace_sem
132 static int mnt_alloc_group_id(struct mount *mnt)
134 int res;
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
145 return res;
149 * Release a peer group ID
151 void mnt_release_group_id(struct mount *mnt)
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount *mnt, int n)
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
175 * vfsmount lock must be held for write
177 unsigned int mnt_get_count(struct mount *mnt)
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
193 static struct mount *alloc_vfsmnt(const char *name)
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
209 #ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218 #endif
220 INIT_HLIST_NODE(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228 INIT_HLIST_NODE(&mnt->mnt_mp_list);
229 #ifdef CONFIG_FSNOTIFY
230 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
231 #endif
233 return mnt;
235 #ifdef CONFIG_SMP
236 out_free_devname:
237 kfree(mnt->mnt_devname);
238 #endif
239 out_free_id:
240 mnt_free_id(mnt);
241 out_free_cache:
242 kmem_cache_free(mnt_cache, mnt);
243 return NULL;
247 * Most r/o checks on a fs are for operations that take
248 * discrete amounts of time, like a write() or unlink().
249 * We must keep track of when those operations start
250 * (for permission checks) and when they end, so that
251 * we can determine when writes are able to occur to
252 * a filesystem.
255 * __mnt_is_readonly: check whether a mount is read-only
256 * @mnt: the mount to check for its write status
258 * This shouldn't be used directly ouside of the VFS.
259 * It does not guarantee that the filesystem will stay
260 * r/w, just that it is right *now*. This can not and
261 * should not be used in place of IS_RDONLY(inode).
262 * mnt_want/drop_write() will _keep_ the filesystem
263 * r/w.
265 int __mnt_is_readonly(struct vfsmount *mnt)
267 if (mnt->mnt_flags & MNT_READONLY)
268 return 1;
269 if (mnt->mnt_sb->s_flags & MS_RDONLY)
270 return 1;
271 return 0;
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 static inline void mnt_inc_writers(struct mount *mnt)
277 #ifdef CONFIG_SMP
278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
279 #else
280 mnt->mnt_writers++;
281 #endif
284 static inline void mnt_dec_writers(struct mount *mnt)
286 #ifdef CONFIG_SMP
287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers--;
290 #endif
293 static unsigned int mnt_get_writers(struct mount *mnt)
295 #ifdef CONFIG_SMP
296 unsigned int count = 0;
297 int cpu;
299 for_each_possible_cpu(cpu) {
300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
303 return count;
304 #else
305 return mnt->mnt_writers;
306 #endif
309 static int mnt_is_readonly(struct vfsmount *mnt)
311 if (mnt->mnt_sb->s_readonly_remount)
312 return 1;
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
314 smp_rmb();
315 return __mnt_is_readonly(mnt);
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
325 * __mnt_want_write - get write access to a mount without freeze protection
326 * @m: the mount on which to take a write
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
334 int __mnt_want_write(struct vfsmount *m)
336 struct mount *mnt = real_mount(m);
337 int ret = 0;
339 preempt_disable();
340 mnt_inc_writers(mnt);
342 * The store to mnt_inc_writers must be visible before we pass
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
346 smp_mb();
347 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 cpu_relax();
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
354 smp_rmb();
355 if (mnt_is_readonly(m)) {
356 mnt_dec_writers(mnt);
357 ret = -EROFS;
359 preempt_enable();
361 return ret;
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
373 int mnt_want_write(struct vfsmount *m)
375 int ret;
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
379 if (ret)
380 sb_end_write(m->mnt_sb);
381 return ret;
383 EXPORT_SYMBOL_GPL(mnt_want_write);
386 * mnt_clone_write - get write access to a mount
387 * @mnt: the mount on which to take a write
389 * This is effectively like mnt_want_write, except
390 * it must only be used to take an extra write reference
391 * on a mountpoint that we already know has a write reference
392 * on it. This allows some optimisation.
394 * After finished, mnt_drop_write must be called as usual to
395 * drop the reference.
397 int mnt_clone_write(struct vfsmount *mnt)
399 /* superblock may be r/o */
400 if (__mnt_is_readonly(mnt))
401 return -EROFS;
402 preempt_disable();
403 mnt_inc_writers(real_mount(mnt));
404 preempt_enable();
405 return 0;
407 EXPORT_SYMBOL_GPL(mnt_clone_write);
410 * __mnt_want_write_file - get write access to a file's mount
411 * @file: the file who's mount on which to take a write
413 * This is like __mnt_want_write, but it takes a file and can
414 * do some optimisations if the file is open for write already
416 int __mnt_want_write_file(struct file *file)
418 if (!(file->f_mode & FMODE_WRITER))
419 return __mnt_want_write(file->f_path.mnt);
420 else
421 return mnt_clone_write(file->f_path.mnt);
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
428 * This is like mnt_want_write, but it takes a file and can
429 * do some optimisations if the file is open for write already
431 int mnt_want_write_file(struct file *file)
433 int ret;
435 sb_start_write(file->f_path.mnt->mnt_sb);
436 ret = __mnt_want_write_file(file);
437 if (ret)
438 sb_end_write(file->f_path.mnt->mnt_sb);
439 return ret;
441 EXPORT_SYMBOL_GPL(mnt_want_write_file);
444 * __mnt_drop_write - give up write access to a mount
445 * @mnt: the mount on which to give up write access
447 * Tells the low-level filesystem that we are done
448 * performing writes to it. Must be matched with
449 * __mnt_want_write() call above.
451 void __mnt_drop_write(struct vfsmount *mnt)
453 preempt_disable();
454 mnt_dec_writers(real_mount(mnt));
455 preempt_enable();
459 * mnt_drop_write - give up write access to a mount
460 * @mnt: the mount on which to give up write access
462 * Tells the low-level filesystem that we are done performing writes to it and
463 * also allows filesystem to be frozen again. Must be matched with
464 * mnt_want_write() call above.
466 void mnt_drop_write(struct vfsmount *mnt)
468 __mnt_drop_write(mnt);
469 sb_end_write(mnt->mnt_sb);
471 EXPORT_SYMBOL_GPL(mnt_drop_write);
473 void __mnt_drop_write_file(struct file *file)
475 __mnt_drop_write(file->f_path.mnt);
478 void mnt_drop_write_file(struct file *file)
480 mnt_drop_write(file->f_path.mnt);
482 EXPORT_SYMBOL(mnt_drop_write_file);
484 static int mnt_make_readonly(struct mount *mnt)
486 int ret = 0;
488 lock_mount_hash();
489 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
491 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
492 * should be visible before we do.
494 smp_mb();
497 * With writers on hold, if this value is zero, then there are
498 * definitely no active writers (although held writers may subsequently
499 * increment the count, they'll have to wait, and decrement it after
500 * seeing MNT_READONLY).
502 * It is OK to have counter incremented on one CPU and decremented on
503 * another: the sum will add up correctly. The danger would be when we
504 * sum up each counter, if we read a counter before it is incremented,
505 * but then read another CPU's count which it has been subsequently
506 * decremented from -- we would see more decrements than we should.
507 * MNT_WRITE_HOLD protects against this scenario, because
508 * mnt_want_write first increments count, then smp_mb, then spins on
509 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
510 * we're counting up here.
512 if (mnt_get_writers(mnt) > 0)
513 ret = -EBUSY;
514 else
515 mnt->mnt.mnt_flags |= MNT_READONLY;
517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 * that become unheld will see MNT_READONLY.
520 smp_wmb();
521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
522 unlock_mount_hash();
523 return ret;
526 static void __mnt_unmake_readonly(struct mount *mnt)
528 lock_mount_hash();
529 mnt->mnt.mnt_flags &= ~MNT_READONLY;
530 unlock_mount_hash();
533 int sb_prepare_remount_readonly(struct super_block *sb)
535 struct mount *mnt;
536 int err = 0;
538 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
539 if (atomic_long_read(&sb->s_remove_count))
540 return -EBUSY;
542 lock_mount_hash();
543 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
544 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
545 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
546 smp_mb();
547 if (mnt_get_writers(mnt) > 0) {
548 err = -EBUSY;
549 break;
553 if (!err && atomic_long_read(&sb->s_remove_count))
554 err = -EBUSY;
556 if (!err) {
557 sb->s_readonly_remount = 1;
558 smp_wmb();
560 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
561 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
562 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
564 unlock_mount_hash();
566 return err;
569 static void free_vfsmnt(struct mount *mnt)
571 kfree(mnt->mnt_devname);
572 #ifdef CONFIG_SMP
573 free_percpu(mnt->mnt_pcp);
574 #endif
575 kmem_cache_free(mnt_cache, mnt);
578 static void delayed_free_vfsmnt(struct rcu_head *head)
580 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
583 /* call under rcu_read_lock */
584 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
586 struct mount *mnt;
587 if (read_seqretry(&mount_lock, seq))
588 return false;
589 if (bastard == NULL)
590 return true;
591 mnt = real_mount(bastard);
592 mnt_add_count(mnt, 1);
593 if (likely(!read_seqretry(&mount_lock, seq)))
594 return true;
595 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
596 mnt_add_count(mnt, -1);
597 return false;
599 rcu_read_unlock();
600 mntput(bastard);
601 rcu_read_lock();
602 return false;
606 * find the first mount at @dentry on vfsmount @mnt.
607 * call under rcu_read_lock()
609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
611 struct hlist_head *head = m_hash(mnt, dentry);
612 struct mount *p;
614 hlist_for_each_entry_rcu(p, head, mnt_hash)
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
621 * find the last mount at @dentry on vfsmount @mnt.
622 * mount_lock must be held.
624 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
626 struct mount *p, *res;
627 res = p = __lookup_mnt(mnt, dentry);
628 if (!p)
629 goto out;
630 hlist_for_each_entry_continue(p, mnt_hash) {
631 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
632 break;
633 res = p;
635 out:
636 return res;
640 * lookup_mnt - Return the first child mount mounted at path
642 * "First" means first mounted chronologically. If you create the
643 * following mounts:
645 * mount /dev/sda1 /mnt
646 * mount /dev/sda2 /mnt
647 * mount /dev/sda3 /mnt
649 * Then lookup_mnt() on the base /mnt dentry in the root mount will
650 * return successively the root dentry and vfsmount of /dev/sda1, then
651 * /dev/sda2, then /dev/sda3, then NULL.
653 * lookup_mnt takes a reference to the found vfsmount.
655 struct vfsmount *lookup_mnt(struct path *path)
657 struct mount *child_mnt;
658 struct vfsmount *m;
659 unsigned seq;
661 rcu_read_lock();
662 do {
663 seq = read_seqbegin(&mount_lock);
664 child_mnt = __lookup_mnt(path->mnt, path->dentry);
665 m = child_mnt ? &child_mnt->mnt : NULL;
666 } while (!legitimize_mnt(m, seq));
667 rcu_read_unlock();
668 return m;
672 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
673 * current mount namespace.
675 * The common case is dentries are not mountpoints at all and that
676 * test is handled inline. For the slow case when we are actually
677 * dealing with a mountpoint of some kind, walk through all of the
678 * mounts in the current mount namespace and test to see if the dentry
679 * is a mountpoint.
681 * The mount_hashtable is not usable in the context because we
682 * need to identify all mounts that may be in the current mount
683 * namespace not just a mount that happens to have some specified
684 * parent mount.
686 bool __is_local_mountpoint(struct dentry *dentry)
688 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
689 struct mount *mnt;
690 bool is_covered = false;
692 if (!d_mountpoint(dentry))
693 goto out;
695 down_read(&namespace_sem);
696 list_for_each_entry(mnt, &ns->list, mnt_list) {
697 is_covered = (mnt->mnt_mountpoint == dentry);
698 if (is_covered)
699 break;
701 up_read(&namespace_sem);
702 out:
703 return is_covered;
706 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
708 struct hlist_head *chain = mp_hash(dentry);
709 struct mountpoint *mp;
711 hlist_for_each_entry(mp, chain, m_hash) {
712 if (mp->m_dentry == dentry) {
713 /* might be worth a WARN_ON() */
714 if (d_unlinked(dentry))
715 return ERR_PTR(-ENOENT);
716 mp->m_count++;
717 return mp;
720 return NULL;
723 static struct mountpoint *new_mountpoint(struct dentry *dentry)
725 struct hlist_head *chain = mp_hash(dentry);
726 struct mountpoint *mp;
727 int ret;
729 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
730 if (!mp)
731 return ERR_PTR(-ENOMEM);
733 ret = d_set_mounted(dentry);
734 if (ret) {
735 kfree(mp);
736 return ERR_PTR(ret);
739 mp->m_dentry = dentry;
740 mp->m_count = 1;
741 hlist_add_head(&mp->m_hash, chain);
742 INIT_HLIST_HEAD(&mp->m_list);
743 return mp;
746 static void put_mountpoint(struct mountpoint *mp)
748 if (!--mp->m_count) {
749 struct dentry *dentry = mp->m_dentry;
750 BUG_ON(!hlist_empty(&mp->m_list));
751 spin_lock(&dentry->d_lock);
752 dentry->d_flags &= ~DCACHE_MOUNTED;
753 spin_unlock(&dentry->d_lock);
754 hlist_del(&mp->m_hash);
755 kfree(mp);
759 static inline int check_mnt(struct mount *mnt)
761 return mnt->mnt_ns == current->nsproxy->mnt_ns;
765 * vfsmount lock must be held for write
767 static void touch_mnt_namespace(struct mnt_namespace *ns)
769 if (ns) {
770 ns->event = ++event;
771 wake_up_interruptible(&ns->poll);
776 * vfsmount lock must be held for write
778 static void __touch_mnt_namespace(struct mnt_namespace *ns)
780 if (ns && ns->event != event) {
781 ns->event = event;
782 wake_up_interruptible(&ns->poll);
787 * vfsmount lock must be held for write
789 static void detach_mnt(struct mount *mnt, struct path *old_path)
791 old_path->dentry = mnt->mnt_mountpoint;
792 old_path->mnt = &mnt->mnt_parent->mnt;
793 mnt->mnt_parent = mnt;
794 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
795 list_del_init(&mnt->mnt_child);
796 hlist_del_init_rcu(&mnt->mnt_hash);
797 hlist_del_init(&mnt->mnt_mp_list);
798 put_mountpoint(mnt->mnt_mp);
799 mnt->mnt_mp = NULL;
803 * vfsmount lock must be held for write
805 void mnt_set_mountpoint(struct mount *mnt,
806 struct mountpoint *mp,
807 struct mount *child_mnt)
809 mp->m_count++;
810 mnt_add_count(mnt, 1); /* essentially, that's mntget */
811 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
812 child_mnt->mnt_parent = mnt;
813 child_mnt->mnt_mp = mp;
814 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
818 * vfsmount lock must be held for write
820 static void attach_mnt(struct mount *mnt,
821 struct mount *parent,
822 struct mountpoint *mp)
824 mnt_set_mountpoint(parent, mp, mnt);
825 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
826 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
829 static void attach_shadowed(struct mount *mnt,
830 struct mount *parent,
831 struct mount *shadows)
833 if (shadows) {
834 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
835 list_add(&mnt->mnt_child, &shadows->mnt_child);
836 } else {
837 hlist_add_head_rcu(&mnt->mnt_hash,
838 m_hash(&parent->mnt, mnt->mnt_mountpoint));
839 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
844 * vfsmount lock must be held for write
846 static void commit_tree(struct mount *mnt, struct mount *shadows)
848 struct mount *parent = mnt->mnt_parent;
849 struct mount *m;
850 LIST_HEAD(head);
851 struct mnt_namespace *n = parent->mnt_ns;
853 BUG_ON(parent == mnt);
855 list_add_tail(&head, &mnt->mnt_list);
856 list_for_each_entry(m, &head, mnt_list)
857 m->mnt_ns = n;
859 list_splice(&head, n->list.prev);
861 attach_shadowed(mnt, parent, shadows);
862 touch_mnt_namespace(n);
865 static struct mount *next_mnt(struct mount *p, struct mount *root)
867 struct list_head *next = p->mnt_mounts.next;
868 if (next == &p->mnt_mounts) {
869 while (1) {
870 if (p == root)
871 return NULL;
872 next = p->mnt_child.next;
873 if (next != &p->mnt_parent->mnt_mounts)
874 break;
875 p = p->mnt_parent;
878 return list_entry(next, struct mount, mnt_child);
881 static struct mount *skip_mnt_tree(struct mount *p)
883 struct list_head *prev = p->mnt_mounts.prev;
884 while (prev != &p->mnt_mounts) {
885 p = list_entry(prev, struct mount, mnt_child);
886 prev = p->mnt_mounts.prev;
888 return p;
891 struct vfsmount *
892 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
894 struct mount *mnt;
895 struct dentry *root;
897 if (!type)
898 return ERR_PTR(-ENODEV);
900 mnt = alloc_vfsmnt(name);
901 if (!mnt)
902 return ERR_PTR(-ENOMEM);
904 if (flags & MS_KERNMOUNT)
905 mnt->mnt.mnt_flags = MNT_INTERNAL;
907 root = mount_fs(type, flags, name, data);
908 if (IS_ERR(root)) {
909 mnt_free_id(mnt);
910 free_vfsmnt(mnt);
911 return ERR_CAST(root);
914 mnt->mnt.mnt_root = root;
915 mnt->mnt.mnt_sb = root->d_sb;
916 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
917 mnt->mnt_parent = mnt;
918 lock_mount_hash();
919 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
920 unlock_mount_hash();
921 return &mnt->mnt;
923 EXPORT_SYMBOL_GPL(vfs_kern_mount);
925 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
926 int flag)
928 struct super_block *sb = old->mnt.mnt_sb;
929 struct mount *mnt;
930 int err;
932 mnt = alloc_vfsmnt(old->mnt_devname);
933 if (!mnt)
934 return ERR_PTR(-ENOMEM);
936 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
937 mnt->mnt_group_id = 0; /* not a peer of original */
938 else
939 mnt->mnt_group_id = old->mnt_group_id;
941 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
942 err = mnt_alloc_group_id(mnt);
943 if (err)
944 goto out_free;
947 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
948 /* Don't allow unprivileged users to change mount flags */
949 if (flag & CL_UNPRIVILEGED) {
950 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
952 if (mnt->mnt.mnt_flags & MNT_READONLY)
953 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
955 if (mnt->mnt.mnt_flags & MNT_NODEV)
956 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
958 if (mnt->mnt.mnt_flags & MNT_NOSUID)
959 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
961 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
962 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
965 /* Don't allow unprivileged users to reveal what is under a mount */
966 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
967 mnt->mnt.mnt_flags |= MNT_LOCKED;
969 atomic_inc(&sb->s_active);
970 mnt->mnt.mnt_sb = sb;
971 mnt->mnt.mnt_root = dget(root);
972 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
973 mnt->mnt_parent = mnt;
974 lock_mount_hash();
975 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
976 unlock_mount_hash();
978 if ((flag & CL_SLAVE) ||
979 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
980 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
981 mnt->mnt_master = old;
982 CLEAR_MNT_SHARED(mnt);
983 } else if (!(flag & CL_PRIVATE)) {
984 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
985 list_add(&mnt->mnt_share, &old->mnt_share);
986 if (IS_MNT_SLAVE(old))
987 list_add(&mnt->mnt_slave, &old->mnt_slave);
988 mnt->mnt_master = old->mnt_master;
990 if (flag & CL_MAKE_SHARED)
991 set_mnt_shared(mnt);
993 /* stick the duplicate mount on the same expiry list
994 * as the original if that was on one */
995 if (flag & CL_EXPIRE) {
996 if (!list_empty(&old->mnt_expire))
997 list_add(&mnt->mnt_expire, &old->mnt_expire);
1000 return mnt;
1002 out_free:
1003 mnt_free_id(mnt);
1004 free_vfsmnt(mnt);
1005 return ERR_PTR(err);
1008 static void cleanup_mnt(struct mount *mnt)
1011 * This probably indicates that somebody messed
1012 * up a mnt_want/drop_write() pair. If this
1013 * happens, the filesystem was probably unable
1014 * to make r/w->r/o transitions.
1017 * The locking used to deal with mnt_count decrement provides barriers,
1018 * so mnt_get_writers() below is safe.
1020 WARN_ON(mnt_get_writers(mnt));
1021 if (unlikely(mnt->mnt_pins.first))
1022 mnt_pin_kill(mnt);
1023 fsnotify_vfsmount_delete(&mnt->mnt);
1024 dput(mnt->mnt.mnt_root);
1025 deactivate_super(mnt->mnt.mnt_sb);
1026 mnt_free_id(mnt);
1027 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1030 static void __cleanup_mnt(struct rcu_head *head)
1032 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1035 static LLIST_HEAD(delayed_mntput_list);
1036 static void delayed_mntput(struct work_struct *unused)
1038 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1039 struct llist_node *next;
1041 for (; node; node = next) {
1042 next = llist_next(node);
1043 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1046 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1048 static void mntput_no_expire(struct mount *mnt)
1050 rcu_read_lock();
1051 mnt_add_count(mnt, -1);
1052 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1053 rcu_read_unlock();
1054 return;
1056 lock_mount_hash();
1057 if (mnt_get_count(mnt)) {
1058 rcu_read_unlock();
1059 unlock_mount_hash();
1060 return;
1062 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1063 rcu_read_unlock();
1064 unlock_mount_hash();
1065 return;
1067 mnt->mnt.mnt_flags |= MNT_DOOMED;
1068 rcu_read_unlock();
1070 list_del(&mnt->mnt_instance);
1071 unlock_mount_hash();
1073 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1074 struct task_struct *task = current;
1075 if (likely(!(task->flags & PF_KTHREAD))) {
1076 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1077 if (!task_work_add(task, &mnt->mnt_rcu, true))
1078 return;
1080 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1081 schedule_delayed_work(&delayed_mntput_work, 1);
1082 return;
1084 cleanup_mnt(mnt);
1087 void mntput(struct vfsmount *mnt)
1089 if (mnt) {
1090 struct mount *m = real_mount(mnt);
1091 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1092 if (unlikely(m->mnt_expiry_mark))
1093 m->mnt_expiry_mark = 0;
1094 mntput_no_expire(m);
1097 EXPORT_SYMBOL(mntput);
1099 struct vfsmount *mntget(struct vfsmount *mnt)
1101 if (mnt)
1102 mnt_add_count(real_mount(mnt), 1);
1103 return mnt;
1105 EXPORT_SYMBOL(mntget);
1107 struct vfsmount *mnt_clone_internal(struct path *path)
1109 struct mount *p;
1110 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1111 if (IS_ERR(p))
1112 return ERR_CAST(p);
1113 p->mnt.mnt_flags |= MNT_INTERNAL;
1114 return &p->mnt;
1117 static inline void mangle(struct seq_file *m, const char *s)
1119 seq_escape(m, s, " \t\n\\");
1123 * Simple .show_options callback for filesystems which don't want to
1124 * implement more complex mount option showing.
1126 * See also save_mount_options().
1128 int generic_show_options(struct seq_file *m, struct dentry *root)
1130 const char *options;
1132 rcu_read_lock();
1133 options = rcu_dereference(root->d_sb->s_options);
1135 if (options != NULL && options[0]) {
1136 seq_putc(m, ',');
1137 mangle(m, options);
1139 rcu_read_unlock();
1141 return 0;
1143 EXPORT_SYMBOL(generic_show_options);
1146 * If filesystem uses generic_show_options(), this function should be
1147 * called from the fill_super() callback.
1149 * The .remount_fs callback usually needs to be handled in a special
1150 * way, to make sure, that previous options are not overwritten if the
1151 * remount fails.
1153 * Also note, that if the filesystem's .remount_fs function doesn't
1154 * reset all options to their default value, but changes only newly
1155 * given options, then the displayed options will not reflect reality
1156 * any more.
1158 void save_mount_options(struct super_block *sb, char *options)
1160 BUG_ON(sb->s_options);
1161 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1163 EXPORT_SYMBOL(save_mount_options);
1165 void replace_mount_options(struct super_block *sb, char *options)
1167 char *old = sb->s_options;
1168 rcu_assign_pointer(sb->s_options, options);
1169 if (old) {
1170 synchronize_rcu();
1171 kfree(old);
1174 EXPORT_SYMBOL(replace_mount_options);
1176 #ifdef CONFIG_PROC_FS
1177 /* iterator; we want it to have access to namespace_sem, thus here... */
1178 static void *m_start(struct seq_file *m, loff_t *pos)
1180 struct proc_mounts *p = proc_mounts(m);
1182 down_read(&namespace_sem);
1183 if (p->cached_event == p->ns->event) {
1184 void *v = p->cached_mount;
1185 if (*pos == p->cached_index)
1186 return v;
1187 if (*pos == p->cached_index + 1) {
1188 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1189 return p->cached_mount = v;
1193 p->cached_event = p->ns->event;
1194 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1195 p->cached_index = *pos;
1196 return p->cached_mount;
1199 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1201 struct proc_mounts *p = proc_mounts(m);
1203 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1204 p->cached_index = *pos;
1205 return p->cached_mount;
1208 static void m_stop(struct seq_file *m, void *v)
1210 up_read(&namespace_sem);
1213 static int m_show(struct seq_file *m, void *v)
1215 struct proc_mounts *p = proc_mounts(m);
1216 struct mount *r = list_entry(v, struct mount, mnt_list);
1217 return p->show(m, &r->mnt);
1220 const struct seq_operations mounts_op = {
1221 .start = m_start,
1222 .next = m_next,
1223 .stop = m_stop,
1224 .show = m_show,
1226 #endif /* CONFIG_PROC_FS */
1229 * may_umount_tree - check if a mount tree is busy
1230 * @mnt: root of mount tree
1232 * This is called to check if a tree of mounts has any
1233 * open files, pwds, chroots or sub mounts that are
1234 * busy.
1236 int may_umount_tree(struct vfsmount *m)
1238 struct mount *mnt = real_mount(m);
1239 int actual_refs = 0;
1240 int minimum_refs = 0;
1241 struct mount *p;
1242 BUG_ON(!m);
1244 /* write lock needed for mnt_get_count */
1245 lock_mount_hash();
1246 for (p = mnt; p; p = next_mnt(p, mnt)) {
1247 actual_refs += mnt_get_count(p);
1248 minimum_refs += 2;
1250 unlock_mount_hash();
1252 if (actual_refs > minimum_refs)
1253 return 0;
1255 return 1;
1258 EXPORT_SYMBOL(may_umount_tree);
1261 * may_umount - check if a mount point is busy
1262 * @mnt: root of mount
1264 * This is called to check if a mount point has any
1265 * open files, pwds, chroots or sub mounts. If the
1266 * mount has sub mounts this will return busy
1267 * regardless of whether the sub mounts are busy.
1269 * Doesn't take quota and stuff into account. IOW, in some cases it will
1270 * give false negatives. The main reason why it's here is that we need
1271 * a non-destructive way to look for easily umountable filesystems.
1273 int may_umount(struct vfsmount *mnt)
1275 int ret = 1;
1276 down_read(&namespace_sem);
1277 lock_mount_hash();
1278 if (propagate_mount_busy(real_mount(mnt), 2))
1279 ret = 0;
1280 unlock_mount_hash();
1281 up_read(&namespace_sem);
1282 return ret;
1285 EXPORT_SYMBOL(may_umount);
1287 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1289 static void namespace_unlock(void)
1291 struct mount *mnt;
1292 struct hlist_head head = unmounted;
1294 if (likely(hlist_empty(&head))) {
1295 up_write(&namespace_sem);
1296 return;
1299 head.first->pprev = &head.first;
1300 INIT_HLIST_HEAD(&unmounted);
1302 /* undo decrements we'd done in umount_tree() */
1303 hlist_for_each_entry(mnt, &head, mnt_hash)
1304 if (mnt->mnt_ex_mountpoint.mnt)
1305 mntget(mnt->mnt_ex_mountpoint.mnt);
1307 up_write(&namespace_sem);
1309 synchronize_rcu();
1311 while (!hlist_empty(&head)) {
1312 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1313 hlist_del_init(&mnt->mnt_hash);
1314 if (mnt->mnt_ex_mountpoint.mnt)
1315 path_put(&mnt->mnt_ex_mountpoint);
1316 mntput(&mnt->mnt);
1320 static inline void namespace_lock(void)
1322 down_write(&namespace_sem);
1325 enum umount_tree_flags {
1326 UMOUNT_SYNC = 1,
1327 UMOUNT_PROPAGATE = 2,
1330 * mount_lock must be held
1331 * namespace_sem must be held for write
1333 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1335 HLIST_HEAD(tmp_list);
1336 struct mount *p;
1337 struct mount *last = NULL;
1339 for (p = mnt; p; p = next_mnt(p, mnt)) {
1340 hlist_del_init_rcu(&p->mnt_hash);
1341 hlist_add_head(&p->mnt_hash, &tmp_list);
1344 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1345 list_del_init(&p->mnt_child);
1347 if (how & UMOUNT_PROPAGATE)
1348 propagate_umount(&tmp_list);
1350 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1351 list_del_init(&p->mnt_expire);
1352 list_del_init(&p->mnt_list);
1353 __touch_mnt_namespace(p->mnt_ns);
1354 p->mnt_ns = NULL;
1355 if (how & UMOUNT_SYNC)
1356 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1357 if (mnt_has_parent(p)) {
1358 hlist_del_init(&p->mnt_mp_list);
1359 put_mountpoint(p->mnt_mp);
1360 mnt_add_count(p->mnt_parent, -1);
1361 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1362 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1363 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1364 p->mnt_mountpoint = p->mnt.mnt_root;
1365 p->mnt_parent = p;
1366 p->mnt_mp = NULL;
1368 change_mnt_propagation(p, MS_PRIVATE);
1369 last = p;
1371 if (last) {
1372 last->mnt_hash.next = unmounted.first;
1373 if (unmounted.first)
1374 unmounted.first->pprev = &last->mnt_hash.next;
1375 unmounted.first = tmp_list.first;
1376 unmounted.first->pprev = &unmounted.first;
1380 static void shrink_submounts(struct mount *mnt);
1382 static int do_umount(struct mount *mnt, int flags)
1384 struct super_block *sb = mnt->mnt.mnt_sb;
1385 int retval;
1387 retval = security_sb_umount(&mnt->mnt, flags);
1388 if (retval)
1389 return retval;
1392 * Allow userspace to request a mountpoint be expired rather than
1393 * unmounting unconditionally. Unmount only happens if:
1394 * (1) the mark is already set (the mark is cleared by mntput())
1395 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1397 if (flags & MNT_EXPIRE) {
1398 if (&mnt->mnt == current->fs->root.mnt ||
1399 flags & (MNT_FORCE | MNT_DETACH))
1400 return -EINVAL;
1403 * probably don't strictly need the lock here if we examined
1404 * all race cases, but it's a slowpath.
1406 lock_mount_hash();
1407 if (mnt_get_count(mnt) != 2) {
1408 unlock_mount_hash();
1409 return -EBUSY;
1411 unlock_mount_hash();
1413 if (!xchg(&mnt->mnt_expiry_mark, 1))
1414 return -EAGAIN;
1418 * If we may have to abort operations to get out of this
1419 * mount, and they will themselves hold resources we must
1420 * allow the fs to do things. In the Unix tradition of
1421 * 'Gee thats tricky lets do it in userspace' the umount_begin
1422 * might fail to complete on the first run through as other tasks
1423 * must return, and the like. Thats for the mount program to worry
1424 * about for the moment.
1427 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1428 sb->s_op->umount_begin(sb);
1432 * No sense to grab the lock for this test, but test itself looks
1433 * somewhat bogus. Suggestions for better replacement?
1434 * Ho-hum... In principle, we might treat that as umount + switch
1435 * to rootfs. GC would eventually take care of the old vfsmount.
1436 * Actually it makes sense, especially if rootfs would contain a
1437 * /reboot - static binary that would close all descriptors and
1438 * call reboot(9). Then init(8) could umount root and exec /reboot.
1440 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1442 * Special case for "unmounting" root ...
1443 * we just try to remount it readonly.
1445 if (!capable(CAP_SYS_ADMIN))
1446 return -EPERM;
1447 down_write(&sb->s_umount);
1448 if (!(sb->s_flags & MS_RDONLY))
1449 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1450 up_write(&sb->s_umount);
1451 return retval;
1454 namespace_lock();
1455 lock_mount_hash();
1456 event++;
1458 if (flags & MNT_DETACH) {
1459 if (!list_empty(&mnt->mnt_list))
1460 umount_tree(mnt, UMOUNT_PROPAGATE);
1461 retval = 0;
1462 } else {
1463 shrink_submounts(mnt);
1464 retval = -EBUSY;
1465 if (!propagate_mount_busy(mnt, 2)) {
1466 if (!list_empty(&mnt->mnt_list))
1467 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1468 retval = 0;
1471 unlock_mount_hash();
1472 namespace_unlock();
1473 return retval;
1477 * __detach_mounts - lazily unmount all mounts on the specified dentry
1479 * During unlink, rmdir, and d_drop it is possible to loose the path
1480 * to an existing mountpoint, and wind up leaking the mount.
1481 * detach_mounts allows lazily unmounting those mounts instead of
1482 * leaking them.
1484 * The caller may hold dentry->d_inode->i_mutex.
1486 void __detach_mounts(struct dentry *dentry)
1488 struct mountpoint *mp;
1489 struct mount *mnt;
1491 namespace_lock();
1492 mp = lookup_mountpoint(dentry);
1493 if (IS_ERR_OR_NULL(mp))
1494 goto out_unlock;
1496 lock_mount_hash();
1497 while (!hlist_empty(&mp->m_list)) {
1498 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1499 umount_tree(mnt, 0);
1501 unlock_mount_hash();
1502 put_mountpoint(mp);
1503 out_unlock:
1504 namespace_unlock();
1508 * Is the caller allowed to modify his namespace?
1510 static inline bool may_mount(void)
1512 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1516 * Now umount can handle mount points as well as block devices.
1517 * This is important for filesystems which use unnamed block devices.
1519 * We now support a flag for forced unmount like the other 'big iron'
1520 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1523 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1525 struct path path;
1526 struct mount *mnt;
1527 int retval;
1528 int lookup_flags = 0;
1530 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1531 return -EINVAL;
1533 if (!may_mount())
1534 return -EPERM;
1536 if (!(flags & UMOUNT_NOFOLLOW))
1537 lookup_flags |= LOOKUP_FOLLOW;
1539 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1540 if (retval)
1541 goto out;
1542 mnt = real_mount(path.mnt);
1543 retval = -EINVAL;
1544 if (path.dentry != path.mnt->mnt_root)
1545 goto dput_and_out;
1546 if (!check_mnt(mnt))
1547 goto dput_and_out;
1548 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1549 goto dput_and_out;
1550 retval = -EPERM;
1551 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1552 goto dput_and_out;
1554 retval = do_umount(mnt, flags);
1555 dput_and_out:
1556 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1557 dput(path.dentry);
1558 mntput_no_expire(mnt);
1559 out:
1560 return retval;
1563 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1566 * The 2.0 compatible umount. No flags.
1568 SYSCALL_DEFINE1(oldumount, char __user *, name)
1570 return sys_umount(name, 0);
1573 #endif
1575 static bool is_mnt_ns_file(struct dentry *dentry)
1577 /* Is this a proxy for a mount namespace? */
1578 struct inode *inode = dentry->d_inode;
1579 struct proc_ns *ei;
1581 if (!proc_ns_inode(inode))
1582 return false;
1584 ei = get_proc_ns(inode);
1585 if (ei->ns_ops != &mntns_operations)
1586 return false;
1588 return true;
1591 static bool mnt_ns_loop(struct dentry *dentry)
1593 /* Could bind mounting the mount namespace inode cause a
1594 * mount namespace loop?
1596 struct mnt_namespace *mnt_ns;
1597 if (!is_mnt_ns_file(dentry))
1598 return false;
1600 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1601 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1604 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1605 int flag)
1607 struct mount *res, *p, *q, *r, *parent;
1609 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1610 return ERR_PTR(-EINVAL);
1612 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1613 return ERR_PTR(-EINVAL);
1615 res = q = clone_mnt(mnt, dentry, flag);
1616 if (IS_ERR(q))
1617 return q;
1619 q->mnt.mnt_flags &= ~MNT_LOCKED;
1620 q->mnt_mountpoint = mnt->mnt_mountpoint;
1622 p = mnt;
1623 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1624 struct mount *s;
1625 if (!is_subdir(r->mnt_mountpoint, dentry))
1626 continue;
1628 for (s = r; s; s = next_mnt(s, r)) {
1629 struct mount *t = NULL;
1630 if (!(flag & CL_COPY_UNBINDABLE) &&
1631 IS_MNT_UNBINDABLE(s)) {
1632 s = skip_mnt_tree(s);
1633 continue;
1635 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1636 is_mnt_ns_file(s->mnt.mnt_root)) {
1637 s = skip_mnt_tree(s);
1638 continue;
1640 while (p != s->mnt_parent) {
1641 p = p->mnt_parent;
1642 q = q->mnt_parent;
1644 p = s;
1645 parent = q;
1646 q = clone_mnt(p, p->mnt.mnt_root, flag);
1647 if (IS_ERR(q))
1648 goto out;
1649 lock_mount_hash();
1650 list_add_tail(&q->mnt_list, &res->mnt_list);
1651 mnt_set_mountpoint(parent, p->mnt_mp, q);
1652 if (!list_empty(&parent->mnt_mounts)) {
1653 t = list_last_entry(&parent->mnt_mounts,
1654 struct mount, mnt_child);
1655 if (t->mnt_mp != p->mnt_mp)
1656 t = NULL;
1658 attach_shadowed(q, parent, t);
1659 unlock_mount_hash();
1662 return res;
1663 out:
1664 if (res) {
1665 lock_mount_hash();
1666 umount_tree(res, UMOUNT_SYNC);
1667 unlock_mount_hash();
1669 return q;
1672 /* Caller should check returned pointer for errors */
1674 struct vfsmount *collect_mounts(struct path *path)
1676 struct mount *tree;
1677 namespace_lock();
1678 if (!check_mnt(real_mount(path->mnt)))
1679 tree = ERR_PTR(-EINVAL);
1680 else
1681 tree = copy_tree(real_mount(path->mnt), path->dentry,
1682 CL_COPY_ALL | CL_PRIVATE);
1683 namespace_unlock();
1684 if (IS_ERR(tree))
1685 return ERR_CAST(tree);
1686 return &tree->mnt;
1689 void drop_collected_mounts(struct vfsmount *mnt)
1691 namespace_lock();
1692 lock_mount_hash();
1693 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1694 unlock_mount_hash();
1695 namespace_unlock();
1699 * clone_private_mount - create a private clone of a path
1701 * This creates a new vfsmount, which will be the clone of @path. The new will
1702 * not be attached anywhere in the namespace and will be private (i.e. changes
1703 * to the originating mount won't be propagated into this).
1705 * Release with mntput().
1707 struct vfsmount *clone_private_mount(struct path *path)
1709 struct mount *old_mnt = real_mount(path->mnt);
1710 struct mount *new_mnt;
1712 if (IS_MNT_UNBINDABLE(old_mnt))
1713 return ERR_PTR(-EINVAL);
1715 down_read(&namespace_sem);
1716 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1717 up_read(&namespace_sem);
1718 if (IS_ERR(new_mnt))
1719 return ERR_CAST(new_mnt);
1721 return &new_mnt->mnt;
1723 EXPORT_SYMBOL_GPL(clone_private_mount);
1725 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1726 struct vfsmount *root)
1728 struct mount *mnt;
1729 int res = f(root, arg);
1730 if (res)
1731 return res;
1732 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1733 res = f(&mnt->mnt, arg);
1734 if (res)
1735 return res;
1737 return 0;
1740 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1742 struct mount *p;
1744 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1745 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1746 mnt_release_group_id(p);
1750 static int invent_group_ids(struct mount *mnt, bool recurse)
1752 struct mount *p;
1754 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1755 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1756 int err = mnt_alloc_group_id(p);
1757 if (err) {
1758 cleanup_group_ids(mnt, p);
1759 return err;
1764 return 0;
1768 * @source_mnt : mount tree to be attached
1769 * @nd : place the mount tree @source_mnt is attached
1770 * @parent_nd : if non-null, detach the source_mnt from its parent and
1771 * store the parent mount and mountpoint dentry.
1772 * (done when source_mnt is moved)
1774 * NOTE: in the table below explains the semantics when a source mount
1775 * of a given type is attached to a destination mount of a given type.
1776 * ---------------------------------------------------------------------------
1777 * | BIND MOUNT OPERATION |
1778 * |**************************************************************************
1779 * | source-->| shared | private | slave | unbindable |
1780 * | dest | | | | |
1781 * | | | | | | |
1782 * | v | | | | |
1783 * |**************************************************************************
1784 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1785 * | | | | | |
1786 * |non-shared| shared (+) | private | slave (*) | invalid |
1787 * ***************************************************************************
1788 * A bind operation clones the source mount and mounts the clone on the
1789 * destination mount.
1791 * (++) the cloned mount is propagated to all the mounts in the propagation
1792 * tree of the destination mount and the cloned mount is added to
1793 * the peer group of the source mount.
1794 * (+) the cloned mount is created under the destination mount and is marked
1795 * as shared. The cloned mount is added to the peer group of the source
1796 * mount.
1797 * (+++) the mount is propagated to all the mounts in the propagation tree
1798 * of the destination mount and the cloned mount is made slave
1799 * of the same master as that of the source mount. The cloned mount
1800 * is marked as 'shared and slave'.
1801 * (*) the cloned mount is made a slave of the same master as that of the
1802 * source mount.
1804 * ---------------------------------------------------------------------------
1805 * | MOVE MOUNT OPERATION |
1806 * |**************************************************************************
1807 * | source-->| shared | private | slave | unbindable |
1808 * | dest | | | | |
1809 * | | | | | | |
1810 * | v | | | | |
1811 * |**************************************************************************
1812 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1813 * | | | | | |
1814 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1815 * ***************************************************************************
1817 * (+) the mount is moved to the destination. And is then propagated to
1818 * all the mounts in the propagation tree of the destination mount.
1819 * (+*) the mount is moved to the destination.
1820 * (+++) the mount is moved to the destination and is then propagated to
1821 * all the mounts belonging to the destination mount's propagation tree.
1822 * the mount is marked as 'shared and slave'.
1823 * (*) the mount continues to be a slave at the new location.
1825 * if the source mount is a tree, the operations explained above is
1826 * applied to each mount in the tree.
1827 * Must be called without spinlocks held, since this function can sleep
1828 * in allocations.
1830 static int attach_recursive_mnt(struct mount *source_mnt,
1831 struct mount *dest_mnt,
1832 struct mountpoint *dest_mp,
1833 struct path *parent_path)
1835 HLIST_HEAD(tree_list);
1836 struct mount *child, *p;
1837 struct hlist_node *n;
1838 int err;
1840 if (IS_MNT_SHARED(dest_mnt)) {
1841 err = invent_group_ids(source_mnt, true);
1842 if (err)
1843 goto out;
1844 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1845 lock_mount_hash();
1846 if (err)
1847 goto out_cleanup_ids;
1848 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1849 set_mnt_shared(p);
1850 } else {
1851 lock_mount_hash();
1853 if (parent_path) {
1854 detach_mnt(source_mnt, parent_path);
1855 attach_mnt(source_mnt, dest_mnt, dest_mp);
1856 touch_mnt_namespace(source_mnt->mnt_ns);
1857 } else {
1858 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1859 commit_tree(source_mnt, NULL);
1862 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1863 struct mount *q;
1864 hlist_del_init(&child->mnt_hash);
1865 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1866 child->mnt_mountpoint);
1867 commit_tree(child, q);
1869 unlock_mount_hash();
1871 return 0;
1873 out_cleanup_ids:
1874 while (!hlist_empty(&tree_list)) {
1875 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1876 umount_tree(child, UMOUNT_SYNC);
1878 unlock_mount_hash();
1879 cleanup_group_ids(source_mnt, NULL);
1880 out:
1881 return err;
1884 static struct mountpoint *lock_mount(struct path *path)
1886 struct vfsmount *mnt;
1887 struct dentry *dentry = path->dentry;
1888 retry:
1889 mutex_lock(&dentry->d_inode->i_mutex);
1890 if (unlikely(cant_mount(dentry))) {
1891 mutex_unlock(&dentry->d_inode->i_mutex);
1892 return ERR_PTR(-ENOENT);
1894 namespace_lock();
1895 mnt = lookup_mnt(path);
1896 if (likely(!mnt)) {
1897 struct mountpoint *mp = lookup_mountpoint(dentry);
1898 if (!mp)
1899 mp = new_mountpoint(dentry);
1900 if (IS_ERR(mp)) {
1901 namespace_unlock();
1902 mutex_unlock(&dentry->d_inode->i_mutex);
1903 return mp;
1905 return mp;
1907 namespace_unlock();
1908 mutex_unlock(&path->dentry->d_inode->i_mutex);
1909 path_put(path);
1910 path->mnt = mnt;
1911 dentry = path->dentry = dget(mnt->mnt_root);
1912 goto retry;
1915 static void unlock_mount(struct mountpoint *where)
1917 struct dentry *dentry = where->m_dentry;
1918 put_mountpoint(where);
1919 namespace_unlock();
1920 mutex_unlock(&dentry->d_inode->i_mutex);
1923 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1925 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1926 return -EINVAL;
1928 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1929 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1930 return -ENOTDIR;
1932 return attach_recursive_mnt(mnt, p, mp, NULL);
1936 * Sanity check the flags to change_mnt_propagation.
1939 static int flags_to_propagation_type(int flags)
1941 int type = flags & ~(MS_REC | MS_SILENT);
1943 /* Fail if any non-propagation flags are set */
1944 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1945 return 0;
1946 /* Only one propagation flag should be set */
1947 if (!is_power_of_2(type))
1948 return 0;
1949 return type;
1953 * recursively change the type of the mountpoint.
1955 static int do_change_type(struct path *path, int flag)
1957 struct mount *m;
1958 struct mount *mnt = real_mount(path->mnt);
1959 int recurse = flag & MS_REC;
1960 int type;
1961 int err = 0;
1963 if (path->dentry != path->mnt->mnt_root)
1964 return -EINVAL;
1966 type = flags_to_propagation_type(flag);
1967 if (!type)
1968 return -EINVAL;
1970 namespace_lock();
1971 if (type == MS_SHARED) {
1972 err = invent_group_ids(mnt, recurse);
1973 if (err)
1974 goto out_unlock;
1977 lock_mount_hash();
1978 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1979 change_mnt_propagation(m, type);
1980 unlock_mount_hash();
1982 out_unlock:
1983 namespace_unlock();
1984 return err;
1987 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1989 struct mount *child;
1990 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1991 if (!is_subdir(child->mnt_mountpoint, dentry))
1992 continue;
1994 if (child->mnt.mnt_flags & MNT_LOCKED)
1995 return true;
1997 return false;
2001 * do loopback mount.
2003 static int do_loopback(struct path *path, const char *old_name,
2004 int recurse)
2006 struct path old_path;
2007 struct mount *mnt = NULL, *old, *parent;
2008 struct mountpoint *mp;
2009 int err;
2010 if (!old_name || !*old_name)
2011 return -EINVAL;
2012 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2013 if (err)
2014 return err;
2016 err = -EINVAL;
2017 if (mnt_ns_loop(old_path.dentry))
2018 goto out;
2020 mp = lock_mount(path);
2021 err = PTR_ERR(mp);
2022 if (IS_ERR(mp))
2023 goto out;
2025 old = real_mount(old_path.mnt);
2026 parent = real_mount(path->mnt);
2028 err = -EINVAL;
2029 if (IS_MNT_UNBINDABLE(old))
2030 goto out2;
2032 if (!check_mnt(parent) || !check_mnt(old))
2033 goto out2;
2035 if (!recurse && has_locked_children(old, old_path.dentry))
2036 goto out2;
2038 if (recurse)
2039 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2040 else
2041 mnt = clone_mnt(old, old_path.dentry, 0);
2043 if (IS_ERR(mnt)) {
2044 err = PTR_ERR(mnt);
2045 goto out2;
2048 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2050 err = graft_tree(mnt, parent, mp);
2051 if (err) {
2052 lock_mount_hash();
2053 umount_tree(mnt, UMOUNT_SYNC);
2054 unlock_mount_hash();
2056 out2:
2057 unlock_mount(mp);
2058 out:
2059 path_put(&old_path);
2060 return err;
2063 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2065 int error = 0;
2066 int readonly_request = 0;
2068 if (ms_flags & MS_RDONLY)
2069 readonly_request = 1;
2070 if (readonly_request == __mnt_is_readonly(mnt))
2071 return 0;
2073 if (readonly_request)
2074 error = mnt_make_readonly(real_mount(mnt));
2075 else
2076 __mnt_unmake_readonly(real_mount(mnt));
2077 return error;
2081 * change filesystem flags. dir should be a physical root of filesystem.
2082 * If you've mounted a non-root directory somewhere and want to do remount
2083 * on it - tough luck.
2085 static int do_remount(struct path *path, int flags, int mnt_flags,
2086 void *data)
2088 int err;
2089 struct super_block *sb = path->mnt->mnt_sb;
2090 struct mount *mnt = real_mount(path->mnt);
2092 if (!check_mnt(mnt))
2093 return -EINVAL;
2095 if (path->dentry != path->mnt->mnt_root)
2096 return -EINVAL;
2098 /* Don't allow changing of locked mnt flags.
2100 * No locks need to be held here while testing the various
2101 * MNT_LOCK flags because those flags can never be cleared
2102 * once they are set.
2104 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2105 !(mnt_flags & MNT_READONLY)) {
2106 return -EPERM;
2108 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2109 !(mnt_flags & MNT_NODEV)) {
2110 /* Was the nodev implicitly added in mount? */
2111 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2112 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2113 mnt_flags |= MNT_NODEV;
2114 } else {
2115 return -EPERM;
2118 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2119 !(mnt_flags & MNT_NOSUID)) {
2120 return -EPERM;
2122 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2123 !(mnt_flags & MNT_NOEXEC)) {
2124 return -EPERM;
2126 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2127 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2128 return -EPERM;
2131 err = security_sb_remount(sb, data);
2132 if (err)
2133 return err;
2135 down_write(&sb->s_umount);
2136 if (flags & MS_BIND)
2137 err = change_mount_flags(path->mnt, flags);
2138 else if (!capable(CAP_SYS_ADMIN))
2139 err = -EPERM;
2140 else
2141 err = do_remount_sb(sb, flags, data, 0);
2142 if (!err) {
2143 lock_mount_hash();
2144 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2145 mnt->mnt.mnt_flags = mnt_flags;
2146 touch_mnt_namespace(mnt->mnt_ns);
2147 unlock_mount_hash();
2149 up_write(&sb->s_umount);
2150 return err;
2153 static inline int tree_contains_unbindable(struct mount *mnt)
2155 struct mount *p;
2156 for (p = mnt; p; p = next_mnt(p, mnt)) {
2157 if (IS_MNT_UNBINDABLE(p))
2158 return 1;
2160 return 0;
2163 static int do_move_mount(struct path *path, const char *old_name)
2165 struct path old_path, parent_path;
2166 struct mount *p;
2167 struct mount *old;
2168 struct mountpoint *mp;
2169 int err;
2170 if (!old_name || !*old_name)
2171 return -EINVAL;
2172 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2173 if (err)
2174 return err;
2176 mp = lock_mount(path);
2177 err = PTR_ERR(mp);
2178 if (IS_ERR(mp))
2179 goto out;
2181 old = real_mount(old_path.mnt);
2182 p = real_mount(path->mnt);
2184 err = -EINVAL;
2185 if (!check_mnt(p) || !check_mnt(old))
2186 goto out1;
2188 if (old->mnt.mnt_flags & MNT_LOCKED)
2189 goto out1;
2191 err = -EINVAL;
2192 if (old_path.dentry != old_path.mnt->mnt_root)
2193 goto out1;
2195 if (!mnt_has_parent(old))
2196 goto out1;
2198 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2199 S_ISDIR(old_path.dentry->d_inode->i_mode))
2200 goto out1;
2202 * Don't move a mount residing in a shared parent.
2204 if (IS_MNT_SHARED(old->mnt_parent))
2205 goto out1;
2207 * Don't move a mount tree containing unbindable mounts to a destination
2208 * mount which is shared.
2210 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2211 goto out1;
2212 err = -ELOOP;
2213 for (; mnt_has_parent(p); p = p->mnt_parent)
2214 if (p == old)
2215 goto out1;
2217 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2218 if (err)
2219 goto out1;
2221 /* if the mount is moved, it should no longer be expire
2222 * automatically */
2223 list_del_init(&old->mnt_expire);
2224 out1:
2225 unlock_mount(mp);
2226 out:
2227 if (!err)
2228 path_put(&parent_path);
2229 path_put(&old_path);
2230 return err;
2233 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2235 int err;
2236 const char *subtype = strchr(fstype, '.');
2237 if (subtype) {
2238 subtype++;
2239 err = -EINVAL;
2240 if (!subtype[0])
2241 goto err;
2242 } else
2243 subtype = "";
2245 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2246 err = -ENOMEM;
2247 if (!mnt->mnt_sb->s_subtype)
2248 goto err;
2249 return mnt;
2251 err:
2252 mntput(mnt);
2253 return ERR_PTR(err);
2257 * add a mount into a namespace's mount tree
2259 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2261 struct mountpoint *mp;
2262 struct mount *parent;
2263 int err;
2265 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2267 mp = lock_mount(path);
2268 if (IS_ERR(mp))
2269 return PTR_ERR(mp);
2271 parent = real_mount(path->mnt);
2272 err = -EINVAL;
2273 if (unlikely(!check_mnt(parent))) {
2274 /* that's acceptable only for automounts done in private ns */
2275 if (!(mnt_flags & MNT_SHRINKABLE))
2276 goto unlock;
2277 /* ... and for those we'd better have mountpoint still alive */
2278 if (!parent->mnt_ns)
2279 goto unlock;
2282 /* Refuse the same filesystem on the same mount point */
2283 err = -EBUSY;
2284 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2285 path->mnt->mnt_root == path->dentry)
2286 goto unlock;
2288 err = -EINVAL;
2289 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2290 goto unlock;
2292 newmnt->mnt.mnt_flags = mnt_flags;
2293 err = graft_tree(newmnt, parent, mp);
2295 unlock:
2296 unlock_mount(mp);
2297 return err;
2301 * create a new mount for userspace and request it to be added into the
2302 * namespace's tree
2304 static int do_new_mount(struct path *path, const char *fstype, int flags,
2305 int mnt_flags, const char *name, void *data)
2307 struct file_system_type *type;
2308 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2309 struct vfsmount *mnt;
2310 int err;
2312 if (!fstype)
2313 return -EINVAL;
2315 type = get_fs_type(fstype);
2316 if (!type)
2317 return -ENODEV;
2319 if (user_ns != &init_user_ns) {
2320 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2321 put_filesystem(type);
2322 return -EPERM;
2324 /* Only in special cases allow devices from mounts
2325 * created outside the initial user namespace.
2327 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2328 flags |= MS_NODEV;
2329 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2333 mnt = vfs_kern_mount(type, flags, name, data);
2334 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2335 !mnt->mnt_sb->s_subtype)
2336 mnt = fs_set_subtype(mnt, fstype);
2338 put_filesystem(type);
2339 if (IS_ERR(mnt))
2340 return PTR_ERR(mnt);
2342 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2343 if (err)
2344 mntput(mnt);
2345 return err;
2348 int finish_automount(struct vfsmount *m, struct path *path)
2350 struct mount *mnt = real_mount(m);
2351 int err;
2352 /* The new mount record should have at least 2 refs to prevent it being
2353 * expired before we get a chance to add it
2355 BUG_ON(mnt_get_count(mnt) < 2);
2357 if (m->mnt_sb == path->mnt->mnt_sb &&
2358 m->mnt_root == path->dentry) {
2359 err = -ELOOP;
2360 goto fail;
2363 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2364 if (!err)
2365 return 0;
2366 fail:
2367 /* remove m from any expiration list it may be on */
2368 if (!list_empty(&mnt->mnt_expire)) {
2369 namespace_lock();
2370 list_del_init(&mnt->mnt_expire);
2371 namespace_unlock();
2373 mntput(m);
2374 mntput(m);
2375 return err;
2379 * mnt_set_expiry - Put a mount on an expiration list
2380 * @mnt: The mount to list.
2381 * @expiry_list: The list to add the mount to.
2383 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2385 namespace_lock();
2387 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2389 namespace_unlock();
2391 EXPORT_SYMBOL(mnt_set_expiry);
2394 * process a list of expirable mountpoints with the intent of discarding any
2395 * mountpoints that aren't in use and haven't been touched since last we came
2396 * here
2398 void mark_mounts_for_expiry(struct list_head *mounts)
2400 struct mount *mnt, *next;
2401 LIST_HEAD(graveyard);
2403 if (list_empty(mounts))
2404 return;
2406 namespace_lock();
2407 lock_mount_hash();
2409 /* extract from the expiration list every vfsmount that matches the
2410 * following criteria:
2411 * - only referenced by its parent vfsmount
2412 * - still marked for expiry (marked on the last call here; marks are
2413 * cleared by mntput())
2415 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2416 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2417 propagate_mount_busy(mnt, 1))
2418 continue;
2419 list_move(&mnt->mnt_expire, &graveyard);
2421 while (!list_empty(&graveyard)) {
2422 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2423 touch_mnt_namespace(mnt->mnt_ns);
2424 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2426 unlock_mount_hash();
2427 namespace_unlock();
2430 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2433 * Ripoff of 'select_parent()'
2435 * search the list of submounts for a given mountpoint, and move any
2436 * shrinkable submounts to the 'graveyard' list.
2438 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2440 struct mount *this_parent = parent;
2441 struct list_head *next;
2442 int found = 0;
2444 repeat:
2445 next = this_parent->mnt_mounts.next;
2446 resume:
2447 while (next != &this_parent->mnt_mounts) {
2448 struct list_head *tmp = next;
2449 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2451 next = tmp->next;
2452 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2453 continue;
2455 * Descend a level if the d_mounts list is non-empty.
2457 if (!list_empty(&mnt->mnt_mounts)) {
2458 this_parent = mnt;
2459 goto repeat;
2462 if (!propagate_mount_busy(mnt, 1)) {
2463 list_move_tail(&mnt->mnt_expire, graveyard);
2464 found++;
2468 * All done at this level ... ascend and resume the search
2470 if (this_parent != parent) {
2471 next = this_parent->mnt_child.next;
2472 this_parent = this_parent->mnt_parent;
2473 goto resume;
2475 return found;
2479 * process a list of expirable mountpoints with the intent of discarding any
2480 * submounts of a specific parent mountpoint
2482 * mount_lock must be held for write
2484 static void shrink_submounts(struct mount *mnt)
2486 LIST_HEAD(graveyard);
2487 struct mount *m;
2489 /* extract submounts of 'mountpoint' from the expiration list */
2490 while (select_submounts(mnt, &graveyard)) {
2491 while (!list_empty(&graveyard)) {
2492 m = list_first_entry(&graveyard, struct mount,
2493 mnt_expire);
2494 touch_mnt_namespace(m->mnt_ns);
2495 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2501 * Some copy_from_user() implementations do not return the exact number of
2502 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2503 * Note that this function differs from copy_from_user() in that it will oops
2504 * on bad values of `to', rather than returning a short copy.
2506 static long exact_copy_from_user(void *to, const void __user * from,
2507 unsigned long n)
2509 char *t = to;
2510 const char __user *f = from;
2511 char c;
2513 if (!access_ok(VERIFY_READ, from, n))
2514 return n;
2516 while (n) {
2517 if (__get_user(c, f)) {
2518 memset(t, 0, n);
2519 break;
2521 *t++ = c;
2522 f++;
2523 n--;
2525 return n;
2528 int copy_mount_options(const void __user * data, unsigned long *where)
2530 int i;
2531 unsigned long page;
2532 unsigned long size;
2534 *where = 0;
2535 if (!data)
2536 return 0;
2538 if (!(page = __get_free_page(GFP_KERNEL)))
2539 return -ENOMEM;
2541 /* We only care that *some* data at the address the user
2542 * gave us is valid. Just in case, we'll zero
2543 * the remainder of the page.
2545 /* copy_from_user cannot cross TASK_SIZE ! */
2546 size = TASK_SIZE - (unsigned long)data;
2547 if (size > PAGE_SIZE)
2548 size = PAGE_SIZE;
2550 i = size - exact_copy_from_user((void *)page, data, size);
2551 if (!i) {
2552 free_page(page);
2553 return -EFAULT;
2555 if (i != PAGE_SIZE)
2556 memset((char *)page + i, 0, PAGE_SIZE - i);
2557 *where = page;
2558 return 0;
2561 char *copy_mount_string(const void __user *data)
2563 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2567 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2568 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2570 * data is a (void *) that can point to any structure up to
2571 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2572 * information (or be NULL).
2574 * Pre-0.97 versions of mount() didn't have a flags word.
2575 * When the flags word was introduced its top half was required
2576 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2577 * Therefore, if this magic number is present, it carries no information
2578 * and must be discarded.
2580 long do_mount(const char *dev_name, const char __user *dir_name,
2581 const char *type_page, unsigned long flags, void *data_page)
2583 struct path path;
2584 int retval = 0;
2585 int mnt_flags = 0;
2587 /* Discard magic */
2588 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2589 flags &= ~MS_MGC_MSK;
2591 /* Basic sanity checks */
2592 if (data_page)
2593 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2595 /* ... and get the mountpoint */
2596 retval = user_path(dir_name, &path);
2597 if (retval)
2598 return retval;
2600 retval = security_sb_mount(dev_name, &path,
2601 type_page, flags, data_page);
2602 if (!retval && !may_mount())
2603 retval = -EPERM;
2604 if (retval)
2605 goto dput_out;
2607 /* Default to relatime unless overriden */
2608 if (!(flags & MS_NOATIME))
2609 mnt_flags |= MNT_RELATIME;
2611 /* Separate the per-mountpoint flags */
2612 if (flags & MS_NOSUID)
2613 mnt_flags |= MNT_NOSUID;
2614 if (flags & MS_NODEV)
2615 mnt_flags |= MNT_NODEV;
2616 if (flags & MS_NOEXEC)
2617 mnt_flags |= MNT_NOEXEC;
2618 if (flags & MS_NOATIME)
2619 mnt_flags |= MNT_NOATIME;
2620 if (flags & MS_NODIRATIME)
2621 mnt_flags |= MNT_NODIRATIME;
2622 if (flags & MS_STRICTATIME)
2623 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2624 if (flags & MS_RDONLY)
2625 mnt_flags |= MNT_READONLY;
2627 /* The default atime for remount is preservation */
2628 if ((flags & MS_REMOUNT) &&
2629 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2630 MS_STRICTATIME)) == 0)) {
2631 mnt_flags &= ~MNT_ATIME_MASK;
2632 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2635 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2636 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2637 MS_STRICTATIME);
2639 if (flags & MS_REMOUNT)
2640 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2641 data_page);
2642 else if (flags & MS_BIND)
2643 retval = do_loopback(&path, dev_name, flags & MS_REC);
2644 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2645 retval = do_change_type(&path, flags);
2646 else if (flags & MS_MOVE)
2647 retval = do_move_mount(&path, dev_name);
2648 else
2649 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2650 dev_name, data_page);
2651 dput_out:
2652 path_put(&path);
2653 return retval;
2656 static void free_mnt_ns(struct mnt_namespace *ns)
2658 proc_free_inum(ns->proc_inum);
2659 put_user_ns(ns->user_ns);
2660 kfree(ns);
2664 * Assign a sequence number so we can detect when we attempt to bind
2665 * mount a reference to an older mount namespace into the current
2666 * mount namespace, preventing reference counting loops. A 64bit
2667 * number incrementing at 10Ghz will take 12,427 years to wrap which
2668 * is effectively never, so we can ignore the possibility.
2670 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2672 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2674 struct mnt_namespace *new_ns;
2675 int ret;
2677 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2678 if (!new_ns)
2679 return ERR_PTR(-ENOMEM);
2680 ret = proc_alloc_inum(&new_ns->proc_inum);
2681 if (ret) {
2682 kfree(new_ns);
2683 return ERR_PTR(ret);
2685 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2686 atomic_set(&new_ns->count, 1);
2687 new_ns->root = NULL;
2688 INIT_LIST_HEAD(&new_ns->list);
2689 init_waitqueue_head(&new_ns->poll);
2690 new_ns->event = 0;
2691 new_ns->user_ns = get_user_ns(user_ns);
2692 return new_ns;
2695 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2696 struct user_namespace *user_ns, struct fs_struct *new_fs)
2698 struct mnt_namespace *new_ns;
2699 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2700 struct mount *p, *q;
2701 struct mount *old;
2702 struct mount *new;
2703 int copy_flags;
2705 BUG_ON(!ns);
2707 if (likely(!(flags & CLONE_NEWNS))) {
2708 get_mnt_ns(ns);
2709 return ns;
2712 old = ns->root;
2714 new_ns = alloc_mnt_ns(user_ns);
2715 if (IS_ERR(new_ns))
2716 return new_ns;
2718 namespace_lock();
2719 /* First pass: copy the tree topology */
2720 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2721 if (user_ns != ns->user_ns)
2722 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2723 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2724 if (IS_ERR(new)) {
2725 namespace_unlock();
2726 free_mnt_ns(new_ns);
2727 return ERR_CAST(new);
2729 new_ns->root = new;
2730 list_add_tail(&new_ns->list, &new->mnt_list);
2733 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2734 * as belonging to new namespace. We have already acquired a private
2735 * fs_struct, so tsk->fs->lock is not needed.
2737 p = old;
2738 q = new;
2739 while (p) {
2740 q->mnt_ns = new_ns;
2741 if (new_fs) {
2742 if (&p->mnt == new_fs->root.mnt) {
2743 new_fs->root.mnt = mntget(&q->mnt);
2744 rootmnt = &p->mnt;
2746 if (&p->mnt == new_fs->pwd.mnt) {
2747 new_fs->pwd.mnt = mntget(&q->mnt);
2748 pwdmnt = &p->mnt;
2751 p = next_mnt(p, old);
2752 q = next_mnt(q, new);
2753 if (!q)
2754 break;
2755 while (p->mnt.mnt_root != q->mnt.mnt_root)
2756 p = next_mnt(p, old);
2758 namespace_unlock();
2760 if (rootmnt)
2761 mntput(rootmnt);
2762 if (pwdmnt)
2763 mntput(pwdmnt);
2765 return new_ns;
2769 * create_mnt_ns - creates a private namespace and adds a root filesystem
2770 * @mnt: pointer to the new root filesystem mountpoint
2772 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2774 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2775 if (!IS_ERR(new_ns)) {
2776 struct mount *mnt = real_mount(m);
2777 mnt->mnt_ns = new_ns;
2778 new_ns->root = mnt;
2779 list_add(&mnt->mnt_list, &new_ns->list);
2780 } else {
2781 mntput(m);
2783 return new_ns;
2786 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2788 struct mnt_namespace *ns;
2789 struct super_block *s;
2790 struct path path;
2791 int err;
2793 ns = create_mnt_ns(mnt);
2794 if (IS_ERR(ns))
2795 return ERR_CAST(ns);
2797 err = vfs_path_lookup(mnt->mnt_root, mnt,
2798 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2800 put_mnt_ns(ns);
2802 if (err)
2803 return ERR_PTR(err);
2805 /* trade a vfsmount reference for active sb one */
2806 s = path.mnt->mnt_sb;
2807 atomic_inc(&s->s_active);
2808 mntput(path.mnt);
2809 /* lock the sucker */
2810 down_write(&s->s_umount);
2811 /* ... and return the root of (sub)tree on it */
2812 return path.dentry;
2814 EXPORT_SYMBOL(mount_subtree);
2816 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2817 char __user *, type, unsigned long, flags, void __user *, data)
2819 int ret;
2820 char *kernel_type;
2821 char *kernel_dev;
2822 unsigned long data_page;
2824 kernel_type = copy_mount_string(type);
2825 ret = PTR_ERR(kernel_type);
2826 if (IS_ERR(kernel_type))
2827 goto out_type;
2829 kernel_dev = copy_mount_string(dev_name);
2830 ret = PTR_ERR(kernel_dev);
2831 if (IS_ERR(kernel_dev))
2832 goto out_dev;
2834 ret = copy_mount_options(data, &data_page);
2835 if (ret < 0)
2836 goto out_data;
2838 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2839 (void *) data_page);
2841 free_page(data_page);
2842 out_data:
2843 kfree(kernel_dev);
2844 out_dev:
2845 kfree(kernel_type);
2846 out_type:
2847 return ret;
2851 * Return true if path is reachable from root
2853 * namespace_sem or mount_lock is held
2855 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2856 const struct path *root)
2858 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2859 dentry = mnt->mnt_mountpoint;
2860 mnt = mnt->mnt_parent;
2862 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2865 int path_is_under(struct path *path1, struct path *path2)
2867 int res;
2868 read_seqlock_excl(&mount_lock);
2869 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2870 read_sequnlock_excl(&mount_lock);
2871 return res;
2873 EXPORT_SYMBOL(path_is_under);
2876 * pivot_root Semantics:
2877 * Moves the root file system of the current process to the directory put_old,
2878 * makes new_root as the new root file system of the current process, and sets
2879 * root/cwd of all processes which had them on the current root to new_root.
2881 * Restrictions:
2882 * The new_root and put_old must be directories, and must not be on the
2883 * same file system as the current process root. The put_old must be
2884 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2885 * pointed to by put_old must yield the same directory as new_root. No other
2886 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2888 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2889 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2890 * in this situation.
2892 * Notes:
2893 * - we don't move root/cwd if they are not at the root (reason: if something
2894 * cared enough to change them, it's probably wrong to force them elsewhere)
2895 * - it's okay to pick a root that isn't the root of a file system, e.g.
2896 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2897 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2898 * first.
2900 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2901 const char __user *, put_old)
2903 struct path new, old, parent_path, root_parent, root;
2904 struct mount *new_mnt, *root_mnt, *old_mnt;
2905 struct mountpoint *old_mp, *root_mp;
2906 int error;
2908 if (!may_mount())
2909 return -EPERM;
2911 error = user_path_dir(new_root, &new);
2912 if (error)
2913 goto out0;
2915 error = user_path_dir(put_old, &old);
2916 if (error)
2917 goto out1;
2919 error = security_sb_pivotroot(&old, &new);
2920 if (error)
2921 goto out2;
2923 get_fs_root(current->fs, &root);
2924 old_mp = lock_mount(&old);
2925 error = PTR_ERR(old_mp);
2926 if (IS_ERR(old_mp))
2927 goto out3;
2929 error = -EINVAL;
2930 new_mnt = real_mount(new.mnt);
2931 root_mnt = real_mount(root.mnt);
2932 old_mnt = real_mount(old.mnt);
2933 if (IS_MNT_SHARED(old_mnt) ||
2934 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2935 IS_MNT_SHARED(root_mnt->mnt_parent))
2936 goto out4;
2937 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2938 goto out4;
2939 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2940 goto out4;
2941 error = -ENOENT;
2942 if (d_unlinked(new.dentry))
2943 goto out4;
2944 error = -EBUSY;
2945 if (new_mnt == root_mnt || old_mnt == root_mnt)
2946 goto out4; /* loop, on the same file system */
2947 error = -EINVAL;
2948 if (root.mnt->mnt_root != root.dentry)
2949 goto out4; /* not a mountpoint */
2950 if (!mnt_has_parent(root_mnt))
2951 goto out4; /* not attached */
2952 root_mp = root_mnt->mnt_mp;
2953 if (new.mnt->mnt_root != new.dentry)
2954 goto out4; /* not a mountpoint */
2955 if (!mnt_has_parent(new_mnt))
2956 goto out4; /* not attached */
2957 /* make sure we can reach put_old from new_root */
2958 if (!is_path_reachable(old_mnt, old.dentry, &new))
2959 goto out4;
2960 /* make certain new is below the root */
2961 if (!is_path_reachable(new_mnt, new.dentry, &root))
2962 goto out4;
2963 root_mp->m_count++; /* pin it so it won't go away */
2964 lock_mount_hash();
2965 detach_mnt(new_mnt, &parent_path);
2966 detach_mnt(root_mnt, &root_parent);
2967 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2968 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2969 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2971 /* mount old root on put_old */
2972 attach_mnt(root_mnt, old_mnt, old_mp);
2973 /* mount new_root on / */
2974 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2975 touch_mnt_namespace(current->nsproxy->mnt_ns);
2976 unlock_mount_hash();
2977 chroot_fs_refs(&root, &new);
2978 put_mountpoint(root_mp);
2979 error = 0;
2980 out4:
2981 unlock_mount(old_mp);
2982 if (!error) {
2983 path_put(&root_parent);
2984 path_put(&parent_path);
2986 out3:
2987 path_put(&root);
2988 out2:
2989 path_put(&old);
2990 out1:
2991 path_put(&new);
2992 out0:
2993 return error;
2996 static void __init init_mount_tree(void)
2998 struct vfsmount *mnt;
2999 struct mnt_namespace *ns;
3000 struct path root;
3001 struct file_system_type *type;
3003 type = get_fs_type("rootfs");
3004 if (!type)
3005 panic("Can't find rootfs type");
3006 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3007 put_filesystem(type);
3008 if (IS_ERR(mnt))
3009 panic("Can't create rootfs");
3011 ns = create_mnt_ns(mnt);
3012 if (IS_ERR(ns))
3013 panic("Can't allocate initial namespace");
3015 init_task.nsproxy->mnt_ns = ns;
3016 get_mnt_ns(ns);
3018 root.mnt = mnt;
3019 root.dentry = mnt->mnt_root;
3021 set_fs_pwd(current->fs, &root);
3022 set_fs_root(current->fs, &root);
3025 void __init mnt_init(void)
3027 unsigned u;
3028 int err;
3030 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3031 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3033 mount_hashtable = alloc_large_system_hash("Mount-cache",
3034 sizeof(struct hlist_head),
3035 mhash_entries, 19,
3037 &m_hash_shift, &m_hash_mask, 0, 0);
3038 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3039 sizeof(struct hlist_head),
3040 mphash_entries, 19,
3042 &mp_hash_shift, &mp_hash_mask, 0, 0);
3044 if (!mount_hashtable || !mountpoint_hashtable)
3045 panic("Failed to allocate mount hash table\n");
3047 for (u = 0; u <= m_hash_mask; u++)
3048 INIT_HLIST_HEAD(&mount_hashtable[u]);
3049 for (u = 0; u <= mp_hash_mask; u++)
3050 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3052 kernfs_init();
3054 err = sysfs_init();
3055 if (err)
3056 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3057 __func__, err);
3058 fs_kobj = kobject_create_and_add("fs", NULL);
3059 if (!fs_kobj)
3060 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3061 init_rootfs();
3062 init_mount_tree();
3065 void put_mnt_ns(struct mnt_namespace *ns)
3067 if (!atomic_dec_and_test(&ns->count))
3068 return;
3069 drop_collected_mounts(&ns->root->mnt);
3070 free_mnt_ns(ns);
3073 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3075 struct vfsmount *mnt;
3076 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3077 if (!IS_ERR(mnt)) {
3079 * it is a longterm mount, don't release mnt until
3080 * we unmount before file sys is unregistered
3082 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3084 return mnt;
3086 EXPORT_SYMBOL_GPL(kern_mount_data);
3088 void kern_unmount(struct vfsmount *mnt)
3090 /* release long term mount so mount point can be released */
3091 if (!IS_ERR_OR_NULL(mnt)) {
3092 real_mount(mnt)->mnt_ns = NULL;
3093 synchronize_rcu(); /* yecchhh... */
3094 mntput(mnt);
3097 EXPORT_SYMBOL(kern_unmount);
3099 bool our_mnt(struct vfsmount *mnt)
3101 return check_mnt(real_mount(mnt));
3104 bool current_chrooted(void)
3106 /* Does the current process have a non-standard root */
3107 struct path ns_root;
3108 struct path fs_root;
3109 bool chrooted;
3111 /* Find the namespace root */
3112 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3113 ns_root.dentry = ns_root.mnt->mnt_root;
3114 path_get(&ns_root);
3115 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3118 get_fs_root(current->fs, &fs_root);
3120 chrooted = !path_equal(&fs_root, &ns_root);
3122 path_put(&fs_root);
3123 path_put(&ns_root);
3125 return chrooted;
3128 bool fs_fully_visible(struct file_system_type *type)
3130 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3131 struct mount *mnt;
3132 bool visible = false;
3134 if (unlikely(!ns))
3135 return false;
3137 down_read(&namespace_sem);
3138 list_for_each_entry(mnt, &ns->list, mnt_list) {
3139 struct mount *child;
3140 if (mnt->mnt.mnt_sb->s_type != type)
3141 continue;
3143 /* This mount is not fully visible if it's root directory
3144 * is not the root directory of the filesystem.
3146 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3147 continue;
3149 /* This mount is not fully visible if there are any child mounts
3150 * that cover anything except for empty directories.
3152 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3153 struct inode *inode = child->mnt_mountpoint->d_inode;
3154 if (!S_ISDIR(inode->i_mode))
3155 goto next;
3156 if (inode->i_nlink > 2)
3157 goto next;
3159 visible = true;
3160 goto found;
3161 next: ;
3163 found:
3164 up_read(&namespace_sem);
3165 return visible;
3168 static void *mntns_get(struct task_struct *task)
3170 struct mnt_namespace *ns = NULL;
3171 struct nsproxy *nsproxy;
3173 task_lock(task);
3174 nsproxy = task->nsproxy;
3175 if (nsproxy) {
3176 ns = nsproxy->mnt_ns;
3177 get_mnt_ns(ns);
3179 task_unlock(task);
3181 return ns;
3184 static void mntns_put(void *ns)
3186 put_mnt_ns(ns);
3189 static int mntns_install(struct nsproxy *nsproxy, void *ns)
3191 struct fs_struct *fs = current->fs;
3192 struct mnt_namespace *mnt_ns = ns;
3193 struct path root;
3195 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3196 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3197 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3198 return -EPERM;
3200 if (fs->users != 1)
3201 return -EINVAL;
3203 get_mnt_ns(mnt_ns);
3204 put_mnt_ns(nsproxy->mnt_ns);
3205 nsproxy->mnt_ns = mnt_ns;
3207 /* Find the root */
3208 root.mnt = &mnt_ns->root->mnt;
3209 root.dentry = mnt_ns->root->mnt.mnt_root;
3210 path_get(&root);
3211 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3214 /* Update the pwd and root */
3215 set_fs_pwd(fs, &root);
3216 set_fs_root(fs, &root);
3218 path_put(&root);
3219 return 0;
3222 static unsigned int mntns_inum(void *ns)
3224 struct mnt_namespace *mnt_ns = ns;
3225 return mnt_ns->proc_inum;
3228 const struct proc_ns_operations mntns_operations = {
3229 .name = "mnt",
3230 .type = CLONE_NEWNS,
3231 .get = mntns_get,
3232 .put = mntns_put,
3233 .install = mntns_install,
3234 .inum = mntns_inum,