mm: setup pageblock_order before it's used by sparsemem
[linux/fpc-iii.git] / mm / memory.c
blobec72a616ccd4a4d5862f956a5af5802a6384f17e
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 void sync_mm_rss(struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
138 current->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
162 #else /* SPLIT_RSS_COUNTING */
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
167 static void check_sync_rss_stat(struct task_struct *task)
171 #endif /* SPLIT_RSS_COUNTING */
173 #ifdef HAVE_GENERIC_MMU_GATHER
175 static int tlb_next_batch(struct mmu_gather *tlb)
177 struct mmu_gather_batch *batch;
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
193 tlb->active->next = batch;
194 tlb->active = batch;
196 return 1;
199 /* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
206 tlb->mm = mm;
208 tlb->fullmm = fullmm;
209 tlb->start = -1UL;
210 tlb->end = 0;
211 tlb->need_flush = 0;
212 tlb->fast_mode = (num_possible_cpus() == 1);
213 tlb->local.next = NULL;
214 tlb->local.nr = 0;
215 tlb->local.max = ARRAY_SIZE(tlb->__pages);
216 tlb->active = &tlb->local;
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 tlb->batch = NULL;
220 #endif
223 void tlb_flush_mmu(struct mmu_gather *tlb)
225 struct mmu_gather_batch *batch;
227 if (!tlb->need_flush)
228 return;
229 tlb->need_flush = 0;
230 tlb_flush(tlb);
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb_table_flush(tlb);
233 #endif
235 if (tlb_fast_mode(tlb))
236 return;
238 for (batch = &tlb->local; batch; batch = batch->next) {
239 free_pages_and_swap_cache(batch->pages, batch->nr);
240 batch->nr = 0;
242 tlb->active = &tlb->local;
245 /* tlb_finish_mmu
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
251 struct mmu_gather_batch *batch, *next;
253 tlb->start = start;
254 tlb->end = end;
255 tlb_flush_mmu(tlb);
257 /* keep the page table cache within bounds */
258 check_pgt_cache();
260 for (batch = tlb->local.next; batch; batch = next) {
261 next = batch->next;
262 free_pages((unsigned long)batch, 0);
264 tlb->local.next = NULL;
267 /* __tlb_remove_page
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275 struct mmu_gather_batch *batch;
277 VM_BUG_ON(!tlb->need_flush);
279 if (tlb_fast_mode(tlb)) {
280 free_page_and_swap_cache(page);
281 return 1; /* avoid calling tlb_flush_mmu() */
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
289 batch = tlb->active;
291 VM_BUG_ON(batch->nr > batch->max);
293 return batch->max - batch->nr;
296 #endif /* HAVE_GENERIC_MMU_GATHER */
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301 * See the comment near struct mmu_table_batch.
304 static void tlb_remove_table_smp_sync(void *arg)
306 /* Simply deliver the interrupt */
309 static void tlb_remove_table_one(void *table)
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
322 static void tlb_remove_table_rcu(struct rcu_head *head)
324 struct mmu_table_batch *batch;
325 int i;
327 batch = container_of(head, struct mmu_table_batch, rcu);
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
332 free_page((unsigned long)batch);
335 void tlb_table_flush(struct mmu_gather *tlb)
337 struct mmu_table_batch **batch = &tlb->batch;
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 struct mmu_table_batch **batch = &tlb->batch;
349 tlb->need_flush = 1;
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
366 (*batch)->nr = 0;
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
381 void pgd_clear_bad(pgd_t *pgd)
383 pgd_ERROR(*pgd);
384 pgd_clear(pgd);
387 void pud_clear_bad(pud_t *pud)
389 pud_ERROR(*pud);
390 pud_clear(pud);
393 void pmd_clear_bad(pmd_t *pmd)
395 pmd_ERROR(*pmd);
396 pmd_clear(pmd);
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
406 pgtable_t token = pmd_pgtable(*pmd);
407 pmd_clear(pmd);
408 pte_free_tlb(tlb, token, addr);
409 tlb->mm->nr_ptes--;
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
416 pmd_t *pmd;
417 unsigned long next;
418 unsigned long start;
420 start = addr;
421 pmd = pmd_offset(pud, addr);
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
426 free_pte_range(tlb, pmd, addr);
427 } while (pmd++, addr = next, addr != end);
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
437 if (end - 1 > ceiling - 1)
438 return;
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
442 pmd_free_tlb(tlb, pmd, start);
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
449 pud_t *pud;
450 unsigned long next;
451 unsigned long start;
453 start = addr;
454 pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 } while (pud++, addr = next, addr != end);
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
470 if (end - 1 > ceiling - 1)
471 return;
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
475 pud_free_tlb(tlb, pud, start);
479 * This function frees user-level page tables of a process.
481 * Must be called with pagetable lock held.
483 void free_pgd_range(struct mmu_gather *tlb,
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
487 pgd_t *pgd;
488 unsigned long next;
491 * The next few lines have given us lots of grief...
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
532 pgd = pgd_offset(tlb->mm, addr);
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 } while (pgd++, addr = next, addr != end);
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 unsigned long floor, unsigned long ceiling)
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
555 if (is_vm_hugetlb_page(vma)) {
556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 } else {
560 * Optimization: gather nearby vmas into one call down
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 && !is_vm_hugetlb_page(next)) {
564 vma = next;
565 next = vma->vm_next;
566 unlink_anon_vmas(vma);
567 unlink_file_vma(vma);
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
572 vma = next;
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
579 pgtable_t new = pte_alloc_one(mm, address);
580 int wait_split_huge_page;
581 if (!new)
582 return -ENOMEM;
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 spin_lock(&mm->page_table_lock);
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602 mm->nr_ptes++;
603 pmd_populate(mm, pmd, new);
604 new = NULL;
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
607 spin_unlock(&mm->page_table_lock);
608 if (new)
609 pte_free(mm, new);
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
612 return 0;
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 if (!new)
619 return -ENOMEM;
621 smp_wmb(); /* See comment in __pte_alloc */
623 spin_lock(&init_mm.page_table_lock);
624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625 pmd_populate_kernel(&init_mm, pmd, new);
626 new = NULL;
627 } else
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
629 spin_unlock(&init_mm.page_table_lock);
630 if (new)
631 pte_free_kernel(&init_mm, new);
632 return 0;
635 static inline void init_rss_vec(int *rss)
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 int i;
644 if (current->mm == mm)
645 sync_mm_rss(mm);
646 for (i = 0; i < NR_MM_COUNTERS; i++)
647 if (rss[i])
648 add_mm_counter(mm, i, rss[i]);
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
656 * The calling function must still handle the error.
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
665 pgoff_t index;
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
676 nr_unshown++;
677 return;
679 if (nr_unshown) {
680 printk(KERN_ALERT
681 "BUG: Bad page map: %lu messages suppressed\n",
682 nr_unshown);
683 nr_unshown = 0;
685 nr_shown = 0;
687 if (nr_shown++ == 0)
688 resume = jiffies + 60 * HZ;
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
693 printk(KERN_ALERT
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
695 current->comm,
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
697 if (page)
698 dump_page(page);
699 printk(KERN_ALERT
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 if (vma->vm_ops)
706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707 (unsigned long)vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710 (unsigned long)vma->vm_file->f_op->mmap);
711 dump_stack();
712 add_taint(TAINT_BAD_PAGE);
715 static inline int is_cow_mapping(vm_flags_t flags)
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720 #ifndef is_zero_pfn
721 static inline int is_zero_pfn(unsigned long pfn)
723 return pfn == zero_pfn;
725 #endif
727 #ifndef my_zero_pfn
728 static inline unsigned long my_zero_pfn(unsigned long addr)
730 return zero_pfn;
732 #endif
735 * vm_normal_page -- This function gets the "struct page" associated with a pte.
737 * "Special" mappings do not wish to be associated with a "struct page" (either
738 * it doesn't exist, or it exists but they don't want to touch it). In this
739 * case, NULL is returned here. "Normal" mappings do have a struct page.
741 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742 * pte bit, in which case this function is trivial. Secondly, an architecture
743 * may not have a spare pte bit, which requires a more complicated scheme,
744 * described below.
746 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747 * special mapping (even if there are underlying and valid "struct pages").
748 * COWed pages of a VM_PFNMAP are always normal.
750 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753 * mapping will always honor the rule
755 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
757 * And for normal mappings this is false.
759 * This restricts such mappings to be a linear translation from virtual address
760 * to pfn. To get around this restriction, we allow arbitrary mappings so long
761 * as the vma is not a COW mapping; in that case, we know that all ptes are
762 * special (because none can have been COWed).
765 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
767 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768 * page" backing, however the difference is that _all_ pages with a struct
769 * page (that is, those where pfn_valid is true) are refcounted and considered
770 * normal pages by the VM. The disadvantage is that pages are refcounted
771 * (which can be slower and simply not an option for some PFNMAP users). The
772 * advantage is that we don't have to follow the strict linearity rule of
773 * PFNMAP mappings in order to support COWable mappings.
776 #ifdef __HAVE_ARCH_PTE_SPECIAL
777 # define HAVE_PTE_SPECIAL 1
778 #else
779 # define HAVE_PTE_SPECIAL 0
780 #endif
781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782 pte_t pte)
784 unsigned long pfn = pte_pfn(pte);
786 if (HAVE_PTE_SPECIAL) {
787 if (likely(!pte_special(pte)))
788 goto check_pfn;
789 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790 return NULL;
791 if (!is_zero_pfn(pfn))
792 print_bad_pte(vma, addr, pte, NULL);
793 return NULL;
796 /* !HAVE_PTE_SPECIAL case follows: */
798 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 if (vma->vm_flags & VM_MIXEDMAP) {
800 if (!pfn_valid(pfn))
801 return NULL;
802 goto out;
803 } else {
804 unsigned long off;
805 off = (addr - vma->vm_start) >> PAGE_SHIFT;
806 if (pfn == vma->vm_pgoff + off)
807 return NULL;
808 if (!is_cow_mapping(vma->vm_flags))
809 return NULL;
813 if (is_zero_pfn(pfn))
814 return NULL;
815 check_pfn:
816 if (unlikely(pfn > highest_memmap_pfn)) {
817 print_bad_pte(vma, addr, pte, NULL);
818 return NULL;
822 * NOTE! We still have PageReserved() pages in the page tables.
823 * eg. VDSO mappings can cause them to exist.
825 out:
826 return pfn_to_page(pfn);
830 * copy one vm_area from one task to the other. Assumes the page tables
831 * already present in the new task to be cleared in the whole range
832 * covered by this vma.
835 static inline unsigned long
836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838 unsigned long addr, int *rss)
840 unsigned long vm_flags = vma->vm_flags;
841 pte_t pte = *src_pte;
842 struct page *page;
844 /* pte contains position in swap or file, so copy. */
845 if (unlikely(!pte_present(pte))) {
846 if (!pte_file(pte)) {
847 swp_entry_t entry = pte_to_swp_entry(pte);
849 if (swap_duplicate(entry) < 0)
850 return entry.val;
852 /* make sure dst_mm is on swapoff's mmlist. */
853 if (unlikely(list_empty(&dst_mm->mmlist))) {
854 spin_lock(&mmlist_lock);
855 if (list_empty(&dst_mm->mmlist))
856 list_add(&dst_mm->mmlist,
857 &src_mm->mmlist);
858 spin_unlock(&mmlist_lock);
860 if (likely(!non_swap_entry(entry)))
861 rss[MM_SWAPENTS]++;
862 else if (is_migration_entry(entry)) {
863 page = migration_entry_to_page(entry);
865 if (PageAnon(page))
866 rss[MM_ANONPAGES]++;
867 else
868 rss[MM_FILEPAGES]++;
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
873 * COW mappings require pages in both
874 * parent and child to be set to read.
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 set_pte_at(src_mm, addr, src_pte, pte);
882 goto out_set_pte;
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
889 if (is_cow_mapping(vm_flags)) {
890 ptep_set_wrprotect(src_mm, addr, src_pte);
891 pte = pte_wrprotect(pte);
895 * If it's a shared mapping, mark it clean in
896 * the child
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
905 page_dup_rmap(page);
906 if (PageAnon(page))
907 rss[MM_ANONPAGES]++;
908 else
909 rss[MM_FILEPAGES]++;
912 out_set_pte:
913 set_pte_at(dst_mm, addr, dst_pte, pte);
914 return 0;
917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 unsigned long addr, unsigned long end)
921 pte_t *orig_src_pte, *orig_dst_pte;
922 pte_t *src_pte, *dst_pte;
923 spinlock_t *src_ptl, *dst_ptl;
924 int progress = 0;
925 int rss[NR_MM_COUNTERS];
926 swp_entry_t entry = (swp_entry_t){0};
928 again:
929 init_rss_vec(rss);
931 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
932 if (!dst_pte)
933 return -ENOMEM;
934 src_pte = pte_offset_map(src_pmd, addr);
935 src_ptl = pte_lockptr(src_mm, src_pmd);
936 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 orig_src_pte = src_pte;
938 orig_dst_pte = dst_pte;
939 arch_enter_lazy_mmu_mode();
941 do {
943 * We are holding two locks at this point - either of them
944 * could generate latencies in another task on another CPU.
946 if (progress >= 32) {
947 progress = 0;
948 if (need_resched() ||
949 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
950 break;
952 if (pte_none(*src_pte)) {
953 progress++;
954 continue;
956 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957 vma, addr, rss);
958 if (entry.val)
959 break;
960 progress += 8;
961 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
963 arch_leave_lazy_mmu_mode();
964 spin_unlock(src_ptl);
965 pte_unmap(orig_src_pte);
966 add_mm_rss_vec(dst_mm, rss);
967 pte_unmap_unlock(orig_dst_pte, dst_ptl);
968 cond_resched();
970 if (entry.val) {
971 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972 return -ENOMEM;
973 progress = 0;
975 if (addr != end)
976 goto again;
977 return 0;
980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 unsigned long addr, unsigned long end)
984 pmd_t *src_pmd, *dst_pmd;
985 unsigned long next;
987 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988 if (!dst_pmd)
989 return -ENOMEM;
990 src_pmd = pmd_offset(src_pud, addr);
991 do {
992 next = pmd_addr_end(addr, end);
993 if (pmd_trans_huge(*src_pmd)) {
994 int err;
995 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996 err = copy_huge_pmd(dst_mm, src_mm,
997 dst_pmd, src_pmd, addr, vma);
998 if (err == -ENOMEM)
999 return -ENOMEM;
1000 if (!err)
1001 continue;
1002 /* fall through */
1004 if (pmd_none_or_clear_bad(src_pmd))
1005 continue;
1006 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007 vma, addr, next))
1008 return -ENOMEM;
1009 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010 return 0;
1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 unsigned long addr, unsigned long end)
1017 pud_t *src_pud, *dst_pud;
1018 unsigned long next;
1020 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021 if (!dst_pud)
1022 return -ENOMEM;
1023 src_pud = pud_offset(src_pgd, addr);
1024 do {
1025 next = pud_addr_end(addr, end);
1026 if (pud_none_or_clear_bad(src_pud))
1027 continue;
1028 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029 vma, addr, next))
1030 return -ENOMEM;
1031 } while (dst_pud++, src_pud++, addr = next, addr != end);
1032 return 0;
1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 struct vm_area_struct *vma)
1038 pgd_t *src_pgd, *dst_pgd;
1039 unsigned long next;
1040 unsigned long addr = vma->vm_start;
1041 unsigned long end = vma->vm_end;
1042 int ret;
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1050 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1051 if (!vma->anon_vma)
1052 return 0;
1055 if (is_vm_hugetlb_page(vma))
1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058 if (unlikely(is_pfn_mapping(vma))) {
1060 * We do not free on error cases below as remove_vma
1061 * gets called on error from higher level routine
1063 ret = track_pfn_vma_copy(vma);
1064 if (ret)
1065 return ret;
1069 * We need to invalidate the secondary MMU mappings only when
1070 * there could be a permission downgrade on the ptes of the
1071 * parent mm. And a permission downgrade will only happen if
1072 * is_cow_mapping() returns true.
1074 if (is_cow_mapping(vma->vm_flags))
1075 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1077 ret = 0;
1078 dst_pgd = pgd_offset(dst_mm, addr);
1079 src_pgd = pgd_offset(src_mm, addr);
1080 do {
1081 next = pgd_addr_end(addr, end);
1082 if (pgd_none_or_clear_bad(src_pgd))
1083 continue;
1084 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1085 vma, addr, next))) {
1086 ret = -ENOMEM;
1087 break;
1089 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091 if (is_cow_mapping(vma->vm_flags))
1092 mmu_notifier_invalidate_range_end(src_mm,
1093 vma->vm_start, end);
1094 return ret;
1097 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098 struct vm_area_struct *vma, pmd_t *pmd,
1099 unsigned long addr, unsigned long end,
1100 struct zap_details *details)
1102 struct mm_struct *mm = tlb->mm;
1103 int force_flush = 0;
1104 int rss[NR_MM_COUNTERS];
1105 spinlock_t *ptl;
1106 pte_t *start_pte;
1107 pte_t *pte;
1109 again:
1110 init_rss_vec(rss);
1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112 pte = start_pte;
1113 arch_enter_lazy_mmu_mode();
1114 do {
1115 pte_t ptent = *pte;
1116 if (pte_none(ptent)) {
1117 continue;
1120 if (pte_present(ptent)) {
1121 struct page *page;
1123 page = vm_normal_page(vma, addr, ptent);
1124 if (unlikely(details) && page) {
1126 * unmap_shared_mapping_pages() wants to
1127 * invalidate cache without truncating:
1128 * unmap shared but keep private pages.
1130 if (details->check_mapping &&
1131 details->check_mapping != page->mapping)
1132 continue;
1134 * Each page->index must be checked when
1135 * invalidating or truncating nonlinear.
1137 if (details->nonlinear_vma &&
1138 (page->index < details->first_index ||
1139 page->index > details->last_index))
1140 continue;
1142 ptent = ptep_get_and_clear_full(mm, addr, pte,
1143 tlb->fullmm);
1144 tlb_remove_tlb_entry(tlb, pte, addr);
1145 if (unlikely(!page))
1146 continue;
1147 if (unlikely(details) && details->nonlinear_vma
1148 && linear_page_index(details->nonlinear_vma,
1149 addr) != page->index)
1150 set_pte_at(mm, addr, pte,
1151 pgoff_to_pte(page->index));
1152 if (PageAnon(page))
1153 rss[MM_ANONPAGES]--;
1154 else {
1155 if (pte_dirty(ptent))
1156 set_page_dirty(page);
1157 if (pte_young(ptent) &&
1158 likely(!VM_SequentialReadHint(vma)))
1159 mark_page_accessed(page);
1160 rss[MM_FILEPAGES]--;
1162 page_remove_rmap(page);
1163 if (unlikely(page_mapcount(page) < 0))
1164 print_bad_pte(vma, addr, ptent, page);
1165 force_flush = !__tlb_remove_page(tlb, page);
1166 if (force_flush)
1167 break;
1168 continue;
1171 * If details->check_mapping, we leave swap entries;
1172 * if details->nonlinear_vma, we leave file entries.
1174 if (unlikely(details))
1175 continue;
1176 if (pte_file(ptent)) {
1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178 print_bad_pte(vma, addr, ptent, NULL);
1179 } else {
1180 swp_entry_t entry = pte_to_swp_entry(ptent);
1182 if (!non_swap_entry(entry))
1183 rss[MM_SWAPENTS]--;
1184 else if (is_migration_entry(entry)) {
1185 struct page *page;
1187 page = migration_entry_to_page(entry);
1189 if (PageAnon(page))
1190 rss[MM_ANONPAGES]--;
1191 else
1192 rss[MM_FILEPAGES]--;
1194 if (unlikely(!free_swap_and_cache(entry)))
1195 print_bad_pte(vma, addr, ptent, NULL);
1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 } while (pte++, addr += PAGE_SIZE, addr != end);
1200 add_mm_rss_vec(mm, rss);
1201 arch_leave_lazy_mmu_mode();
1202 pte_unmap_unlock(start_pte, ptl);
1205 * mmu_gather ran out of room to batch pages, we break out of
1206 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 * and page-free while holding it.
1209 if (force_flush) {
1210 force_flush = 0;
1212 #ifdef HAVE_GENERIC_MMU_GATHER
1213 tlb->start = addr;
1214 tlb->end = end;
1215 #endif
1216 tlb_flush_mmu(tlb);
1217 if (addr != end)
1218 goto again;
1221 return addr;
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225 struct vm_area_struct *vma, pud_t *pud,
1226 unsigned long addr, unsigned long end,
1227 struct zap_details *details)
1229 pmd_t *pmd;
1230 unsigned long next;
1232 pmd = pmd_offset(pud, addr);
1233 do {
1234 next = pmd_addr_end(addr, end);
1235 if (pmd_trans_huge(*pmd)) {
1236 if (next - addr != HPAGE_PMD_SIZE) {
1237 #ifdef CONFIG_DEBUG_VM
1238 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 __func__, addr, end,
1241 vma->vm_start,
1242 vma->vm_end);
1243 BUG();
1245 #endif
1246 split_huge_page_pmd(vma->vm_mm, pmd);
1247 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248 goto next;
1249 /* fall through */
1252 * Here there can be other concurrent MADV_DONTNEED or
1253 * trans huge page faults running, and if the pmd is
1254 * none or trans huge it can change under us. This is
1255 * because MADV_DONTNEED holds the mmap_sem in read
1256 * mode.
1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 goto next;
1260 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262 cond_resched();
1263 } while (pmd++, addr = next, addr != end);
1265 return addr;
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269 struct vm_area_struct *vma, pgd_t *pgd,
1270 unsigned long addr, unsigned long end,
1271 struct zap_details *details)
1273 pud_t *pud;
1274 unsigned long next;
1276 pud = pud_offset(pgd, addr);
1277 do {
1278 next = pud_addr_end(addr, end);
1279 if (pud_none_or_clear_bad(pud))
1280 continue;
1281 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282 } while (pud++, addr = next, addr != end);
1284 return addr;
1287 static void unmap_page_range(struct mmu_gather *tlb,
1288 struct vm_area_struct *vma,
1289 unsigned long addr, unsigned long end,
1290 struct zap_details *details)
1292 pgd_t *pgd;
1293 unsigned long next;
1295 if (details && !details->check_mapping && !details->nonlinear_vma)
1296 details = NULL;
1298 BUG_ON(addr >= end);
1299 mem_cgroup_uncharge_start();
1300 tlb_start_vma(tlb, vma);
1301 pgd = pgd_offset(vma->vm_mm, addr);
1302 do {
1303 next = pgd_addr_end(addr, end);
1304 if (pgd_none_or_clear_bad(pgd))
1305 continue;
1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307 } while (pgd++, addr = next, addr != end);
1308 tlb_end_vma(tlb, vma);
1309 mem_cgroup_uncharge_end();
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314 struct vm_area_struct *vma, unsigned long start_addr,
1315 unsigned long end_addr,
1316 struct zap_details *details)
1318 unsigned long start = max(vma->vm_start, start_addr);
1319 unsigned long end;
1321 if (start >= vma->vm_end)
1322 return;
1323 end = min(vma->vm_end, end_addr);
1324 if (end <= vma->vm_start)
1325 return;
1327 if (vma->vm_file)
1328 uprobe_munmap(vma, start, end);
1330 if (unlikely(is_pfn_mapping(vma)))
1331 untrack_pfn_vma(vma, 0, 0);
1333 if (start != end) {
1334 if (unlikely(is_vm_hugetlb_page(vma))) {
1336 * It is undesirable to test vma->vm_file as it
1337 * should be non-null for valid hugetlb area.
1338 * However, vm_file will be NULL in the error
1339 * cleanup path of do_mmap_pgoff. When
1340 * hugetlbfs ->mmap method fails,
1341 * do_mmap_pgoff() nullifies vma->vm_file
1342 * before calling this function to clean up.
1343 * Since no pte has actually been setup, it is
1344 * safe to do nothing in this case.
1346 if (vma->vm_file) {
1347 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348 __unmap_hugepage_range(tlb, vma, start, end, NULL);
1349 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1351 } else
1352 unmap_page_range(tlb, vma, start, end, details);
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1363 * Unmap all pages in the vma list.
1365 * Only addresses between `start' and `end' will be unmapped.
1367 * The VMA list must be sorted in ascending virtual address order.
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns. So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1374 void unmap_vmas(struct mmu_gather *tlb,
1375 struct vm_area_struct *vma, unsigned long start_addr,
1376 unsigned long end_addr)
1378 struct mm_struct *mm = vma->vm_mm;
1380 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
1393 * Caller must protect the VMA list
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396 unsigned long size, struct zap_details *details)
1398 struct mm_struct *mm = vma->vm_mm;
1399 struct mmu_gather tlb;
1400 unsigned long end = start + size;
1402 lru_add_drain();
1403 tlb_gather_mmu(&tlb, mm, 0);
1404 update_hiwater_rss(mm);
1405 mmu_notifier_invalidate_range_start(mm, start, end);
1406 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407 unmap_single_vma(&tlb, vma, start, end, details);
1408 mmu_notifier_invalidate_range_end(mm, start, end);
1409 tlb_finish_mmu(&tlb, start, end);
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1419 * The range must fit into one VMA.
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422 unsigned long size, struct zap_details *details)
1424 struct mm_struct *mm = vma->vm_mm;
1425 struct mmu_gather tlb;
1426 unsigned long end = address + size;
1428 lru_add_drain();
1429 tlb_gather_mmu(&tlb, mm, 0);
1430 update_hiwater_rss(mm);
1431 mmu_notifier_invalidate_range_start(mm, address, end);
1432 unmap_single_vma(&tlb, vma, address, end, details);
1433 mmu_notifier_invalidate_range_end(mm, address, end);
1434 tlb_finish_mmu(&tlb, address, end);
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1445 * The entire address range must be fully contained within the vma.
1447 * Returns 0 if successful.
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 unsigned long size)
1452 if (address < vma->vm_start || address + size > vma->vm_end ||
1453 !(vma->vm_flags & VM_PFNMAP))
1454 return -1;
1455 zap_page_range_single(vma, address, size, NULL);
1456 return 0;
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1461 * follow_page - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1466 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469 * an error pointer if there is a mapping to something not represented
1470 * by a page descriptor (see also vm_normal_page()).
1472 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1473 unsigned int flags)
1475 pgd_t *pgd;
1476 pud_t *pud;
1477 pmd_t *pmd;
1478 pte_t *ptep, pte;
1479 spinlock_t *ptl;
1480 struct page *page;
1481 struct mm_struct *mm = vma->vm_mm;
1483 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484 if (!IS_ERR(page)) {
1485 BUG_ON(flags & FOLL_GET);
1486 goto out;
1489 page = NULL;
1490 pgd = pgd_offset(mm, address);
1491 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1492 goto no_page_table;
1494 pud = pud_offset(pgd, address);
1495 if (pud_none(*pud))
1496 goto no_page_table;
1497 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1498 BUG_ON(flags & FOLL_GET);
1499 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500 goto out;
1502 if (unlikely(pud_bad(*pud)))
1503 goto no_page_table;
1505 pmd = pmd_offset(pud, address);
1506 if (pmd_none(*pmd))
1507 goto no_page_table;
1508 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1509 BUG_ON(flags & FOLL_GET);
1510 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1511 goto out;
1513 if (pmd_trans_huge(*pmd)) {
1514 if (flags & FOLL_SPLIT) {
1515 split_huge_page_pmd(mm, pmd);
1516 goto split_fallthrough;
1518 spin_lock(&mm->page_table_lock);
1519 if (likely(pmd_trans_huge(*pmd))) {
1520 if (unlikely(pmd_trans_splitting(*pmd))) {
1521 spin_unlock(&mm->page_table_lock);
1522 wait_split_huge_page(vma->anon_vma, pmd);
1523 } else {
1524 page = follow_trans_huge_pmd(mm, address,
1525 pmd, flags);
1526 spin_unlock(&mm->page_table_lock);
1527 goto out;
1529 } else
1530 spin_unlock(&mm->page_table_lock);
1531 /* fall through */
1533 split_fallthrough:
1534 if (unlikely(pmd_bad(*pmd)))
1535 goto no_page_table;
1537 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1539 pte = *ptep;
1540 if (!pte_present(pte))
1541 goto no_page;
1542 if ((flags & FOLL_WRITE) && !pte_write(pte))
1543 goto unlock;
1545 page = vm_normal_page(vma, address, pte);
1546 if (unlikely(!page)) {
1547 if ((flags & FOLL_DUMP) ||
1548 !is_zero_pfn(pte_pfn(pte)))
1549 goto bad_page;
1550 page = pte_page(pte);
1553 if (flags & FOLL_GET)
1554 get_page_foll(page);
1555 if (flags & FOLL_TOUCH) {
1556 if ((flags & FOLL_WRITE) &&
1557 !pte_dirty(pte) && !PageDirty(page))
1558 set_page_dirty(page);
1560 * pte_mkyoung() would be more correct here, but atomic care
1561 * is needed to avoid losing the dirty bit: it is easier to use
1562 * mark_page_accessed().
1564 mark_page_accessed(page);
1566 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1568 * The preliminary mapping check is mainly to avoid the
1569 * pointless overhead of lock_page on the ZERO_PAGE
1570 * which might bounce very badly if there is contention.
1572 * If the page is already locked, we don't need to
1573 * handle it now - vmscan will handle it later if and
1574 * when it attempts to reclaim the page.
1576 if (page->mapping && trylock_page(page)) {
1577 lru_add_drain(); /* push cached pages to LRU */
1579 * Because we lock page here and migration is
1580 * blocked by the pte's page reference, we need
1581 * only check for file-cache page truncation.
1583 if (page->mapping)
1584 mlock_vma_page(page);
1585 unlock_page(page);
1588 unlock:
1589 pte_unmap_unlock(ptep, ptl);
1590 out:
1591 return page;
1593 bad_page:
1594 pte_unmap_unlock(ptep, ptl);
1595 return ERR_PTR(-EFAULT);
1597 no_page:
1598 pte_unmap_unlock(ptep, ptl);
1599 if (!pte_none(pte))
1600 return page;
1602 no_page_table:
1604 * When core dumping an enormous anonymous area that nobody
1605 * has touched so far, we don't want to allocate unnecessary pages or
1606 * page tables. Return error instead of NULL to skip handle_mm_fault,
1607 * then get_dump_page() will return NULL to leave a hole in the dump.
1608 * But we can only make this optimization where a hole would surely
1609 * be zero-filled if handle_mm_fault() actually did handle it.
1611 if ((flags & FOLL_DUMP) &&
1612 (!vma->vm_ops || !vma->vm_ops->fault))
1613 return ERR_PTR(-EFAULT);
1614 return page;
1617 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1619 return stack_guard_page_start(vma, addr) ||
1620 stack_guard_page_end(vma, addr+PAGE_SIZE);
1624 * __get_user_pages() - pin user pages in memory
1625 * @tsk: task_struct of target task
1626 * @mm: mm_struct of target mm
1627 * @start: starting user address
1628 * @nr_pages: number of pages from start to pin
1629 * @gup_flags: flags modifying pin behaviour
1630 * @pages: array that receives pointers to the pages pinned.
1631 * Should be at least nr_pages long. Or NULL, if caller
1632 * only intends to ensure the pages are faulted in.
1633 * @vmas: array of pointers to vmas corresponding to each page.
1634 * Or NULL if the caller does not require them.
1635 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1637 * Returns number of pages pinned. This may be fewer than the number
1638 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1639 * were pinned, returns -errno. Each page returned must be released
1640 * with a put_page() call when it is finished with. vmas will only
1641 * remain valid while mmap_sem is held.
1643 * Must be called with mmap_sem held for read or write.
1645 * __get_user_pages walks a process's page tables and takes a reference to
1646 * each struct page that each user address corresponds to at a given
1647 * instant. That is, it takes the page that would be accessed if a user
1648 * thread accesses the given user virtual address at that instant.
1650 * This does not guarantee that the page exists in the user mappings when
1651 * __get_user_pages returns, and there may even be a completely different
1652 * page there in some cases (eg. if mmapped pagecache has been invalidated
1653 * and subsequently re faulted). However it does guarantee that the page
1654 * won't be freed completely. And mostly callers simply care that the page
1655 * contains data that was valid *at some point in time*. Typically, an IO
1656 * or similar operation cannot guarantee anything stronger anyway because
1657 * locks can't be held over the syscall boundary.
1659 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1660 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1661 * appropriate) must be called after the page is finished with, and
1662 * before put_page is called.
1664 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1665 * or mmap_sem contention, and if waiting is needed to pin all pages,
1666 * *@nonblocking will be set to 0.
1668 * In most cases, get_user_pages or get_user_pages_fast should be used
1669 * instead of __get_user_pages. __get_user_pages should be used only if
1670 * you need some special @gup_flags.
1672 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1673 unsigned long start, int nr_pages, unsigned int gup_flags,
1674 struct page **pages, struct vm_area_struct **vmas,
1675 int *nonblocking)
1677 int i;
1678 unsigned long vm_flags;
1680 if (nr_pages <= 0)
1681 return 0;
1683 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1686 * Require read or write permissions.
1687 * If FOLL_FORCE is set, we only require the "MAY" flags.
1689 vm_flags = (gup_flags & FOLL_WRITE) ?
1690 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1691 vm_flags &= (gup_flags & FOLL_FORCE) ?
1692 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1693 i = 0;
1695 do {
1696 struct vm_area_struct *vma;
1698 vma = find_extend_vma(mm, start);
1699 if (!vma && in_gate_area(mm, start)) {
1700 unsigned long pg = start & PAGE_MASK;
1701 pgd_t *pgd;
1702 pud_t *pud;
1703 pmd_t *pmd;
1704 pte_t *pte;
1706 /* user gate pages are read-only */
1707 if (gup_flags & FOLL_WRITE)
1708 return i ? : -EFAULT;
1709 if (pg > TASK_SIZE)
1710 pgd = pgd_offset_k(pg);
1711 else
1712 pgd = pgd_offset_gate(mm, pg);
1713 BUG_ON(pgd_none(*pgd));
1714 pud = pud_offset(pgd, pg);
1715 BUG_ON(pud_none(*pud));
1716 pmd = pmd_offset(pud, pg);
1717 if (pmd_none(*pmd))
1718 return i ? : -EFAULT;
1719 VM_BUG_ON(pmd_trans_huge(*pmd));
1720 pte = pte_offset_map(pmd, pg);
1721 if (pte_none(*pte)) {
1722 pte_unmap(pte);
1723 return i ? : -EFAULT;
1725 vma = get_gate_vma(mm);
1726 if (pages) {
1727 struct page *page;
1729 page = vm_normal_page(vma, start, *pte);
1730 if (!page) {
1731 if (!(gup_flags & FOLL_DUMP) &&
1732 is_zero_pfn(pte_pfn(*pte)))
1733 page = pte_page(*pte);
1734 else {
1735 pte_unmap(pte);
1736 return i ? : -EFAULT;
1739 pages[i] = page;
1740 get_page(page);
1742 pte_unmap(pte);
1743 goto next_page;
1746 if (!vma ||
1747 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1748 !(vm_flags & vma->vm_flags))
1749 return i ? : -EFAULT;
1751 if (is_vm_hugetlb_page(vma)) {
1752 i = follow_hugetlb_page(mm, vma, pages, vmas,
1753 &start, &nr_pages, i, gup_flags);
1754 continue;
1757 do {
1758 struct page *page;
1759 unsigned int foll_flags = gup_flags;
1762 * If we have a pending SIGKILL, don't keep faulting
1763 * pages and potentially allocating memory.
1765 if (unlikely(fatal_signal_pending(current)))
1766 return i ? i : -ERESTARTSYS;
1768 cond_resched();
1769 while (!(page = follow_page(vma, start, foll_flags))) {
1770 int ret;
1771 unsigned int fault_flags = 0;
1773 /* For mlock, just skip the stack guard page. */
1774 if (foll_flags & FOLL_MLOCK) {
1775 if (stack_guard_page(vma, start))
1776 goto next_page;
1778 if (foll_flags & FOLL_WRITE)
1779 fault_flags |= FAULT_FLAG_WRITE;
1780 if (nonblocking)
1781 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1782 if (foll_flags & FOLL_NOWAIT)
1783 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1785 ret = handle_mm_fault(mm, vma, start,
1786 fault_flags);
1788 if (ret & VM_FAULT_ERROR) {
1789 if (ret & VM_FAULT_OOM)
1790 return i ? i : -ENOMEM;
1791 if (ret & (VM_FAULT_HWPOISON |
1792 VM_FAULT_HWPOISON_LARGE)) {
1793 if (i)
1794 return i;
1795 else if (gup_flags & FOLL_HWPOISON)
1796 return -EHWPOISON;
1797 else
1798 return -EFAULT;
1800 if (ret & VM_FAULT_SIGBUS)
1801 return i ? i : -EFAULT;
1802 BUG();
1805 if (tsk) {
1806 if (ret & VM_FAULT_MAJOR)
1807 tsk->maj_flt++;
1808 else
1809 tsk->min_flt++;
1812 if (ret & VM_FAULT_RETRY) {
1813 if (nonblocking)
1814 *nonblocking = 0;
1815 return i;
1819 * The VM_FAULT_WRITE bit tells us that
1820 * do_wp_page has broken COW when necessary,
1821 * even if maybe_mkwrite decided not to set
1822 * pte_write. We can thus safely do subsequent
1823 * page lookups as if they were reads. But only
1824 * do so when looping for pte_write is futile:
1825 * in some cases userspace may also be wanting
1826 * to write to the gotten user page, which a
1827 * read fault here might prevent (a readonly
1828 * page might get reCOWed by userspace write).
1830 if ((ret & VM_FAULT_WRITE) &&
1831 !(vma->vm_flags & VM_WRITE))
1832 foll_flags &= ~FOLL_WRITE;
1834 cond_resched();
1836 if (IS_ERR(page))
1837 return i ? i : PTR_ERR(page);
1838 if (pages) {
1839 pages[i] = page;
1841 flush_anon_page(vma, page, start);
1842 flush_dcache_page(page);
1844 next_page:
1845 if (vmas)
1846 vmas[i] = vma;
1847 i++;
1848 start += PAGE_SIZE;
1849 nr_pages--;
1850 } while (nr_pages && start < vma->vm_end);
1851 } while (nr_pages);
1852 return i;
1854 EXPORT_SYMBOL(__get_user_pages);
1857 * fixup_user_fault() - manually resolve a user page fault
1858 * @tsk: the task_struct to use for page fault accounting, or
1859 * NULL if faults are not to be recorded.
1860 * @mm: mm_struct of target mm
1861 * @address: user address
1862 * @fault_flags:flags to pass down to handle_mm_fault()
1864 * This is meant to be called in the specific scenario where for locking reasons
1865 * we try to access user memory in atomic context (within a pagefault_disable()
1866 * section), this returns -EFAULT, and we want to resolve the user fault before
1867 * trying again.
1869 * Typically this is meant to be used by the futex code.
1871 * The main difference with get_user_pages() is that this function will
1872 * unconditionally call handle_mm_fault() which will in turn perform all the
1873 * necessary SW fixup of the dirty and young bits in the PTE, while
1874 * handle_mm_fault() only guarantees to update these in the struct page.
1876 * This is important for some architectures where those bits also gate the
1877 * access permission to the page because they are maintained in software. On
1878 * such architectures, gup() will not be enough to make a subsequent access
1879 * succeed.
1881 * This should be called with the mm_sem held for read.
1883 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1884 unsigned long address, unsigned int fault_flags)
1886 struct vm_area_struct *vma;
1887 int ret;
1889 vma = find_extend_vma(mm, address);
1890 if (!vma || address < vma->vm_start)
1891 return -EFAULT;
1893 ret = handle_mm_fault(mm, vma, address, fault_flags);
1894 if (ret & VM_FAULT_ERROR) {
1895 if (ret & VM_FAULT_OOM)
1896 return -ENOMEM;
1897 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1898 return -EHWPOISON;
1899 if (ret & VM_FAULT_SIGBUS)
1900 return -EFAULT;
1901 BUG();
1903 if (tsk) {
1904 if (ret & VM_FAULT_MAJOR)
1905 tsk->maj_flt++;
1906 else
1907 tsk->min_flt++;
1909 return 0;
1913 * get_user_pages() - pin user pages in memory
1914 * @tsk: the task_struct to use for page fault accounting, or
1915 * NULL if faults are not to be recorded.
1916 * @mm: mm_struct of target mm
1917 * @start: starting user address
1918 * @nr_pages: number of pages from start to pin
1919 * @write: whether pages will be written to by the caller
1920 * @force: whether to force write access even if user mapping is
1921 * readonly. This will result in the page being COWed even
1922 * in MAP_SHARED mappings. You do not want this.
1923 * @pages: array that receives pointers to the pages pinned.
1924 * Should be at least nr_pages long. Or NULL, if caller
1925 * only intends to ensure the pages are faulted in.
1926 * @vmas: array of pointers to vmas corresponding to each page.
1927 * Or NULL if the caller does not require them.
1929 * Returns number of pages pinned. This may be fewer than the number
1930 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1931 * were pinned, returns -errno. Each page returned must be released
1932 * with a put_page() call when it is finished with. vmas will only
1933 * remain valid while mmap_sem is held.
1935 * Must be called with mmap_sem held for read or write.
1937 * get_user_pages walks a process's page tables and takes a reference to
1938 * each struct page that each user address corresponds to at a given
1939 * instant. That is, it takes the page that would be accessed if a user
1940 * thread accesses the given user virtual address at that instant.
1942 * This does not guarantee that the page exists in the user mappings when
1943 * get_user_pages returns, and there may even be a completely different
1944 * page there in some cases (eg. if mmapped pagecache has been invalidated
1945 * and subsequently re faulted). However it does guarantee that the page
1946 * won't be freed completely. And mostly callers simply care that the page
1947 * contains data that was valid *at some point in time*. Typically, an IO
1948 * or similar operation cannot guarantee anything stronger anyway because
1949 * locks can't be held over the syscall boundary.
1951 * If write=0, the page must not be written to. If the page is written to,
1952 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1953 * after the page is finished with, and before put_page is called.
1955 * get_user_pages is typically used for fewer-copy IO operations, to get a
1956 * handle on the memory by some means other than accesses via the user virtual
1957 * addresses. The pages may be submitted for DMA to devices or accessed via
1958 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1959 * use the correct cache flushing APIs.
1961 * See also get_user_pages_fast, for performance critical applications.
1963 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1964 unsigned long start, int nr_pages, int write, int force,
1965 struct page **pages, struct vm_area_struct **vmas)
1967 int flags = FOLL_TOUCH;
1969 if (pages)
1970 flags |= FOLL_GET;
1971 if (write)
1972 flags |= FOLL_WRITE;
1973 if (force)
1974 flags |= FOLL_FORCE;
1976 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1977 NULL);
1979 EXPORT_SYMBOL(get_user_pages);
1982 * get_dump_page() - pin user page in memory while writing it to core dump
1983 * @addr: user address
1985 * Returns struct page pointer of user page pinned for dump,
1986 * to be freed afterwards by page_cache_release() or put_page().
1988 * Returns NULL on any kind of failure - a hole must then be inserted into
1989 * the corefile, to preserve alignment with its headers; and also returns
1990 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1991 * allowing a hole to be left in the corefile to save diskspace.
1993 * Called without mmap_sem, but after all other threads have been killed.
1995 #ifdef CONFIG_ELF_CORE
1996 struct page *get_dump_page(unsigned long addr)
1998 struct vm_area_struct *vma;
1999 struct page *page;
2001 if (__get_user_pages(current, current->mm, addr, 1,
2002 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2003 NULL) < 1)
2004 return NULL;
2005 flush_cache_page(vma, addr, page_to_pfn(page));
2006 return page;
2008 #endif /* CONFIG_ELF_CORE */
2010 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2011 spinlock_t **ptl)
2013 pgd_t * pgd = pgd_offset(mm, addr);
2014 pud_t * pud = pud_alloc(mm, pgd, addr);
2015 if (pud) {
2016 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2017 if (pmd) {
2018 VM_BUG_ON(pmd_trans_huge(*pmd));
2019 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2022 return NULL;
2026 * This is the old fallback for page remapping.
2028 * For historical reasons, it only allows reserved pages. Only
2029 * old drivers should use this, and they needed to mark their
2030 * pages reserved for the old functions anyway.
2032 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2033 struct page *page, pgprot_t prot)
2035 struct mm_struct *mm = vma->vm_mm;
2036 int retval;
2037 pte_t *pte;
2038 spinlock_t *ptl;
2040 retval = -EINVAL;
2041 if (PageAnon(page))
2042 goto out;
2043 retval = -ENOMEM;
2044 flush_dcache_page(page);
2045 pte = get_locked_pte(mm, addr, &ptl);
2046 if (!pte)
2047 goto out;
2048 retval = -EBUSY;
2049 if (!pte_none(*pte))
2050 goto out_unlock;
2052 /* Ok, finally just insert the thing.. */
2053 get_page(page);
2054 inc_mm_counter_fast(mm, MM_FILEPAGES);
2055 page_add_file_rmap(page);
2056 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2058 retval = 0;
2059 pte_unmap_unlock(pte, ptl);
2060 return retval;
2061 out_unlock:
2062 pte_unmap_unlock(pte, ptl);
2063 out:
2064 return retval;
2068 * vm_insert_page - insert single page into user vma
2069 * @vma: user vma to map to
2070 * @addr: target user address of this page
2071 * @page: source kernel page
2073 * This allows drivers to insert individual pages they've allocated
2074 * into a user vma.
2076 * The page has to be a nice clean _individual_ kernel allocation.
2077 * If you allocate a compound page, you need to have marked it as
2078 * such (__GFP_COMP), or manually just split the page up yourself
2079 * (see split_page()).
2081 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2082 * took an arbitrary page protection parameter. This doesn't allow
2083 * that. Your vma protection will have to be set up correctly, which
2084 * means that if you want a shared writable mapping, you'd better
2085 * ask for a shared writable mapping!
2087 * The page does not need to be reserved.
2089 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2090 struct page *page)
2092 if (addr < vma->vm_start || addr >= vma->vm_end)
2093 return -EFAULT;
2094 if (!page_count(page))
2095 return -EINVAL;
2096 vma->vm_flags |= VM_INSERTPAGE;
2097 return insert_page(vma, addr, page, vma->vm_page_prot);
2099 EXPORT_SYMBOL(vm_insert_page);
2101 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2102 unsigned long pfn, pgprot_t prot)
2104 struct mm_struct *mm = vma->vm_mm;
2105 int retval;
2106 pte_t *pte, entry;
2107 spinlock_t *ptl;
2109 retval = -ENOMEM;
2110 pte = get_locked_pte(mm, addr, &ptl);
2111 if (!pte)
2112 goto out;
2113 retval = -EBUSY;
2114 if (!pte_none(*pte))
2115 goto out_unlock;
2117 /* Ok, finally just insert the thing.. */
2118 entry = pte_mkspecial(pfn_pte(pfn, prot));
2119 set_pte_at(mm, addr, pte, entry);
2120 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2122 retval = 0;
2123 out_unlock:
2124 pte_unmap_unlock(pte, ptl);
2125 out:
2126 return retval;
2130 * vm_insert_pfn - insert single pfn into user vma
2131 * @vma: user vma to map to
2132 * @addr: target user address of this page
2133 * @pfn: source kernel pfn
2135 * Similar to vm_inert_page, this allows drivers to insert individual pages
2136 * they've allocated into a user vma. Same comments apply.
2138 * This function should only be called from a vm_ops->fault handler, and
2139 * in that case the handler should return NULL.
2141 * vma cannot be a COW mapping.
2143 * As this is called only for pages that do not currently exist, we
2144 * do not need to flush old virtual caches or the TLB.
2146 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2147 unsigned long pfn)
2149 int ret;
2150 pgprot_t pgprot = vma->vm_page_prot;
2152 * Technically, architectures with pte_special can avoid all these
2153 * restrictions (same for remap_pfn_range). However we would like
2154 * consistency in testing and feature parity among all, so we should
2155 * try to keep these invariants in place for everybody.
2157 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2158 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2159 (VM_PFNMAP|VM_MIXEDMAP));
2160 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2161 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2163 if (addr < vma->vm_start || addr >= vma->vm_end)
2164 return -EFAULT;
2165 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2166 return -EINVAL;
2168 ret = insert_pfn(vma, addr, pfn, pgprot);
2170 if (ret)
2171 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2173 return ret;
2175 EXPORT_SYMBOL(vm_insert_pfn);
2177 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2178 unsigned long pfn)
2180 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2182 if (addr < vma->vm_start || addr >= vma->vm_end)
2183 return -EFAULT;
2186 * If we don't have pte special, then we have to use the pfn_valid()
2187 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2188 * refcount the page if pfn_valid is true (hence insert_page rather
2189 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2190 * without pte special, it would there be refcounted as a normal page.
2192 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2193 struct page *page;
2195 page = pfn_to_page(pfn);
2196 return insert_page(vma, addr, page, vma->vm_page_prot);
2198 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2200 EXPORT_SYMBOL(vm_insert_mixed);
2203 * maps a range of physical memory into the requested pages. the old
2204 * mappings are removed. any references to nonexistent pages results
2205 * in null mappings (currently treated as "copy-on-access")
2207 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2208 unsigned long addr, unsigned long end,
2209 unsigned long pfn, pgprot_t prot)
2211 pte_t *pte;
2212 spinlock_t *ptl;
2214 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2215 if (!pte)
2216 return -ENOMEM;
2217 arch_enter_lazy_mmu_mode();
2218 do {
2219 BUG_ON(!pte_none(*pte));
2220 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2221 pfn++;
2222 } while (pte++, addr += PAGE_SIZE, addr != end);
2223 arch_leave_lazy_mmu_mode();
2224 pte_unmap_unlock(pte - 1, ptl);
2225 return 0;
2228 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2229 unsigned long addr, unsigned long end,
2230 unsigned long pfn, pgprot_t prot)
2232 pmd_t *pmd;
2233 unsigned long next;
2235 pfn -= addr >> PAGE_SHIFT;
2236 pmd = pmd_alloc(mm, pud, addr);
2237 if (!pmd)
2238 return -ENOMEM;
2239 VM_BUG_ON(pmd_trans_huge(*pmd));
2240 do {
2241 next = pmd_addr_end(addr, end);
2242 if (remap_pte_range(mm, pmd, addr, next,
2243 pfn + (addr >> PAGE_SHIFT), prot))
2244 return -ENOMEM;
2245 } while (pmd++, addr = next, addr != end);
2246 return 0;
2249 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2250 unsigned long addr, unsigned long end,
2251 unsigned long pfn, pgprot_t prot)
2253 pud_t *pud;
2254 unsigned long next;
2256 pfn -= addr >> PAGE_SHIFT;
2257 pud = pud_alloc(mm, pgd, addr);
2258 if (!pud)
2259 return -ENOMEM;
2260 do {
2261 next = pud_addr_end(addr, end);
2262 if (remap_pmd_range(mm, pud, addr, next,
2263 pfn + (addr >> PAGE_SHIFT), prot))
2264 return -ENOMEM;
2265 } while (pud++, addr = next, addr != end);
2266 return 0;
2270 * remap_pfn_range - remap kernel memory to userspace
2271 * @vma: user vma to map to
2272 * @addr: target user address to start at
2273 * @pfn: physical address of kernel memory
2274 * @size: size of map area
2275 * @prot: page protection flags for this mapping
2277 * Note: this is only safe if the mm semaphore is held when called.
2279 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2280 unsigned long pfn, unsigned long size, pgprot_t prot)
2282 pgd_t *pgd;
2283 unsigned long next;
2284 unsigned long end = addr + PAGE_ALIGN(size);
2285 struct mm_struct *mm = vma->vm_mm;
2286 int err;
2289 * Physically remapped pages are special. Tell the
2290 * rest of the world about it:
2291 * VM_IO tells people not to look at these pages
2292 * (accesses can have side effects).
2293 * VM_RESERVED is specified all over the place, because
2294 * in 2.4 it kept swapout's vma scan off this vma; but
2295 * in 2.6 the LRU scan won't even find its pages, so this
2296 * flag means no more than count its pages in reserved_vm,
2297 * and omit it from core dump, even when VM_IO turned off.
2298 * VM_PFNMAP tells the core MM that the base pages are just
2299 * raw PFN mappings, and do not have a "struct page" associated
2300 * with them.
2302 * There's a horrible special case to handle copy-on-write
2303 * behaviour that some programs depend on. We mark the "original"
2304 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2306 if (addr == vma->vm_start && end == vma->vm_end) {
2307 vma->vm_pgoff = pfn;
2308 vma->vm_flags |= VM_PFN_AT_MMAP;
2309 } else if (is_cow_mapping(vma->vm_flags))
2310 return -EINVAL;
2312 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2314 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2315 if (err) {
2317 * To indicate that track_pfn related cleanup is not
2318 * needed from higher level routine calling unmap_vmas
2320 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2321 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2322 return -EINVAL;
2325 BUG_ON(addr >= end);
2326 pfn -= addr >> PAGE_SHIFT;
2327 pgd = pgd_offset(mm, addr);
2328 flush_cache_range(vma, addr, end);
2329 do {
2330 next = pgd_addr_end(addr, end);
2331 err = remap_pud_range(mm, pgd, addr, next,
2332 pfn + (addr >> PAGE_SHIFT), prot);
2333 if (err)
2334 break;
2335 } while (pgd++, addr = next, addr != end);
2337 if (err)
2338 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2340 return err;
2342 EXPORT_SYMBOL(remap_pfn_range);
2344 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2345 unsigned long addr, unsigned long end,
2346 pte_fn_t fn, void *data)
2348 pte_t *pte;
2349 int err;
2350 pgtable_t token;
2351 spinlock_t *uninitialized_var(ptl);
2353 pte = (mm == &init_mm) ?
2354 pte_alloc_kernel(pmd, addr) :
2355 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2356 if (!pte)
2357 return -ENOMEM;
2359 BUG_ON(pmd_huge(*pmd));
2361 arch_enter_lazy_mmu_mode();
2363 token = pmd_pgtable(*pmd);
2365 do {
2366 err = fn(pte++, token, addr, data);
2367 if (err)
2368 break;
2369 } while (addr += PAGE_SIZE, addr != end);
2371 arch_leave_lazy_mmu_mode();
2373 if (mm != &init_mm)
2374 pte_unmap_unlock(pte-1, ptl);
2375 return err;
2378 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2379 unsigned long addr, unsigned long end,
2380 pte_fn_t fn, void *data)
2382 pmd_t *pmd;
2383 unsigned long next;
2384 int err;
2386 BUG_ON(pud_huge(*pud));
2388 pmd = pmd_alloc(mm, pud, addr);
2389 if (!pmd)
2390 return -ENOMEM;
2391 do {
2392 next = pmd_addr_end(addr, end);
2393 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2394 if (err)
2395 break;
2396 } while (pmd++, addr = next, addr != end);
2397 return err;
2400 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2401 unsigned long addr, unsigned long end,
2402 pte_fn_t fn, void *data)
2404 pud_t *pud;
2405 unsigned long next;
2406 int err;
2408 pud = pud_alloc(mm, pgd, addr);
2409 if (!pud)
2410 return -ENOMEM;
2411 do {
2412 next = pud_addr_end(addr, end);
2413 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2414 if (err)
2415 break;
2416 } while (pud++, addr = next, addr != end);
2417 return err;
2421 * Scan a region of virtual memory, filling in page tables as necessary
2422 * and calling a provided function on each leaf page table.
2424 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2425 unsigned long size, pte_fn_t fn, void *data)
2427 pgd_t *pgd;
2428 unsigned long next;
2429 unsigned long end = addr + size;
2430 int err;
2432 BUG_ON(addr >= end);
2433 pgd = pgd_offset(mm, addr);
2434 do {
2435 next = pgd_addr_end(addr, end);
2436 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2437 if (err)
2438 break;
2439 } while (pgd++, addr = next, addr != end);
2441 return err;
2443 EXPORT_SYMBOL_GPL(apply_to_page_range);
2446 * handle_pte_fault chooses page fault handler according to an entry
2447 * which was read non-atomically. Before making any commitment, on
2448 * those architectures or configurations (e.g. i386 with PAE) which
2449 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2450 * must check under lock before unmapping the pte and proceeding
2451 * (but do_wp_page is only called after already making such a check;
2452 * and do_anonymous_page can safely check later on).
2454 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2455 pte_t *page_table, pte_t orig_pte)
2457 int same = 1;
2458 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2459 if (sizeof(pte_t) > sizeof(unsigned long)) {
2460 spinlock_t *ptl = pte_lockptr(mm, pmd);
2461 spin_lock(ptl);
2462 same = pte_same(*page_table, orig_pte);
2463 spin_unlock(ptl);
2465 #endif
2466 pte_unmap(page_table);
2467 return same;
2470 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2473 * If the source page was a PFN mapping, we don't have
2474 * a "struct page" for it. We do a best-effort copy by
2475 * just copying from the original user address. If that
2476 * fails, we just zero-fill it. Live with it.
2478 if (unlikely(!src)) {
2479 void *kaddr = kmap_atomic(dst);
2480 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2483 * This really shouldn't fail, because the page is there
2484 * in the page tables. But it might just be unreadable,
2485 * in which case we just give up and fill the result with
2486 * zeroes.
2488 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2489 clear_page(kaddr);
2490 kunmap_atomic(kaddr);
2491 flush_dcache_page(dst);
2492 } else
2493 copy_user_highpage(dst, src, va, vma);
2497 * This routine handles present pages, when users try to write
2498 * to a shared page. It is done by copying the page to a new address
2499 * and decrementing the shared-page counter for the old page.
2501 * Note that this routine assumes that the protection checks have been
2502 * done by the caller (the low-level page fault routine in most cases).
2503 * Thus we can safely just mark it writable once we've done any necessary
2504 * COW.
2506 * We also mark the page dirty at this point even though the page will
2507 * change only once the write actually happens. This avoids a few races,
2508 * and potentially makes it more efficient.
2510 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2511 * but allow concurrent faults), with pte both mapped and locked.
2512 * We return with mmap_sem still held, but pte unmapped and unlocked.
2514 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2515 unsigned long address, pte_t *page_table, pmd_t *pmd,
2516 spinlock_t *ptl, pte_t orig_pte)
2517 __releases(ptl)
2519 struct page *old_page, *new_page;
2520 pte_t entry;
2521 int ret = 0;
2522 int page_mkwrite = 0;
2523 struct page *dirty_page = NULL;
2525 old_page = vm_normal_page(vma, address, orig_pte);
2526 if (!old_page) {
2528 * VM_MIXEDMAP !pfn_valid() case
2530 * We should not cow pages in a shared writeable mapping.
2531 * Just mark the pages writable as we can't do any dirty
2532 * accounting on raw pfn maps.
2534 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2535 (VM_WRITE|VM_SHARED))
2536 goto reuse;
2537 goto gotten;
2541 * Take out anonymous pages first, anonymous shared vmas are
2542 * not dirty accountable.
2544 if (PageAnon(old_page) && !PageKsm(old_page)) {
2545 if (!trylock_page(old_page)) {
2546 page_cache_get(old_page);
2547 pte_unmap_unlock(page_table, ptl);
2548 lock_page(old_page);
2549 page_table = pte_offset_map_lock(mm, pmd, address,
2550 &ptl);
2551 if (!pte_same(*page_table, orig_pte)) {
2552 unlock_page(old_page);
2553 goto unlock;
2555 page_cache_release(old_page);
2557 if (reuse_swap_page(old_page)) {
2559 * The page is all ours. Move it to our anon_vma so
2560 * the rmap code will not search our parent or siblings.
2561 * Protected against the rmap code by the page lock.
2563 page_move_anon_rmap(old_page, vma, address);
2564 unlock_page(old_page);
2565 goto reuse;
2567 unlock_page(old_page);
2568 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2569 (VM_WRITE|VM_SHARED))) {
2571 * Only catch write-faults on shared writable pages,
2572 * read-only shared pages can get COWed by
2573 * get_user_pages(.write=1, .force=1).
2575 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2576 struct vm_fault vmf;
2577 int tmp;
2579 vmf.virtual_address = (void __user *)(address &
2580 PAGE_MASK);
2581 vmf.pgoff = old_page->index;
2582 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2583 vmf.page = old_page;
2586 * Notify the address space that the page is about to
2587 * become writable so that it can prohibit this or wait
2588 * for the page to get into an appropriate state.
2590 * We do this without the lock held, so that it can
2591 * sleep if it needs to.
2593 page_cache_get(old_page);
2594 pte_unmap_unlock(page_table, ptl);
2596 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2597 if (unlikely(tmp &
2598 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2599 ret = tmp;
2600 goto unwritable_page;
2602 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2603 lock_page(old_page);
2604 if (!old_page->mapping) {
2605 ret = 0; /* retry the fault */
2606 unlock_page(old_page);
2607 goto unwritable_page;
2609 } else
2610 VM_BUG_ON(!PageLocked(old_page));
2613 * Since we dropped the lock we need to revalidate
2614 * the PTE as someone else may have changed it. If
2615 * they did, we just return, as we can count on the
2616 * MMU to tell us if they didn't also make it writable.
2618 page_table = pte_offset_map_lock(mm, pmd, address,
2619 &ptl);
2620 if (!pte_same(*page_table, orig_pte)) {
2621 unlock_page(old_page);
2622 goto unlock;
2625 page_mkwrite = 1;
2627 dirty_page = old_page;
2628 get_page(dirty_page);
2630 reuse:
2631 flush_cache_page(vma, address, pte_pfn(orig_pte));
2632 entry = pte_mkyoung(orig_pte);
2633 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2634 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2635 update_mmu_cache(vma, address, page_table);
2636 pte_unmap_unlock(page_table, ptl);
2637 ret |= VM_FAULT_WRITE;
2639 if (!dirty_page)
2640 return ret;
2643 * Yes, Virginia, this is actually required to prevent a race
2644 * with clear_page_dirty_for_io() from clearing the page dirty
2645 * bit after it clear all dirty ptes, but before a racing
2646 * do_wp_page installs a dirty pte.
2648 * __do_fault is protected similarly.
2650 if (!page_mkwrite) {
2651 wait_on_page_locked(dirty_page);
2652 set_page_dirty_balance(dirty_page, page_mkwrite);
2654 put_page(dirty_page);
2655 if (page_mkwrite) {
2656 struct address_space *mapping = dirty_page->mapping;
2658 set_page_dirty(dirty_page);
2659 unlock_page(dirty_page);
2660 page_cache_release(dirty_page);
2661 if (mapping) {
2663 * Some device drivers do not set page.mapping
2664 * but still dirty their pages
2666 balance_dirty_pages_ratelimited(mapping);
2670 /* file_update_time outside page_lock */
2671 if (vma->vm_file)
2672 file_update_time(vma->vm_file);
2674 return ret;
2678 * Ok, we need to copy. Oh, well..
2680 page_cache_get(old_page);
2681 gotten:
2682 pte_unmap_unlock(page_table, ptl);
2684 if (unlikely(anon_vma_prepare(vma)))
2685 goto oom;
2687 if (is_zero_pfn(pte_pfn(orig_pte))) {
2688 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2689 if (!new_page)
2690 goto oom;
2691 } else {
2692 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2693 if (!new_page)
2694 goto oom;
2695 cow_user_page(new_page, old_page, address, vma);
2697 __SetPageUptodate(new_page);
2699 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2700 goto oom_free_new;
2703 * Re-check the pte - we dropped the lock
2705 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2706 if (likely(pte_same(*page_table, orig_pte))) {
2707 if (old_page) {
2708 if (!PageAnon(old_page)) {
2709 dec_mm_counter_fast(mm, MM_FILEPAGES);
2710 inc_mm_counter_fast(mm, MM_ANONPAGES);
2712 } else
2713 inc_mm_counter_fast(mm, MM_ANONPAGES);
2714 flush_cache_page(vma, address, pte_pfn(orig_pte));
2715 entry = mk_pte(new_page, vma->vm_page_prot);
2716 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2718 * Clear the pte entry and flush it first, before updating the
2719 * pte with the new entry. This will avoid a race condition
2720 * seen in the presence of one thread doing SMC and another
2721 * thread doing COW.
2723 ptep_clear_flush(vma, address, page_table);
2724 page_add_new_anon_rmap(new_page, vma, address);
2726 * We call the notify macro here because, when using secondary
2727 * mmu page tables (such as kvm shadow page tables), we want the
2728 * new page to be mapped directly into the secondary page table.
2730 set_pte_at_notify(mm, address, page_table, entry);
2731 update_mmu_cache(vma, address, page_table);
2732 if (old_page) {
2734 * Only after switching the pte to the new page may
2735 * we remove the mapcount here. Otherwise another
2736 * process may come and find the rmap count decremented
2737 * before the pte is switched to the new page, and
2738 * "reuse" the old page writing into it while our pte
2739 * here still points into it and can be read by other
2740 * threads.
2742 * The critical issue is to order this
2743 * page_remove_rmap with the ptp_clear_flush above.
2744 * Those stores are ordered by (if nothing else,)
2745 * the barrier present in the atomic_add_negative
2746 * in page_remove_rmap.
2748 * Then the TLB flush in ptep_clear_flush ensures that
2749 * no process can access the old page before the
2750 * decremented mapcount is visible. And the old page
2751 * cannot be reused until after the decremented
2752 * mapcount is visible. So transitively, TLBs to
2753 * old page will be flushed before it can be reused.
2755 page_remove_rmap(old_page);
2758 /* Free the old page.. */
2759 new_page = old_page;
2760 ret |= VM_FAULT_WRITE;
2761 } else
2762 mem_cgroup_uncharge_page(new_page);
2764 if (new_page)
2765 page_cache_release(new_page);
2766 unlock:
2767 pte_unmap_unlock(page_table, ptl);
2768 if (old_page) {
2770 * Don't let another task, with possibly unlocked vma,
2771 * keep the mlocked page.
2773 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2774 lock_page(old_page); /* LRU manipulation */
2775 munlock_vma_page(old_page);
2776 unlock_page(old_page);
2778 page_cache_release(old_page);
2780 return ret;
2781 oom_free_new:
2782 page_cache_release(new_page);
2783 oom:
2784 if (old_page) {
2785 if (page_mkwrite) {
2786 unlock_page(old_page);
2787 page_cache_release(old_page);
2789 page_cache_release(old_page);
2791 return VM_FAULT_OOM;
2793 unwritable_page:
2794 page_cache_release(old_page);
2795 return ret;
2798 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2799 unsigned long start_addr, unsigned long end_addr,
2800 struct zap_details *details)
2802 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2805 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2806 struct zap_details *details)
2808 struct vm_area_struct *vma;
2809 struct prio_tree_iter iter;
2810 pgoff_t vba, vea, zba, zea;
2812 vma_prio_tree_foreach(vma, &iter, root,
2813 details->first_index, details->last_index) {
2815 vba = vma->vm_pgoff;
2816 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2817 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2818 zba = details->first_index;
2819 if (zba < vba)
2820 zba = vba;
2821 zea = details->last_index;
2822 if (zea > vea)
2823 zea = vea;
2825 unmap_mapping_range_vma(vma,
2826 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2827 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2828 details);
2832 static inline void unmap_mapping_range_list(struct list_head *head,
2833 struct zap_details *details)
2835 struct vm_area_struct *vma;
2838 * In nonlinear VMAs there is no correspondence between virtual address
2839 * offset and file offset. So we must perform an exhaustive search
2840 * across *all* the pages in each nonlinear VMA, not just the pages
2841 * whose virtual address lies outside the file truncation point.
2843 list_for_each_entry(vma, head, shared.vm_set.list) {
2844 details->nonlinear_vma = vma;
2845 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2850 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2851 * @mapping: the address space containing mmaps to be unmapped.
2852 * @holebegin: byte in first page to unmap, relative to the start of
2853 * the underlying file. This will be rounded down to a PAGE_SIZE
2854 * boundary. Note that this is different from truncate_pagecache(), which
2855 * must keep the partial page. In contrast, we must get rid of
2856 * partial pages.
2857 * @holelen: size of prospective hole in bytes. This will be rounded
2858 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2859 * end of the file.
2860 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2861 * but 0 when invalidating pagecache, don't throw away private data.
2863 void unmap_mapping_range(struct address_space *mapping,
2864 loff_t const holebegin, loff_t const holelen, int even_cows)
2866 struct zap_details details;
2867 pgoff_t hba = holebegin >> PAGE_SHIFT;
2868 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2870 /* Check for overflow. */
2871 if (sizeof(holelen) > sizeof(hlen)) {
2872 long long holeend =
2873 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2874 if (holeend & ~(long long)ULONG_MAX)
2875 hlen = ULONG_MAX - hba + 1;
2878 details.check_mapping = even_cows? NULL: mapping;
2879 details.nonlinear_vma = NULL;
2880 details.first_index = hba;
2881 details.last_index = hba + hlen - 1;
2882 if (details.last_index < details.first_index)
2883 details.last_index = ULONG_MAX;
2886 mutex_lock(&mapping->i_mmap_mutex);
2887 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2888 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2889 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2890 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2891 mutex_unlock(&mapping->i_mmap_mutex);
2893 EXPORT_SYMBOL(unmap_mapping_range);
2896 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2897 * but allow concurrent faults), and pte mapped but not yet locked.
2898 * We return with mmap_sem still held, but pte unmapped and unlocked.
2900 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2901 unsigned long address, pte_t *page_table, pmd_t *pmd,
2902 unsigned int flags, pte_t orig_pte)
2904 spinlock_t *ptl;
2905 struct page *page, *swapcache = NULL;
2906 swp_entry_t entry;
2907 pte_t pte;
2908 int locked;
2909 struct mem_cgroup *ptr;
2910 int exclusive = 0;
2911 int ret = 0;
2913 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2914 goto out;
2916 entry = pte_to_swp_entry(orig_pte);
2917 if (unlikely(non_swap_entry(entry))) {
2918 if (is_migration_entry(entry)) {
2919 migration_entry_wait(mm, pmd, address);
2920 } else if (is_hwpoison_entry(entry)) {
2921 ret = VM_FAULT_HWPOISON;
2922 } else {
2923 print_bad_pte(vma, address, orig_pte, NULL);
2924 ret = VM_FAULT_SIGBUS;
2926 goto out;
2928 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2929 page = lookup_swap_cache(entry);
2930 if (!page) {
2931 page = swapin_readahead(entry,
2932 GFP_HIGHUSER_MOVABLE, vma, address);
2933 if (!page) {
2935 * Back out if somebody else faulted in this pte
2936 * while we released the pte lock.
2938 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2939 if (likely(pte_same(*page_table, orig_pte)))
2940 ret = VM_FAULT_OOM;
2941 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2942 goto unlock;
2945 /* Had to read the page from swap area: Major fault */
2946 ret = VM_FAULT_MAJOR;
2947 count_vm_event(PGMAJFAULT);
2948 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2949 } else if (PageHWPoison(page)) {
2951 * hwpoisoned dirty swapcache pages are kept for killing
2952 * owner processes (which may be unknown at hwpoison time)
2954 ret = VM_FAULT_HWPOISON;
2955 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2956 goto out_release;
2959 locked = lock_page_or_retry(page, mm, flags);
2961 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2962 if (!locked) {
2963 ret |= VM_FAULT_RETRY;
2964 goto out_release;
2968 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2969 * release the swapcache from under us. The page pin, and pte_same
2970 * test below, are not enough to exclude that. Even if it is still
2971 * swapcache, we need to check that the page's swap has not changed.
2973 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2974 goto out_page;
2976 if (ksm_might_need_to_copy(page, vma, address)) {
2977 swapcache = page;
2978 page = ksm_does_need_to_copy(page, vma, address);
2980 if (unlikely(!page)) {
2981 ret = VM_FAULT_OOM;
2982 page = swapcache;
2983 swapcache = NULL;
2984 goto out_page;
2988 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2989 ret = VM_FAULT_OOM;
2990 goto out_page;
2994 * Back out if somebody else already faulted in this pte.
2996 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2997 if (unlikely(!pte_same(*page_table, orig_pte)))
2998 goto out_nomap;
3000 if (unlikely(!PageUptodate(page))) {
3001 ret = VM_FAULT_SIGBUS;
3002 goto out_nomap;
3006 * The page isn't present yet, go ahead with the fault.
3008 * Be careful about the sequence of operations here.
3009 * To get its accounting right, reuse_swap_page() must be called
3010 * while the page is counted on swap but not yet in mapcount i.e.
3011 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3012 * must be called after the swap_free(), or it will never succeed.
3013 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3014 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3015 * in page->private. In this case, a record in swap_cgroup is silently
3016 * discarded at swap_free().
3019 inc_mm_counter_fast(mm, MM_ANONPAGES);
3020 dec_mm_counter_fast(mm, MM_SWAPENTS);
3021 pte = mk_pte(page, vma->vm_page_prot);
3022 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3023 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3024 flags &= ~FAULT_FLAG_WRITE;
3025 ret |= VM_FAULT_WRITE;
3026 exclusive = 1;
3028 flush_icache_page(vma, page);
3029 set_pte_at(mm, address, page_table, pte);
3030 do_page_add_anon_rmap(page, vma, address, exclusive);
3031 /* It's better to call commit-charge after rmap is established */
3032 mem_cgroup_commit_charge_swapin(page, ptr);
3034 swap_free(entry);
3035 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3036 try_to_free_swap(page);
3037 unlock_page(page);
3038 if (swapcache) {
3040 * Hold the lock to avoid the swap entry to be reused
3041 * until we take the PT lock for the pte_same() check
3042 * (to avoid false positives from pte_same). For
3043 * further safety release the lock after the swap_free
3044 * so that the swap count won't change under a
3045 * parallel locked swapcache.
3047 unlock_page(swapcache);
3048 page_cache_release(swapcache);
3051 if (flags & FAULT_FLAG_WRITE) {
3052 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3053 if (ret & VM_FAULT_ERROR)
3054 ret &= VM_FAULT_ERROR;
3055 goto out;
3058 /* No need to invalidate - it was non-present before */
3059 update_mmu_cache(vma, address, page_table);
3060 unlock:
3061 pte_unmap_unlock(page_table, ptl);
3062 out:
3063 return ret;
3064 out_nomap:
3065 mem_cgroup_cancel_charge_swapin(ptr);
3066 pte_unmap_unlock(page_table, ptl);
3067 out_page:
3068 unlock_page(page);
3069 out_release:
3070 page_cache_release(page);
3071 if (swapcache) {
3072 unlock_page(swapcache);
3073 page_cache_release(swapcache);
3075 return ret;
3079 * This is like a special single-page "expand_{down|up}wards()",
3080 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3081 * doesn't hit another vma.
3083 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3085 address &= PAGE_MASK;
3086 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3087 struct vm_area_struct *prev = vma->vm_prev;
3090 * Is there a mapping abutting this one below?
3092 * That's only ok if it's the same stack mapping
3093 * that has gotten split..
3095 if (prev && prev->vm_end == address)
3096 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3098 expand_downwards(vma, address - PAGE_SIZE);
3100 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3101 struct vm_area_struct *next = vma->vm_next;
3103 /* As VM_GROWSDOWN but s/below/above/ */
3104 if (next && next->vm_start == address + PAGE_SIZE)
3105 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3107 expand_upwards(vma, address + PAGE_SIZE);
3109 return 0;
3113 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3114 * but allow concurrent faults), and pte mapped but not yet locked.
3115 * We return with mmap_sem still held, but pte unmapped and unlocked.
3117 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3118 unsigned long address, pte_t *page_table, pmd_t *pmd,
3119 unsigned int flags)
3121 struct page *page;
3122 spinlock_t *ptl;
3123 pte_t entry;
3125 pte_unmap(page_table);
3127 /* Check if we need to add a guard page to the stack */
3128 if (check_stack_guard_page(vma, address) < 0)
3129 return VM_FAULT_SIGBUS;
3131 /* Use the zero-page for reads */
3132 if (!(flags & FAULT_FLAG_WRITE)) {
3133 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3134 vma->vm_page_prot));
3135 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3136 if (!pte_none(*page_table))
3137 goto unlock;
3138 goto setpte;
3141 /* Allocate our own private page. */
3142 if (unlikely(anon_vma_prepare(vma)))
3143 goto oom;
3144 page = alloc_zeroed_user_highpage_movable(vma, address);
3145 if (!page)
3146 goto oom;
3147 __SetPageUptodate(page);
3149 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3150 goto oom_free_page;
3152 entry = mk_pte(page, vma->vm_page_prot);
3153 if (vma->vm_flags & VM_WRITE)
3154 entry = pte_mkwrite(pte_mkdirty(entry));
3156 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3157 if (!pte_none(*page_table))
3158 goto release;
3160 inc_mm_counter_fast(mm, MM_ANONPAGES);
3161 page_add_new_anon_rmap(page, vma, address);
3162 setpte:
3163 set_pte_at(mm, address, page_table, entry);
3165 /* No need to invalidate - it was non-present before */
3166 update_mmu_cache(vma, address, page_table);
3167 unlock:
3168 pte_unmap_unlock(page_table, ptl);
3169 return 0;
3170 release:
3171 mem_cgroup_uncharge_page(page);
3172 page_cache_release(page);
3173 goto unlock;
3174 oom_free_page:
3175 page_cache_release(page);
3176 oom:
3177 return VM_FAULT_OOM;
3181 * __do_fault() tries to create a new page mapping. It aggressively
3182 * tries to share with existing pages, but makes a separate copy if
3183 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3184 * the next page fault.
3186 * As this is called only for pages that do not currently exist, we
3187 * do not need to flush old virtual caches or the TLB.
3189 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3190 * but allow concurrent faults), and pte neither mapped nor locked.
3191 * We return with mmap_sem still held, but pte unmapped and unlocked.
3193 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3194 unsigned long address, pmd_t *pmd,
3195 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3197 pte_t *page_table;
3198 spinlock_t *ptl;
3199 struct page *page;
3200 struct page *cow_page;
3201 pte_t entry;
3202 int anon = 0;
3203 struct page *dirty_page = NULL;
3204 struct vm_fault vmf;
3205 int ret;
3206 int page_mkwrite = 0;
3209 * If we do COW later, allocate page befor taking lock_page()
3210 * on the file cache page. This will reduce lock holding time.
3212 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3214 if (unlikely(anon_vma_prepare(vma)))
3215 return VM_FAULT_OOM;
3217 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3218 if (!cow_page)
3219 return VM_FAULT_OOM;
3221 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3222 page_cache_release(cow_page);
3223 return VM_FAULT_OOM;
3225 } else
3226 cow_page = NULL;
3228 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3229 vmf.pgoff = pgoff;
3230 vmf.flags = flags;
3231 vmf.page = NULL;
3233 ret = vma->vm_ops->fault(vma, &vmf);
3234 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3235 VM_FAULT_RETRY)))
3236 goto uncharge_out;
3238 if (unlikely(PageHWPoison(vmf.page))) {
3239 if (ret & VM_FAULT_LOCKED)
3240 unlock_page(vmf.page);
3241 ret = VM_FAULT_HWPOISON;
3242 goto uncharge_out;
3246 * For consistency in subsequent calls, make the faulted page always
3247 * locked.
3249 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3250 lock_page(vmf.page);
3251 else
3252 VM_BUG_ON(!PageLocked(vmf.page));
3255 * Should we do an early C-O-W break?
3257 page = vmf.page;
3258 if (flags & FAULT_FLAG_WRITE) {
3259 if (!(vma->vm_flags & VM_SHARED)) {
3260 page = cow_page;
3261 anon = 1;
3262 copy_user_highpage(page, vmf.page, address, vma);
3263 __SetPageUptodate(page);
3264 } else {
3266 * If the page will be shareable, see if the backing
3267 * address space wants to know that the page is about
3268 * to become writable
3270 if (vma->vm_ops->page_mkwrite) {
3271 int tmp;
3273 unlock_page(page);
3274 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3275 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3276 if (unlikely(tmp &
3277 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3278 ret = tmp;
3279 goto unwritable_page;
3281 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3282 lock_page(page);
3283 if (!page->mapping) {
3284 ret = 0; /* retry the fault */
3285 unlock_page(page);
3286 goto unwritable_page;
3288 } else
3289 VM_BUG_ON(!PageLocked(page));
3290 page_mkwrite = 1;
3296 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3299 * This silly early PAGE_DIRTY setting removes a race
3300 * due to the bad i386 page protection. But it's valid
3301 * for other architectures too.
3303 * Note that if FAULT_FLAG_WRITE is set, we either now have
3304 * an exclusive copy of the page, or this is a shared mapping,
3305 * so we can make it writable and dirty to avoid having to
3306 * handle that later.
3308 /* Only go through if we didn't race with anybody else... */
3309 if (likely(pte_same(*page_table, orig_pte))) {
3310 flush_icache_page(vma, page);
3311 entry = mk_pte(page, vma->vm_page_prot);
3312 if (flags & FAULT_FLAG_WRITE)
3313 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3314 if (anon) {
3315 inc_mm_counter_fast(mm, MM_ANONPAGES);
3316 page_add_new_anon_rmap(page, vma, address);
3317 } else {
3318 inc_mm_counter_fast(mm, MM_FILEPAGES);
3319 page_add_file_rmap(page);
3320 if (flags & FAULT_FLAG_WRITE) {
3321 dirty_page = page;
3322 get_page(dirty_page);
3325 set_pte_at(mm, address, page_table, entry);
3327 /* no need to invalidate: a not-present page won't be cached */
3328 update_mmu_cache(vma, address, page_table);
3329 } else {
3330 if (cow_page)
3331 mem_cgroup_uncharge_page(cow_page);
3332 if (anon)
3333 page_cache_release(page);
3334 else
3335 anon = 1; /* no anon but release faulted_page */
3338 pte_unmap_unlock(page_table, ptl);
3340 if (dirty_page) {
3341 struct address_space *mapping = page->mapping;
3343 if (set_page_dirty(dirty_page))
3344 page_mkwrite = 1;
3345 unlock_page(dirty_page);
3346 put_page(dirty_page);
3347 if (page_mkwrite && mapping) {
3349 * Some device drivers do not set page.mapping but still
3350 * dirty their pages
3352 balance_dirty_pages_ratelimited(mapping);
3355 /* file_update_time outside page_lock */
3356 if (vma->vm_file)
3357 file_update_time(vma->vm_file);
3358 } else {
3359 unlock_page(vmf.page);
3360 if (anon)
3361 page_cache_release(vmf.page);
3364 return ret;
3366 unwritable_page:
3367 page_cache_release(page);
3368 return ret;
3369 uncharge_out:
3370 /* fs's fault handler get error */
3371 if (cow_page) {
3372 mem_cgroup_uncharge_page(cow_page);
3373 page_cache_release(cow_page);
3375 return ret;
3378 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3379 unsigned long address, pte_t *page_table, pmd_t *pmd,
3380 unsigned int flags, pte_t orig_pte)
3382 pgoff_t pgoff = (((address & PAGE_MASK)
3383 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3385 pte_unmap(page_table);
3386 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3390 * Fault of a previously existing named mapping. Repopulate the pte
3391 * from the encoded file_pte if possible. This enables swappable
3392 * nonlinear vmas.
3394 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3395 * but allow concurrent faults), and pte mapped but not yet locked.
3396 * We return with mmap_sem still held, but pte unmapped and unlocked.
3398 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3399 unsigned long address, pte_t *page_table, pmd_t *pmd,
3400 unsigned int flags, pte_t orig_pte)
3402 pgoff_t pgoff;
3404 flags |= FAULT_FLAG_NONLINEAR;
3406 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3407 return 0;
3409 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3411 * Page table corrupted: show pte and kill process.
3413 print_bad_pte(vma, address, orig_pte, NULL);
3414 return VM_FAULT_SIGBUS;
3417 pgoff = pte_to_pgoff(orig_pte);
3418 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3422 * These routines also need to handle stuff like marking pages dirty
3423 * and/or accessed for architectures that don't do it in hardware (most
3424 * RISC architectures). The early dirtying is also good on the i386.
3426 * There is also a hook called "update_mmu_cache()" that architectures
3427 * with external mmu caches can use to update those (ie the Sparc or
3428 * PowerPC hashed page tables that act as extended TLBs).
3430 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3431 * but allow concurrent faults), and pte mapped but not yet locked.
3432 * We return with mmap_sem still held, but pte unmapped and unlocked.
3434 int handle_pte_fault(struct mm_struct *mm,
3435 struct vm_area_struct *vma, unsigned long address,
3436 pte_t *pte, pmd_t *pmd, unsigned int flags)
3438 pte_t entry;
3439 spinlock_t *ptl;
3441 entry = *pte;
3442 if (!pte_present(entry)) {
3443 if (pte_none(entry)) {
3444 if (vma->vm_ops) {
3445 if (likely(vma->vm_ops->fault))
3446 return do_linear_fault(mm, vma, address,
3447 pte, pmd, flags, entry);
3449 return do_anonymous_page(mm, vma, address,
3450 pte, pmd, flags);
3452 if (pte_file(entry))
3453 return do_nonlinear_fault(mm, vma, address,
3454 pte, pmd, flags, entry);
3455 return do_swap_page(mm, vma, address,
3456 pte, pmd, flags, entry);
3459 ptl = pte_lockptr(mm, pmd);
3460 spin_lock(ptl);
3461 if (unlikely(!pte_same(*pte, entry)))
3462 goto unlock;
3463 if (flags & FAULT_FLAG_WRITE) {
3464 if (!pte_write(entry))
3465 return do_wp_page(mm, vma, address,
3466 pte, pmd, ptl, entry);
3467 entry = pte_mkdirty(entry);
3469 entry = pte_mkyoung(entry);
3470 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3471 update_mmu_cache(vma, address, pte);
3472 } else {
3474 * This is needed only for protection faults but the arch code
3475 * is not yet telling us if this is a protection fault or not.
3476 * This still avoids useless tlb flushes for .text page faults
3477 * with threads.
3479 if (flags & FAULT_FLAG_WRITE)
3480 flush_tlb_fix_spurious_fault(vma, address);
3482 unlock:
3483 pte_unmap_unlock(pte, ptl);
3484 return 0;
3488 * By the time we get here, we already hold the mm semaphore
3490 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3491 unsigned long address, unsigned int flags)
3493 pgd_t *pgd;
3494 pud_t *pud;
3495 pmd_t *pmd;
3496 pte_t *pte;
3498 __set_current_state(TASK_RUNNING);
3500 count_vm_event(PGFAULT);
3501 mem_cgroup_count_vm_event(mm, PGFAULT);
3503 /* do counter updates before entering really critical section. */
3504 check_sync_rss_stat(current);
3506 if (unlikely(is_vm_hugetlb_page(vma)))
3507 return hugetlb_fault(mm, vma, address, flags);
3509 retry:
3510 pgd = pgd_offset(mm, address);
3511 pud = pud_alloc(mm, pgd, address);
3512 if (!pud)
3513 return VM_FAULT_OOM;
3514 pmd = pmd_alloc(mm, pud, address);
3515 if (!pmd)
3516 return VM_FAULT_OOM;
3517 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3518 if (!vma->vm_ops)
3519 return do_huge_pmd_anonymous_page(mm, vma, address,
3520 pmd, flags);
3521 } else {
3522 pmd_t orig_pmd = *pmd;
3523 int ret;
3525 barrier();
3526 if (pmd_trans_huge(orig_pmd)) {
3527 if (flags & FAULT_FLAG_WRITE &&
3528 !pmd_write(orig_pmd) &&
3529 !pmd_trans_splitting(orig_pmd)) {
3530 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3531 orig_pmd);
3533 * If COW results in an oom, the huge pmd will
3534 * have been split, so retry the fault on the
3535 * pte for a smaller charge.
3537 if (unlikely(ret & VM_FAULT_OOM))
3538 goto retry;
3539 return ret;
3541 return 0;
3546 * Use __pte_alloc instead of pte_alloc_map, because we can't
3547 * run pte_offset_map on the pmd, if an huge pmd could
3548 * materialize from under us from a different thread.
3550 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3551 return VM_FAULT_OOM;
3552 /* if an huge pmd materialized from under us just retry later */
3553 if (unlikely(pmd_trans_huge(*pmd)))
3554 return 0;
3556 * A regular pmd is established and it can't morph into a huge pmd
3557 * from under us anymore at this point because we hold the mmap_sem
3558 * read mode and khugepaged takes it in write mode. So now it's
3559 * safe to run pte_offset_map().
3561 pte = pte_offset_map(pmd, address);
3563 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3566 #ifndef __PAGETABLE_PUD_FOLDED
3568 * Allocate page upper directory.
3569 * We've already handled the fast-path in-line.
3571 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3573 pud_t *new = pud_alloc_one(mm, address);
3574 if (!new)
3575 return -ENOMEM;
3577 smp_wmb(); /* See comment in __pte_alloc */
3579 spin_lock(&mm->page_table_lock);
3580 if (pgd_present(*pgd)) /* Another has populated it */
3581 pud_free(mm, new);
3582 else
3583 pgd_populate(mm, pgd, new);
3584 spin_unlock(&mm->page_table_lock);
3585 return 0;
3587 #endif /* __PAGETABLE_PUD_FOLDED */
3589 #ifndef __PAGETABLE_PMD_FOLDED
3591 * Allocate page middle directory.
3592 * We've already handled the fast-path in-line.
3594 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3596 pmd_t *new = pmd_alloc_one(mm, address);
3597 if (!new)
3598 return -ENOMEM;
3600 smp_wmb(); /* See comment in __pte_alloc */
3602 spin_lock(&mm->page_table_lock);
3603 #ifndef __ARCH_HAS_4LEVEL_HACK
3604 if (pud_present(*pud)) /* Another has populated it */
3605 pmd_free(mm, new);
3606 else
3607 pud_populate(mm, pud, new);
3608 #else
3609 if (pgd_present(*pud)) /* Another has populated it */
3610 pmd_free(mm, new);
3611 else
3612 pgd_populate(mm, pud, new);
3613 #endif /* __ARCH_HAS_4LEVEL_HACK */
3614 spin_unlock(&mm->page_table_lock);
3615 return 0;
3617 #endif /* __PAGETABLE_PMD_FOLDED */
3619 int make_pages_present(unsigned long addr, unsigned long end)
3621 int ret, len, write;
3622 struct vm_area_struct * vma;
3624 vma = find_vma(current->mm, addr);
3625 if (!vma)
3626 return -ENOMEM;
3628 * We want to touch writable mappings with a write fault in order
3629 * to break COW, except for shared mappings because these don't COW
3630 * and we would not want to dirty them for nothing.
3632 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3633 BUG_ON(addr >= end);
3634 BUG_ON(end > vma->vm_end);
3635 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3636 ret = get_user_pages(current, current->mm, addr,
3637 len, write, 0, NULL, NULL);
3638 if (ret < 0)
3639 return ret;
3640 return ret == len ? 0 : -EFAULT;
3643 #if !defined(__HAVE_ARCH_GATE_AREA)
3645 #if defined(AT_SYSINFO_EHDR)
3646 static struct vm_area_struct gate_vma;
3648 static int __init gate_vma_init(void)
3650 gate_vma.vm_mm = NULL;
3651 gate_vma.vm_start = FIXADDR_USER_START;
3652 gate_vma.vm_end = FIXADDR_USER_END;
3653 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3654 gate_vma.vm_page_prot = __P101;
3656 return 0;
3658 __initcall(gate_vma_init);
3659 #endif
3661 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3663 #ifdef AT_SYSINFO_EHDR
3664 return &gate_vma;
3665 #else
3666 return NULL;
3667 #endif
3670 int in_gate_area_no_mm(unsigned long addr)
3672 #ifdef AT_SYSINFO_EHDR
3673 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3674 return 1;
3675 #endif
3676 return 0;
3679 #endif /* __HAVE_ARCH_GATE_AREA */
3681 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3682 pte_t **ptepp, spinlock_t **ptlp)
3684 pgd_t *pgd;
3685 pud_t *pud;
3686 pmd_t *pmd;
3687 pte_t *ptep;
3689 pgd = pgd_offset(mm, address);
3690 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3691 goto out;
3693 pud = pud_offset(pgd, address);
3694 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3695 goto out;
3697 pmd = pmd_offset(pud, address);
3698 VM_BUG_ON(pmd_trans_huge(*pmd));
3699 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3700 goto out;
3702 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3703 if (pmd_huge(*pmd))
3704 goto out;
3706 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3707 if (!ptep)
3708 goto out;
3709 if (!pte_present(*ptep))
3710 goto unlock;
3711 *ptepp = ptep;
3712 return 0;
3713 unlock:
3714 pte_unmap_unlock(ptep, *ptlp);
3715 out:
3716 return -EINVAL;
3719 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3720 pte_t **ptepp, spinlock_t **ptlp)
3722 int res;
3724 /* (void) is needed to make gcc happy */
3725 (void) __cond_lock(*ptlp,
3726 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3727 return res;
3731 * follow_pfn - look up PFN at a user virtual address
3732 * @vma: memory mapping
3733 * @address: user virtual address
3734 * @pfn: location to store found PFN
3736 * Only IO mappings and raw PFN mappings are allowed.
3738 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3740 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3741 unsigned long *pfn)
3743 int ret = -EINVAL;
3744 spinlock_t *ptl;
3745 pte_t *ptep;
3747 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3748 return ret;
3750 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3751 if (ret)
3752 return ret;
3753 *pfn = pte_pfn(*ptep);
3754 pte_unmap_unlock(ptep, ptl);
3755 return 0;
3757 EXPORT_SYMBOL(follow_pfn);
3759 #ifdef CONFIG_HAVE_IOREMAP_PROT
3760 int follow_phys(struct vm_area_struct *vma,
3761 unsigned long address, unsigned int flags,
3762 unsigned long *prot, resource_size_t *phys)
3764 int ret = -EINVAL;
3765 pte_t *ptep, pte;
3766 spinlock_t *ptl;
3768 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3769 goto out;
3771 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3772 goto out;
3773 pte = *ptep;
3775 if ((flags & FOLL_WRITE) && !pte_write(pte))
3776 goto unlock;
3778 *prot = pgprot_val(pte_pgprot(pte));
3779 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3781 ret = 0;
3782 unlock:
3783 pte_unmap_unlock(ptep, ptl);
3784 out:
3785 return ret;
3788 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3789 void *buf, int len, int write)
3791 resource_size_t phys_addr;
3792 unsigned long prot = 0;
3793 void __iomem *maddr;
3794 int offset = addr & (PAGE_SIZE-1);
3796 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3797 return -EINVAL;
3799 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3800 if (write)
3801 memcpy_toio(maddr + offset, buf, len);
3802 else
3803 memcpy_fromio(buf, maddr + offset, len);
3804 iounmap(maddr);
3806 return len;
3808 #endif
3811 * Access another process' address space as given in mm. If non-NULL, use the
3812 * given task for page fault accounting.
3814 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3815 unsigned long addr, void *buf, int len, int write)
3817 struct vm_area_struct *vma;
3818 void *old_buf = buf;
3820 down_read(&mm->mmap_sem);
3821 /* ignore errors, just check how much was successfully transferred */
3822 while (len) {
3823 int bytes, ret, offset;
3824 void *maddr;
3825 struct page *page = NULL;
3827 ret = get_user_pages(tsk, mm, addr, 1,
3828 write, 1, &page, &vma);
3829 if (ret <= 0) {
3831 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3832 * we can access using slightly different code.
3834 #ifdef CONFIG_HAVE_IOREMAP_PROT
3835 vma = find_vma(mm, addr);
3836 if (!vma || vma->vm_start > addr)
3837 break;
3838 if (vma->vm_ops && vma->vm_ops->access)
3839 ret = vma->vm_ops->access(vma, addr, buf,
3840 len, write);
3841 if (ret <= 0)
3842 #endif
3843 break;
3844 bytes = ret;
3845 } else {
3846 bytes = len;
3847 offset = addr & (PAGE_SIZE-1);
3848 if (bytes > PAGE_SIZE-offset)
3849 bytes = PAGE_SIZE-offset;
3851 maddr = kmap(page);
3852 if (write) {
3853 copy_to_user_page(vma, page, addr,
3854 maddr + offset, buf, bytes);
3855 set_page_dirty_lock(page);
3856 } else {
3857 copy_from_user_page(vma, page, addr,
3858 buf, maddr + offset, bytes);
3860 kunmap(page);
3861 page_cache_release(page);
3863 len -= bytes;
3864 buf += bytes;
3865 addr += bytes;
3867 up_read(&mm->mmap_sem);
3869 return buf - old_buf;
3873 * access_remote_vm - access another process' address space
3874 * @mm: the mm_struct of the target address space
3875 * @addr: start address to access
3876 * @buf: source or destination buffer
3877 * @len: number of bytes to transfer
3878 * @write: whether the access is a write
3880 * The caller must hold a reference on @mm.
3882 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3883 void *buf, int len, int write)
3885 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3889 * Access another process' address space.
3890 * Source/target buffer must be kernel space,
3891 * Do not walk the page table directly, use get_user_pages
3893 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3894 void *buf, int len, int write)
3896 struct mm_struct *mm;
3897 int ret;
3899 mm = get_task_mm(tsk);
3900 if (!mm)
3901 return 0;
3903 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3904 mmput(mm);
3906 return ret;
3910 * Print the name of a VMA.
3912 void print_vma_addr(char *prefix, unsigned long ip)
3914 struct mm_struct *mm = current->mm;
3915 struct vm_area_struct *vma;
3918 * Do not print if we are in atomic
3919 * contexts (in exception stacks, etc.):
3921 if (preempt_count())
3922 return;
3924 down_read(&mm->mmap_sem);
3925 vma = find_vma(mm, ip);
3926 if (vma && vma->vm_file) {
3927 struct file *f = vma->vm_file;
3928 char *buf = (char *)__get_free_page(GFP_KERNEL);
3929 if (buf) {
3930 char *p, *s;
3932 p = d_path(&f->f_path, buf, PAGE_SIZE);
3933 if (IS_ERR(p))
3934 p = "?";
3935 s = strrchr(p, '/');
3936 if (s)
3937 p = s+1;
3938 printk("%s%s[%lx+%lx]", prefix, p,
3939 vma->vm_start,
3940 vma->vm_end - vma->vm_start);
3941 free_page((unsigned long)buf);
3944 up_read(&mm->mmap_sem);
3947 #ifdef CONFIG_PROVE_LOCKING
3948 void might_fault(void)
3951 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3952 * holding the mmap_sem, this is safe because kernel memory doesn't
3953 * get paged out, therefore we'll never actually fault, and the
3954 * below annotations will generate false positives.
3956 if (segment_eq(get_fs(), KERNEL_DS))
3957 return;
3959 might_sleep();
3961 * it would be nicer only to annotate paths which are not under
3962 * pagefault_disable, however that requires a larger audit and
3963 * providing helpers like get_user_atomic.
3965 if (!in_atomic() && current->mm)
3966 might_lock_read(&current->mm->mmap_sem);
3968 EXPORT_SYMBOL(might_fault);
3969 #endif
3971 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3972 static void clear_gigantic_page(struct page *page,
3973 unsigned long addr,
3974 unsigned int pages_per_huge_page)
3976 int i;
3977 struct page *p = page;
3979 might_sleep();
3980 for (i = 0; i < pages_per_huge_page;
3981 i++, p = mem_map_next(p, page, i)) {
3982 cond_resched();
3983 clear_user_highpage(p, addr + i * PAGE_SIZE);
3986 void clear_huge_page(struct page *page,
3987 unsigned long addr, unsigned int pages_per_huge_page)
3989 int i;
3991 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3992 clear_gigantic_page(page, addr, pages_per_huge_page);
3993 return;
3996 might_sleep();
3997 for (i = 0; i < pages_per_huge_page; i++) {
3998 cond_resched();
3999 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4003 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4004 unsigned long addr,
4005 struct vm_area_struct *vma,
4006 unsigned int pages_per_huge_page)
4008 int i;
4009 struct page *dst_base = dst;
4010 struct page *src_base = src;
4012 for (i = 0; i < pages_per_huge_page; ) {
4013 cond_resched();
4014 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4016 i++;
4017 dst = mem_map_next(dst, dst_base, i);
4018 src = mem_map_next(src, src_base, i);
4022 void copy_user_huge_page(struct page *dst, struct page *src,
4023 unsigned long addr, struct vm_area_struct *vma,
4024 unsigned int pages_per_huge_page)
4026 int i;
4028 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4029 copy_user_gigantic_page(dst, src, addr, vma,
4030 pages_per_huge_page);
4031 return;
4034 might_sleep();
4035 for (i = 0; i < pages_per_huge_page; i++) {
4036 cond_resched();
4037 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4040 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */