2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm/setup.h>
29 #include <linux/aer.h>
32 const char *pci_power_names
[] = {
33 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
35 EXPORT_SYMBOL_GPL(pci_power_names
);
37 int isa_dma_bridge_buggy
;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
41 EXPORT_SYMBOL(pci_pci_problems
);
43 unsigned int pci_pm_d3_delay
;
45 static void pci_pme_list_scan(struct work_struct
*work
);
47 static LIST_HEAD(pci_pme_list
);
48 static DEFINE_MUTEX(pci_pme_list_mutex
);
49 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
51 struct pci_pme_device
{
52 struct list_head list
;
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
58 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
60 unsigned int delay
= dev
->d3_delay
;
62 if (delay
< pci_pm_d3_delay
)
63 delay
= pci_pm_d3_delay
;
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported
= 1;
72 #define DEFAULT_CARDBUS_IO_SIZE (256)
73 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
76 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
78 #define DEFAULT_HOTPLUG_IO_SIZE (256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
82 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
84 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
87 * The default CLS is used if arch didn't set CLS explicitly and not
88 * all pci devices agree on the same value. Arch can override either
89 * the dfl or actual value as it sees fit. Don't forget this is
90 * measured in 32-bit words, not bytes.
92 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
93 u8 pci_cache_line_size
;
96 * If we set up a device for bus mastering, we need to check the latency
97 * timer as certain BIOSes forget to set it properly.
99 unsigned int pcibios_max_latency
= 255;
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled
;
105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106 * @bus: pointer to PCI bus structure to search
108 * Given a PCI bus, returns the highest PCI bus number present in the set
109 * including the given PCI bus and its list of child PCI buses.
111 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
114 unsigned char max
, n
;
116 max
= bus
->busn_res
.end
;
117 list_for_each_entry(tmp
, &bus
->children
, node
) {
118 n
= pci_bus_max_busnr(tmp
);
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
129 struct resource
*res
= &pdev
->resource
[bar
];
132 * Make sure the BAR is actually a memory resource, not an IO resource
134 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
135 dev_warn(&pdev
->dev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
138 return ioremap_nocache(res
->start
, resource_size(res
));
140 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
142 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
145 * Make sure the BAR is actually a memory resource, not an IO resource
147 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
151 return ioremap_wc(pci_resource_start(pdev
, bar
),
152 pci_resource_len(pdev
, bar
));
154 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
158 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
159 u8 pos
, int cap
, int *ttl
)
164 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
170 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
182 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
185 int ttl
= PCI_FIND_CAP_TTL
;
187 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
190 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
192 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
193 pos
+ PCI_CAP_LIST_NEXT
, cap
);
195 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
197 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
198 unsigned int devfn
, u8 hdr_type
)
202 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
203 if (!(status
& PCI_STATUS_CAP_LIST
))
207 case PCI_HEADER_TYPE_NORMAL
:
208 case PCI_HEADER_TYPE_BRIDGE
:
209 return PCI_CAPABILITY_LIST
;
210 case PCI_HEADER_TYPE_CARDBUS
:
211 return PCI_CB_CAPABILITY_LIST
;
218 * pci_find_capability - query for devices' capabilities
219 * @dev: PCI device to query
220 * @cap: capability code
222 * Tell if a device supports a given PCI capability.
223 * Returns the address of the requested capability structure within the
224 * device's PCI configuration space or 0 in case the device does not
225 * support it. Possible values for @cap:
227 * %PCI_CAP_ID_PM Power Management
228 * %PCI_CAP_ID_AGP Accelerated Graphics Port
229 * %PCI_CAP_ID_VPD Vital Product Data
230 * %PCI_CAP_ID_SLOTID Slot Identification
231 * %PCI_CAP_ID_MSI Message Signalled Interrupts
232 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
233 * %PCI_CAP_ID_PCIX PCI-X
234 * %PCI_CAP_ID_EXP PCI Express
236 int pci_find_capability(struct pci_dev
*dev
, int cap
)
240 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
242 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
246 EXPORT_SYMBOL(pci_find_capability
);
249 * pci_bus_find_capability - query for devices' capabilities
250 * @bus: the PCI bus to query
251 * @devfn: PCI device to query
252 * @cap: capability code
254 * Like pci_find_capability() but works for pci devices that do not have a
255 * pci_dev structure set up yet.
257 * Returns the address of the requested capability structure within the
258 * device's PCI configuration space or 0 in case the device does not
261 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
266 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
268 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
270 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
274 EXPORT_SYMBOL(pci_bus_find_capability
);
277 * pci_find_next_ext_capability - Find an extended capability
278 * @dev: PCI device to query
279 * @start: address at which to start looking (0 to start at beginning of list)
280 * @cap: capability code
282 * Returns the address of the next matching extended capability structure
283 * within the device's PCI configuration space or 0 if the device does
284 * not support it. Some capabilities can occur several times, e.g., the
285 * vendor-specific capability, and this provides a way to find them all.
287 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
291 int pos
= PCI_CFG_SPACE_SIZE
;
293 /* minimum 8 bytes per capability */
294 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
296 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
302 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
306 * If we have no capabilities, this is indicated by cap ID,
307 * cap version and next pointer all being 0.
313 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
316 pos
= PCI_EXT_CAP_NEXT(header
);
317 if (pos
< PCI_CFG_SPACE_SIZE
)
320 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
326 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
329 * pci_find_ext_capability - Find an extended capability
330 * @dev: PCI device to query
331 * @cap: capability code
333 * Returns the address of the requested extended capability structure
334 * within the device's PCI configuration space or 0 if the device does
335 * not support it. Possible values for @cap:
337 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
338 * %PCI_EXT_CAP_ID_VC Virtual Channel
339 * %PCI_EXT_CAP_ID_DSN Device Serial Number
340 * %PCI_EXT_CAP_ID_PWR Power Budgeting
342 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
344 return pci_find_next_ext_capability(dev
, 0, cap
);
346 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
348 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
350 int rc
, ttl
= PCI_FIND_CAP_TTL
;
353 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
354 mask
= HT_3BIT_CAP_MASK
;
356 mask
= HT_5BIT_CAP_MASK
;
358 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
359 PCI_CAP_ID_HT
, &ttl
);
361 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
362 if (rc
!= PCIBIOS_SUCCESSFUL
)
365 if ((cap
& mask
) == ht_cap
)
368 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
369 pos
+ PCI_CAP_LIST_NEXT
,
370 PCI_CAP_ID_HT
, &ttl
);
376 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
377 * @dev: PCI device to query
378 * @pos: Position from which to continue searching
379 * @ht_cap: Hypertransport capability code
381 * To be used in conjunction with pci_find_ht_capability() to search for
382 * all capabilities matching @ht_cap. @pos should always be a value returned
383 * from pci_find_ht_capability().
385 * NB. To be 100% safe against broken PCI devices, the caller should take
386 * steps to avoid an infinite loop.
388 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
390 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
392 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
395 * pci_find_ht_capability - query a device's Hypertransport capabilities
396 * @dev: PCI device to query
397 * @ht_cap: Hypertransport capability code
399 * Tell if a device supports a given Hypertransport capability.
400 * Returns an address within the device's PCI configuration space
401 * or 0 in case the device does not support the request capability.
402 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
403 * which has a Hypertransport capability matching @ht_cap.
405 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
409 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
411 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
415 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
418 * pci_find_parent_resource - return resource region of parent bus of given region
419 * @dev: PCI device structure contains resources to be searched
420 * @res: child resource record for which parent is sought
422 * For given resource region of given device, return the resource
423 * region of parent bus the given region is contained in.
425 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
426 struct resource
*res
)
428 const struct pci_bus
*bus
= dev
->bus
;
432 pci_bus_for_each_resource(bus
, r
, i
) {
435 if (res
->start
&& resource_contains(r
, res
)) {
438 * If the window is prefetchable but the BAR is
439 * not, the allocator made a mistake.
441 if (r
->flags
& IORESOURCE_PREFETCH
&&
442 !(res
->flags
& IORESOURCE_PREFETCH
))
446 * If we're below a transparent bridge, there may
447 * be both a positively-decoded aperture and a
448 * subtractively-decoded region that contain the BAR.
449 * We want the positively-decoded one, so this depends
450 * on pci_bus_for_each_resource() giving us those
458 EXPORT_SYMBOL(pci_find_parent_resource
);
461 * pci_find_pcie_root_port - return PCIe Root Port
462 * @dev: PCI device to query
464 * Traverse up the parent chain and return the PCIe Root Port PCI Device
465 * for a given PCI Device.
467 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
469 struct pci_dev
*bridge
, *highest_pcie_bridge
= NULL
;
471 bridge
= pci_upstream_bridge(dev
);
472 while (bridge
&& pci_is_pcie(bridge
)) {
473 highest_pcie_bridge
= bridge
;
474 bridge
= pci_upstream_bridge(bridge
);
477 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
480 return highest_pcie_bridge
;
482 EXPORT_SYMBOL(pci_find_pcie_root_port
);
485 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
486 * @dev: the PCI device to operate on
487 * @pos: config space offset of status word
488 * @mask: mask of bit(s) to care about in status word
490 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
492 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
496 /* Wait for Transaction Pending bit clean */
497 for (i
= 0; i
< 4; i
++) {
500 msleep((1 << (i
- 1)) * 100);
502 pci_read_config_word(dev
, pos
, &status
);
503 if (!(status
& mask
))
511 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
512 * @dev: PCI device to have its BARs restored
514 * Restore the BAR values for a given device, so as to make it
515 * accessible by its driver.
517 static void pci_restore_bars(struct pci_dev
*dev
)
521 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
525 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
526 pci_update_resource(dev
, i
);
529 static const struct pci_platform_pm_ops
*pci_platform_pm
;
531 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
533 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->choose_state
536 pci_platform_pm
= ops
;
540 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
542 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
545 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
548 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
551 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
553 return pci_platform_pm
?
554 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
557 static inline int platform_pci_sleep_wake(struct pci_dev
*dev
, bool enable
)
559 return pci_platform_pm
?
560 pci_platform_pm
->sleep_wake(dev
, enable
) : -ENODEV
;
563 static inline int platform_pci_run_wake(struct pci_dev
*dev
, bool enable
)
565 return pci_platform_pm
?
566 pci_platform_pm
->run_wake(dev
, enable
) : -ENODEV
;
569 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
571 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
575 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
577 * @dev: PCI device to handle.
578 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
581 * -EINVAL if the requested state is invalid.
582 * -EIO if device does not support PCI PM or its PM capabilities register has a
583 * wrong version, or device doesn't support the requested state.
584 * 0 if device already is in the requested state.
585 * 0 if device's power state has been successfully changed.
587 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
590 bool need_restore
= false;
592 /* Check if we're already there */
593 if (dev
->current_state
== state
)
599 if (state
< PCI_D0
|| state
> PCI_D3hot
)
602 /* Validate current state:
603 * Can enter D0 from any state, but if we can only go deeper
604 * to sleep if we're already in a low power state
606 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
607 && dev
->current_state
> state
) {
608 dev_err(&dev
->dev
, "invalid power transition (from state %d to %d)\n",
609 dev
->current_state
, state
);
613 /* check if this device supports the desired state */
614 if ((state
== PCI_D1
&& !dev
->d1_support
)
615 || (state
== PCI_D2
&& !dev
->d2_support
))
618 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
620 /* If we're (effectively) in D3, force entire word to 0.
621 * This doesn't affect PME_Status, disables PME_En, and
622 * sets PowerState to 0.
624 switch (dev
->current_state
) {
628 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
633 case PCI_UNKNOWN
: /* Boot-up */
634 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
635 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
637 /* Fall-through: force to D0 */
643 /* enter specified state */
644 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
646 /* Mandatory power management transition delays */
647 /* see PCI PM 1.1 5.6.1 table 18 */
648 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
649 pci_dev_d3_sleep(dev
);
650 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
651 udelay(PCI_PM_D2_DELAY
);
653 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
654 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
655 if (dev
->current_state
!= state
&& printk_ratelimit())
656 dev_info(&dev
->dev
, "Refused to change power state, currently in D%d\n",
660 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
661 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
662 * from D3hot to D0 _may_ perform an internal reset, thereby
663 * going to "D0 Uninitialized" rather than "D0 Initialized".
664 * For example, at least some versions of the 3c905B and the
665 * 3c556B exhibit this behaviour.
667 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
668 * devices in a D3hot state at boot. Consequently, we need to
669 * restore at least the BARs so that the device will be
670 * accessible to its driver.
673 pci_restore_bars(dev
);
676 pcie_aspm_pm_state_change(dev
->bus
->self
);
682 * pci_update_current_state - Read PCI power state of given device from its
683 * PCI PM registers and cache it
684 * @dev: PCI device to handle.
685 * @state: State to cache in case the device doesn't have the PM capability
687 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
693 * Configuration space is not accessible for device in
694 * D3cold, so just keep or set D3cold for safety
696 if (dev
->current_state
== PCI_D3cold
)
698 if (state
== PCI_D3cold
) {
699 dev
->current_state
= PCI_D3cold
;
702 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
703 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
705 dev
->current_state
= state
;
710 * pci_power_up - Put the given device into D0 forcibly
711 * @dev: PCI device to power up
713 void pci_power_up(struct pci_dev
*dev
)
715 if (platform_pci_power_manageable(dev
))
716 platform_pci_set_power_state(dev
, PCI_D0
);
718 pci_raw_set_power_state(dev
, PCI_D0
);
719 pci_update_current_state(dev
, PCI_D0
);
723 * pci_platform_power_transition - Use platform to change device power state
724 * @dev: PCI device to handle.
725 * @state: State to put the device into.
727 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
731 if (platform_pci_power_manageable(dev
)) {
732 error
= platform_pci_set_power_state(dev
, state
);
734 pci_update_current_state(dev
, state
);
738 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
739 dev
->current_state
= PCI_D0
;
745 * pci_wakeup - Wake up a PCI device
746 * @pci_dev: Device to handle.
747 * @ign: ignored parameter
749 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
751 pci_wakeup_event(pci_dev
);
752 pm_request_resume(&pci_dev
->dev
);
757 * pci_wakeup_bus - Walk given bus and wake up devices on it
758 * @bus: Top bus of the subtree to walk.
760 static void pci_wakeup_bus(struct pci_bus
*bus
)
763 pci_walk_bus(bus
, pci_wakeup
, NULL
);
767 * __pci_start_power_transition - Start power transition of a PCI device
768 * @dev: PCI device to handle.
769 * @state: State to put the device into.
771 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
773 if (state
== PCI_D0
) {
774 pci_platform_power_transition(dev
, PCI_D0
);
776 * Mandatory power management transition delays, see
777 * PCI Express Base Specification Revision 2.0 Section
778 * 6.6.1: Conventional Reset. Do not delay for
779 * devices powered on/off by corresponding bridge,
780 * because have already delayed for the bridge.
782 if (dev
->runtime_d3cold
) {
783 msleep(dev
->d3cold_delay
);
785 * When powering on a bridge from D3cold, the
786 * whole hierarchy may be powered on into
787 * D0uninitialized state, resume them to give
788 * them a chance to suspend again
790 pci_wakeup_bus(dev
->subordinate
);
796 * __pci_dev_set_current_state - Set current state of a PCI device
797 * @dev: Device to handle
798 * @data: pointer to state to be set
800 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
802 pci_power_t state
= *(pci_power_t
*)data
;
804 dev
->current_state
= state
;
809 * __pci_bus_set_current_state - Walk given bus and set current state of devices
810 * @bus: Top bus of the subtree to walk.
811 * @state: state to be set
813 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
816 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
820 * __pci_complete_power_transition - Complete power transition of a PCI device
821 * @dev: PCI device to handle.
822 * @state: State to put the device into.
824 * This function should not be called directly by device drivers.
826 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
832 ret
= pci_platform_power_transition(dev
, state
);
833 /* Power off the bridge may power off the whole hierarchy */
834 if (!ret
&& state
== PCI_D3cold
)
835 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
838 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
841 * pci_set_power_state - Set the power state of a PCI device
842 * @dev: PCI device to handle.
843 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
845 * Transition a device to a new power state, using the platform firmware and/or
846 * the device's PCI PM registers.
849 * -EINVAL if the requested state is invalid.
850 * -EIO if device does not support PCI PM or its PM capabilities register has a
851 * wrong version, or device doesn't support the requested state.
852 * 0 if device already is in the requested state.
853 * 0 if device's power state has been successfully changed.
855 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
859 /* bound the state we're entering */
860 if (state
> PCI_D3cold
)
862 else if (state
< PCI_D0
)
864 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
866 * If the device or the parent bridge do not support PCI PM,
867 * ignore the request if we're doing anything other than putting
868 * it into D0 (which would only happen on boot).
872 /* Check if we're already there */
873 if (dev
->current_state
== state
)
876 __pci_start_power_transition(dev
, state
);
878 /* This device is quirked not to be put into D3, so
879 don't put it in D3 */
880 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
884 * To put device in D3cold, we put device into D3hot in native
885 * way, then put device into D3cold with platform ops
887 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
890 if (!__pci_complete_power_transition(dev
, state
))
895 EXPORT_SYMBOL(pci_set_power_state
);
898 * pci_choose_state - Choose the power state of a PCI device
899 * @dev: PCI device to be suspended
900 * @state: target sleep state for the whole system. This is the value
901 * that is passed to suspend() function.
903 * Returns PCI power state suitable for given device and given system
907 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
914 ret
= platform_pci_choose_state(dev
);
915 if (ret
!= PCI_POWER_ERROR
)
918 switch (state
.event
) {
921 case PM_EVENT_FREEZE
:
922 case PM_EVENT_PRETHAW
:
923 /* REVISIT both freeze and pre-thaw "should" use D0 */
924 case PM_EVENT_SUSPEND
:
925 case PM_EVENT_HIBERNATE
:
928 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
934 EXPORT_SYMBOL(pci_choose_state
);
936 #define PCI_EXP_SAVE_REGS 7
938 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
939 u16 cap
, bool extended
)
941 struct pci_cap_saved_state
*tmp
;
943 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
944 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
950 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
952 return _pci_find_saved_cap(dev
, cap
, false);
955 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
957 return _pci_find_saved_cap(dev
, cap
, true);
960 static int pci_save_pcie_state(struct pci_dev
*dev
)
963 struct pci_cap_saved_state
*save_state
;
966 if (!pci_is_pcie(dev
))
969 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
971 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
975 cap
= (u16
*)&save_state
->cap
.data
[0];
976 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
977 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
978 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
979 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
980 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
981 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
982 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
987 static void pci_restore_pcie_state(struct pci_dev
*dev
)
990 struct pci_cap_saved_state
*save_state
;
993 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
997 cap
= (u16
*)&save_state
->cap
.data
[0];
998 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
999 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1000 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1001 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1002 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1003 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1004 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1008 static int pci_save_pcix_state(struct pci_dev
*dev
)
1011 struct pci_cap_saved_state
*save_state
;
1013 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1017 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1019 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
1023 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1024 (u16
*)save_state
->cap
.data
);
1029 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1032 struct pci_cap_saved_state
*save_state
;
1035 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1036 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1037 if (!save_state
|| !pos
)
1039 cap
= (u16
*)&save_state
->cap
.data
[0];
1041 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1046 * pci_save_state - save the PCI configuration space of a device before suspending
1047 * @dev: - PCI device that we're dealing with
1049 int pci_save_state(struct pci_dev
*dev
)
1052 /* XXX: 100% dword access ok here? */
1053 for (i
= 0; i
< 16; i
++)
1054 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1055 dev
->state_saved
= true;
1057 i
= pci_save_pcie_state(dev
);
1061 i
= pci_save_pcix_state(dev
);
1065 return pci_save_vc_state(dev
);
1067 EXPORT_SYMBOL(pci_save_state
);
1069 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1070 u32 saved_val
, int retry
)
1074 pci_read_config_dword(pdev
, offset
, &val
);
1075 if (val
== saved_val
)
1079 dev_dbg(&pdev
->dev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1080 offset
, val
, saved_val
);
1081 pci_write_config_dword(pdev
, offset
, saved_val
);
1085 pci_read_config_dword(pdev
, offset
, &val
);
1086 if (val
== saved_val
)
1093 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1094 int start
, int end
, int retry
)
1098 for (index
= end
; index
>= start
; index
--)
1099 pci_restore_config_dword(pdev
, 4 * index
,
1100 pdev
->saved_config_space
[index
],
1104 static void pci_restore_config_space(struct pci_dev
*pdev
)
1106 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1107 pci_restore_config_space_range(pdev
, 10, 15, 0);
1108 /* Restore BARs before the command register. */
1109 pci_restore_config_space_range(pdev
, 4, 9, 10);
1110 pci_restore_config_space_range(pdev
, 0, 3, 0);
1112 pci_restore_config_space_range(pdev
, 0, 15, 0);
1117 * pci_restore_state - Restore the saved state of a PCI device
1118 * @dev: - PCI device that we're dealing with
1120 void pci_restore_state(struct pci_dev
*dev
)
1122 if (!dev
->state_saved
)
1125 /* PCI Express register must be restored first */
1126 pci_restore_pcie_state(dev
);
1127 pci_restore_ats_state(dev
);
1128 pci_restore_vc_state(dev
);
1130 pci_cleanup_aer_error_status_regs(dev
);
1132 pci_restore_config_space(dev
);
1134 pci_restore_pcix_state(dev
);
1135 pci_restore_msi_state(dev
);
1137 /* Restore ACS and IOV configuration state */
1138 pci_enable_acs(dev
);
1139 pci_restore_iov_state(dev
);
1141 dev
->state_saved
= false;
1143 EXPORT_SYMBOL(pci_restore_state
);
1145 struct pci_saved_state
{
1146 u32 config_space
[16];
1147 struct pci_cap_saved_data cap
[0];
1151 * pci_store_saved_state - Allocate and return an opaque struct containing
1152 * the device saved state.
1153 * @dev: PCI device that we're dealing with
1155 * Return NULL if no state or error.
1157 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1159 struct pci_saved_state
*state
;
1160 struct pci_cap_saved_state
*tmp
;
1161 struct pci_cap_saved_data
*cap
;
1164 if (!dev
->state_saved
)
1167 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1169 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1170 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1172 state
= kzalloc(size
, GFP_KERNEL
);
1176 memcpy(state
->config_space
, dev
->saved_config_space
,
1177 sizeof(state
->config_space
));
1180 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1181 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1182 memcpy(cap
, &tmp
->cap
, len
);
1183 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1185 /* Empty cap_save terminates list */
1189 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1192 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1193 * @dev: PCI device that we're dealing with
1194 * @state: Saved state returned from pci_store_saved_state()
1196 int pci_load_saved_state(struct pci_dev
*dev
,
1197 struct pci_saved_state
*state
)
1199 struct pci_cap_saved_data
*cap
;
1201 dev
->state_saved
= false;
1206 memcpy(dev
->saved_config_space
, state
->config_space
,
1207 sizeof(state
->config_space
));
1211 struct pci_cap_saved_state
*tmp
;
1213 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1214 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1217 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1218 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1219 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1222 dev
->state_saved
= true;
1225 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1228 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1229 * and free the memory allocated for it.
1230 * @dev: PCI device that we're dealing with
1231 * @state: Pointer to saved state returned from pci_store_saved_state()
1233 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1234 struct pci_saved_state
**state
)
1236 int ret
= pci_load_saved_state(dev
, *state
);
1241 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1243 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1245 return pci_enable_resources(dev
, bars
);
1248 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1251 struct pci_dev
*bridge
;
1255 err
= pci_set_power_state(dev
, PCI_D0
);
1256 if (err
< 0 && err
!= -EIO
)
1259 bridge
= pci_upstream_bridge(dev
);
1261 pcie_aspm_powersave_config_link(bridge
);
1263 err
= pcibios_enable_device(dev
, bars
);
1266 pci_fixup_device(pci_fixup_enable
, dev
);
1268 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1271 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1273 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1274 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1275 pci_write_config_word(dev
, PCI_COMMAND
,
1276 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1283 * pci_reenable_device - Resume abandoned device
1284 * @dev: PCI device to be resumed
1286 * Note this function is a backend of pci_default_resume and is not supposed
1287 * to be called by normal code, write proper resume handler and use it instead.
1289 int pci_reenable_device(struct pci_dev
*dev
)
1291 if (pci_is_enabled(dev
))
1292 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1295 EXPORT_SYMBOL(pci_reenable_device
);
1297 static void pci_enable_bridge(struct pci_dev
*dev
)
1299 struct pci_dev
*bridge
;
1302 bridge
= pci_upstream_bridge(dev
);
1304 pci_enable_bridge(bridge
);
1306 if (pci_is_enabled(dev
)) {
1307 if (!dev
->is_busmaster
)
1308 pci_set_master(dev
);
1312 retval
= pci_enable_device(dev
);
1314 dev_err(&dev
->dev
, "Error enabling bridge (%d), continuing\n",
1316 pci_set_master(dev
);
1319 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1321 struct pci_dev
*bridge
;
1326 * Power state could be unknown at this point, either due to a fresh
1327 * boot or a device removal call. So get the current power state
1328 * so that things like MSI message writing will behave as expected
1329 * (e.g. if the device really is in D0 at enable time).
1333 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1334 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1337 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1338 return 0; /* already enabled */
1340 bridge
= pci_upstream_bridge(dev
);
1342 pci_enable_bridge(bridge
);
1344 /* only skip sriov related */
1345 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1346 if (dev
->resource
[i
].flags
& flags
)
1348 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1349 if (dev
->resource
[i
].flags
& flags
)
1352 err
= do_pci_enable_device(dev
, bars
);
1354 atomic_dec(&dev
->enable_cnt
);
1359 * pci_enable_device_io - Initialize a device for use with IO space
1360 * @dev: PCI device to be initialized
1362 * Initialize device before it's used by a driver. Ask low-level code
1363 * to enable I/O resources. Wake up the device if it was suspended.
1364 * Beware, this function can fail.
1366 int pci_enable_device_io(struct pci_dev
*dev
)
1368 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1370 EXPORT_SYMBOL(pci_enable_device_io
);
1373 * pci_enable_device_mem - Initialize a device for use with Memory space
1374 * @dev: PCI device to be initialized
1376 * Initialize device before it's used by a driver. Ask low-level code
1377 * to enable Memory resources. Wake up the device if it was suspended.
1378 * Beware, this function can fail.
1380 int pci_enable_device_mem(struct pci_dev
*dev
)
1382 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1384 EXPORT_SYMBOL(pci_enable_device_mem
);
1387 * pci_enable_device - Initialize device before it's used by a driver.
1388 * @dev: PCI device to be initialized
1390 * Initialize device before it's used by a driver. Ask low-level code
1391 * to enable I/O and memory. Wake up the device if it was suspended.
1392 * Beware, this function can fail.
1394 * Note we don't actually enable the device many times if we call
1395 * this function repeatedly (we just increment the count).
1397 int pci_enable_device(struct pci_dev
*dev
)
1399 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1401 EXPORT_SYMBOL(pci_enable_device
);
1404 * Managed PCI resources. This manages device on/off, intx/msi/msix
1405 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1406 * there's no need to track it separately. pci_devres is initialized
1407 * when a device is enabled using managed PCI device enable interface.
1410 unsigned int enabled
:1;
1411 unsigned int pinned
:1;
1412 unsigned int orig_intx
:1;
1413 unsigned int restore_intx
:1;
1417 static void pcim_release(struct device
*gendev
, void *res
)
1419 struct pci_dev
*dev
= to_pci_dev(gendev
);
1420 struct pci_devres
*this = res
;
1423 if (dev
->msi_enabled
)
1424 pci_disable_msi(dev
);
1425 if (dev
->msix_enabled
)
1426 pci_disable_msix(dev
);
1428 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1429 if (this->region_mask
& (1 << i
))
1430 pci_release_region(dev
, i
);
1432 if (this->restore_intx
)
1433 pci_intx(dev
, this->orig_intx
);
1435 if (this->enabled
&& !this->pinned
)
1436 pci_disable_device(dev
);
1439 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1441 struct pci_devres
*dr
, *new_dr
;
1443 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1447 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1450 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1453 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1455 if (pci_is_managed(pdev
))
1456 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1461 * pcim_enable_device - Managed pci_enable_device()
1462 * @pdev: PCI device to be initialized
1464 * Managed pci_enable_device().
1466 int pcim_enable_device(struct pci_dev
*pdev
)
1468 struct pci_devres
*dr
;
1471 dr
= get_pci_dr(pdev
);
1477 rc
= pci_enable_device(pdev
);
1479 pdev
->is_managed
= 1;
1484 EXPORT_SYMBOL(pcim_enable_device
);
1487 * pcim_pin_device - Pin managed PCI device
1488 * @pdev: PCI device to pin
1490 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1491 * driver detach. @pdev must have been enabled with
1492 * pcim_enable_device().
1494 void pcim_pin_device(struct pci_dev
*pdev
)
1496 struct pci_devres
*dr
;
1498 dr
= find_pci_dr(pdev
);
1499 WARN_ON(!dr
|| !dr
->enabled
);
1503 EXPORT_SYMBOL(pcim_pin_device
);
1506 * pcibios_add_device - provide arch specific hooks when adding device dev
1507 * @dev: the PCI device being added
1509 * Permits the platform to provide architecture specific functionality when
1510 * devices are added. This is the default implementation. Architecture
1511 * implementations can override this.
1513 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1519 * pcibios_release_device - provide arch specific hooks when releasing device dev
1520 * @dev: the PCI device being released
1522 * Permits the platform to provide architecture specific functionality when
1523 * devices are released. This is the default implementation. Architecture
1524 * implementations can override this.
1526 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1529 * pcibios_disable_device - disable arch specific PCI resources for device dev
1530 * @dev: the PCI device to disable
1532 * Disables architecture specific PCI resources for the device. This
1533 * is the default implementation. Architecture implementations can
1536 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1539 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1540 * @irq: ISA IRQ to penalize
1541 * @active: IRQ active or not
1543 * Permits the platform to provide architecture-specific functionality when
1544 * penalizing ISA IRQs. This is the default implementation. Architecture
1545 * implementations can override this.
1547 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1549 static void do_pci_disable_device(struct pci_dev
*dev
)
1553 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1554 if (pci_command
& PCI_COMMAND_MASTER
) {
1555 pci_command
&= ~PCI_COMMAND_MASTER
;
1556 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1559 pcibios_disable_device(dev
);
1563 * pci_disable_enabled_device - Disable device without updating enable_cnt
1564 * @dev: PCI device to disable
1566 * NOTE: This function is a backend of PCI power management routines and is
1567 * not supposed to be called drivers.
1569 void pci_disable_enabled_device(struct pci_dev
*dev
)
1571 if (pci_is_enabled(dev
))
1572 do_pci_disable_device(dev
);
1576 * pci_disable_device - Disable PCI device after use
1577 * @dev: PCI device to be disabled
1579 * Signal to the system that the PCI device is not in use by the system
1580 * anymore. This only involves disabling PCI bus-mastering, if active.
1582 * Note we don't actually disable the device until all callers of
1583 * pci_enable_device() have called pci_disable_device().
1585 void pci_disable_device(struct pci_dev
*dev
)
1587 struct pci_devres
*dr
;
1589 dr
= find_pci_dr(dev
);
1593 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1594 "disabling already-disabled device");
1596 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1599 do_pci_disable_device(dev
);
1601 dev
->is_busmaster
= 0;
1603 EXPORT_SYMBOL(pci_disable_device
);
1606 * pcibios_set_pcie_reset_state - set reset state for device dev
1607 * @dev: the PCIe device reset
1608 * @state: Reset state to enter into
1611 * Sets the PCIe reset state for the device. This is the default
1612 * implementation. Architecture implementations can override this.
1614 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1615 enum pcie_reset_state state
)
1621 * pci_set_pcie_reset_state - set reset state for device dev
1622 * @dev: the PCIe device reset
1623 * @state: Reset state to enter into
1626 * Sets the PCI reset state for the device.
1628 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1630 return pcibios_set_pcie_reset_state(dev
, state
);
1632 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1635 * pci_check_pme_status - Check if given device has generated PME.
1636 * @dev: Device to check.
1638 * Check the PME status of the device and if set, clear it and clear PME enable
1639 * (if set). Return 'true' if PME status and PME enable were both set or
1640 * 'false' otherwise.
1642 bool pci_check_pme_status(struct pci_dev
*dev
)
1651 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1652 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1653 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1656 /* Clear PME status. */
1657 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1658 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1659 /* Disable PME to avoid interrupt flood. */
1660 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1664 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1670 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1671 * @dev: Device to handle.
1672 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1674 * Check if @dev has generated PME and queue a resume request for it in that
1677 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1679 if (pme_poll_reset
&& dev
->pme_poll
)
1680 dev
->pme_poll
= false;
1682 if (pci_check_pme_status(dev
)) {
1683 pci_wakeup_event(dev
);
1684 pm_request_resume(&dev
->dev
);
1690 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1691 * @bus: Top bus of the subtree to walk.
1693 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1696 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1701 * pci_pme_capable - check the capability of PCI device to generate PME#
1702 * @dev: PCI device to handle.
1703 * @state: PCI state from which device will issue PME#.
1705 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1710 return !!(dev
->pme_support
& (1 << state
));
1712 EXPORT_SYMBOL(pci_pme_capable
);
1714 static void pci_pme_list_scan(struct work_struct
*work
)
1716 struct pci_pme_device
*pme_dev
, *n
;
1718 mutex_lock(&pci_pme_list_mutex
);
1719 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1720 if (pme_dev
->dev
->pme_poll
) {
1721 struct pci_dev
*bridge
;
1723 bridge
= pme_dev
->dev
->bus
->self
;
1725 * If bridge is in low power state, the
1726 * configuration space of subordinate devices
1727 * may be not accessible
1729 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1731 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1733 list_del(&pme_dev
->list
);
1737 if (!list_empty(&pci_pme_list
))
1738 schedule_delayed_work(&pci_pme_work
,
1739 msecs_to_jiffies(PME_TIMEOUT
));
1740 mutex_unlock(&pci_pme_list_mutex
);
1743 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
1747 if (!dev
->pme_support
)
1750 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1751 /* Clear PME_Status by writing 1 to it and enable PME# */
1752 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1754 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1756 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1760 * pci_pme_active - enable or disable PCI device's PME# function
1761 * @dev: PCI device to handle.
1762 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1764 * The caller must verify that the device is capable of generating PME# before
1765 * calling this function with @enable equal to 'true'.
1767 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1769 __pci_pme_active(dev
, enable
);
1772 * PCI (as opposed to PCIe) PME requires that the device have
1773 * its PME# line hooked up correctly. Not all hardware vendors
1774 * do this, so the PME never gets delivered and the device
1775 * remains asleep. The easiest way around this is to
1776 * periodically walk the list of suspended devices and check
1777 * whether any have their PME flag set. The assumption is that
1778 * we'll wake up often enough anyway that this won't be a huge
1779 * hit, and the power savings from the devices will still be a
1782 * Although PCIe uses in-band PME message instead of PME# line
1783 * to report PME, PME does not work for some PCIe devices in
1784 * reality. For example, there are devices that set their PME
1785 * status bits, but don't really bother to send a PME message;
1786 * there are PCI Express Root Ports that don't bother to
1787 * trigger interrupts when they receive PME messages from the
1788 * devices below. So PME poll is used for PCIe devices too.
1791 if (dev
->pme_poll
) {
1792 struct pci_pme_device
*pme_dev
;
1794 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1797 dev_warn(&dev
->dev
, "can't enable PME#\n");
1801 mutex_lock(&pci_pme_list_mutex
);
1802 list_add(&pme_dev
->list
, &pci_pme_list
);
1803 if (list_is_singular(&pci_pme_list
))
1804 schedule_delayed_work(&pci_pme_work
,
1805 msecs_to_jiffies(PME_TIMEOUT
));
1806 mutex_unlock(&pci_pme_list_mutex
);
1808 mutex_lock(&pci_pme_list_mutex
);
1809 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1810 if (pme_dev
->dev
== dev
) {
1811 list_del(&pme_dev
->list
);
1816 mutex_unlock(&pci_pme_list_mutex
);
1820 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1822 EXPORT_SYMBOL(pci_pme_active
);
1825 * __pci_enable_wake - enable PCI device as wakeup event source
1826 * @dev: PCI device affected
1827 * @state: PCI state from which device will issue wakeup events
1828 * @runtime: True if the events are to be generated at run time
1829 * @enable: True to enable event generation; false to disable
1831 * This enables the device as a wakeup event source, or disables it.
1832 * When such events involves platform-specific hooks, those hooks are
1833 * called automatically by this routine.
1835 * Devices with legacy power management (no standard PCI PM capabilities)
1836 * always require such platform hooks.
1839 * 0 is returned on success
1840 * -EINVAL is returned if device is not supposed to wake up the system
1841 * Error code depending on the platform is returned if both the platform and
1842 * the native mechanism fail to enable the generation of wake-up events
1844 int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
,
1845 bool runtime
, bool enable
)
1849 if (enable
&& !runtime
&& !device_may_wakeup(&dev
->dev
))
1852 /* Don't do the same thing twice in a row for one device. */
1853 if (!!enable
== !!dev
->wakeup_prepared
)
1857 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1858 * Anderson we should be doing PME# wake enable followed by ACPI wake
1859 * enable. To disable wake-up we call the platform first, for symmetry.
1865 if (pci_pme_capable(dev
, state
))
1866 pci_pme_active(dev
, true);
1869 error
= runtime
? platform_pci_run_wake(dev
, true) :
1870 platform_pci_sleep_wake(dev
, true);
1874 dev
->wakeup_prepared
= true;
1877 platform_pci_run_wake(dev
, false);
1879 platform_pci_sleep_wake(dev
, false);
1880 pci_pme_active(dev
, false);
1881 dev
->wakeup_prepared
= false;
1886 EXPORT_SYMBOL(__pci_enable_wake
);
1889 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1890 * @dev: PCI device to prepare
1891 * @enable: True to enable wake-up event generation; false to disable
1893 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1894 * and this function allows them to set that up cleanly - pci_enable_wake()
1895 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1896 * ordering constraints.
1898 * This function only returns error code if the device is not capable of
1899 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1900 * enable wake-up power for it.
1902 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1904 return pci_pme_capable(dev
, PCI_D3cold
) ?
1905 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1906 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1908 EXPORT_SYMBOL(pci_wake_from_d3
);
1911 * pci_target_state - find an appropriate low power state for a given PCI dev
1914 * Use underlying platform code to find a supported low power state for @dev.
1915 * If the platform can't manage @dev, return the deepest state from which it
1916 * can generate wake events, based on any available PME info.
1918 static pci_power_t
pci_target_state(struct pci_dev
*dev
)
1920 pci_power_t target_state
= PCI_D3hot
;
1922 if (platform_pci_power_manageable(dev
)) {
1924 * Call the platform to choose the target state of the device
1925 * and enable wake-up from this state if supported.
1927 pci_power_t state
= platform_pci_choose_state(dev
);
1930 case PCI_POWER_ERROR
:
1935 if (pci_no_d1d2(dev
))
1938 target_state
= state
;
1940 } else if (!dev
->pm_cap
) {
1941 target_state
= PCI_D0
;
1942 } else if (device_may_wakeup(&dev
->dev
)) {
1944 * Find the deepest state from which the device can generate
1945 * wake-up events, make it the target state and enable device
1948 if (dev
->pme_support
) {
1950 && !(dev
->pme_support
& (1 << target_state
)))
1955 return target_state
;
1959 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1960 * @dev: Device to handle.
1962 * Choose the power state appropriate for the device depending on whether
1963 * it can wake up the system and/or is power manageable by the platform
1964 * (PCI_D3hot is the default) and put the device into that state.
1966 int pci_prepare_to_sleep(struct pci_dev
*dev
)
1968 pci_power_t target_state
= pci_target_state(dev
);
1971 if (target_state
== PCI_POWER_ERROR
)
1974 pci_enable_wake(dev
, target_state
, device_may_wakeup(&dev
->dev
));
1976 error
= pci_set_power_state(dev
, target_state
);
1979 pci_enable_wake(dev
, target_state
, false);
1983 EXPORT_SYMBOL(pci_prepare_to_sleep
);
1986 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1987 * @dev: Device to handle.
1989 * Disable device's system wake-up capability and put it into D0.
1991 int pci_back_from_sleep(struct pci_dev
*dev
)
1993 pci_enable_wake(dev
, PCI_D0
, false);
1994 return pci_set_power_state(dev
, PCI_D0
);
1996 EXPORT_SYMBOL(pci_back_from_sleep
);
1999 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2000 * @dev: PCI device being suspended.
2002 * Prepare @dev to generate wake-up events at run time and put it into a low
2005 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2007 pci_power_t target_state
= pci_target_state(dev
);
2010 if (target_state
== PCI_POWER_ERROR
)
2013 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2015 __pci_enable_wake(dev
, target_state
, true, pci_dev_run_wake(dev
));
2017 error
= pci_set_power_state(dev
, target_state
);
2020 __pci_enable_wake(dev
, target_state
, true, false);
2021 dev
->runtime_d3cold
= false;
2028 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2029 * @dev: Device to check.
2031 * Return true if the device itself is capable of generating wake-up events
2032 * (through the platform or using the native PCIe PME) or if the device supports
2033 * PME and one of its upstream bridges can generate wake-up events.
2035 bool pci_dev_run_wake(struct pci_dev
*dev
)
2037 struct pci_bus
*bus
= dev
->bus
;
2039 if (device_run_wake(&dev
->dev
))
2042 if (!dev
->pme_support
)
2045 while (bus
->parent
) {
2046 struct pci_dev
*bridge
= bus
->self
;
2048 if (device_run_wake(&bridge
->dev
))
2054 /* We have reached the root bus. */
2056 return device_run_wake(bus
->bridge
);
2060 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2063 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2064 * @pci_dev: Device to check.
2066 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2067 * reconfigured due to wakeup settings difference between system and runtime
2068 * suspend and the current power state of it is suitable for the upcoming
2069 * (system) transition.
2071 * If the device is not configured for system wakeup, disable PME for it before
2072 * returning 'true' to prevent it from waking up the system unnecessarily.
2074 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2076 struct device
*dev
= &pci_dev
->dev
;
2078 if (!pm_runtime_suspended(dev
)
2079 || pci_target_state(pci_dev
) != pci_dev
->current_state
2080 || platform_pci_need_resume(pci_dev
))
2084 * At this point the device is good to go unless it's been configured
2085 * to generate PME at the runtime suspend time, but it is not supposed
2086 * to wake up the system. In that case, simply disable PME for it
2087 * (it will have to be re-enabled on exit from system resume).
2089 * If the device's power state is D3cold and the platform check above
2090 * hasn't triggered, the device's configuration is suitable and we don't
2091 * need to manipulate it at all.
2093 spin_lock_irq(&dev
->power
.lock
);
2095 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
&&
2096 !device_may_wakeup(dev
))
2097 __pci_pme_active(pci_dev
, false);
2099 spin_unlock_irq(&dev
->power
.lock
);
2104 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2105 * @pci_dev: Device to handle.
2107 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2108 * it might have been disabled during the prepare phase of system suspend if
2109 * the device was not configured for system wakeup.
2111 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2113 struct device
*dev
= &pci_dev
->dev
;
2115 if (!pci_dev_run_wake(pci_dev
))
2118 spin_lock_irq(&dev
->power
.lock
);
2120 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2121 __pci_pme_active(pci_dev
, true);
2123 spin_unlock_irq(&dev
->power
.lock
);
2126 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2128 struct device
*dev
= &pdev
->dev
;
2129 struct device
*parent
= dev
->parent
;
2132 pm_runtime_get_sync(parent
);
2133 pm_runtime_get_noresume(dev
);
2135 * pdev->current_state is set to PCI_D3cold during suspending,
2136 * so wait until suspending completes
2138 pm_runtime_barrier(dev
);
2140 * Only need to resume devices in D3cold, because config
2141 * registers are still accessible for devices suspended but
2144 if (pdev
->current_state
== PCI_D3cold
)
2145 pm_runtime_resume(dev
);
2148 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2150 struct device
*dev
= &pdev
->dev
;
2151 struct device
*parent
= dev
->parent
;
2153 pm_runtime_put(dev
);
2155 pm_runtime_put_sync(parent
);
2159 * pci_pm_init - Initialize PM functions of given PCI device
2160 * @dev: PCI device to handle.
2162 void pci_pm_init(struct pci_dev
*dev
)
2167 pm_runtime_forbid(&dev
->dev
);
2168 pm_runtime_set_active(&dev
->dev
);
2169 pm_runtime_enable(&dev
->dev
);
2170 device_enable_async_suspend(&dev
->dev
);
2171 dev
->wakeup_prepared
= false;
2174 dev
->pme_support
= 0;
2176 /* find PCI PM capability in list */
2177 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2180 /* Check device's ability to generate PME# */
2181 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2183 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2184 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
2185 pmc
& PCI_PM_CAP_VER_MASK
);
2190 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2191 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2192 dev
->d3cold_allowed
= true;
2194 dev
->d1_support
= false;
2195 dev
->d2_support
= false;
2196 if (!pci_no_d1d2(dev
)) {
2197 if (pmc
& PCI_PM_CAP_D1
)
2198 dev
->d1_support
= true;
2199 if (pmc
& PCI_PM_CAP_D2
)
2200 dev
->d2_support
= true;
2202 if (dev
->d1_support
|| dev
->d2_support
)
2203 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
2204 dev
->d1_support
? " D1" : "",
2205 dev
->d2_support
? " D2" : "");
2208 pmc
&= PCI_PM_CAP_PME_MASK
;
2210 dev_printk(KERN_DEBUG
, &dev
->dev
,
2211 "PME# supported from%s%s%s%s%s\n",
2212 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2213 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2214 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2215 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2216 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2217 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2218 dev
->pme_poll
= true;
2220 * Make device's PM flags reflect the wake-up capability, but
2221 * let the user space enable it to wake up the system as needed.
2223 device_set_wakeup_capable(&dev
->dev
, true);
2224 /* Disable the PME# generation functionality */
2225 pci_pme_active(dev
, false);
2229 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2231 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
2235 case PCI_EA_P_VF_MEM
:
2236 flags
|= IORESOURCE_MEM
;
2238 case PCI_EA_P_MEM_PREFETCH
:
2239 case PCI_EA_P_VF_MEM_PREFETCH
:
2240 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2243 flags
|= IORESOURCE_IO
;
2252 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2255 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2256 return &dev
->resource
[bei
];
2257 #ifdef CONFIG_PCI_IOV
2258 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2259 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2260 return &dev
->resource
[PCI_IOV_RESOURCES
+
2261 bei
- PCI_EA_BEI_VF_BAR0
];
2263 else if (bei
== PCI_EA_BEI_ROM
)
2264 return &dev
->resource
[PCI_ROM_RESOURCE
];
2269 /* Read an Enhanced Allocation (EA) entry */
2270 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2272 struct resource
*res
;
2273 int ent_size
, ent_offset
= offset
;
2274 resource_size_t start
, end
;
2275 unsigned long flags
;
2276 u32 dw0
, bei
, base
, max_offset
;
2278 bool support_64
= (sizeof(resource_size_t
) >= 8);
2280 pci_read_config_dword(dev
, ent_offset
, &dw0
);
2283 /* Entry size field indicates DWORDs after 1st */
2284 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
2286 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
2289 bei
= (dw0
& PCI_EA_BEI
) >> 4;
2290 prop
= (dw0
& PCI_EA_PP
) >> 8;
2293 * If the Property is in the reserved range, try the Secondary
2296 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
2297 prop
= (dw0
& PCI_EA_SP
) >> 16;
2298 if (prop
> PCI_EA_P_BRIDGE_IO
)
2301 res
= pci_ea_get_resource(dev
, bei
, prop
);
2303 dev_err(&dev
->dev
, "Unsupported EA entry BEI: %u\n", bei
);
2307 flags
= pci_ea_flags(dev
, prop
);
2309 dev_err(&dev
->dev
, "Unsupported EA properties: %#x\n", prop
);
2314 pci_read_config_dword(dev
, ent_offset
, &base
);
2315 start
= (base
& PCI_EA_FIELD_MASK
);
2318 /* Read MaxOffset */
2319 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
2322 /* Read Base MSBs (if 64-bit entry) */
2323 if (base
& PCI_EA_IS_64
) {
2326 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
2329 flags
|= IORESOURCE_MEM_64
;
2331 /* entry starts above 32-bit boundary, can't use */
2332 if (!support_64
&& base_upper
)
2336 start
|= ((u64
)base_upper
<< 32);
2339 end
= start
+ (max_offset
| 0x03);
2341 /* Read MaxOffset MSBs (if 64-bit entry) */
2342 if (max_offset
& PCI_EA_IS_64
) {
2343 u32 max_offset_upper
;
2345 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
2348 flags
|= IORESOURCE_MEM_64
;
2350 /* entry too big, can't use */
2351 if (!support_64
&& max_offset_upper
)
2355 end
+= ((u64
)max_offset_upper
<< 32);
2359 dev_err(&dev
->dev
, "EA Entry crosses address boundary\n");
2363 if (ent_size
!= ent_offset
- offset
) {
2365 "EA Entry Size (%d) does not match length read (%d)\n",
2366 ent_size
, ent_offset
- offset
);
2370 res
->name
= pci_name(dev
);
2375 if (bei
<= PCI_EA_BEI_BAR5
)
2376 dev_printk(KERN_DEBUG
, &dev
->dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2378 else if (bei
== PCI_EA_BEI_ROM
)
2379 dev_printk(KERN_DEBUG
, &dev
->dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2381 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
2382 dev_printk(KERN_DEBUG
, &dev
->dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2383 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
2385 dev_printk(KERN_DEBUG
, &dev
->dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2389 return offset
+ ent_size
;
2392 /* Enhanced Allocation Initialization */
2393 void pci_ea_init(struct pci_dev
*dev
)
2400 /* find PCI EA capability in list */
2401 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
2405 /* determine the number of entries */
2406 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
2408 num_ent
&= PCI_EA_NUM_ENT_MASK
;
2410 offset
= ea
+ PCI_EA_FIRST_ENT
;
2412 /* Skip DWORD 2 for type 1 functions */
2413 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
2416 /* parse each EA entry */
2417 for (i
= 0; i
< num_ent
; ++i
)
2418 offset
= pci_ea_read(dev
, offset
);
2421 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2422 struct pci_cap_saved_state
*new_cap
)
2424 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2428 * _pci_add_cap_save_buffer - allocate buffer for saving given
2429 * capability registers
2430 * @dev: the PCI device
2431 * @cap: the capability to allocate the buffer for
2432 * @extended: Standard or Extended capability ID
2433 * @size: requested size of the buffer
2435 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2436 bool extended
, unsigned int size
)
2439 struct pci_cap_saved_state
*save_state
;
2442 pos
= pci_find_ext_capability(dev
, cap
);
2444 pos
= pci_find_capability(dev
, cap
);
2449 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2453 save_state
->cap
.cap_nr
= cap
;
2454 save_state
->cap
.cap_extended
= extended
;
2455 save_state
->cap
.size
= size
;
2456 pci_add_saved_cap(dev
, save_state
);
2461 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2463 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2466 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2468 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2472 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2473 * @dev: the PCI device
2475 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2479 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2480 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2483 "unable to preallocate PCI Express save buffer\n");
2485 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2488 "unable to preallocate PCI-X save buffer\n");
2490 pci_allocate_vc_save_buffers(dev
);
2493 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2495 struct pci_cap_saved_state
*tmp
;
2496 struct hlist_node
*n
;
2498 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2503 * pci_configure_ari - enable or disable ARI forwarding
2504 * @dev: the PCI device
2506 * If @dev and its upstream bridge both support ARI, enable ARI in the
2507 * bridge. Otherwise, disable ARI in the bridge.
2509 void pci_configure_ari(struct pci_dev
*dev
)
2512 struct pci_dev
*bridge
;
2514 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2517 bridge
= dev
->bus
->self
;
2521 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2522 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2525 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2526 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2527 PCI_EXP_DEVCTL2_ARI
);
2528 bridge
->ari_enabled
= 1;
2530 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2531 PCI_EXP_DEVCTL2_ARI
);
2532 bridge
->ari_enabled
= 0;
2536 static int pci_acs_enable
;
2539 * pci_request_acs - ask for ACS to be enabled if supported
2541 void pci_request_acs(void)
2547 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2548 * @dev: the PCI device
2550 static void pci_std_enable_acs(struct pci_dev
*dev
)
2556 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2560 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2561 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2563 /* Source Validation */
2564 ctrl
|= (cap
& PCI_ACS_SV
);
2566 /* P2P Request Redirect */
2567 ctrl
|= (cap
& PCI_ACS_RR
);
2569 /* P2P Completion Redirect */
2570 ctrl
|= (cap
& PCI_ACS_CR
);
2572 /* Upstream Forwarding */
2573 ctrl
|= (cap
& PCI_ACS_UF
);
2575 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2579 * pci_enable_acs - enable ACS if hardware support it
2580 * @dev: the PCI device
2582 void pci_enable_acs(struct pci_dev
*dev
)
2584 if (!pci_acs_enable
)
2587 if (!pci_dev_specific_enable_acs(dev
))
2590 pci_std_enable_acs(dev
);
2593 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2598 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2603 * Except for egress control, capabilities are either required
2604 * or only required if controllable. Features missing from the
2605 * capability field can therefore be assumed as hard-wired enabled.
2607 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
2608 acs_flags
&= (cap
| PCI_ACS_EC
);
2610 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2611 return (ctrl
& acs_flags
) == acs_flags
;
2615 * pci_acs_enabled - test ACS against required flags for a given device
2616 * @pdev: device to test
2617 * @acs_flags: required PCI ACS flags
2619 * Return true if the device supports the provided flags. Automatically
2620 * filters out flags that are not implemented on multifunction devices.
2622 * Note that this interface checks the effective ACS capabilities of the
2623 * device rather than the actual capabilities. For instance, most single
2624 * function endpoints are not required to support ACS because they have no
2625 * opportunity for peer-to-peer access. We therefore return 'true'
2626 * regardless of whether the device exposes an ACS capability. This makes
2627 * it much easier for callers of this function to ignore the actual type
2628 * or topology of the device when testing ACS support.
2630 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2634 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2639 * Conventional PCI and PCI-X devices never support ACS, either
2640 * effectively or actually. The shared bus topology implies that
2641 * any device on the bus can receive or snoop DMA.
2643 if (!pci_is_pcie(pdev
))
2646 switch (pci_pcie_type(pdev
)) {
2648 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2649 * but since their primary interface is PCI/X, we conservatively
2650 * handle them as we would a non-PCIe device.
2652 case PCI_EXP_TYPE_PCIE_BRIDGE
:
2654 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2655 * applicable... must never implement an ACS Extended Capability...".
2656 * This seems arbitrary, but we take a conservative interpretation
2657 * of this statement.
2659 case PCI_EXP_TYPE_PCI_BRIDGE
:
2660 case PCI_EXP_TYPE_RC_EC
:
2663 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2664 * implement ACS in order to indicate their peer-to-peer capabilities,
2665 * regardless of whether they are single- or multi-function devices.
2667 case PCI_EXP_TYPE_DOWNSTREAM
:
2668 case PCI_EXP_TYPE_ROOT_PORT
:
2669 return pci_acs_flags_enabled(pdev
, acs_flags
);
2671 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2672 * implemented by the remaining PCIe types to indicate peer-to-peer
2673 * capabilities, but only when they are part of a multifunction
2674 * device. The footnote for section 6.12 indicates the specific
2675 * PCIe types included here.
2677 case PCI_EXP_TYPE_ENDPOINT
:
2678 case PCI_EXP_TYPE_UPSTREAM
:
2679 case PCI_EXP_TYPE_LEG_END
:
2680 case PCI_EXP_TYPE_RC_END
:
2681 if (!pdev
->multifunction
)
2684 return pci_acs_flags_enabled(pdev
, acs_flags
);
2688 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2689 * to single function devices with the exception of downstream ports.
2695 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2696 * @start: starting downstream device
2697 * @end: ending upstream device or NULL to search to the root bus
2698 * @acs_flags: required flags
2700 * Walk up a device tree from start to end testing PCI ACS support. If
2701 * any step along the way does not support the required flags, return false.
2703 bool pci_acs_path_enabled(struct pci_dev
*start
,
2704 struct pci_dev
*end
, u16 acs_flags
)
2706 struct pci_dev
*pdev
, *parent
= start
;
2711 if (!pci_acs_enabled(pdev
, acs_flags
))
2714 if (pci_is_root_bus(pdev
->bus
))
2715 return (end
== NULL
);
2717 parent
= pdev
->bus
->self
;
2718 } while (pdev
!= end
);
2724 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2725 * @dev: the PCI device
2726 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2728 * Perform INTx swizzling for a device behind one level of bridge. This is
2729 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2730 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2731 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2732 * the PCI Express Base Specification, Revision 2.1)
2734 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2738 if (pci_ari_enabled(dev
->bus
))
2741 slot
= PCI_SLOT(dev
->devfn
);
2743 return (((pin
- 1) + slot
) % 4) + 1;
2746 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2754 while (!pci_is_root_bus(dev
->bus
)) {
2755 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2756 dev
= dev
->bus
->self
;
2763 * pci_common_swizzle - swizzle INTx all the way to root bridge
2764 * @dev: the PCI device
2765 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2767 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2768 * bridges all the way up to a PCI root bus.
2770 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
2774 while (!pci_is_root_bus(dev
->bus
)) {
2775 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2776 dev
= dev
->bus
->self
;
2779 return PCI_SLOT(dev
->devfn
);
2781 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
2784 * pci_release_region - Release a PCI bar
2785 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2786 * @bar: BAR to release
2788 * Releases the PCI I/O and memory resources previously reserved by a
2789 * successful call to pci_request_region. Call this function only
2790 * after all use of the PCI regions has ceased.
2792 void pci_release_region(struct pci_dev
*pdev
, int bar
)
2794 struct pci_devres
*dr
;
2796 if (pci_resource_len(pdev
, bar
) == 0)
2798 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
2799 release_region(pci_resource_start(pdev
, bar
),
2800 pci_resource_len(pdev
, bar
));
2801 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
2802 release_mem_region(pci_resource_start(pdev
, bar
),
2803 pci_resource_len(pdev
, bar
));
2805 dr
= find_pci_dr(pdev
);
2807 dr
->region_mask
&= ~(1 << bar
);
2809 EXPORT_SYMBOL(pci_release_region
);
2812 * __pci_request_region - Reserved PCI I/O and memory resource
2813 * @pdev: PCI device whose resources are to be reserved
2814 * @bar: BAR to be reserved
2815 * @res_name: Name to be associated with resource.
2816 * @exclusive: whether the region access is exclusive or not
2818 * Mark the PCI region associated with PCI device @pdev BR @bar as
2819 * being reserved by owner @res_name. Do not access any
2820 * address inside the PCI regions unless this call returns
2823 * If @exclusive is set, then the region is marked so that userspace
2824 * is explicitly not allowed to map the resource via /dev/mem or
2825 * sysfs MMIO access.
2827 * Returns 0 on success, or %EBUSY on error. A warning
2828 * message is also printed on failure.
2830 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
2831 const char *res_name
, int exclusive
)
2833 struct pci_devres
*dr
;
2835 if (pci_resource_len(pdev
, bar
) == 0)
2838 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
2839 if (!request_region(pci_resource_start(pdev
, bar
),
2840 pci_resource_len(pdev
, bar
), res_name
))
2842 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
2843 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
2844 pci_resource_len(pdev
, bar
), res_name
,
2849 dr
= find_pci_dr(pdev
);
2851 dr
->region_mask
|= 1 << bar
;
2856 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
2857 &pdev
->resource
[bar
]);
2862 * pci_request_region - Reserve PCI I/O and memory resource
2863 * @pdev: PCI device whose resources are to be reserved
2864 * @bar: BAR to be reserved
2865 * @res_name: Name to be associated with resource
2867 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2868 * being reserved by owner @res_name. Do not access any
2869 * address inside the PCI regions unless this call returns
2872 * Returns 0 on success, or %EBUSY on error. A warning
2873 * message is also printed on failure.
2875 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
2877 return __pci_request_region(pdev
, bar
, res_name
, 0);
2879 EXPORT_SYMBOL(pci_request_region
);
2882 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2883 * @pdev: PCI device whose resources are to be reserved
2884 * @bar: BAR to be reserved
2885 * @res_name: Name to be associated with resource.
2887 * Mark the PCI region associated with PCI device @pdev BR @bar as
2888 * being reserved by owner @res_name. Do not access any
2889 * address inside the PCI regions unless this call returns
2892 * Returns 0 on success, or %EBUSY on error. A warning
2893 * message is also printed on failure.
2895 * The key difference that _exclusive makes it that userspace is
2896 * explicitly not allowed to map the resource via /dev/mem or
2899 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
2900 const char *res_name
)
2902 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
2904 EXPORT_SYMBOL(pci_request_region_exclusive
);
2907 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2908 * @pdev: PCI device whose resources were previously reserved
2909 * @bars: Bitmask of BARs to be released
2911 * Release selected PCI I/O and memory resources previously reserved.
2912 * Call this function only after all use of the PCI regions has ceased.
2914 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
2918 for (i
= 0; i
< 6; i
++)
2919 if (bars
& (1 << i
))
2920 pci_release_region(pdev
, i
);
2922 EXPORT_SYMBOL(pci_release_selected_regions
);
2924 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2925 const char *res_name
, int excl
)
2929 for (i
= 0; i
< 6; i
++)
2930 if (bars
& (1 << i
))
2931 if (__pci_request_region(pdev
, i
, res_name
, excl
))
2937 if (bars
& (1 << i
))
2938 pci_release_region(pdev
, i
);
2945 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2946 * @pdev: PCI device whose resources are to be reserved
2947 * @bars: Bitmask of BARs to be requested
2948 * @res_name: Name to be associated with resource
2950 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2951 const char *res_name
)
2953 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
2955 EXPORT_SYMBOL(pci_request_selected_regions
);
2957 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
2958 const char *res_name
)
2960 return __pci_request_selected_regions(pdev
, bars
, res_name
,
2961 IORESOURCE_EXCLUSIVE
);
2963 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
2966 * pci_release_regions - Release reserved PCI I/O and memory resources
2967 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2969 * Releases all PCI I/O and memory resources previously reserved by a
2970 * successful call to pci_request_regions. Call this function only
2971 * after all use of the PCI regions has ceased.
2974 void pci_release_regions(struct pci_dev
*pdev
)
2976 pci_release_selected_regions(pdev
, (1 << 6) - 1);
2978 EXPORT_SYMBOL(pci_release_regions
);
2981 * pci_request_regions - Reserved PCI I/O and memory resources
2982 * @pdev: PCI device whose resources are to be reserved
2983 * @res_name: Name to be associated with resource.
2985 * Mark all PCI regions associated with PCI device @pdev as
2986 * being reserved by owner @res_name. Do not access any
2987 * address inside the PCI regions unless this call returns
2990 * Returns 0 on success, or %EBUSY on error. A warning
2991 * message is also printed on failure.
2993 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
2995 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
2997 EXPORT_SYMBOL(pci_request_regions
);
3000 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3001 * @pdev: PCI device whose resources are to be reserved
3002 * @res_name: Name to be associated with resource.
3004 * Mark all PCI regions associated with PCI device @pdev as
3005 * being reserved by owner @res_name. Do not access any
3006 * address inside the PCI regions unless this call returns
3009 * pci_request_regions_exclusive() will mark the region so that
3010 * /dev/mem and the sysfs MMIO access will not be allowed.
3012 * Returns 0 on success, or %EBUSY on error. A warning
3013 * message is also printed on failure.
3015 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3017 return pci_request_selected_regions_exclusive(pdev
,
3018 ((1 << 6) - 1), res_name
);
3020 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3024 struct list_head list
;
3026 resource_size_t size
;
3029 static LIST_HEAD(io_range_list
);
3030 static DEFINE_SPINLOCK(io_range_lock
);
3034 * Record the PCI IO range (expressed as CPU physical address + size).
3035 * Return a negative value if an error has occured, zero otherwise
3037 int __weak
pci_register_io_range(phys_addr_t addr
, resource_size_t size
)
3042 struct io_range
*range
;
3043 resource_size_t allocated_size
= 0;
3045 /* check if the range hasn't been previously recorded */
3046 spin_lock(&io_range_lock
);
3047 list_for_each_entry(range
, &io_range_list
, list
) {
3048 if (addr
>= range
->start
&& addr
+ size
<= range
->start
+ size
) {
3049 /* range already registered, bail out */
3052 allocated_size
+= range
->size
;
3055 /* range not registed yet, check for available space */
3056 if (allocated_size
+ size
- 1 > IO_SPACE_LIMIT
) {
3057 /* if it's too big check if 64K space can be reserved */
3058 if (allocated_size
+ SZ_64K
- 1 > IO_SPACE_LIMIT
) {
3064 pr_warn("Requested IO range too big, new size set to 64K\n");
3067 /* add the range to the list */
3068 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
3074 range
->start
= addr
;
3077 list_add_tail(&range
->list
, &io_range_list
);
3080 spin_unlock(&io_range_lock
);
3086 phys_addr_t
pci_pio_to_address(unsigned long pio
)
3088 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
3091 struct io_range
*range
;
3092 resource_size_t allocated_size
= 0;
3094 if (pio
> IO_SPACE_LIMIT
)
3097 spin_lock(&io_range_lock
);
3098 list_for_each_entry(range
, &io_range_list
, list
) {
3099 if (pio
>= allocated_size
&& pio
< allocated_size
+ range
->size
) {
3100 address
= range
->start
+ pio
- allocated_size
;
3103 allocated_size
+= range
->size
;
3105 spin_unlock(&io_range_lock
);
3111 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
3114 struct io_range
*res
;
3115 resource_size_t offset
= 0;
3116 unsigned long addr
= -1;
3118 spin_lock(&io_range_lock
);
3119 list_for_each_entry(res
, &io_range_list
, list
) {
3120 if (address
>= res
->start
&& address
< res
->start
+ res
->size
) {
3121 addr
= address
- res
->start
+ offset
;
3124 offset
+= res
->size
;
3126 spin_unlock(&io_range_lock
);
3130 if (address
> IO_SPACE_LIMIT
)
3131 return (unsigned long)-1;
3133 return (unsigned long) address
;
3138 * pci_remap_iospace - Remap the memory mapped I/O space
3139 * @res: Resource describing the I/O space
3140 * @phys_addr: physical address of range to be mapped
3142 * Remap the memory mapped I/O space described by the @res
3143 * and the CPU physical address @phys_addr into virtual address space.
3144 * Only architectures that have memory mapped IO functions defined
3145 * (and the PCI_IOBASE value defined) should call this function.
3147 int __weak
pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
3149 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3150 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3152 if (!(res
->flags
& IORESOURCE_IO
))
3155 if (res
->end
> IO_SPACE_LIMIT
)
3158 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
3159 pgprot_device(PAGE_KERNEL
));
3161 /* this architecture does not have memory mapped I/O space,
3162 so this function should never be called */
3163 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3168 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
3172 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
3174 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
3176 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
3177 if (cmd
!= old_cmd
) {
3178 dev_dbg(&dev
->dev
, "%s bus mastering\n",
3179 enable
? "enabling" : "disabling");
3180 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3182 dev
->is_busmaster
= enable
;
3186 * pcibios_setup - process "pci=" kernel boot arguments
3187 * @str: string used to pass in "pci=" kernel boot arguments
3189 * Process kernel boot arguments. This is the default implementation.
3190 * Architecture specific implementations can override this as necessary.
3192 char * __weak __init
pcibios_setup(char *str
)
3198 * pcibios_set_master - enable PCI bus-mastering for device dev
3199 * @dev: the PCI device to enable
3201 * Enables PCI bus-mastering for the device. This is the default
3202 * implementation. Architecture specific implementations can override
3203 * this if necessary.
3205 void __weak
pcibios_set_master(struct pci_dev
*dev
)
3209 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3210 if (pci_is_pcie(dev
))
3213 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
3215 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
3216 else if (lat
> pcibios_max_latency
)
3217 lat
= pcibios_max_latency
;
3221 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
3225 * pci_set_master - enables bus-mastering for device dev
3226 * @dev: the PCI device to enable
3228 * Enables bus-mastering on the device and calls pcibios_set_master()
3229 * to do the needed arch specific settings.
3231 void pci_set_master(struct pci_dev
*dev
)
3233 __pci_set_master(dev
, true);
3234 pcibios_set_master(dev
);
3236 EXPORT_SYMBOL(pci_set_master
);
3239 * pci_clear_master - disables bus-mastering for device dev
3240 * @dev: the PCI device to disable
3242 void pci_clear_master(struct pci_dev
*dev
)
3244 __pci_set_master(dev
, false);
3246 EXPORT_SYMBOL(pci_clear_master
);
3249 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3250 * @dev: the PCI device for which MWI is to be enabled
3252 * Helper function for pci_set_mwi.
3253 * Originally copied from drivers/net/acenic.c.
3254 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3256 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3258 int pci_set_cacheline_size(struct pci_dev
*dev
)
3262 if (!pci_cache_line_size
)
3265 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3266 equal to or multiple of the right value. */
3267 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3268 if (cacheline_size
>= pci_cache_line_size
&&
3269 (cacheline_size
% pci_cache_line_size
) == 0)
3272 /* Write the correct value. */
3273 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
3275 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3276 if (cacheline_size
== pci_cache_line_size
)
3279 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not supported\n",
3280 pci_cache_line_size
<< 2);
3284 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
3287 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3288 * @dev: the PCI device for which MWI is enabled
3290 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3292 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3294 int pci_set_mwi(struct pci_dev
*dev
)
3296 #ifdef PCI_DISABLE_MWI
3302 rc
= pci_set_cacheline_size(dev
);
3306 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3307 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
3308 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
3309 cmd
|= PCI_COMMAND_INVALIDATE
;
3310 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3315 EXPORT_SYMBOL(pci_set_mwi
);
3318 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3319 * @dev: the PCI device for which MWI is enabled
3321 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3322 * Callers are not required to check the return value.
3324 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3326 int pci_try_set_mwi(struct pci_dev
*dev
)
3328 #ifdef PCI_DISABLE_MWI
3331 return pci_set_mwi(dev
);
3334 EXPORT_SYMBOL(pci_try_set_mwi
);
3337 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3338 * @dev: the PCI device to disable
3340 * Disables PCI Memory-Write-Invalidate transaction on the device
3342 void pci_clear_mwi(struct pci_dev
*dev
)
3344 #ifndef PCI_DISABLE_MWI
3347 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3348 if (cmd
& PCI_COMMAND_INVALIDATE
) {
3349 cmd
&= ~PCI_COMMAND_INVALIDATE
;
3350 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3354 EXPORT_SYMBOL(pci_clear_mwi
);
3357 * pci_intx - enables/disables PCI INTx for device dev
3358 * @pdev: the PCI device to operate on
3359 * @enable: boolean: whether to enable or disable PCI INTx
3361 * Enables/disables PCI INTx for device dev
3363 void pci_intx(struct pci_dev
*pdev
, int enable
)
3365 u16 pci_command
, new;
3367 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
3370 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
3372 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
3374 if (new != pci_command
) {
3375 struct pci_devres
*dr
;
3377 pci_write_config_word(pdev
, PCI_COMMAND
, new);
3379 dr
= find_pci_dr(pdev
);
3380 if (dr
&& !dr
->restore_intx
) {
3381 dr
->restore_intx
= 1;
3382 dr
->orig_intx
= !enable
;
3386 EXPORT_SYMBOL_GPL(pci_intx
);
3389 * pci_intx_mask_supported - probe for INTx masking support
3390 * @dev: the PCI device to operate on
3392 * Check if the device dev support INTx masking via the config space
3395 bool pci_intx_mask_supported(struct pci_dev
*dev
)
3397 bool mask_supported
= false;
3400 if (dev
->broken_intx_masking
)
3403 pci_cfg_access_lock(dev
);
3405 pci_read_config_word(dev
, PCI_COMMAND
, &orig
);
3406 pci_write_config_word(dev
, PCI_COMMAND
,
3407 orig
^ PCI_COMMAND_INTX_DISABLE
);
3408 pci_read_config_word(dev
, PCI_COMMAND
, &new);
3411 * There's no way to protect against hardware bugs or detect them
3412 * reliably, but as long as we know what the value should be, let's
3413 * go ahead and check it.
3415 if ((new ^ orig
) & ~PCI_COMMAND_INTX_DISABLE
) {
3416 dev_err(&dev
->dev
, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3418 } else if ((new ^ orig
) & PCI_COMMAND_INTX_DISABLE
) {
3419 mask_supported
= true;
3420 pci_write_config_word(dev
, PCI_COMMAND
, orig
);
3423 pci_cfg_access_unlock(dev
);
3424 return mask_supported
;
3426 EXPORT_SYMBOL_GPL(pci_intx_mask_supported
);
3428 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
3430 struct pci_bus
*bus
= dev
->bus
;
3431 bool mask_updated
= true;
3432 u32 cmd_status_dword
;
3433 u16 origcmd
, newcmd
;
3434 unsigned long flags
;
3438 * We do a single dword read to retrieve both command and status.
3439 * Document assumptions that make this possible.
3441 BUILD_BUG_ON(PCI_COMMAND
% 4);
3442 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
3444 raw_spin_lock_irqsave(&pci_lock
, flags
);
3446 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
3448 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3451 * Check interrupt status register to see whether our device
3452 * triggered the interrupt (when masking) or the next IRQ is
3453 * already pending (when unmasking).
3455 if (mask
!= irq_pending
) {
3456 mask_updated
= false;
3460 origcmd
= cmd_status_dword
;
3461 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3463 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3464 if (newcmd
!= origcmd
)
3465 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3468 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3470 return mask_updated
;
3474 * pci_check_and_mask_intx - mask INTx on pending interrupt
3475 * @dev: the PCI device to operate on
3477 * Check if the device dev has its INTx line asserted, mask it and
3478 * return true in that case. False is returned if not interrupt was
3481 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3483 return pci_check_and_set_intx_mask(dev
, true);
3485 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3488 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3489 * @dev: the PCI device to operate on
3491 * Check if the device dev has its INTx line asserted, unmask it if not
3492 * and return true. False is returned and the mask remains active if
3493 * there was still an interrupt pending.
3495 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3497 return pci_check_and_set_intx_mask(dev
, false);
3499 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3502 * pci_wait_for_pending_transaction - waits for pending transaction
3503 * @dev: the PCI device to operate on
3505 * Return 0 if transaction is pending 1 otherwise.
3507 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
3509 if (!pci_is_pcie(dev
))
3512 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
3513 PCI_EXP_DEVSTA_TRPND
);
3515 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
3518 * We should only need to wait 100ms after FLR, but some devices take longer.
3519 * Wait for up to 1000ms for config space to return something other than -1.
3520 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3521 * dword because VFs don't implement the 1st dword.
3523 static void pci_flr_wait(struct pci_dev
*dev
)
3530 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
3531 } while (i
++ < 10 && id
== ~0);
3534 dev_warn(&dev
->dev
, "Failed to return from FLR\n");
3536 dev_info(&dev
->dev
, "Required additional %dms to return from FLR\n",
3540 static int pcie_flr(struct pci_dev
*dev
, int probe
)
3544 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3545 if (!(cap
& PCI_EXP_DEVCAP_FLR
))
3551 if (!pci_wait_for_pending_transaction(dev
))
3552 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
3554 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3559 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3564 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3568 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3569 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3576 * Wait for Transaction Pending bit to clear. A word-aligned test
3577 * is used, so we use the conrol offset rather than status and shift
3578 * the test bit to match.
3580 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
3581 PCI_AF_STATUS_TP
<< 8))
3582 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3584 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3590 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3591 * @dev: Device to reset.
3592 * @probe: If set, only check if the device can be reset this way.
3594 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3595 * unset, it will be reinitialized internally when going from PCI_D3hot to
3596 * PCI_D0. If that's the case and the device is not in a low-power state
3597 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3599 * NOTE: This causes the caller to sleep for twice the device power transition
3600 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3601 * by default (i.e. unless the @dev's d3_delay field has a different value).
3602 * Moreover, only devices in D0 can be reset by this function.
3604 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3608 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
3611 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3612 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3618 if (dev
->current_state
!= PCI_D0
)
3621 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3623 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3624 pci_dev_d3_sleep(dev
);
3626 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3628 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3629 pci_dev_d3_sleep(dev
);
3634 void pci_reset_secondary_bus(struct pci_dev
*dev
)
3638 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
3639 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3640 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3642 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3643 * this to 2ms to ensure that we meet the minimum requirement.
3647 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3648 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3651 * Trhfa for conventional PCI is 2^25 clock cycles.
3652 * Assuming a minimum 33MHz clock this results in a 1s
3653 * delay before we can consider subordinate devices to
3654 * be re-initialized. PCIe has some ways to shorten this,
3655 * but we don't make use of them yet.
3660 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
3662 pci_reset_secondary_bus(dev
);
3666 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3667 * @dev: Bridge device
3669 * Use the bridge control register to assert reset on the secondary bus.
3670 * Devices on the secondary bus are left in power-on state.
3672 void pci_reset_bridge_secondary_bus(struct pci_dev
*dev
)
3674 pcibios_reset_secondary_bus(dev
);
3676 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus
);
3678 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
3680 struct pci_dev
*pdev
;
3682 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
3683 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3686 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3693 pci_reset_bridge_secondary_bus(dev
->bus
->self
);
3698 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
3702 if (!hotplug
|| !try_module_get(hotplug
->ops
->owner
))
3705 if (hotplug
->ops
->reset_slot
)
3706 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
3708 module_put(hotplug
->ops
->owner
);
3713 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
3715 struct pci_dev
*pdev
;
3717 if (dev
->subordinate
|| !dev
->slot
||
3718 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3721 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3722 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
3725 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
3728 static int __pci_dev_reset(struct pci_dev
*dev
, int probe
)
3734 rc
= pci_dev_specific_reset(dev
, probe
);
3738 rc
= pcie_flr(dev
, probe
);
3742 rc
= pci_af_flr(dev
, probe
);
3746 rc
= pci_pm_reset(dev
, probe
);
3750 rc
= pci_dev_reset_slot_function(dev
, probe
);
3754 rc
= pci_parent_bus_reset(dev
, probe
);
3759 static void pci_dev_lock(struct pci_dev
*dev
)
3761 pci_cfg_access_lock(dev
);
3762 /* block PM suspend, driver probe, etc. */
3763 device_lock(&dev
->dev
);
3766 /* Return 1 on successful lock, 0 on contention */
3767 static int pci_dev_trylock(struct pci_dev
*dev
)
3769 if (pci_cfg_access_trylock(dev
)) {
3770 if (device_trylock(&dev
->dev
))
3772 pci_cfg_access_unlock(dev
);
3778 static void pci_dev_unlock(struct pci_dev
*dev
)
3780 device_unlock(&dev
->dev
);
3781 pci_cfg_access_unlock(dev
);
3785 * pci_reset_notify - notify device driver of reset
3786 * @dev: device to be notified of reset
3787 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3790 * Must be called prior to device access being disabled and after device
3791 * access is restored.
3793 static void pci_reset_notify(struct pci_dev
*dev
, bool prepare
)
3795 const struct pci_error_handlers
*err_handler
=
3796 dev
->driver
? dev
->driver
->err_handler
: NULL
;
3797 if (err_handler
&& err_handler
->reset_notify
)
3798 err_handler
->reset_notify(dev
, prepare
);
3801 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
3803 pci_reset_notify(dev
, true);
3806 * Wake-up device prior to save. PM registers default to D0 after
3807 * reset and a simple register restore doesn't reliably return
3808 * to a non-D0 state anyway.
3810 pci_set_power_state(dev
, PCI_D0
);
3812 pci_save_state(dev
);
3814 * Disable the device by clearing the Command register, except for
3815 * INTx-disable which is set. This not only disables MMIO and I/O port
3816 * BARs, but also prevents the device from being Bus Master, preventing
3817 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3818 * compliant devices, INTx-disable prevents legacy interrupts.
3820 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
3823 static void pci_dev_restore(struct pci_dev
*dev
)
3825 pci_restore_state(dev
);
3826 pci_reset_notify(dev
, false);
3829 static int pci_dev_reset(struct pci_dev
*dev
, int probe
)
3836 rc
= __pci_dev_reset(dev
, probe
);
3839 pci_dev_unlock(dev
);
3845 * __pci_reset_function - reset a PCI device function
3846 * @dev: PCI device to reset
3848 * Some devices allow an individual function to be reset without affecting
3849 * other functions in the same device. The PCI device must be responsive
3850 * to PCI config space in order to use this function.
3852 * The device function is presumed to be unused when this function is called.
3853 * Resetting the device will make the contents of PCI configuration space
3854 * random, so any caller of this must be prepared to reinitialise the
3855 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3858 * Returns 0 if the device function was successfully reset or negative if the
3859 * device doesn't support resetting a single function.
3861 int __pci_reset_function(struct pci_dev
*dev
)
3863 return pci_dev_reset(dev
, 0);
3865 EXPORT_SYMBOL_GPL(__pci_reset_function
);
3868 * __pci_reset_function_locked - reset a PCI device function while holding
3869 * the @dev mutex lock.
3870 * @dev: PCI device to reset
3872 * Some devices allow an individual function to be reset without affecting
3873 * other functions in the same device. The PCI device must be responsive
3874 * to PCI config space in order to use this function.
3876 * The device function is presumed to be unused and the caller is holding
3877 * the device mutex lock when this function is called.
3878 * Resetting the device will make the contents of PCI configuration space
3879 * random, so any caller of this must be prepared to reinitialise the
3880 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3883 * Returns 0 if the device function was successfully reset or negative if the
3884 * device doesn't support resetting a single function.
3886 int __pci_reset_function_locked(struct pci_dev
*dev
)
3888 return __pci_dev_reset(dev
, 0);
3890 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
3893 * pci_probe_reset_function - check whether the device can be safely reset
3894 * @dev: PCI device to reset
3896 * Some devices allow an individual function to be reset without affecting
3897 * other functions in the same device. The PCI device must be responsive
3898 * to PCI config space in order to use this function.
3900 * Returns 0 if the device function can be reset or negative if the
3901 * device doesn't support resetting a single function.
3903 int pci_probe_reset_function(struct pci_dev
*dev
)
3905 return pci_dev_reset(dev
, 1);
3909 * pci_reset_function - quiesce and reset a PCI device function
3910 * @dev: PCI device to reset
3912 * Some devices allow an individual function to be reset without affecting
3913 * other functions in the same device. The PCI device must be responsive
3914 * to PCI config space in order to use this function.
3916 * This function does not just reset the PCI portion of a device, but
3917 * clears all the state associated with the device. This function differs
3918 * from __pci_reset_function in that it saves and restores device state
3921 * Returns 0 if the device function was successfully reset or negative if the
3922 * device doesn't support resetting a single function.
3924 int pci_reset_function(struct pci_dev
*dev
)
3928 rc
= pci_dev_reset(dev
, 1);
3932 pci_dev_save_and_disable(dev
);
3934 rc
= pci_dev_reset(dev
, 0);
3936 pci_dev_restore(dev
);
3940 EXPORT_SYMBOL_GPL(pci_reset_function
);
3943 * pci_try_reset_function - quiesce and reset a PCI device function
3944 * @dev: PCI device to reset
3946 * Same as above, except return -EAGAIN if unable to lock device.
3948 int pci_try_reset_function(struct pci_dev
*dev
)
3952 rc
= pci_dev_reset(dev
, 1);
3956 pci_dev_save_and_disable(dev
);
3958 if (pci_dev_trylock(dev
)) {
3959 rc
= __pci_dev_reset(dev
, 0);
3960 pci_dev_unlock(dev
);
3964 pci_dev_restore(dev
);
3968 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
3970 /* Do any devices on or below this bus prevent a bus reset? */
3971 static bool pci_bus_resetable(struct pci_bus
*bus
)
3973 struct pci_dev
*dev
;
3975 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3976 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
3977 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
3984 /* Lock devices from the top of the tree down */
3985 static void pci_bus_lock(struct pci_bus
*bus
)
3987 struct pci_dev
*dev
;
3989 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3991 if (dev
->subordinate
)
3992 pci_bus_lock(dev
->subordinate
);
3996 /* Unlock devices from the bottom of the tree up */
3997 static void pci_bus_unlock(struct pci_bus
*bus
)
3999 struct pci_dev
*dev
;
4001 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4002 if (dev
->subordinate
)
4003 pci_bus_unlock(dev
->subordinate
);
4004 pci_dev_unlock(dev
);
4008 /* Return 1 on successful lock, 0 on contention */
4009 static int pci_bus_trylock(struct pci_bus
*bus
)
4011 struct pci_dev
*dev
;
4013 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4014 if (!pci_dev_trylock(dev
))
4016 if (dev
->subordinate
) {
4017 if (!pci_bus_trylock(dev
->subordinate
)) {
4018 pci_dev_unlock(dev
);
4026 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
4027 if (dev
->subordinate
)
4028 pci_bus_unlock(dev
->subordinate
);
4029 pci_dev_unlock(dev
);
4034 /* Do any devices on or below this slot prevent a bus reset? */
4035 static bool pci_slot_resetable(struct pci_slot
*slot
)
4037 struct pci_dev
*dev
;
4039 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4040 if (!dev
->slot
|| dev
->slot
!= slot
)
4042 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4043 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
4050 /* Lock devices from the top of the tree down */
4051 static void pci_slot_lock(struct pci_slot
*slot
)
4053 struct pci_dev
*dev
;
4055 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4056 if (!dev
->slot
|| dev
->slot
!= slot
)
4059 if (dev
->subordinate
)
4060 pci_bus_lock(dev
->subordinate
);
4064 /* Unlock devices from the bottom of the tree up */
4065 static void pci_slot_unlock(struct pci_slot
*slot
)
4067 struct pci_dev
*dev
;
4069 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4070 if (!dev
->slot
|| dev
->slot
!= slot
)
4072 if (dev
->subordinate
)
4073 pci_bus_unlock(dev
->subordinate
);
4074 pci_dev_unlock(dev
);
4078 /* Return 1 on successful lock, 0 on contention */
4079 static int pci_slot_trylock(struct pci_slot
*slot
)
4081 struct pci_dev
*dev
;
4083 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4084 if (!dev
->slot
|| dev
->slot
!= slot
)
4086 if (!pci_dev_trylock(dev
))
4088 if (dev
->subordinate
) {
4089 if (!pci_bus_trylock(dev
->subordinate
)) {
4090 pci_dev_unlock(dev
);
4098 list_for_each_entry_continue_reverse(dev
,
4099 &slot
->bus
->devices
, bus_list
) {
4100 if (!dev
->slot
|| dev
->slot
!= slot
)
4102 if (dev
->subordinate
)
4103 pci_bus_unlock(dev
->subordinate
);
4104 pci_dev_unlock(dev
);
4109 /* Save and disable devices from the top of the tree down */
4110 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
4112 struct pci_dev
*dev
;
4114 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4115 pci_dev_save_and_disable(dev
);
4116 if (dev
->subordinate
)
4117 pci_bus_save_and_disable(dev
->subordinate
);
4122 * Restore devices from top of the tree down - parent bridges need to be
4123 * restored before we can get to subordinate devices.
4125 static void pci_bus_restore(struct pci_bus
*bus
)
4127 struct pci_dev
*dev
;
4129 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4130 pci_dev_restore(dev
);
4131 if (dev
->subordinate
)
4132 pci_bus_restore(dev
->subordinate
);
4136 /* Save and disable devices from the top of the tree down */
4137 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
4139 struct pci_dev
*dev
;
4141 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4142 if (!dev
->slot
|| dev
->slot
!= slot
)
4144 pci_dev_save_and_disable(dev
);
4145 if (dev
->subordinate
)
4146 pci_bus_save_and_disable(dev
->subordinate
);
4151 * Restore devices from top of the tree down - parent bridges need to be
4152 * restored before we can get to subordinate devices.
4154 static void pci_slot_restore(struct pci_slot
*slot
)
4156 struct pci_dev
*dev
;
4158 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4159 if (!dev
->slot
|| dev
->slot
!= slot
)
4161 pci_dev_restore(dev
);
4162 if (dev
->subordinate
)
4163 pci_bus_restore(dev
->subordinate
);
4167 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
4171 if (!slot
|| !pci_slot_resetable(slot
))
4175 pci_slot_lock(slot
);
4179 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
4182 pci_slot_unlock(slot
);
4188 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4189 * @slot: PCI slot to probe
4191 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4193 int pci_probe_reset_slot(struct pci_slot
*slot
)
4195 return pci_slot_reset(slot
, 1);
4197 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
4200 * pci_reset_slot - reset a PCI slot
4201 * @slot: PCI slot to reset
4203 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4204 * independent of other slots. For instance, some slots may support slot power
4205 * control. In the case of a 1:1 bus to slot architecture, this function may
4206 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4207 * Generally a slot reset should be attempted before a bus reset. All of the
4208 * function of the slot and any subordinate buses behind the slot are reset
4209 * through this function. PCI config space of all devices in the slot and
4210 * behind the slot is saved before and restored after reset.
4212 * Return 0 on success, non-zero on error.
4214 int pci_reset_slot(struct pci_slot
*slot
)
4218 rc
= pci_slot_reset(slot
, 1);
4222 pci_slot_save_and_disable(slot
);
4224 rc
= pci_slot_reset(slot
, 0);
4226 pci_slot_restore(slot
);
4230 EXPORT_SYMBOL_GPL(pci_reset_slot
);
4233 * pci_try_reset_slot - Try to reset a PCI slot
4234 * @slot: PCI slot to reset
4236 * Same as above except return -EAGAIN if the slot cannot be locked
4238 int pci_try_reset_slot(struct pci_slot
*slot
)
4242 rc
= pci_slot_reset(slot
, 1);
4246 pci_slot_save_and_disable(slot
);
4248 if (pci_slot_trylock(slot
)) {
4250 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
4251 pci_slot_unlock(slot
);
4255 pci_slot_restore(slot
);
4259 EXPORT_SYMBOL_GPL(pci_try_reset_slot
);
4261 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
4263 if (!bus
->self
|| !pci_bus_resetable(bus
))
4273 pci_reset_bridge_secondary_bus(bus
->self
);
4275 pci_bus_unlock(bus
);
4281 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4282 * @bus: PCI bus to probe
4284 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4286 int pci_probe_reset_bus(struct pci_bus
*bus
)
4288 return pci_bus_reset(bus
, 1);
4290 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
4293 * pci_reset_bus - reset a PCI bus
4294 * @bus: top level PCI bus to reset
4296 * Do a bus reset on the given bus and any subordinate buses, saving
4297 * and restoring state of all devices.
4299 * Return 0 on success, non-zero on error.
4301 int pci_reset_bus(struct pci_bus
*bus
)
4305 rc
= pci_bus_reset(bus
, 1);
4309 pci_bus_save_and_disable(bus
);
4311 rc
= pci_bus_reset(bus
, 0);
4313 pci_bus_restore(bus
);
4317 EXPORT_SYMBOL_GPL(pci_reset_bus
);
4320 * pci_try_reset_bus - Try to reset a PCI bus
4321 * @bus: top level PCI bus to reset
4323 * Same as above except return -EAGAIN if the bus cannot be locked
4325 int pci_try_reset_bus(struct pci_bus
*bus
)
4329 rc
= pci_bus_reset(bus
, 1);
4333 pci_bus_save_and_disable(bus
);
4335 if (pci_bus_trylock(bus
)) {
4337 pci_reset_bridge_secondary_bus(bus
->self
);
4338 pci_bus_unlock(bus
);
4342 pci_bus_restore(bus
);
4346 EXPORT_SYMBOL_GPL(pci_try_reset_bus
);
4349 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4350 * @dev: PCI device to query
4352 * Returns mmrbc: maximum designed memory read count in bytes
4353 * or appropriate error value.
4355 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
4360 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4364 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4367 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
4369 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
4372 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4373 * @dev: PCI device to query
4375 * Returns mmrbc: maximum memory read count in bytes
4376 * or appropriate error value.
4378 int pcix_get_mmrbc(struct pci_dev
*dev
)
4383 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4387 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4390 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
4392 EXPORT_SYMBOL(pcix_get_mmrbc
);
4395 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4396 * @dev: PCI device to query
4397 * @mmrbc: maximum memory read count in bytes
4398 * valid values are 512, 1024, 2048, 4096
4400 * If possible sets maximum memory read byte count, some bridges have erratas
4401 * that prevent this.
4403 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
4409 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
4412 v
= ffs(mmrbc
) - 10;
4414 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4418 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4421 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
4424 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4427 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
4429 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
4432 cmd
&= ~PCI_X_CMD_MAX_READ
;
4434 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
4439 EXPORT_SYMBOL(pcix_set_mmrbc
);
4442 * pcie_get_readrq - get PCI Express read request size
4443 * @dev: PCI device to query
4445 * Returns maximum memory read request in bytes
4446 * or appropriate error value.
4448 int pcie_get_readrq(struct pci_dev
*dev
)
4452 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4454 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
4456 EXPORT_SYMBOL(pcie_get_readrq
);
4459 * pcie_set_readrq - set PCI Express maximum memory read request
4460 * @dev: PCI device to query
4461 * @rq: maximum memory read count in bytes
4462 * valid values are 128, 256, 512, 1024, 2048, 4096
4464 * If possible sets maximum memory read request in bytes
4466 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
4470 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
4474 * If using the "performance" PCIe config, we clamp the
4475 * read rq size to the max packet size to prevent the
4476 * host bridge generating requests larger than we can
4479 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
4480 int mps
= pcie_get_mps(dev
);
4486 v
= (ffs(rq
) - 8) << 12;
4488 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4489 PCI_EXP_DEVCTL_READRQ
, v
);
4491 EXPORT_SYMBOL(pcie_set_readrq
);
4494 * pcie_get_mps - get PCI Express maximum payload size
4495 * @dev: PCI device to query
4497 * Returns maximum payload size in bytes
4499 int pcie_get_mps(struct pci_dev
*dev
)
4503 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4505 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
4507 EXPORT_SYMBOL(pcie_get_mps
);
4510 * pcie_set_mps - set PCI Express maximum payload size
4511 * @dev: PCI device to query
4512 * @mps: maximum payload size in bytes
4513 * valid values are 128, 256, 512, 1024, 2048, 4096
4515 * If possible sets maximum payload size
4517 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
4521 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
4525 if (v
> dev
->pcie_mpss
)
4529 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4530 PCI_EXP_DEVCTL_PAYLOAD
, v
);
4532 EXPORT_SYMBOL(pcie_set_mps
);
4535 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4536 * @dev: PCI device to query
4537 * @speed: storage for minimum speed
4538 * @width: storage for minimum width
4540 * This function will walk up the PCI device chain and determine the minimum
4541 * link width and speed of the device.
4543 int pcie_get_minimum_link(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
4544 enum pcie_link_width
*width
)
4548 *speed
= PCI_SPEED_UNKNOWN
;
4549 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
4553 enum pci_bus_speed next_speed
;
4554 enum pcie_link_width next_width
;
4556 ret
= pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
4560 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
4561 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
4562 PCI_EXP_LNKSTA_NLW_SHIFT
;
4564 if (next_speed
< *speed
)
4565 *speed
= next_speed
;
4567 if (next_width
< *width
)
4568 *width
= next_width
;
4570 dev
= dev
->bus
->self
;
4575 EXPORT_SYMBOL(pcie_get_minimum_link
);
4578 * pci_select_bars - Make BAR mask from the type of resource
4579 * @dev: the PCI device for which BAR mask is made
4580 * @flags: resource type mask to be selected
4582 * This helper routine makes bar mask from the type of resource.
4584 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
4587 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
4588 if (pci_resource_flags(dev
, i
) & flags
)
4592 EXPORT_SYMBOL(pci_select_bars
);
4595 * pci_resource_bar - get position of the BAR associated with a resource
4596 * @dev: the PCI device
4597 * @resno: the resource number
4598 * @type: the BAR type to be filled in
4600 * Returns BAR position in config space, or 0 if the BAR is invalid.
4602 int pci_resource_bar(struct pci_dev
*dev
, int resno
, enum pci_bar_type
*type
)
4606 if (resno
< PCI_ROM_RESOURCE
) {
4607 *type
= pci_bar_unknown
;
4608 return PCI_BASE_ADDRESS_0
+ 4 * resno
;
4609 } else if (resno
== PCI_ROM_RESOURCE
) {
4610 *type
= pci_bar_mem32
;
4611 return dev
->rom_base_reg
;
4612 } else if (resno
< PCI_BRIDGE_RESOURCES
) {
4613 /* device specific resource */
4614 *type
= pci_bar_unknown
;
4615 reg
= pci_iov_resource_bar(dev
, resno
);
4620 dev_err(&dev
->dev
, "BAR %d: invalid resource\n", resno
);
4624 /* Some architectures require additional programming to enable VGA */
4625 static arch_set_vga_state_t arch_set_vga_state
;
4627 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
4629 arch_set_vga_state
= func
; /* NULL disables */
4632 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
4633 unsigned int command_bits
, u32 flags
)
4635 if (arch_set_vga_state
)
4636 return arch_set_vga_state(dev
, decode
, command_bits
,
4642 * pci_set_vga_state - set VGA decode state on device and parents if requested
4643 * @dev: the PCI device
4644 * @decode: true = enable decoding, false = disable decoding
4645 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4646 * @flags: traverse ancestors and change bridges
4647 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4649 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
4650 unsigned int command_bits
, u32 flags
)
4652 struct pci_bus
*bus
;
4653 struct pci_dev
*bridge
;
4657 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
4659 /* ARCH specific VGA enables */
4660 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
4664 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
4665 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4667 cmd
|= command_bits
;
4669 cmd
&= ~command_bits
;
4670 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4673 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
4680 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4683 cmd
|= PCI_BRIDGE_CTL_VGA
;
4685 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
4686 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4695 * pci_add_dma_alias - Add a DMA devfn alias for a device
4696 * @dev: the PCI device for which alias is added
4697 * @devfn: alias slot and function
4699 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4700 * It should be called early, preferably as PCI fixup header quirk.
4702 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn
)
4704 if (!dev
->dma_alias_mask
)
4705 dev
->dma_alias_mask
= kcalloc(BITS_TO_LONGS(U8_MAX
),
4706 sizeof(long), GFP_KERNEL
);
4707 if (!dev
->dma_alias_mask
) {
4708 dev_warn(&dev
->dev
, "Unable to allocate DMA alias mask\n");
4712 set_bit(devfn
, dev
->dma_alias_mask
);
4713 dev_info(&dev
->dev
, "Enabling fixed DMA alias to %02x.%d\n",
4714 PCI_SLOT(devfn
), PCI_FUNC(devfn
));
4717 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
4719 return (dev1
->dma_alias_mask
&&
4720 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
4721 (dev2
->dma_alias_mask
&&
4722 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
));
4725 bool pci_device_is_present(struct pci_dev
*pdev
)
4729 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
4731 EXPORT_SYMBOL_GPL(pci_device_is_present
);
4733 void pci_ignore_hotplug(struct pci_dev
*dev
)
4735 struct pci_dev
*bridge
= dev
->bus
->self
;
4737 dev
->ignore_hotplug
= 1;
4738 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4740 bridge
->ignore_hotplug
= 1;
4742 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
4744 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4745 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
4746 static DEFINE_SPINLOCK(resource_alignment_lock
);
4749 * pci_specified_resource_alignment - get resource alignment specified by user.
4750 * @dev: the PCI device to get
4752 * RETURNS: Resource alignment if it is specified.
4753 * Zero if it is not specified.
4755 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
)
4757 int seg
, bus
, slot
, func
, align_order
, count
;
4758 resource_size_t align
= 0;
4761 spin_lock(&resource_alignment_lock
);
4762 p
= resource_alignment_param
;
4765 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
4771 if (sscanf(p
, "%x:%x:%x.%x%n",
4772 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
4774 if (sscanf(p
, "%x:%x.%x%n",
4775 &bus
, &slot
, &func
, &count
) != 3) {
4776 /* Invalid format */
4777 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
4783 if (seg
== pci_domain_nr(dev
->bus
) &&
4784 bus
== dev
->bus
->number
&&
4785 slot
== PCI_SLOT(dev
->devfn
) &&
4786 func
== PCI_FUNC(dev
->devfn
)) {
4787 if (align_order
== -1)
4790 align
= 1 << align_order
;
4794 if (*p
!= ';' && *p
!= ',') {
4795 /* End of param or invalid format */
4800 spin_unlock(&resource_alignment_lock
);
4805 * This function disables memory decoding and releases memory resources
4806 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4807 * It also rounds up size to specified alignment.
4808 * Later on, the kernel will assign page-aligned memory resource back
4811 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
4815 resource_size_t align
, size
;
4818 /* check if specified PCI is target device to reassign */
4819 align
= pci_specified_resource_alignment(dev
);
4823 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
4824 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
4826 "Can't reassign resources to host bridge.\n");
4831 "Disabling memory decoding and releasing memory resources.\n");
4832 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
4833 command
&= ~PCI_COMMAND_MEMORY
;
4834 pci_write_config_word(dev
, PCI_COMMAND
, command
);
4836 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++) {
4837 r
= &dev
->resource
[i
];
4838 if (!(r
->flags
& IORESOURCE_MEM
))
4840 size
= resource_size(r
);
4844 "Rounding up size of resource #%d to %#llx.\n",
4845 i
, (unsigned long long)size
);
4847 r
->flags
|= IORESOURCE_UNSET
;
4851 /* Need to disable bridge's resource window,
4852 * to enable the kernel to reassign new resource
4855 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
4856 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
4857 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
4858 r
= &dev
->resource
[i
];
4859 if (!(r
->flags
& IORESOURCE_MEM
))
4861 r
->flags
|= IORESOURCE_UNSET
;
4862 r
->end
= resource_size(r
) - 1;
4865 pci_disable_bridge_window(dev
);
4869 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
4871 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
4872 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
4873 spin_lock(&resource_alignment_lock
);
4874 strncpy(resource_alignment_param
, buf
, count
);
4875 resource_alignment_param
[count
] = '\0';
4876 spin_unlock(&resource_alignment_lock
);
4880 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
4883 spin_lock(&resource_alignment_lock
);
4884 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
4885 spin_unlock(&resource_alignment_lock
);
4889 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
4891 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
4894 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
4895 const char *buf
, size_t count
)
4897 return pci_set_resource_alignment_param(buf
, count
);
4900 BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
4901 pci_resource_alignment_store
);
4903 static int __init
pci_resource_alignment_sysfs_init(void)
4905 return bus_create_file(&pci_bus_type
,
4906 &bus_attr_resource_alignment
);
4908 late_initcall(pci_resource_alignment_sysfs_init
);
4910 static void pci_no_domains(void)
4912 #ifdef CONFIG_PCI_DOMAINS
4913 pci_domains_supported
= 0;
4917 #ifdef CONFIG_PCI_DOMAINS
4918 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
4920 int pci_get_new_domain_nr(void)
4922 return atomic_inc_return(&__domain_nr
);
4925 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4926 void pci_bus_assign_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
4928 static int use_dt_domains
= -1;
4932 domain
= of_get_pci_domain_nr(parent
->of_node
);
4934 * Check DT domain and use_dt_domains values.
4936 * If DT domain property is valid (domain >= 0) and
4937 * use_dt_domains != 0, the DT assignment is valid since this means
4938 * we have not previously allocated a domain number by using
4939 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4940 * 1, to indicate that we have just assigned a domain number from
4943 * If DT domain property value is not valid (ie domain < 0), and we
4944 * have not previously assigned a domain number from DT
4945 * (use_dt_domains != 1) we should assign a domain number by
4948 * pci_get_new_domain_nr()
4950 * API and update the use_dt_domains value to keep track of method we
4951 * are using to assign domain numbers (use_dt_domains = 0).
4953 * All other combinations imply we have a platform that is trying
4954 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4955 * which is a recipe for domain mishandling and it is prevented by
4956 * invalidating the domain value (domain = -1) and printing a
4957 * corresponding error.
4959 if (domain
>= 0 && use_dt_domains
) {
4961 } else if (domain
< 0 && use_dt_domains
!= 1) {
4963 domain
= pci_get_new_domain_nr();
4965 dev_err(parent
, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4966 parent
->of_node
->full_name
);
4970 bus
->domain_nr
= domain
;
4976 * pci_ext_cfg_avail - can we access extended PCI config space?
4978 * Returns 1 if we can access PCI extended config space (offsets
4979 * greater than 0xff). This is the default implementation. Architecture
4980 * implementations can override this.
4982 int __weak
pci_ext_cfg_avail(void)
4987 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
4990 EXPORT_SYMBOL(pci_fixup_cardbus
);
4992 static int __init
pci_setup(char *str
)
4995 char *k
= strchr(str
, ',');
4998 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
4999 if (!strcmp(str
, "nomsi")) {
5001 } else if (!strcmp(str
, "noaer")) {
5003 } else if (!strncmp(str
, "realloc=", 8)) {
5004 pci_realloc_get_opt(str
+ 8);
5005 } else if (!strncmp(str
, "realloc", 7)) {
5006 pci_realloc_get_opt("on");
5007 } else if (!strcmp(str
, "nodomains")) {
5009 } else if (!strncmp(str
, "noari", 5)) {
5010 pcie_ari_disabled
= true;
5011 } else if (!strncmp(str
, "cbiosize=", 9)) {
5012 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
5013 } else if (!strncmp(str
, "cbmemsize=", 10)) {
5014 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
5015 } else if (!strncmp(str
, "resource_alignment=", 19)) {
5016 pci_set_resource_alignment_param(str
+ 19,
5018 } else if (!strncmp(str
, "ecrc=", 5)) {
5019 pcie_ecrc_get_policy(str
+ 5);
5020 } else if (!strncmp(str
, "hpiosize=", 9)) {
5021 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
5022 } else if (!strncmp(str
, "hpmemsize=", 10)) {
5023 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
5024 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
5025 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
5026 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
5027 pcie_bus_config
= PCIE_BUS_SAFE
;
5028 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
5029 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
5030 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
5031 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
5032 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
5033 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
5035 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
5043 early_param("pci", pci_setup
);