2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate
;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct
*work
);
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 cputime64_t prev_cpu_nice
;
61 struct cpufreq_policy
*cur_policy
;
62 struct delayed_work work
;
63 unsigned int down_skip
;
64 unsigned int requested_freq
;
66 unsigned int enable
:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex
;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cs_cpu_dbs_info
);
76 static unsigned int dbs_enable
; /* number of CPUs using this policy */
79 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80 * different CPUs. It protects dbs_enable in governor start/stop.
82 static DEFINE_MUTEX(dbs_mutex
);
84 static struct workqueue_struct
*kconservative_wq
;
86 static struct dbs_tuners
{
87 unsigned int sampling_rate
;
88 unsigned int sampling_down_factor
;
89 unsigned int up_threshold
;
90 unsigned int down_threshold
;
91 unsigned int ignore_nice
;
92 unsigned int freq_step
;
94 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
95 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
96 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
101 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
104 cputime64_t idle_time
;
105 cputime64_t cur_wall_time
;
106 cputime64_t busy_time
;
108 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
109 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
110 kstat_cpu(cpu
).cpustat
.system
);
112 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
113 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
114 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
115 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
117 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
119 *wall
= cur_wall_time
;
124 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
126 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
128 if (idle_time
== -1ULL)
129 return get_cpu_idle_time_jiffy(cpu
, wall
);
134 /* keep track of frequency transitions */
136 dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
139 struct cpufreq_freqs
*freq
= data
;
140 struct cpu_dbs_info_s
*this_dbs_info
= &per_cpu(cs_cpu_dbs_info
,
143 struct cpufreq_policy
*policy
;
145 if (!this_dbs_info
->enable
)
148 policy
= this_dbs_info
->cur_policy
;
151 * we only care if our internally tracked freq moves outside
152 * the 'valid' ranges of freqency available to us otherwise
153 * we do not change it
155 if (this_dbs_info
->requested_freq
> policy
->max
156 || this_dbs_info
->requested_freq
< policy
->min
)
157 this_dbs_info
->requested_freq
= freq
->new;
162 static struct notifier_block dbs_cpufreq_notifier_block
= {
163 .notifier_call
= dbs_cpufreq_notifier
166 /************************** sysfs interface ************************/
167 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
169 printk_once(KERN_INFO
"CPUFREQ: conservative sampling_rate_max "
170 "sysfs file is deprecated - used by: %s\n", current
->comm
);
171 return sprintf(buf
, "%u\n", -1U);
174 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
176 return sprintf(buf
, "%u\n", min_sampling_rate
);
179 #define define_one_ro(_name) \
180 static struct freq_attr _name = \
181 __ATTR(_name, 0444, show_##_name, NULL)
183 define_one_ro(sampling_rate_max
);
184 define_one_ro(sampling_rate_min
);
186 /* cpufreq_conservative Governor Tunables */
187 #define show_one(file_name, object) \
188 static ssize_t show_##file_name \
189 (struct cpufreq_policy *unused, char *buf) \
191 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
193 show_one(sampling_rate
, sampling_rate
);
194 show_one(sampling_down_factor
, sampling_down_factor
);
195 show_one(up_threshold
, up_threshold
);
196 show_one(down_threshold
, down_threshold
);
197 show_one(ignore_nice_load
, ignore_nice
);
198 show_one(freq_step
, freq_step
);
200 static ssize_t
store_sampling_down_factor(struct cpufreq_policy
*unused
,
201 const char *buf
, size_t count
)
205 ret
= sscanf(buf
, "%u", &input
);
207 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
210 mutex_lock(&dbs_mutex
);
211 dbs_tuners_ins
.sampling_down_factor
= input
;
212 mutex_unlock(&dbs_mutex
);
217 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
218 const char *buf
, size_t count
)
222 ret
= sscanf(buf
, "%u", &input
);
227 mutex_lock(&dbs_mutex
);
228 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
229 mutex_unlock(&dbs_mutex
);
234 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
235 const char *buf
, size_t count
)
239 ret
= sscanf(buf
, "%u", &input
);
241 mutex_lock(&dbs_mutex
);
242 if (ret
!= 1 || input
> 100 ||
243 input
<= dbs_tuners_ins
.down_threshold
) {
244 mutex_unlock(&dbs_mutex
);
248 dbs_tuners_ins
.up_threshold
= input
;
249 mutex_unlock(&dbs_mutex
);
254 static ssize_t
store_down_threshold(struct cpufreq_policy
*unused
,
255 const char *buf
, size_t count
)
259 ret
= sscanf(buf
, "%u", &input
);
261 mutex_lock(&dbs_mutex
);
262 /* cannot be lower than 11 otherwise freq will not fall */
263 if (ret
!= 1 || input
< 11 || input
> 100 ||
264 input
>= dbs_tuners_ins
.up_threshold
) {
265 mutex_unlock(&dbs_mutex
);
269 dbs_tuners_ins
.down_threshold
= input
;
270 mutex_unlock(&dbs_mutex
);
275 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
276 const char *buf
, size_t count
)
283 ret
= sscanf(buf
, "%u", &input
);
290 mutex_lock(&dbs_mutex
);
291 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
292 mutex_unlock(&dbs_mutex
);
295 dbs_tuners_ins
.ignore_nice
= input
;
297 /* we need to re-evaluate prev_cpu_idle */
298 for_each_online_cpu(j
) {
299 struct cpu_dbs_info_s
*dbs_info
;
300 dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
301 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
302 &dbs_info
->prev_cpu_wall
);
303 if (dbs_tuners_ins
.ignore_nice
)
304 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
306 mutex_unlock(&dbs_mutex
);
311 static ssize_t
store_freq_step(struct cpufreq_policy
*policy
,
312 const char *buf
, size_t count
)
316 ret
= sscanf(buf
, "%u", &input
);
324 /* no need to test here if freq_step is zero as the user might actually
325 * want this, they would be crazy though :) */
326 mutex_lock(&dbs_mutex
);
327 dbs_tuners_ins
.freq_step
= input
;
328 mutex_unlock(&dbs_mutex
);
333 #define define_one_rw(_name) \
334 static struct freq_attr _name = \
335 __ATTR(_name, 0644, show_##_name, store_##_name)
337 define_one_rw(sampling_rate
);
338 define_one_rw(sampling_down_factor
);
339 define_one_rw(up_threshold
);
340 define_one_rw(down_threshold
);
341 define_one_rw(ignore_nice_load
);
342 define_one_rw(freq_step
);
344 static struct attribute
*dbs_attributes
[] = {
345 &sampling_rate_max
.attr
,
346 &sampling_rate_min
.attr
,
348 &sampling_down_factor
.attr
,
350 &down_threshold
.attr
,
351 &ignore_nice_load
.attr
,
356 static struct attribute_group dbs_attr_group
= {
357 .attrs
= dbs_attributes
,
358 .name
= "conservative",
361 /************************** sysfs end ************************/
363 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
365 unsigned int load
= 0;
366 unsigned int freq_target
;
368 struct cpufreq_policy
*policy
;
371 policy
= this_dbs_info
->cur_policy
;
374 * Every sampling_rate, we check, if current idle time is less
375 * than 20% (default), then we try to increase frequency
376 * Every sampling_rate*sampling_down_factor, we check, if current
377 * idle time is more than 80%, then we try to decrease frequency
379 * Any frequency increase takes it to the maximum frequency.
380 * Frequency reduction happens at minimum steps of
381 * 5% (default) of maximum frequency
384 /* Get Absolute Load */
385 for_each_cpu(j
, policy
->cpus
) {
386 struct cpu_dbs_info_s
*j_dbs_info
;
387 cputime64_t cur_wall_time
, cur_idle_time
;
388 unsigned int idle_time
, wall_time
;
390 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
392 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
394 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
395 j_dbs_info
->prev_cpu_wall
);
396 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
398 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
399 j_dbs_info
->prev_cpu_idle
);
400 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
402 if (dbs_tuners_ins
.ignore_nice
) {
403 cputime64_t cur_nice
;
404 unsigned long cur_nice_jiffies
;
406 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
407 j_dbs_info
->prev_cpu_nice
);
409 * Assumption: nice time between sampling periods will
410 * be less than 2^32 jiffies for 32 bit sys
412 cur_nice_jiffies
= (unsigned long)
413 cputime64_to_jiffies64(cur_nice
);
415 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
416 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
419 if (unlikely(!wall_time
|| wall_time
< idle_time
))
422 load
= 100 * (wall_time
- idle_time
) / wall_time
;
426 * break out if we 'cannot' reduce the speed as the user might
427 * want freq_step to be zero
429 if (dbs_tuners_ins
.freq_step
== 0)
432 /* Check for frequency increase */
433 if (load
> dbs_tuners_ins
.up_threshold
) {
434 this_dbs_info
->down_skip
= 0;
436 /* if we are already at full speed then break out early */
437 if (this_dbs_info
->requested_freq
== policy
->max
)
440 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
442 /* max freq cannot be less than 100. But who knows.... */
443 if (unlikely(freq_target
== 0))
446 this_dbs_info
->requested_freq
+= freq_target
;
447 if (this_dbs_info
->requested_freq
> policy
->max
)
448 this_dbs_info
->requested_freq
= policy
->max
;
450 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
456 * The optimal frequency is the frequency that is the lowest that
457 * can support the current CPU usage without triggering the up
458 * policy. To be safe, we focus 10 points under the threshold.
460 if (load
< (dbs_tuners_ins
.down_threshold
- 10)) {
461 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
463 this_dbs_info
->requested_freq
-= freq_target
;
464 if (this_dbs_info
->requested_freq
< policy
->min
)
465 this_dbs_info
->requested_freq
= policy
->min
;
468 * if we cannot reduce the frequency anymore, break out early
470 if (policy
->cur
== policy
->min
)
473 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
479 static void do_dbs_timer(struct work_struct
*work
)
481 struct cpu_dbs_info_s
*dbs_info
=
482 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
483 unsigned int cpu
= dbs_info
->cpu
;
485 /* We want all CPUs to do sampling nearly on same jiffy */
486 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
488 delay
-= jiffies
% delay
;
490 mutex_lock(&dbs_info
->timer_mutex
);
492 dbs_check_cpu(dbs_info
);
494 queue_delayed_work_on(cpu
, kconservative_wq
, &dbs_info
->work
, delay
);
495 mutex_unlock(&dbs_info
->timer_mutex
);
498 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
500 /* We want all CPUs to do sampling nearly on same jiffy */
501 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
502 delay
-= jiffies
% delay
;
504 dbs_info
->enable
= 1;
505 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
506 queue_delayed_work_on(dbs_info
->cpu
, kconservative_wq
, &dbs_info
->work
,
510 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
512 dbs_info
->enable
= 0;
513 cancel_delayed_work_sync(&dbs_info
->work
);
516 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
519 unsigned int cpu
= policy
->cpu
;
520 struct cpu_dbs_info_s
*this_dbs_info
;
524 this_dbs_info
= &per_cpu(cs_cpu_dbs_info
, cpu
);
527 case CPUFREQ_GOV_START
:
528 if ((!cpu_online(cpu
)) || (!policy
->cur
))
531 mutex_lock(&dbs_mutex
);
533 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
535 mutex_unlock(&dbs_mutex
);
539 for_each_cpu(j
, policy
->cpus
) {
540 struct cpu_dbs_info_s
*j_dbs_info
;
541 j_dbs_info
= &per_cpu(cs_cpu_dbs_info
, j
);
542 j_dbs_info
->cur_policy
= policy
;
544 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
545 &j_dbs_info
->prev_cpu_wall
);
546 if (dbs_tuners_ins
.ignore_nice
) {
547 j_dbs_info
->prev_cpu_nice
=
548 kstat_cpu(j
).cpustat
.nice
;
551 this_dbs_info
->down_skip
= 0;
552 this_dbs_info
->requested_freq
= policy
->cur
;
554 mutex_init(&this_dbs_info
->timer_mutex
);
557 * Start the timerschedule work, when this governor
558 * is used for first time
560 if (dbs_enable
== 1) {
561 unsigned int latency
;
562 /* policy latency is in nS. Convert it to uS first */
563 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
568 * conservative does not implement micro like ondemand
569 * governor, thus we are bound to jiffes/HZ
572 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
573 /* Bring kernel and HW constraints together */
574 min_sampling_rate
= max(min_sampling_rate
,
575 MIN_LATENCY_MULTIPLIER
* latency
);
576 dbs_tuners_ins
.sampling_rate
=
577 max(min_sampling_rate
,
578 latency
* LATENCY_MULTIPLIER
);
580 cpufreq_register_notifier(
581 &dbs_cpufreq_notifier_block
,
582 CPUFREQ_TRANSITION_NOTIFIER
);
584 mutex_unlock(&dbs_mutex
);
586 dbs_timer_init(this_dbs_info
);
590 case CPUFREQ_GOV_STOP
:
591 dbs_timer_exit(this_dbs_info
);
593 mutex_lock(&dbs_mutex
);
594 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
596 mutex_destroy(&this_dbs_info
->timer_mutex
);
599 * Stop the timerschedule work, when this governor
600 * is used for first time
603 cpufreq_unregister_notifier(
604 &dbs_cpufreq_notifier_block
,
605 CPUFREQ_TRANSITION_NOTIFIER
);
607 mutex_unlock(&dbs_mutex
);
611 case CPUFREQ_GOV_LIMITS
:
612 mutex_lock(&this_dbs_info
->timer_mutex
);
613 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
614 __cpufreq_driver_target(
615 this_dbs_info
->cur_policy
,
616 policy
->max
, CPUFREQ_RELATION_H
);
617 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
618 __cpufreq_driver_target(
619 this_dbs_info
->cur_policy
,
620 policy
->min
, CPUFREQ_RELATION_L
);
621 mutex_unlock(&this_dbs_info
->timer_mutex
);
628 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
631 struct cpufreq_governor cpufreq_gov_conservative
= {
632 .name
= "conservative",
633 .governor
= cpufreq_governor_dbs
,
634 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
635 .owner
= THIS_MODULE
,
638 static int __init
cpufreq_gov_dbs_init(void)
642 kconservative_wq
= create_workqueue("kconservative");
643 if (!kconservative_wq
) {
644 printk(KERN_ERR
"Creation of kconservative failed\n");
648 err
= cpufreq_register_governor(&cpufreq_gov_conservative
);
650 destroy_workqueue(kconservative_wq
);
655 static void __exit
cpufreq_gov_dbs_exit(void)
657 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
658 destroy_workqueue(kconservative_wq
);
662 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
663 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
664 "Low Latency Frequency Transition capable processors "
665 "optimised for use in a battery environment");
666 MODULE_LICENSE("GPL");
668 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
669 fs_initcall(cpufreq_gov_dbs_init
);
671 module_init(cpufreq_gov_dbs_init
);
673 module_exit(cpufreq_gov_dbs_exit
);