2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
72 /* Architectures should define their poll value according to the halt latency */
73 static unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
74 module_param(halt_poll_ns
, uint
, S_IRUGO
| S_IWUSR
);
76 /* Default doubles per-vcpu halt_poll_ns. */
77 static unsigned int halt_poll_ns_grow
= 2;
78 module_param(halt_poll_ns_grow
, uint
, S_IRUGO
| S_IWUSR
);
80 /* Default resets per-vcpu halt_poll_ns . */
81 static unsigned int halt_poll_ns_shrink
;
82 module_param(halt_poll_ns_shrink
, uint
, S_IRUGO
| S_IWUSR
);
87 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
90 DEFINE_SPINLOCK(kvm_lock
);
91 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
94 static cpumask_var_t cpus_hardware_enabled
;
95 static int kvm_usage_count
;
96 static atomic_t hardware_enable_failed
;
98 struct kmem_cache
*kvm_vcpu_cache
;
99 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
101 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
103 struct dentry
*kvm_debugfs_dir
;
104 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
106 static int kvm_debugfs_num_entries
;
107 static const struct file_operations
*stat_fops_per_vm
[];
109 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
111 #ifdef CONFIG_KVM_COMPAT
112 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
115 static int hardware_enable_all(void);
116 static void hardware_disable_all(void);
118 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
120 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
);
121 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
123 __visible
bool kvm_rebooting
;
124 EXPORT_SYMBOL_GPL(kvm_rebooting
);
126 static bool largepages_enabled
= true;
128 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
131 return PageReserved(pfn_to_page(pfn
));
137 * Switches to specified vcpu, until a matching vcpu_put()
139 int vcpu_load(struct kvm_vcpu
*vcpu
)
143 if (mutex_lock_killable(&vcpu
->mutex
))
146 preempt_notifier_register(&vcpu
->preempt_notifier
);
147 kvm_arch_vcpu_load(vcpu
, cpu
);
152 void vcpu_put(struct kvm_vcpu
*vcpu
)
155 kvm_arch_vcpu_put(vcpu
);
156 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
158 mutex_unlock(&vcpu
->mutex
);
161 static void ack_flush(void *_completed
)
165 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
170 struct kvm_vcpu
*vcpu
;
172 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
175 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
176 kvm_make_request(req
, vcpu
);
179 /* Set ->requests bit before we read ->mode. */
180 smp_mb__after_atomic();
182 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
183 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
184 cpumask_set_cpu(cpu
, cpus
);
186 if (unlikely(cpus
== NULL
))
187 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
188 else if (!cpumask_empty(cpus
))
189 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
193 free_cpumask_var(cpus
);
197 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
198 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
201 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
202 * kvm_make_all_cpus_request.
204 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
207 * We want to publish modifications to the page tables before reading
208 * mode. Pairs with a memory barrier in arch-specific code.
209 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
210 * and smp_mb in walk_shadow_page_lockless_begin/end.
211 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
213 * There is already an smp_mb__after_atomic() before
214 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
217 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
218 ++kvm
->stat
.remote_tlb_flush
;
219 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
221 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
224 void kvm_reload_remote_mmus(struct kvm
*kvm
)
226 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
229 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
234 mutex_init(&vcpu
->mutex
);
239 init_swait_queue_head(&vcpu
->wq
);
240 kvm_async_pf_vcpu_init(vcpu
);
243 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
245 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
250 vcpu
->run
= page_address(page
);
252 kvm_vcpu_set_in_spin_loop(vcpu
, false);
253 kvm_vcpu_set_dy_eligible(vcpu
, false);
254 vcpu
->preempted
= false;
256 r
= kvm_arch_vcpu_init(vcpu
);
262 free_page((unsigned long)vcpu
->run
);
266 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
268 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
271 kvm_arch_vcpu_uninit(vcpu
);
272 free_page((unsigned long)vcpu
->run
);
274 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
276 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
277 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
279 return container_of(mn
, struct kvm
, mmu_notifier
);
282 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
283 struct mm_struct
*mm
,
284 unsigned long address
)
286 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
287 int need_tlb_flush
, idx
;
290 * When ->invalidate_page runs, the linux pte has been zapped
291 * already but the page is still allocated until
292 * ->invalidate_page returns. So if we increase the sequence
293 * here the kvm page fault will notice if the spte can't be
294 * established because the page is going to be freed. If
295 * instead the kvm page fault establishes the spte before
296 * ->invalidate_page runs, kvm_unmap_hva will release it
299 * The sequence increase only need to be seen at spin_unlock
300 * time, and not at spin_lock time.
302 * Increasing the sequence after the spin_unlock would be
303 * unsafe because the kvm page fault could then establish the
304 * pte after kvm_unmap_hva returned, without noticing the page
305 * is going to be freed.
307 idx
= srcu_read_lock(&kvm
->srcu
);
308 spin_lock(&kvm
->mmu_lock
);
310 kvm
->mmu_notifier_seq
++;
311 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
312 /* we've to flush the tlb before the pages can be freed */
314 kvm_flush_remote_tlbs(kvm
);
316 spin_unlock(&kvm
->mmu_lock
);
318 kvm_arch_mmu_notifier_invalidate_page(kvm
, address
);
320 srcu_read_unlock(&kvm
->srcu
, idx
);
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
324 struct mm_struct
*mm
,
325 unsigned long address
,
328 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
331 idx
= srcu_read_lock(&kvm
->srcu
);
332 spin_lock(&kvm
->mmu_lock
);
333 kvm
->mmu_notifier_seq
++;
334 kvm_set_spte_hva(kvm
, address
, pte
);
335 spin_unlock(&kvm
->mmu_lock
);
336 srcu_read_unlock(&kvm
->srcu
, idx
);
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
340 struct mm_struct
*mm
,
344 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
345 int need_tlb_flush
= 0, idx
;
347 idx
= srcu_read_lock(&kvm
->srcu
);
348 spin_lock(&kvm
->mmu_lock
);
350 * The count increase must become visible at unlock time as no
351 * spte can be established without taking the mmu_lock and
352 * count is also read inside the mmu_lock critical section.
354 kvm
->mmu_notifier_count
++;
355 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
356 need_tlb_flush
|= kvm
->tlbs_dirty
;
357 /* we've to flush the tlb before the pages can be freed */
359 kvm_flush_remote_tlbs(kvm
);
361 spin_unlock(&kvm
->mmu_lock
);
362 srcu_read_unlock(&kvm
->srcu
, idx
);
365 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
366 struct mm_struct
*mm
,
370 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
372 spin_lock(&kvm
->mmu_lock
);
374 * This sequence increase will notify the kvm page fault that
375 * the page that is going to be mapped in the spte could have
378 kvm
->mmu_notifier_seq
++;
381 * The above sequence increase must be visible before the
382 * below count decrease, which is ensured by the smp_wmb above
383 * in conjunction with the smp_rmb in mmu_notifier_retry().
385 kvm
->mmu_notifier_count
--;
386 spin_unlock(&kvm
->mmu_lock
);
388 BUG_ON(kvm
->mmu_notifier_count
< 0);
391 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
392 struct mm_struct
*mm
,
396 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
399 idx
= srcu_read_lock(&kvm
->srcu
);
400 spin_lock(&kvm
->mmu_lock
);
402 young
= kvm_age_hva(kvm
, start
, end
);
404 kvm_flush_remote_tlbs(kvm
);
406 spin_unlock(&kvm
->mmu_lock
);
407 srcu_read_unlock(&kvm
->srcu
, idx
);
412 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
413 struct mm_struct
*mm
,
417 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
420 idx
= srcu_read_lock(&kvm
->srcu
);
421 spin_lock(&kvm
->mmu_lock
);
423 * Even though we do not flush TLB, this will still adversely
424 * affect performance on pre-Haswell Intel EPT, where there is
425 * no EPT Access Bit to clear so that we have to tear down EPT
426 * tables instead. If we find this unacceptable, we can always
427 * add a parameter to kvm_age_hva so that it effectively doesn't
428 * do anything on clear_young.
430 * Also note that currently we never issue secondary TLB flushes
431 * from clear_young, leaving this job up to the regular system
432 * cadence. If we find this inaccurate, we might come up with a
433 * more sophisticated heuristic later.
435 young
= kvm_age_hva(kvm
, start
, end
);
436 spin_unlock(&kvm
->mmu_lock
);
437 srcu_read_unlock(&kvm
->srcu
, idx
);
442 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
443 struct mm_struct
*mm
,
444 unsigned long address
)
446 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
449 idx
= srcu_read_lock(&kvm
->srcu
);
450 spin_lock(&kvm
->mmu_lock
);
451 young
= kvm_test_age_hva(kvm
, address
);
452 spin_unlock(&kvm
->mmu_lock
);
453 srcu_read_unlock(&kvm
->srcu
, idx
);
458 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
459 struct mm_struct
*mm
)
461 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
464 idx
= srcu_read_lock(&kvm
->srcu
);
465 kvm_arch_flush_shadow_all(kvm
);
466 srcu_read_unlock(&kvm
->srcu
, idx
);
469 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
470 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
471 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
472 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
473 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
474 .clear_young
= kvm_mmu_notifier_clear_young
,
475 .test_young
= kvm_mmu_notifier_test_young
,
476 .change_pte
= kvm_mmu_notifier_change_pte
,
477 .release
= kvm_mmu_notifier_release
,
480 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
482 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
483 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
486 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
488 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
493 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
495 static struct kvm_memslots
*kvm_alloc_memslots(void)
498 struct kvm_memslots
*slots
;
500 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
505 * Init kvm generation close to the maximum to easily test the
506 * code of handling generation number wrap-around.
508 slots
->generation
= -150;
509 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
510 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
515 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
517 if (!memslot
->dirty_bitmap
)
520 kvfree(memslot
->dirty_bitmap
);
521 memslot
->dirty_bitmap
= NULL
;
525 * Free any memory in @free but not in @dont.
527 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
528 struct kvm_memory_slot
*dont
)
530 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
531 kvm_destroy_dirty_bitmap(free
);
533 kvm_arch_free_memslot(kvm
, free
, dont
);
538 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
540 struct kvm_memory_slot
*memslot
;
545 kvm_for_each_memslot(memslot
, slots
)
546 kvm_free_memslot(kvm
, memslot
, NULL
);
551 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
555 if (!kvm
->debugfs_dentry
)
558 debugfs_remove_recursive(kvm
->debugfs_dentry
);
560 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
561 kfree(kvm
->debugfs_stat_data
[i
]);
562 kfree(kvm
->debugfs_stat_data
);
565 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
567 char dir_name
[ITOA_MAX_LEN
* 2];
568 struct kvm_stat_data
*stat_data
;
569 struct kvm_stats_debugfs_item
*p
;
571 if (!debugfs_initialized())
574 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
575 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
,
577 if (!kvm
->debugfs_dentry
)
580 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
581 sizeof(*kvm
->debugfs_stat_data
),
583 if (!kvm
->debugfs_stat_data
)
586 for (p
= debugfs_entries
; p
->name
; p
++) {
587 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL
);
591 stat_data
->kvm
= kvm
;
592 stat_data
->offset
= p
->offset
;
593 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
594 if (!debugfs_create_file(p
->name
, 0444,
597 stat_fops_per_vm
[p
->kind
]))
603 static struct kvm
*kvm_create_vm(unsigned long type
)
606 struct kvm
*kvm
= kvm_arch_alloc_vm();
609 return ERR_PTR(-ENOMEM
);
611 spin_lock_init(&kvm
->mmu_lock
);
612 atomic_inc(¤t
->mm
->mm_count
);
613 kvm
->mm
= current
->mm
;
614 kvm_eventfd_init(kvm
);
615 mutex_init(&kvm
->lock
);
616 mutex_init(&kvm
->irq_lock
);
617 mutex_init(&kvm
->slots_lock
);
618 atomic_set(&kvm
->users_count
, 1);
619 INIT_LIST_HEAD(&kvm
->devices
);
621 r
= kvm_arch_init_vm(kvm
, type
);
623 goto out_err_no_disable
;
625 r
= hardware_enable_all();
627 goto out_err_no_disable
;
629 #ifdef CONFIG_HAVE_KVM_IRQFD
630 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
633 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
636 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
637 kvm
->memslots
[i
] = kvm_alloc_memslots();
638 if (!kvm
->memslots
[i
])
639 goto out_err_no_srcu
;
642 if (init_srcu_struct(&kvm
->srcu
))
643 goto out_err_no_srcu
;
644 if (init_srcu_struct(&kvm
->irq_srcu
))
645 goto out_err_no_irq_srcu
;
646 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
647 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
653 r
= kvm_init_mmu_notifier(kvm
);
657 spin_lock(&kvm_lock
);
658 list_add(&kvm
->vm_list
, &vm_list
);
659 spin_unlock(&kvm_lock
);
661 preempt_notifier_inc();
666 cleanup_srcu_struct(&kvm
->irq_srcu
);
668 cleanup_srcu_struct(&kvm
->srcu
);
670 hardware_disable_all();
672 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
673 kfree(kvm
->buses
[i
]);
674 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
675 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
676 kvm_arch_free_vm(kvm
);
682 * Avoid using vmalloc for a small buffer.
683 * Should not be used when the size is statically known.
685 void *kvm_kvzalloc(unsigned long size
)
687 if (size
> PAGE_SIZE
)
688 return vzalloc(size
);
690 return kzalloc(size
, GFP_KERNEL
);
693 static void kvm_destroy_devices(struct kvm
*kvm
)
695 struct kvm_device
*dev
, *tmp
;
697 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
698 list_del(&dev
->vm_node
);
699 dev
->ops
->destroy(dev
);
703 static void kvm_destroy_vm(struct kvm
*kvm
)
706 struct mm_struct
*mm
= kvm
->mm
;
708 kvm_destroy_vm_debugfs(kvm
);
709 kvm_arch_sync_events(kvm
);
710 spin_lock(&kvm_lock
);
711 list_del(&kvm
->vm_list
);
712 spin_unlock(&kvm_lock
);
713 kvm_free_irq_routing(kvm
);
714 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
715 kvm_io_bus_destroy(kvm
->buses
[i
]);
716 kvm_coalesced_mmio_free(kvm
);
717 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
718 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
720 kvm_arch_flush_shadow_all(kvm
);
722 kvm_arch_destroy_vm(kvm
);
723 kvm_destroy_devices(kvm
);
724 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
725 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
726 cleanup_srcu_struct(&kvm
->irq_srcu
);
727 cleanup_srcu_struct(&kvm
->srcu
);
728 kvm_arch_free_vm(kvm
);
729 preempt_notifier_dec();
730 hardware_disable_all();
734 void kvm_get_kvm(struct kvm
*kvm
)
736 atomic_inc(&kvm
->users_count
);
738 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
740 void kvm_put_kvm(struct kvm
*kvm
)
742 if (atomic_dec_and_test(&kvm
->users_count
))
745 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
748 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
750 struct kvm
*kvm
= filp
->private_data
;
752 kvm_irqfd_release(kvm
);
759 * Allocation size is twice as large as the actual dirty bitmap size.
760 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
762 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
764 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
766 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
767 if (!memslot
->dirty_bitmap
)
774 * Insert memslot and re-sort memslots based on their GFN,
775 * so binary search could be used to lookup GFN.
776 * Sorting algorithm takes advantage of having initially
777 * sorted array and known changed memslot position.
779 static void update_memslots(struct kvm_memslots
*slots
,
780 struct kvm_memory_slot
*new)
783 int i
= slots
->id_to_index
[id
];
784 struct kvm_memory_slot
*mslots
= slots
->memslots
;
786 WARN_ON(mslots
[i
].id
!= id
);
788 WARN_ON(!mslots
[i
].npages
);
789 if (mslots
[i
].npages
)
792 if (!mslots
[i
].npages
)
796 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
797 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
798 if (!mslots
[i
+ 1].npages
)
800 mslots
[i
] = mslots
[i
+ 1];
801 slots
->id_to_index
[mslots
[i
].id
] = i
;
806 * The ">=" is needed when creating a slot with base_gfn == 0,
807 * so that it moves before all those with base_gfn == npages == 0.
809 * On the other hand, if new->npages is zero, the above loop has
810 * already left i pointing to the beginning of the empty part of
811 * mslots, and the ">=" would move the hole backwards in this
812 * case---which is wrong. So skip the loop when deleting a slot.
816 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
817 mslots
[i
] = mslots
[i
- 1];
818 slots
->id_to_index
[mslots
[i
].id
] = i
;
822 WARN_ON_ONCE(i
!= slots
->used_slots
);
825 slots
->id_to_index
[mslots
[i
].id
] = i
;
828 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
830 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
832 #ifdef __KVM_HAVE_READONLY_MEM
833 valid_flags
|= KVM_MEM_READONLY
;
836 if (mem
->flags
& ~valid_flags
)
842 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
843 int as_id
, struct kvm_memslots
*slots
)
845 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
848 * Set the low bit in the generation, which disables SPTE caching
849 * until the end of synchronize_srcu_expedited.
851 WARN_ON(old_memslots
->generation
& 1);
852 slots
->generation
= old_memslots
->generation
+ 1;
854 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
855 synchronize_srcu_expedited(&kvm
->srcu
);
858 * Increment the new memslot generation a second time. This prevents
859 * vm exits that race with memslot updates from caching a memslot
860 * generation that will (potentially) be valid forever.
864 kvm_arch_memslots_updated(kvm
, slots
);
870 * Allocate some memory and give it an address in the guest physical address
873 * Discontiguous memory is allowed, mostly for framebuffers.
875 * Must be called holding kvm->slots_lock for write.
877 int __kvm_set_memory_region(struct kvm
*kvm
,
878 const struct kvm_userspace_memory_region
*mem
)
882 unsigned long npages
;
883 struct kvm_memory_slot
*slot
;
884 struct kvm_memory_slot old
, new;
885 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
887 enum kvm_mr_change change
;
889 r
= check_memory_region_flags(mem
);
894 as_id
= mem
->slot
>> 16;
897 /* General sanity checks */
898 if (mem
->memory_size
& (PAGE_SIZE
- 1))
900 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
902 /* We can read the guest memory with __xxx_user() later on. */
903 if ((id
< KVM_USER_MEM_SLOTS
) &&
904 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
905 !access_ok(VERIFY_WRITE
,
906 (void __user
*)(unsigned long)mem
->userspace_addr
,
909 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
911 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
914 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
915 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
916 npages
= mem
->memory_size
>> PAGE_SHIFT
;
918 if (npages
> KVM_MEM_MAX_NR_PAGES
)
924 new.base_gfn
= base_gfn
;
926 new.flags
= mem
->flags
;
930 change
= KVM_MR_CREATE
;
931 else { /* Modify an existing slot. */
932 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
933 (npages
!= old
.npages
) ||
934 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
937 if (base_gfn
!= old
.base_gfn
)
938 change
= KVM_MR_MOVE
;
939 else if (new.flags
!= old
.flags
)
940 change
= KVM_MR_FLAGS_ONLY
;
941 else { /* Nothing to change. */
950 change
= KVM_MR_DELETE
;
955 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
956 /* Check for overlaps */
958 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
959 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
962 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
963 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
968 /* Free page dirty bitmap if unneeded */
969 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
970 new.dirty_bitmap
= NULL
;
973 if (change
== KVM_MR_CREATE
) {
974 new.userspace_addr
= mem
->userspace_addr
;
976 if (kvm_arch_create_memslot(kvm
, &new, npages
))
980 /* Allocate page dirty bitmap if needed */
981 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
982 if (kvm_create_dirty_bitmap(&new) < 0)
986 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
989 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
991 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
992 slot
= id_to_memslot(slots
, id
);
993 slot
->flags
|= KVM_MEMSLOT_INVALID
;
995 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
997 /* slot was deleted or moved, clear iommu mapping */
998 kvm_iommu_unmap_pages(kvm
, &old
);
999 /* From this point no new shadow pages pointing to a deleted,
1000 * or moved, memslot will be created.
1002 * validation of sp->gfn happens in:
1003 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1004 * - kvm_is_visible_gfn (mmu_check_roots)
1006 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1009 * We can re-use the old_memslots from above, the only difference
1010 * from the currently installed memslots is the invalid flag. This
1011 * will get overwritten by update_memslots anyway.
1013 slots
= old_memslots
;
1016 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
1020 /* actual memory is freed via old in kvm_free_memslot below */
1021 if (change
== KVM_MR_DELETE
) {
1022 new.dirty_bitmap
= NULL
;
1023 memset(&new.arch
, 0, sizeof(new.arch
));
1026 update_memslots(slots
, &new);
1027 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1029 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
1031 kvm_free_memslot(kvm
, &old
, &new);
1032 kvfree(old_memslots
);
1035 * IOMMU mapping: New slots need to be mapped. Old slots need to be
1036 * un-mapped and re-mapped if their base changes. Since base change
1037 * unmapping is handled above with slot deletion, mapping alone is
1038 * needed here. Anything else the iommu might care about for existing
1039 * slots (size changes, userspace addr changes and read-only flag
1040 * changes) is disallowed above, so any other attribute changes getting
1041 * here can be skipped.
1043 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
1044 r
= kvm_iommu_map_pages(kvm
, &new);
1053 kvm_free_memslot(kvm
, &new, &old
);
1057 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1059 int kvm_set_memory_region(struct kvm
*kvm
,
1060 const struct kvm_userspace_memory_region
*mem
)
1064 mutex_lock(&kvm
->slots_lock
);
1065 r
= __kvm_set_memory_region(kvm
, mem
);
1066 mutex_unlock(&kvm
->slots_lock
);
1069 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1071 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1072 struct kvm_userspace_memory_region
*mem
)
1074 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1077 return kvm_set_memory_region(kvm
, mem
);
1080 int kvm_get_dirty_log(struct kvm
*kvm
,
1081 struct kvm_dirty_log
*log
, int *is_dirty
)
1083 struct kvm_memslots
*slots
;
1084 struct kvm_memory_slot
*memslot
;
1085 int r
, i
, as_id
, id
;
1087 unsigned long any
= 0;
1090 as_id
= log
->slot
>> 16;
1091 id
= (u16
)log
->slot
;
1092 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1095 slots
= __kvm_memslots(kvm
, as_id
);
1096 memslot
= id_to_memslot(slots
, id
);
1098 if (!memslot
->dirty_bitmap
)
1101 n
= kvm_dirty_bitmap_bytes(memslot
);
1103 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1104 any
= memslot
->dirty_bitmap
[i
];
1107 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1117 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1119 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1121 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1122 * are dirty write protect them for next write.
1123 * @kvm: pointer to kvm instance
1124 * @log: slot id and address to which we copy the log
1125 * @is_dirty: flag set if any page is dirty
1127 * We need to keep it in mind that VCPU threads can write to the bitmap
1128 * concurrently. So, to avoid losing track of dirty pages we keep the
1131 * 1. Take a snapshot of the bit and clear it if needed.
1132 * 2. Write protect the corresponding page.
1133 * 3. Copy the snapshot to the userspace.
1134 * 4. Upon return caller flushes TLB's if needed.
1136 * Between 2 and 4, the guest may write to the page using the remaining TLB
1137 * entry. This is not a problem because the page is reported dirty using
1138 * the snapshot taken before and step 4 ensures that writes done after
1139 * exiting to userspace will be logged for the next call.
1142 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1143 struct kvm_dirty_log
*log
, bool *is_dirty
)
1145 struct kvm_memslots
*slots
;
1146 struct kvm_memory_slot
*memslot
;
1147 int r
, i
, as_id
, id
;
1149 unsigned long *dirty_bitmap
;
1150 unsigned long *dirty_bitmap_buffer
;
1153 as_id
= log
->slot
>> 16;
1154 id
= (u16
)log
->slot
;
1155 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1158 slots
= __kvm_memslots(kvm
, as_id
);
1159 memslot
= id_to_memslot(slots
, id
);
1161 dirty_bitmap
= memslot
->dirty_bitmap
;
1166 n
= kvm_dirty_bitmap_bytes(memslot
);
1168 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1169 memset(dirty_bitmap_buffer
, 0, n
);
1171 spin_lock(&kvm
->mmu_lock
);
1173 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1177 if (!dirty_bitmap
[i
])
1182 mask
= xchg(&dirty_bitmap
[i
], 0);
1183 dirty_bitmap_buffer
[i
] = mask
;
1186 offset
= i
* BITS_PER_LONG
;
1187 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1192 spin_unlock(&kvm
->mmu_lock
);
1195 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1202 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1205 bool kvm_largepages_enabled(void)
1207 return largepages_enabled
;
1210 void kvm_disable_largepages(void)
1212 largepages_enabled
= false;
1214 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1216 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1218 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1220 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1222 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1224 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1227 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1229 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1231 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1232 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1237 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1239 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1241 struct vm_area_struct
*vma
;
1242 unsigned long addr
, size
;
1246 addr
= gfn_to_hva(kvm
, gfn
);
1247 if (kvm_is_error_hva(addr
))
1250 down_read(¤t
->mm
->mmap_sem
);
1251 vma
= find_vma(current
->mm
, addr
);
1255 size
= vma_kernel_pagesize(vma
);
1258 up_read(¤t
->mm
->mmap_sem
);
1263 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1265 return slot
->flags
& KVM_MEM_READONLY
;
1268 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1269 gfn_t
*nr_pages
, bool write
)
1271 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1272 return KVM_HVA_ERR_BAD
;
1274 if (memslot_is_readonly(slot
) && write
)
1275 return KVM_HVA_ERR_RO_BAD
;
1278 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1280 return __gfn_to_hva_memslot(slot
, gfn
);
1283 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1286 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1289 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1292 return gfn_to_hva_many(slot
, gfn
, NULL
);
1294 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1296 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1298 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1300 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1302 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1304 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1306 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1309 * If writable is set to false, the hva returned by this function is only
1310 * allowed to be read.
1312 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1313 gfn_t gfn
, bool *writable
)
1315 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1317 if (!kvm_is_error_hva(hva
) && writable
)
1318 *writable
= !memslot_is_readonly(slot
);
1323 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1325 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1327 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1330 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1332 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1334 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1337 static int get_user_page_nowait(unsigned long start
, int write
,
1340 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1343 flags
|= FOLL_WRITE
;
1345 return __get_user_pages(current
, current
->mm
, start
, 1, flags
, page
,
1349 static inline int check_user_page_hwpoison(unsigned long addr
)
1351 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1353 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1354 flags
, NULL
, NULL
, NULL
);
1355 return rc
== -EHWPOISON
;
1359 * The atomic path to get the writable pfn which will be stored in @pfn,
1360 * true indicates success, otherwise false is returned.
1362 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1363 bool write_fault
, bool *writable
, kvm_pfn_t
*pfn
)
1365 struct page
*page
[1];
1368 if (!(async
|| atomic
))
1372 * Fast pin a writable pfn only if it is a write fault request
1373 * or the caller allows to map a writable pfn for a read fault
1376 if (!(write_fault
|| writable
))
1379 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1381 *pfn
= page_to_pfn(page
[0]);
1392 * The slow path to get the pfn of the specified host virtual address,
1393 * 1 indicates success, -errno is returned if error is detected.
1395 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1396 bool *writable
, kvm_pfn_t
*pfn
)
1398 struct page
*page
[1];
1404 *writable
= write_fault
;
1407 down_read(¤t
->mm
->mmap_sem
);
1408 npages
= get_user_page_nowait(addr
, write_fault
, page
);
1409 up_read(¤t
->mm
->mmap_sem
);
1411 npages
= __get_user_pages_unlocked(current
, current
->mm
, addr
, 1,
1412 write_fault
, 0, page
,
1413 FOLL_TOUCH
|FOLL_HWPOISON
);
1417 /* map read fault as writable if possible */
1418 if (unlikely(!write_fault
) && writable
) {
1419 struct page
*wpage
[1];
1421 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1430 *pfn
= page_to_pfn(page
[0]);
1434 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1436 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1439 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1446 * Pin guest page in memory and return its pfn.
1447 * @addr: host virtual address which maps memory to the guest
1448 * @atomic: whether this function can sleep
1449 * @async: whether this function need to wait IO complete if the
1450 * host page is not in the memory
1451 * @write_fault: whether we should get a writable host page
1452 * @writable: whether it allows to map a writable host page for !@write_fault
1454 * The function will map a writable host page for these two cases:
1455 * 1): @write_fault = true
1456 * 2): @write_fault = false && @writable, @writable will tell the caller
1457 * whether the mapping is writable.
1459 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1460 bool write_fault
, bool *writable
)
1462 struct vm_area_struct
*vma
;
1466 /* we can do it either atomically or asynchronously, not both */
1467 BUG_ON(atomic
&& async
);
1469 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1473 return KVM_PFN_ERR_FAULT
;
1475 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1479 down_read(¤t
->mm
->mmap_sem
);
1480 if (npages
== -EHWPOISON
||
1481 (!async
&& check_user_page_hwpoison(addr
))) {
1482 pfn
= KVM_PFN_ERR_HWPOISON
;
1486 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1489 pfn
= KVM_PFN_ERR_FAULT
;
1490 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1491 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1493 BUG_ON(!kvm_is_reserved_pfn(pfn
));
1495 if (async
&& vma_is_valid(vma
, write_fault
))
1497 pfn
= KVM_PFN_ERR_FAULT
;
1500 up_read(¤t
->mm
->mmap_sem
);
1504 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1505 bool atomic
, bool *async
, bool write_fault
,
1508 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1510 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1513 return KVM_PFN_ERR_RO_FAULT
;
1516 if (kvm_is_error_hva(addr
)) {
1519 return KVM_PFN_NOSLOT
;
1522 /* Do not map writable pfn in the readonly memslot. */
1523 if (writable
&& memslot_is_readonly(slot
)) {
1528 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1531 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1533 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1536 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1537 write_fault
, writable
);
1539 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1541 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1543 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1545 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1547 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1549 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1551 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1553 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1555 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1557 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1559 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1561 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1563 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1565 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1567 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1569 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1571 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1573 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1575 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1577 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1578 struct page
**pages
, int nr_pages
)
1583 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1584 if (kvm_is_error_hva(addr
))
1587 if (entry
< nr_pages
)
1590 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1592 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1594 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1596 if (is_error_noslot_pfn(pfn
))
1597 return KVM_ERR_PTR_BAD_PAGE
;
1599 if (kvm_is_reserved_pfn(pfn
)) {
1601 return KVM_ERR_PTR_BAD_PAGE
;
1604 return pfn_to_page(pfn
);
1607 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1611 pfn
= gfn_to_pfn(kvm
, gfn
);
1613 return kvm_pfn_to_page(pfn
);
1615 EXPORT_SYMBOL_GPL(gfn_to_page
);
1617 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1621 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1623 return kvm_pfn_to_page(pfn
);
1625 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1627 void kvm_release_page_clean(struct page
*page
)
1629 WARN_ON(is_error_page(page
));
1631 kvm_release_pfn_clean(page_to_pfn(page
));
1633 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1635 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1637 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1638 put_page(pfn_to_page(pfn
));
1640 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1642 void kvm_release_page_dirty(struct page
*page
)
1644 WARN_ON(is_error_page(page
));
1646 kvm_release_pfn_dirty(page_to_pfn(page
));
1648 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1650 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1652 kvm_set_pfn_dirty(pfn
);
1653 kvm_release_pfn_clean(pfn
);
1656 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1658 if (!kvm_is_reserved_pfn(pfn
)) {
1659 struct page
*page
= pfn_to_page(pfn
);
1661 if (!PageReserved(page
))
1665 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1667 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1669 if (!kvm_is_reserved_pfn(pfn
))
1670 mark_page_accessed(pfn_to_page(pfn
));
1672 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1674 void kvm_get_pfn(kvm_pfn_t pfn
)
1676 if (!kvm_is_reserved_pfn(pfn
))
1677 get_page(pfn_to_page(pfn
));
1679 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1681 static int next_segment(unsigned long len
, int offset
)
1683 if (len
> PAGE_SIZE
- offset
)
1684 return PAGE_SIZE
- offset
;
1689 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1690 void *data
, int offset
, int len
)
1695 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1696 if (kvm_is_error_hva(addr
))
1698 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1704 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1707 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1709 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1711 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1713 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1714 int offset
, int len
)
1716 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1718 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1720 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1722 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1724 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1726 int offset
= offset_in_page(gpa
);
1729 while ((seg
= next_segment(len
, offset
)) != 0) {
1730 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1740 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1742 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1744 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1746 int offset
= offset_in_page(gpa
);
1749 while ((seg
= next_segment(len
, offset
)) != 0) {
1750 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1760 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1762 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1763 void *data
, int offset
, unsigned long len
)
1768 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1769 if (kvm_is_error_hva(addr
))
1771 pagefault_disable();
1772 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1779 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1782 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1783 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1784 int offset
= offset_in_page(gpa
);
1786 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1788 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1790 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1791 void *data
, unsigned long len
)
1793 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1794 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1795 int offset
= offset_in_page(gpa
);
1797 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1799 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1801 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1802 const void *data
, int offset
, int len
)
1807 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1808 if (kvm_is_error_hva(addr
))
1810 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1813 mark_page_dirty_in_slot(memslot
, gfn
);
1817 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1818 const void *data
, int offset
, int len
)
1820 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1822 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1824 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1826 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1827 const void *data
, int offset
, int len
)
1829 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1831 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1835 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1838 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1840 int offset
= offset_in_page(gpa
);
1843 while ((seg
= next_segment(len
, offset
)) != 0) {
1844 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1854 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1856 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1859 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1861 int offset
= offset_in_page(gpa
);
1864 while ((seg
= next_segment(len
, offset
)) != 0) {
1865 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1877 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1878 gpa_t gpa
, unsigned long len
)
1880 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1881 int offset
= offset_in_page(gpa
);
1882 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1883 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1884 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1885 gfn_t nr_pages_avail
;
1888 ghc
->generation
= slots
->generation
;
1890 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1891 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1892 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1896 * If the requested region crosses two memslots, we still
1897 * verify that the entire region is valid here.
1899 while (start_gfn
<= end_gfn
) {
1900 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1901 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1903 if (kvm_is_error_hva(ghc
->hva
))
1905 start_gfn
+= nr_pages_avail
;
1907 /* Use the slow path for cross page reads and writes. */
1908 ghc
->memslot
= NULL
;
1912 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1914 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1915 void *data
, unsigned long len
)
1917 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1920 BUG_ON(len
> ghc
->len
);
1922 if (slots
->generation
!= ghc
->generation
)
1923 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1925 if (unlikely(!ghc
->memslot
))
1926 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
1928 if (kvm_is_error_hva(ghc
->hva
))
1931 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1934 mark_page_dirty_in_slot(ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1938 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1940 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1941 void *data
, unsigned long len
)
1943 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1946 BUG_ON(len
> ghc
->len
);
1948 if (slots
->generation
!= ghc
->generation
)
1949 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1951 if (unlikely(!ghc
->memslot
))
1952 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1954 if (kvm_is_error_hva(ghc
->hva
))
1957 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1963 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1965 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1967 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1969 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
1971 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1973 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1975 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1977 int offset
= offset_in_page(gpa
);
1980 while ((seg
= next_segment(len
, offset
)) != 0) {
1981 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1990 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1992 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
1995 if (memslot
&& memslot
->dirty_bitmap
) {
1996 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1998 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2002 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2004 struct kvm_memory_slot
*memslot
;
2006 memslot
= gfn_to_memslot(kvm
, gfn
);
2007 mark_page_dirty_in_slot(memslot
, gfn
);
2009 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2011 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2013 struct kvm_memory_slot
*memslot
;
2015 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2016 mark_page_dirty_in_slot(memslot
, gfn
);
2018 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2020 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2022 unsigned int old
, val
, grow
;
2024 old
= val
= vcpu
->halt_poll_ns
;
2025 grow
= READ_ONCE(halt_poll_ns_grow
);
2027 if (val
== 0 && grow
)
2032 if (val
> halt_poll_ns
)
2035 vcpu
->halt_poll_ns
= val
;
2036 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2039 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2041 unsigned int old
, val
, shrink
;
2043 old
= val
= vcpu
->halt_poll_ns
;
2044 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2050 vcpu
->halt_poll_ns
= val
;
2051 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2054 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2056 if (kvm_arch_vcpu_runnable(vcpu
)) {
2057 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2060 if (kvm_cpu_has_pending_timer(vcpu
))
2062 if (signal_pending(current
))
2069 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2071 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2074 DECLARE_SWAITQUEUE(wait
);
2075 bool waited
= false;
2078 start
= cur
= ktime_get();
2079 if (vcpu
->halt_poll_ns
) {
2080 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2082 ++vcpu
->stat
.halt_attempted_poll
;
2085 * This sets KVM_REQ_UNHALT if an interrupt
2088 if (kvm_vcpu_check_block(vcpu
) < 0) {
2089 ++vcpu
->stat
.halt_successful_poll
;
2090 if (!vcpu_valid_wakeup(vcpu
))
2091 ++vcpu
->stat
.halt_poll_invalid
;
2095 } while (single_task_running() && ktime_before(cur
, stop
));
2098 kvm_arch_vcpu_blocking(vcpu
);
2101 prepare_to_swait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2103 if (kvm_vcpu_check_block(vcpu
) < 0)
2110 finish_swait(&vcpu
->wq
, &wait
);
2113 kvm_arch_vcpu_unblocking(vcpu
);
2115 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2117 if (!vcpu_valid_wakeup(vcpu
))
2118 shrink_halt_poll_ns(vcpu
);
2119 else if (halt_poll_ns
) {
2120 if (block_ns
<= vcpu
->halt_poll_ns
)
2122 /* we had a long block, shrink polling */
2123 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2124 shrink_halt_poll_ns(vcpu
);
2125 /* we had a short halt and our poll time is too small */
2126 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2127 block_ns
< halt_poll_ns
)
2128 grow_halt_poll_ns(vcpu
);
2130 vcpu
->halt_poll_ns
= 0;
2132 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2133 kvm_arch_vcpu_block_finish(vcpu
);
2135 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2138 void kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2140 struct swait_queue_head
*wqp
;
2142 wqp
= kvm_arch_vcpu_wq(vcpu
);
2143 if (swait_active(wqp
)) {
2145 ++vcpu
->stat
.halt_wakeup
;
2149 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2152 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2154 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2157 int cpu
= vcpu
->cpu
;
2159 kvm_vcpu_wake_up(vcpu
);
2161 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2162 if (kvm_arch_vcpu_should_kick(vcpu
))
2163 smp_send_reschedule(cpu
);
2166 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2167 #endif /* !CONFIG_S390 */
2169 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2172 struct task_struct
*task
= NULL
;
2176 pid
= rcu_dereference(target
->pid
);
2178 task
= get_pid_task(pid
, PIDTYPE_PID
);
2182 ret
= yield_to(task
, 1);
2183 put_task_struct(task
);
2187 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2190 * Helper that checks whether a VCPU is eligible for directed yield.
2191 * Most eligible candidate to yield is decided by following heuristics:
2193 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2194 * (preempted lock holder), indicated by @in_spin_loop.
2195 * Set at the beiginning and cleared at the end of interception/PLE handler.
2197 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2198 * chance last time (mostly it has become eligible now since we have probably
2199 * yielded to lockholder in last iteration. This is done by toggling
2200 * @dy_eligible each time a VCPU checked for eligibility.)
2202 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2203 * to preempted lock-holder could result in wrong VCPU selection and CPU
2204 * burning. Giving priority for a potential lock-holder increases lock
2207 * Since algorithm is based on heuristics, accessing another VCPU data without
2208 * locking does not harm. It may result in trying to yield to same VCPU, fail
2209 * and continue with next VCPU and so on.
2211 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2213 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2216 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2217 vcpu
->spin_loop
.dy_eligible
;
2219 if (vcpu
->spin_loop
.in_spin_loop
)
2220 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2228 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
2230 struct kvm
*kvm
= me
->kvm
;
2231 struct kvm_vcpu
*vcpu
;
2232 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2238 kvm_vcpu_set_in_spin_loop(me
, true);
2240 * We boost the priority of a VCPU that is runnable but not
2241 * currently running, because it got preempted by something
2242 * else and called schedule in __vcpu_run. Hopefully that
2243 * VCPU is holding the lock that we need and will release it.
2244 * We approximate round-robin by starting at the last boosted VCPU.
2246 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2247 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2248 if (!pass
&& i
<= last_boosted_vcpu
) {
2249 i
= last_boosted_vcpu
;
2251 } else if (pass
&& i
> last_boosted_vcpu
)
2253 if (!ACCESS_ONCE(vcpu
->preempted
))
2257 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2259 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2262 yielded
= kvm_vcpu_yield_to(vcpu
);
2264 kvm
->last_boosted_vcpu
= i
;
2266 } else if (yielded
< 0) {
2273 kvm_vcpu_set_in_spin_loop(me
, false);
2275 /* Ensure vcpu is not eligible during next spinloop */
2276 kvm_vcpu_set_dy_eligible(me
, false);
2278 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2280 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2282 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2285 if (vmf
->pgoff
== 0)
2286 page
= virt_to_page(vcpu
->run
);
2288 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2289 page
= virt_to_page(vcpu
->arch
.pio_data
);
2291 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2292 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2293 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2296 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2302 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2303 .fault
= kvm_vcpu_fault
,
2306 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2308 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2312 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2314 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2316 kvm_put_kvm(vcpu
->kvm
);
2320 static struct file_operations kvm_vcpu_fops
= {
2321 .release
= kvm_vcpu_release
,
2322 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2323 #ifdef CONFIG_KVM_COMPAT
2324 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2326 .mmap
= kvm_vcpu_mmap
,
2327 .llseek
= noop_llseek
,
2331 * Allocates an inode for the vcpu.
2333 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2335 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2339 * Creates some virtual cpus. Good luck creating more than one.
2341 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2344 struct kvm_vcpu
*vcpu
;
2346 if (id
>= KVM_MAX_VCPU_ID
)
2349 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2351 return PTR_ERR(vcpu
);
2353 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2355 r
= kvm_arch_vcpu_setup(vcpu
);
2359 mutex_lock(&kvm
->lock
);
2360 if (!kvm_vcpu_compatible(vcpu
)) {
2362 goto unlock_vcpu_destroy
;
2364 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
2366 goto unlock_vcpu_destroy
;
2368 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2370 goto unlock_vcpu_destroy
;
2373 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2375 /* Now it's all set up, let userspace reach it */
2377 r
= create_vcpu_fd(vcpu
);
2380 goto unlock_vcpu_destroy
;
2383 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2386 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2387 * before kvm->online_vcpu's incremented value.
2390 atomic_inc(&kvm
->online_vcpus
);
2392 mutex_unlock(&kvm
->lock
);
2393 kvm_arch_vcpu_postcreate(vcpu
);
2396 unlock_vcpu_destroy
:
2397 mutex_unlock(&kvm
->lock
);
2399 kvm_arch_vcpu_destroy(vcpu
);
2403 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2406 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2407 vcpu
->sigset_active
= 1;
2408 vcpu
->sigset
= *sigset
;
2410 vcpu
->sigset_active
= 0;
2414 static long kvm_vcpu_ioctl(struct file
*filp
,
2415 unsigned int ioctl
, unsigned long arg
)
2417 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2418 void __user
*argp
= (void __user
*)arg
;
2420 struct kvm_fpu
*fpu
= NULL
;
2421 struct kvm_sregs
*kvm_sregs
= NULL
;
2423 if (vcpu
->kvm
->mm
!= current
->mm
)
2426 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2429 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2431 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2432 * so vcpu_load() would break it.
2434 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2435 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2439 r
= vcpu_load(vcpu
);
2447 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2448 /* The thread running this VCPU changed. */
2449 struct pid
*oldpid
= vcpu
->pid
;
2450 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2452 rcu_assign_pointer(vcpu
->pid
, newpid
);
2457 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2458 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2460 case KVM_GET_REGS
: {
2461 struct kvm_regs
*kvm_regs
;
2464 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2467 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2471 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2478 case KVM_SET_REGS
: {
2479 struct kvm_regs
*kvm_regs
;
2482 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2483 if (IS_ERR(kvm_regs
)) {
2484 r
= PTR_ERR(kvm_regs
);
2487 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2491 case KVM_GET_SREGS
: {
2492 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2496 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2500 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2505 case KVM_SET_SREGS
: {
2506 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2507 if (IS_ERR(kvm_sregs
)) {
2508 r
= PTR_ERR(kvm_sregs
);
2512 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2515 case KVM_GET_MP_STATE
: {
2516 struct kvm_mp_state mp_state
;
2518 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2522 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2527 case KVM_SET_MP_STATE
: {
2528 struct kvm_mp_state mp_state
;
2531 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2533 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2536 case KVM_TRANSLATE
: {
2537 struct kvm_translation tr
;
2540 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2542 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2546 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2551 case KVM_SET_GUEST_DEBUG
: {
2552 struct kvm_guest_debug dbg
;
2555 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2557 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2560 case KVM_SET_SIGNAL_MASK
: {
2561 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2562 struct kvm_signal_mask kvm_sigmask
;
2563 sigset_t sigset
, *p
;
2568 if (copy_from_user(&kvm_sigmask
, argp
,
2569 sizeof(kvm_sigmask
)))
2572 if (kvm_sigmask
.len
!= sizeof(sigset
))
2575 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2580 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2584 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2588 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2592 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2598 fpu
= memdup_user(argp
, sizeof(*fpu
));
2604 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2608 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2617 #ifdef CONFIG_KVM_COMPAT
2618 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2619 unsigned int ioctl
, unsigned long arg
)
2621 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2622 void __user
*argp
= compat_ptr(arg
);
2625 if (vcpu
->kvm
->mm
!= current
->mm
)
2629 case KVM_SET_SIGNAL_MASK
: {
2630 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2631 struct kvm_signal_mask kvm_sigmask
;
2632 compat_sigset_t csigset
;
2637 if (copy_from_user(&kvm_sigmask
, argp
,
2638 sizeof(kvm_sigmask
)))
2641 if (kvm_sigmask
.len
!= sizeof(csigset
))
2644 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2647 sigset_from_compat(&sigset
, &csigset
);
2648 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2650 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2654 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2662 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2663 int (*accessor
)(struct kvm_device
*dev
,
2664 struct kvm_device_attr
*attr
),
2667 struct kvm_device_attr attr
;
2672 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2675 return accessor(dev
, &attr
);
2678 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2681 struct kvm_device
*dev
= filp
->private_data
;
2684 case KVM_SET_DEVICE_ATTR
:
2685 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2686 case KVM_GET_DEVICE_ATTR
:
2687 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2688 case KVM_HAS_DEVICE_ATTR
:
2689 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2691 if (dev
->ops
->ioctl
)
2692 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2698 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2700 struct kvm_device
*dev
= filp
->private_data
;
2701 struct kvm
*kvm
= dev
->kvm
;
2707 static const struct file_operations kvm_device_fops
= {
2708 .unlocked_ioctl
= kvm_device_ioctl
,
2709 #ifdef CONFIG_KVM_COMPAT
2710 .compat_ioctl
= kvm_device_ioctl
,
2712 .release
= kvm_device_release
,
2715 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2717 if (filp
->f_op
!= &kvm_device_fops
)
2720 return filp
->private_data
;
2723 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2724 #ifdef CONFIG_KVM_MPIC
2725 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2726 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2729 #ifdef CONFIG_KVM_XICS
2730 [KVM_DEV_TYPE_XICS
] = &kvm_xics_ops
,
2734 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2736 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2739 if (kvm_device_ops_table
[type
] != NULL
)
2742 kvm_device_ops_table
[type
] = ops
;
2746 void kvm_unregister_device_ops(u32 type
)
2748 if (kvm_device_ops_table
[type
] != NULL
)
2749 kvm_device_ops_table
[type
] = NULL
;
2752 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2753 struct kvm_create_device
*cd
)
2755 struct kvm_device_ops
*ops
= NULL
;
2756 struct kvm_device
*dev
;
2757 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2760 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2763 ops
= kvm_device_ops_table
[cd
->type
];
2770 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2777 ret
= ops
->create(dev
, cd
->type
);
2783 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2789 list_add(&dev
->vm_node
, &kvm
->devices
);
2795 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2798 case KVM_CAP_USER_MEMORY
:
2799 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2800 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2801 case KVM_CAP_INTERNAL_ERROR_DATA
:
2802 #ifdef CONFIG_HAVE_KVM_MSI
2803 case KVM_CAP_SIGNAL_MSI
:
2805 #ifdef CONFIG_HAVE_KVM_IRQFD
2807 case KVM_CAP_IRQFD_RESAMPLE
:
2809 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2810 case KVM_CAP_CHECK_EXTENSION_VM
:
2812 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2813 case KVM_CAP_IRQ_ROUTING
:
2814 return KVM_MAX_IRQ_ROUTES
;
2816 #if KVM_ADDRESS_SPACE_NUM > 1
2817 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2818 return KVM_ADDRESS_SPACE_NUM
;
2820 case KVM_CAP_MAX_VCPU_ID
:
2821 return KVM_MAX_VCPU_ID
;
2825 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2828 static long kvm_vm_ioctl(struct file
*filp
,
2829 unsigned int ioctl
, unsigned long arg
)
2831 struct kvm
*kvm
= filp
->private_data
;
2832 void __user
*argp
= (void __user
*)arg
;
2835 if (kvm
->mm
!= current
->mm
)
2838 case KVM_CREATE_VCPU
:
2839 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2841 case KVM_SET_USER_MEMORY_REGION
: {
2842 struct kvm_userspace_memory_region kvm_userspace_mem
;
2845 if (copy_from_user(&kvm_userspace_mem
, argp
,
2846 sizeof(kvm_userspace_mem
)))
2849 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2852 case KVM_GET_DIRTY_LOG
: {
2853 struct kvm_dirty_log log
;
2856 if (copy_from_user(&log
, argp
, sizeof(log
)))
2858 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2861 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2862 case KVM_REGISTER_COALESCED_MMIO
: {
2863 struct kvm_coalesced_mmio_zone zone
;
2866 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2868 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2871 case KVM_UNREGISTER_COALESCED_MMIO
: {
2872 struct kvm_coalesced_mmio_zone zone
;
2875 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2877 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2882 struct kvm_irqfd data
;
2885 if (copy_from_user(&data
, argp
, sizeof(data
)))
2887 r
= kvm_irqfd(kvm
, &data
);
2890 case KVM_IOEVENTFD
: {
2891 struct kvm_ioeventfd data
;
2894 if (copy_from_user(&data
, argp
, sizeof(data
)))
2896 r
= kvm_ioeventfd(kvm
, &data
);
2899 #ifdef CONFIG_HAVE_KVM_MSI
2900 case KVM_SIGNAL_MSI
: {
2904 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
2906 r
= kvm_send_userspace_msi(kvm
, &msi
);
2910 #ifdef __KVM_HAVE_IRQ_LINE
2911 case KVM_IRQ_LINE_STATUS
:
2912 case KVM_IRQ_LINE
: {
2913 struct kvm_irq_level irq_event
;
2916 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
2919 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
2920 ioctl
== KVM_IRQ_LINE_STATUS
);
2925 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2926 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
2934 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2935 case KVM_SET_GSI_ROUTING
: {
2936 struct kvm_irq_routing routing
;
2937 struct kvm_irq_routing __user
*urouting
;
2938 struct kvm_irq_routing_entry
*entries
= NULL
;
2941 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
2944 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
2950 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
2955 if (copy_from_user(entries
, urouting
->entries
,
2956 routing
.nr
* sizeof(*entries
)))
2957 goto out_free_irq_routing
;
2959 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
2961 out_free_irq_routing
:
2965 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2966 case KVM_CREATE_DEVICE
: {
2967 struct kvm_create_device cd
;
2970 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
2973 r
= kvm_ioctl_create_device(kvm
, &cd
);
2978 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
2984 case KVM_CHECK_EXTENSION
:
2985 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
2988 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2994 #ifdef CONFIG_KVM_COMPAT
2995 struct compat_kvm_dirty_log
{
2999 compat_uptr_t dirty_bitmap
; /* one bit per page */
3004 static long kvm_vm_compat_ioctl(struct file
*filp
,
3005 unsigned int ioctl
, unsigned long arg
)
3007 struct kvm
*kvm
= filp
->private_data
;
3010 if (kvm
->mm
!= current
->mm
)
3013 case KVM_GET_DIRTY_LOG
: {
3014 struct compat_kvm_dirty_log compat_log
;
3015 struct kvm_dirty_log log
;
3018 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3019 sizeof(compat_log
)))
3021 log
.slot
= compat_log
.slot
;
3022 log
.padding1
= compat_log
.padding1
;
3023 log
.padding2
= compat_log
.padding2
;
3024 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3026 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3030 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3038 static struct file_operations kvm_vm_fops
= {
3039 .release
= kvm_vm_release
,
3040 .unlocked_ioctl
= kvm_vm_ioctl
,
3041 #ifdef CONFIG_KVM_COMPAT
3042 .compat_ioctl
= kvm_vm_compat_ioctl
,
3044 .llseek
= noop_llseek
,
3047 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3052 kvm
= kvm_create_vm(type
);
3054 return PTR_ERR(kvm
);
3055 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3056 r
= kvm_coalesced_mmio_init(kvm
);
3062 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
| O_CLOEXEC
);
3068 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3076 static long kvm_dev_ioctl(struct file
*filp
,
3077 unsigned int ioctl
, unsigned long arg
)
3082 case KVM_GET_API_VERSION
:
3085 r
= KVM_API_VERSION
;
3088 r
= kvm_dev_ioctl_create_vm(arg
);
3090 case KVM_CHECK_EXTENSION
:
3091 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3093 case KVM_GET_VCPU_MMAP_SIZE
:
3096 r
= PAGE_SIZE
; /* struct kvm_run */
3098 r
+= PAGE_SIZE
; /* pio data page */
3100 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3101 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3104 case KVM_TRACE_ENABLE
:
3105 case KVM_TRACE_PAUSE
:
3106 case KVM_TRACE_DISABLE
:
3110 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3116 static struct file_operations kvm_chardev_ops
= {
3117 .unlocked_ioctl
= kvm_dev_ioctl
,
3118 .compat_ioctl
= kvm_dev_ioctl
,
3119 .llseek
= noop_llseek
,
3122 static struct miscdevice kvm_dev
= {
3128 static void hardware_enable_nolock(void *junk
)
3130 int cpu
= raw_smp_processor_id();
3133 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3136 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3138 r
= kvm_arch_hardware_enable();
3141 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3142 atomic_inc(&hardware_enable_failed
);
3143 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3147 static void hardware_enable(void)
3149 raw_spin_lock(&kvm_count_lock
);
3150 if (kvm_usage_count
)
3151 hardware_enable_nolock(NULL
);
3152 raw_spin_unlock(&kvm_count_lock
);
3155 static void hardware_disable_nolock(void *junk
)
3157 int cpu
= raw_smp_processor_id();
3159 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3161 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3162 kvm_arch_hardware_disable();
3165 static void hardware_disable(void)
3167 raw_spin_lock(&kvm_count_lock
);
3168 if (kvm_usage_count
)
3169 hardware_disable_nolock(NULL
);
3170 raw_spin_unlock(&kvm_count_lock
);
3173 static void hardware_disable_all_nolock(void)
3175 BUG_ON(!kvm_usage_count
);
3178 if (!kvm_usage_count
)
3179 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3182 static void hardware_disable_all(void)
3184 raw_spin_lock(&kvm_count_lock
);
3185 hardware_disable_all_nolock();
3186 raw_spin_unlock(&kvm_count_lock
);
3189 static int hardware_enable_all(void)
3193 raw_spin_lock(&kvm_count_lock
);
3196 if (kvm_usage_count
== 1) {
3197 atomic_set(&hardware_enable_failed
, 0);
3198 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3200 if (atomic_read(&hardware_enable_failed
)) {
3201 hardware_disable_all_nolock();
3206 raw_spin_unlock(&kvm_count_lock
);
3211 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
3214 val
&= ~CPU_TASKS_FROZEN
;
3226 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3230 * Some (well, at least mine) BIOSes hang on reboot if
3233 * And Intel TXT required VMX off for all cpu when system shutdown.
3235 pr_info("kvm: exiting hardware virtualization\n");
3236 kvm_rebooting
= true;
3237 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3241 static struct notifier_block kvm_reboot_notifier
= {
3242 .notifier_call
= kvm_reboot
,
3246 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3250 for (i
= 0; i
< bus
->dev_count
; i
++) {
3251 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3253 kvm_iodevice_destructor(pos
);
3258 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3259 const struct kvm_io_range
*r2
)
3261 gpa_t addr1
= r1
->addr
;
3262 gpa_t addr2
= r2
->addr
;
3267 /* If r2->len == 0, match the exact address. If r2->len != 0,
3268 * accept any overlapping write. Any order is acceptable for
3269 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3270 * we process all of them.
3283 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3285 return kvm_io_bus_cmp(p1
, p2
);
3288 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
3289 gpa_t addr
, int len
)
3291 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
3297 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
3298 kvm_io_bus_sort_cmp
, NULL
);
3303 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3304 gpa_t addr
, int len
)
3306 struct kvm_io_range
*range
, key
;
3309 key
= (struct kvm_io_range
) {
3314 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3315 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3319 off
= range
- bus
->range
;
3321 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3327 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3328 struct kvm_io_range
*range
, const void *val
)
3332 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3336 while (idx
< bus
->dev_count
&&
3337 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3338 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3347 /* kvm_io_bus_write - called under kvm->slots_lock */
3348 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3349 int len
, const void *val
)
3351 struct kvm_io_bus
*bus
;
3352 struct kvm_io_range range
;
3355 range
= (struct kvm_io_range
) {
3360 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3361 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3362 return r
< 0 ? r
: 0;
3365 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3366 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3367 gpa_t addr
, int len
, const void *val
, long cookie
)
3369 struct kvm_io_bus
*bus
;
3370 struct kvm_io_range range
;
3372 range
= (struct kvm_io_range
) {
3377 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3379 /* First try the device referenced by cookie. */
3380 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3381 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3382 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3387 * cookie contained garbage; fall back to search and return the
3388 * correct cookie value.
3390 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3393 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3394 struct kvm_io_range
*range
, void *val
)
3398 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3402 while (idx
< bus
->dev_count
&&
3403 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3404 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3412 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3414 /* kvm_io_bus_read - called under kvm->slots_lock */
3415 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3418 struct kvm_io_bus
*bus
;
3419 struct kvm_io_range range
;
3422 range
= (struct kvm_io_range
) {
3427 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3428 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3429 return r
< 0 ? r
: 0;
3433 /* Caller must hold slots_lock. */
3434 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3435 int len
, struct kvm_io_device
*dev
)
3437 struct kvm_io_bus
*new_bus
, *bus
;
3439 bus
= kvm
->buses
[bus_idx
];
3440 /* exclude ioeventfd which is limited by maximum fd */
3441 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3444 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3445 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3448 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3449 sizeof(struct kvm_io_range
)));
3450 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3451 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3452 synchronize_srcu_expedited(&kvm
->srcu
);
3458 /* Caller must hold slots_lock. */
3459 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3460 struct kvm_io_device
*dev
)
3463 struct kvm_io_bus
*new_bus
, *bus
;
3465 bus
= kvm
->buses
[bus_idx
];
3467 for (i
= 0; i
< bus
->dev_count
; i
++)
3468 if (bus
->range
[i
].dev
== dev
) {
3476 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3477 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3481 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3482 new_bus
->dev_count
--;
3483 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3484 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3486 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3487 synchronize_srcu_expedited(&kvm
->srcu
);
3492 static struct notifier_block kvm_cpu_notifier
= {
3493 .notifier_call
= kvm_cpu_hotplug
,
3496 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
3497 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
3500 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3503 /* The debugfs files are a reference to the kvm struct which
3504 * is still valid when kvm_destroy_vm is called.
3505 * To avoid the race between open and the removal of the debugfs
3506 * directory we test against the users count.
3508 if (!atomic_add_unless(&stat_data
->kvm
->users_count
, 1, 0))
3511 if (simple_attr_open(inode
, file
, get
, set
, fmt
)) {
3512 kvm_put_kvm(stat_data
->kvm
);
3519 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
3521 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3524 simple_attr_release(inode
, file
);
3525 kvm_put_kvm(stat_data
->kvm
);
3530 static int vm_stat_get_per_vm(void *data
, u64
*val
)
3532 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3534 *val
= *(u32
*)((void *)stat_data
->kvm
+ stat_data
->offset
);
3539 static int vm_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3541 __simple_attr_check_format("%llu\n", 0ull);
3542 return kvm_debugfs_open(inode
, file
, vm_stat_get_per_vm
,
3546 static const struct file_operations vm_stat_get_per_vm_fops
= {
3547 .owner
= THIS_MODULE
,
3548 .open
= vm_stat_get_per_vm_open
,
3549 .release
= kvm_debugfs_release
,
3550 .read
= simple_attr_read
,
3551 .write
= simple_attr_write
,
3552 .llseek
= generic_file_llseek
,
3555 static int vcpu_stat_get_per_vm(void *data
, u64
*val
)
3558 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3559 struct kvm_vcpu
*vcpu
;
3563 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3564 *val
+= *(u32
*)((void *)vcpu
+ stat_data
->offset
);
3569 static int vcpu_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3571 __simple_attr_check_format("%llu\n", 0ull);
3572 return kvm_debugfs_open(inode
, file
, vcpu_stat_get_per_vm
,
3576 static const struct file_operations vcpu_stat_get_per_vm_fops
= {
3577 .owner
= THIS_MODULE
,
3578 .open
= vcpu_stat_get_per_vm_open
,
3579 .release
= kvm_debugfs_release
,
3580 .read
= simple_attr_read
,
3581 .write
= simple_attr_write
,
3582 .llseek
= generic_file_llseek
,
3585 static const struct file_operations
*stat_fops_per_vm
[] = {
3586 [KVM_STAT_VCPU
] = &vcpu_stat_get_per_vm_fops
,
3587 [KVM_STAT_VM
] = &vm_stat_get_per_vm_fops
,
3590 static int vm_stat_get(void *_offset
, u64
*val
)
3592 unsigned offset
= (long)_offset
;
3594 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3598 spin_lock(&kvm_lock
);
3599 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3601 vm_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3604 spin_unlock(&kvm_lock
);
3608 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3610 static int vcpu_stat_get(void *_offset
, u64
*val
)
3612 unsigned offset
= (long)_offset
;
3614 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3618 spin_lock(&kvm_lock
);
3619 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3621 vcpu_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3624 spin_unlock(&kvm_lock
);
3628 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3630 static const struct file_operations
*stat_fops
[] = {
3631 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3632 [KVM_STAT_VM
] = &vm_stat_fops
,
3635 static int kvm_init_debug(void)
3638 struct kvm_stats_debugfs_item
*p
;
3640 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3641 if (kvm_debugfs_dir
== NULL
)
3644 kvm_debugfs_num_entries
= 0;
3645 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
3646 if (!debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3647 (void *)(long)p
->offset
,
3648 stat_fops
[p
->kind
]))
3655 debugfs_remove_recursive(kvm_debugfs_dir
);
3660 static int kvm_suspend(void)
3662 if (kvm_usage_count
)
3663 hardware_disable_nolock(NULL
);
3667 static void kvm_resume(void)
3669 if (kvm_usage_count
) {
3670 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3671 hardware_enable_nolock(NULL
);
3675 static struct syscore_ops kvm_syscore_ops
= {
3676 .suspend
= kvm_suspend
,
3677 .resume
= kvm_resume
,
3681 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3683 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3686 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3688 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3690 if (vcpu
->preempted
)
3691 vcpu
->preempted
= false;
3693 kvm_arch_sched_in(vcpu
, cpu
);
3695 kvm_arch_vcpu_load(vcpu
, cpu
);
3698 static void kvm_sched_out(struct preempt_notifier
*pn
,
3699 struct task_struct
*next
)
3701 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3703 if (current
->state
== TASK_RUNNING
)
3704 vcpu
->preempted
= true;
3705 kvm_arch_vcpu_put(vcpu
);
3708 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3709 struct module
*module
)
3714 r
= kvm_arch_init(opaque
);
3719 * kvm_arch_init makes sure there's at most one caller
3720 * for architectures that support multiple implementations,
3721 * like intel and amd on x86.
3722 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3723 * conflicts in case kvm is already setup for another implementation.
3725 r
= kvm_irqfd_init();
3729 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3734 r
= kvm_arch_hardware_setup();
3738 for_each_online_cpu(cpu
) {
3739 smp_call_function_single(cpu
,
3740 kvm_arch_check_processor_compat
,
3746 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3749 register_reboot_notifier(&kvm_reboot_notifier
);
3751 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3753 vcpu_align
= __alignof__(struct kvm_vcpu
);
3754 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3756 if (!kvm_vcpu_cache
) {
3761 r
= kvm_async_pf_init();
3765 kvm_chardev_ops
.owner
= module
;
3766 kvm_vm_fops
.owner
= module
;
3767 kvm_vcpu_fops
.owner
= module
;
3769 r
= misc_register(&kvm_dev
);
3771 pr_err("kvm: misc device register failed\n");
3775 register_syscore_ops(&kvm_syscore_ops
);
3777 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3778 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3780 r
= kvm_init_debug();
3782 pr_err("kvm: create debugfs files failed\n");
3786 r
= kvm_vfio_ops_init();
3792 unregister_syscore_ops(&kvm_syscore_ops
);
3793 misc_deregister(&kvm_dev
);
3795 kvm_async_pf_deinit();
3797 kmem_cache_destroy(kvm_vcpu_cache
);
3799 unregister_reboot_notifier(&kvm_reboot_notifier
);
3800 unregister_cpu_notifier(&kvm_cpu_notifier
);
3803 kvm_arch_hardware_unsetup();
3805 free_cpumask_var(cpus_hardware_enabled
);
3813 EXPORT_SYMBOL_GPL(kvm_init
);
3817 debugfs_remove_recursive(kvm_debugfs_dir
);
3818 misc_deregister(&kvm_dev
);
3819 kmem_cache_destroy(kvm_vcpu_cache
);
3820 kvm_async_pf_deinit();
3821 unregister_syscore_ops(&kvm_syscore_ops
);
3822 unregister_reboot_notifier(&kvm_reboot_notifier
);
3823 unregister_cpu_notifier(&kvm_cpu_notifier
);
3824 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3825 kvm_arch_hardware_unsetup();
3828 free_cpumask_var(cpus_hardware_enabled
);
3829 kvm_vfio_ops_exit();
3831 EXPORT_SYMBOL_GPL(kvm_exit
);