2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
34 #define CREATE_TRACE_POINTS
37 #include <linux/uaccess.h>
38 #include <asm/ptrace.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
51 __asm__(".arch_extension virt");
54 DEFINE_PER_CPU(kvm_cpu_context_t
, kvm_host_cpu_state
);
55 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu
*, kvm_arm_running_vcpu
);
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid
;
63 static unsigned int kvm_vmid_bits __read_mostly
;
64 static DEFINE_SPINLOCK(kvm_vmid_lock
);
66 static bool vgic_present
;
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled
);
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu
*vcpu
)
72 BUG_ON(preemptible());
73 __this_cpu_write(kvm_arm_running_vcpu
, vcpu
);
77 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78 * Must be called from non-preemptible context
80 struct kvm_vcpu
*kvm_arm_get_running_vcpu(void)
82 BUG_ON(preemptible());
83 return __this_cpu_read(kvm_arm_running_vcpu
);
87 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
89 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void)
91 return &kvm_arm_running_vcpu
;
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
96 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
99 int kvm_arch_hardware_setup(void)
104 void kvm_arch_check_processor_compat(void *rtn
)
111 * kvm_arch_init_vm - initializes a VM data structure
112 * @kvm: pointer to the KVM struct
114 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
121 kvm
->arch
.last_vcpu_ran
= alloc_percpu(typeof(*kvm
->arch
.last_vcpu_ran
));
122 if (!kvm
->arch
.last_vcpu_ran
)
125 for_each_possible_cpu(cpu
)
126 *per_cpu_ptr(kvm
->arch
.last_vcpu_ran
, cpu
) = -1;
128 ret
= kvm_alloc_stage2_pgd(kvm
);
132 ret
= create_hyp_mappings(kvm
, kvm
+ 1, PAGE_HYP
);
134 goto out_free_stage2_pgd
;
136 kvm_vgic_early_init(kvm
);
138 /* Mark the initial VMID generation invalid */
139 kvm
->arch
.vmid_gen
= 0;
141 /* The maximum number of VCPUs is limited by the host's GIC model */
142 kvm
->arch
.max_vcpus
= vgic_present
?
143 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS
;
147 kvm_free_stage2_pgd(kvm
);
149 free_percpu(kvm
->arch
.last_vcpu_ran
);
150 kvm
->arch
.last_vcpu_ran
= NULL
;
154 bool kvm_arch_has_vcpu_debugfs(void)
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
164 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
166 return VM_FAULT_SIGBUS
;
171 * kvm_arch_destroy_vm - destroy the VM data structure
172 * @kvm: pointer to the KVM struct
174 void kvm_arch_destroy_vm(struct kvm
*kvm
)
178 free_percpu(kvm
->arch
.last_vcpu_ran
);
179 kvm
->arch
.last_vcpu_ran
= NULL
;
181 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
183 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
184 kvm
->vcpus
[i
] = NULL
;
188 kvm_vgic_destroy(kvm
);
191 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
195 case KVM_CAP_IRQCHIP
:
198 case KVM_CAP_IOEVENTFD
:
199 case KVM_CAP_DEVICE_CTRL
:
200 case KVM_CAP_USER_MEMORY
:
201 case KVM_CAP_SYNC_MMU
:
202 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
203 case KVM_CAP_ONE_REG
:
204 case KVM_CAP_ARM_PSCI
:
205 case KVM_CAP_ARM_PSCI_0_2
:
206 case KVM_CAP_READONLY_MEM
:
207 case KVM_CAP_MP_STATE
:
208 case KVM_CAP_IMMEDIATE_EXIT
:
211 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
214 case KVM_CAP_NR_VCPUS
:
215 r
= num_online_cpus();
217 case KVM_CAP_MAX_VCPUS
:
220 case KVM_CAP_NR_MEMSLOTS
:
221 r
= KVM_USER_MEM_SLOTS
;
223 case KVM_CAP_MSI_DEVID
:
227 r
= kvm
->arch
.vgic
.msis_require_devid
;
229 case KVM_CAP_ARM_USER_IRQ
:
231 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232 * (bump this number if adding more devices)
237 r
= kvm_arch_dev_ioctl_check_extension(kvm
, ext
);
243 long kvm_arch_dev_ioctl(struct file
*filp
,
244 unsigned int ioctl
, unsigned long arg
)
250 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
253 struct kvm_vcpu
*vcpu
;
255 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
)) {
260 if (id
>= kvm
->arch
.max_vcpus
) {
265 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
271 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
275 err
= create_hyp_mappings(vcpu
, vcpu
+ 1, PAGE_HYP
);
281 kvm_vcpu_uninit(vcpu
);
283 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
290 kvm_vgic_vcpu_early_init(vcpu
);
293 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
295 kvm_mmu_free_memory_caches(vcpu
);
296 kvm_timer_vcpu_terminate(vcpu
);
297 kvm_vgic_vcpu_destroy(vcpu
);
298 kvm_pmu_vcpu_destroy(vcpu
);
299 kvm_vcpu_uninit(vcpu
);
300 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
305 kvm_arch_vcpu_free(vcpu
);
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
310 return kvm_timer_should_fire(vcpu_vtimer(vcpu
)) ||
311 kvm_timer_should_fire(vcpu_ptimer(vcpu
));
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
)
316 kvm_timer_schedule(vcpu
);
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
321 kvm_timer_unschedule(vcpu
);
324 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
326 /* Force users to call KVM_ARM_VCPU_INIT */
327 vcpu
->arch
.target
= -1;
328 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
330 /* Set up the timer */
331 kvm_timer_vcpu_init(vcpu
);
333 kvm_arm_reset_debug_ptr(vcpu
);
335 return kvm_vgic_vcpu_init(vcpu
);
338 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
342 last_ran
= this_cpu_ptr(vcpu
->kvm
->arch
.last_vcpu_ran
);
345 * We might get preempted before the vCPU actually runs, but
346 * over-invalidation doesn't affect correctness.
348 if (*last_ran
!= vcpu
->vcpu_id
) {
349 kvm_call_hyp(__kvm_tlb_flush_local_vmid
, vcpu
);
350 *last_ran
= vcpu
->vcpu_id
;
354 vcpu
->arch
.host_cpu_context
= this_cpu_ptr(&kvm_host_cpu_state
);
356 kvm_arm_set_running_vcpu(vcpu
);
361 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
367 kvm_arm_set_running_vcpu(NULL
);
368 kvm_timer_vcpu_put(vcpu
);
371 static void vcpu_power_off(struct kvm_vcpu
*vcpu
)
373 vcpu
->arch
.power_off
= true;
374 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
379 struct kvm_mp_state
*mp_state
)
381 if (vcpu
->arch
.power_off
)
382 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
384 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
390 struct kvm_mp_state
*mp_state
)
392 switch (mp_state
->mp_state
) {
393 case KVM_MP_STATE_RUNNABLE
:
394 vcpu
->arch
.power_off
= false;
396 case KVM_MP_STATE_STOPPED
:
397 vcpu_power_off(vcpu
);
407 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
408 * @v: The VCPU pointer
410 * If the guest CPU is not waiting for interrupts or an interrupt line is
411 * asserted, the CPU is by definition runnable.
413 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
415 return ((!!v
->arch
.irq_lines
|| kvm_vgic_vcpu_pending_irq(v
))
416 && !v
->arch
.power_off
&& !v
->arch
.pause
);
419 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu
*vcpu
)
421 return vcpu_mode_priv(vcpu
);
424 /* Just ensure a guest exit from a particular CPU */
425 static void exit_vm_noop(void *info
)
429 void force_vm_exit(const cpumask_t
*mask
)
432 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
437 * need_new_vmid_gen - check that the VMID is still valid
438 * @kvm: The VM's VMID to check
440 * return true if there is a new generation of VMIDs being used
442 * The hardware supports only 256 values with the value zero reserved for the
443 * host, so we check if an assigned value belongs to a previous generation,
444 * which which requires us to assign a new value. If we're the first to use a
445 * VMID for the new generation, we must flush necessary caches and TLBs on all
448 static bool need_new_vmid_gen(struct kvm
*kvm
)
450 u64 current_vmid_gen
= atomic64_read(&kvm_vmid_gen
);
451 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
452 return unlikely(READ_ONCE(kvm
->arch
.vmid_gen
) != current_vmid_gen
);
456 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
457 * @kvm The guest that we are about to run
459 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
460 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
463 static void update_vttbr(struct kvm
*kvm
)
465 phys_addr_t pgd_phys
;
468 if (!need_new_vmid_gen(kvm
))
471 spin_lock(&kvm_vmid_lock
);
474 * We need to re-check the vmid_gen here to ensure that if another vcpu
475 * already allocated a valid vmid for this vm, then this vcpu should
478 if (!need_new_vmid_gen(kvm
)) {
479 spin_unlock(&kvm_vmid_lock
);
483 /* First user of a new VMID generation? */
484 if (unlikely(kvm_next_vmid
== 0)) {
485 atomic64_inc(&kvm_vmid_gen
);
489 * On SMP we know no other CPUs can use this CPU's or each
490 * other's VMID after force_vm_exit returns since the
491 * kvm_vmid_lock blocks them from reentry to the guest.
493 force_vm_exit(cpu_all_mask
);
495 * Now broadcast TLB + ICACHE invalidation over the inner
496 * shareable domain to make sure all data structures are
499 kvm_call_hyp(__kvm_flush_vm_context
);
502 kvm
->arch
.vmid
= kvm_next_vmid
;
504 kvm_next_vmid
&= (1 << kvm_vmid_bits
) - 1;
506 /* update vttbr to be used with the new vmid */
507 pgd_phys
= virt_to_phys(kvm
->arch
.pgd
);
508 BUG_ON(pgd_phys
& ~VTTBR_BADDR_MASK
);
509 vmid
= ((u64
)(kvm
->arch
.vmid
) << VTTBR_VMID_SHIFT
) & VTTBR_VMID_MASK(kvm_vmid_bits
);
510 kvm
->arch
.vttbr
= pgd_phys
| vmid
;
513 WRITE_ONCE(kvm
->arch
.vmid_gen
, atomic64_read(&kvm_vmid_gen
));
515 spin_unlock(&kvm_vmid_lock
);
518 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
520 struct kvm
*kvm
= vcpu
->kvm
;
523 if (likely(vcpu
->arch
.has_run_once
))
526 vcpu
->arch
.has_run_once
= true;
529 * Map the VGIC hardware resources before running a vcpu the first
532 if (unlikely(irqchip_in_kernel(kvm
) && !vgic_ready(kvm
))) {
533 ret
= kvm_vgic_map_resources(kvm
);
538 ret
= kvm_timer_enable(vcpu
);
542 ret
= kvm_arm_pmu_v3_enable(vcpu
);
547 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
549 return vgic_initialized(kvm
);
552 void kvm_arm_halt_guest(struct kvm
*kvm
)
555 struct kvm_vcpu
*vcpu
;
557 kvm_for_each_vcpu(i
, vcpu
, kvm
)
558 vcpu
->arch
.pause
= true;
559 kvm_make_all_cpus_request(kvm
, KVM_REQ_SLEEP
);
562 void kvm_arm_resume_guest(struct kvm
*kvm
)
565 struct kvm_vcpu
*vcpu
;
567 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
568 vcpu
->arch
.pause
= false;
569 swake_up(kvm_arch_vcpu_wq(vcpu
));
573 static void vcpu_req_sleep(struct kvm_vcpu
*vcpu
)
575 struct swait_queue_head
*wq
= kvm_arch_vcpu_wq(vcpu
);
577 swait_event_interruptible(*wq
, ((!vcpu
->arch
.power_off
) &&
578 (!vcpu
->arch
.pause
)));
580 if (vcpu
->arch
.power_off
|| vcpu
->arch
.pause
) {
581 /* Awaken to handle a signal, request we sleep again later. */
582 kvm_make_request(KVM_REQ_SLEEP
, vcpu
);
586 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
588 return vcpu
->arch
.target
>= 0;
591 static void check_vcpu_requests(struct kvm_vcpu
*vcpu
)
593 if (kvm_request_pending(vcpu
)) {
594 if (kvm_check_request(KVM_REQ_SLEEP
, vcpu
))
595 vcpu_req_sleep(vcpu
);
598 * Clear IRQ_PENDING requests that were made to guarantee
599 * that a VCPU sees new virtual interrupts.
601 kvm_check_request(KVM_REQ_IRQ_PENDING
, vcpu
);
606 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
607 * @vcpu: The VCPU pointer
608 * @run: The kvm_run structure pointer used for userspace state exchange
610 * This function is called through the VCPU_RUN ioctl called from user space. It
611 * will execute VM code in a loop until the time slice for the process is used
612 * or some emulation is needed from user space in which case the function will
613 * return with return value 0 and with the kvm_run structure filled in with the
614 * required data for the requested emulation.
616 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
620 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
623 ret
= kvm_vcpu_first_run_init(vcpu
);
627 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
628 ret
= kvm_handle_mmio_return(vcpu
, vcpu
->run
);
633 if (run
->immediate_exit
)
636 kvm_sigset_activate(vcpu
);
639 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
642 * Check conditions before entering the guest
646 update_vttbr(vcpu
->kvm
);
648 check_vcpu_requests(vcpu
);
651 * Preparing the interrupts to be injected also
652 * involves poking the GIC, which must be done in a
653 * non-preemptible context.
657 kvm_pmu_flush_hwstate(vcpu
);
659 kvm_timer_flush_hwstate(vcpu
);
660 kvm_vgic_flush_hwstate(vcpu
);
665 * If we have a singal pending, or need to notify a userspace
666 * irqchip about timer or PMU level changes, then we exit (and
667 * update the timer level state in kvm_timer_update_run
670 if (signal_pending(current
) ||
671 kvm_timer_should_notify_user(vcpu
) ||
672 kvm_pmu_should_notify_user(vcpu
)) {
674 run
->exit_reason
= KVM_EXIT_INTR
;
678 * Ensure we set mode to IN_GUEST_MODE after we disable
679 * interrupts and before the final VCPU requests check.
680 * See the comment in kvm_vcpu_exiting_guest_mode() and
681 * Documentation/virtual/kvm/vcpu-requests.rst
683 smp_store_mb(vcpu
->mode
, IN_GUEST_MODE
);
685 if (ret
<= 0 || need_new_vmid_gen(vcpu
->kvm
) ||
686 kvm_request_pending(vcpu
)) {
687 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
689 kvm_pmu_sync_hwstate(vcpu
);
690 kvm_timer_sync_hwstate(vcpu
);
691 kvm_vgic_sync_hwstate(vcpu
);
696 kvm_arm_setup_debug(vcpu
);
698 /**************************************************************
701 trace_kvm_entry(*vcpu_pc(vcpu
));
702 guest_enter_irqoff();
704 ret
= kvm_call_hyp(__kvm_vcpu_run
, vcpu
);
706 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
710 *************************************************************/
712 kvm_arm_clear_debug(vcpu
);
715 * We may have taken a host interrupt in HYP mode (ie
716 * while executing the guest). This interrupt is still
717 * pending, as we haven't serviced it yet!
719 * We're now back in SVC mode, with interrupts
720 * disabled. Enabling the interrupts now will have
721 * the effect of taking the interrupt again, in SVC
727 * We do local_irq_enable() before calling guest_exit() so
728 * that if a timer interrupt hits while running the guest we
729 * account that tick as being spent in the guest. We enable
730 * preemption after calling guest_exit() so that if we get
731 * preempted we make sure ticks after that is not counted as
735 trace_kvm_exit(ret
, kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
738 * We must sync the PMU and timer state before the vgic state so
739 * that the vgic can properly sample the updated state of the
742 kvm_pmu_sync_hwstate(vcpu
);
743 kvm_timer_sync_hwstate(vcpu
);
745 kvm_vgic_sync_hwstate(vcpu
);
749 ret
= handle_exit(vcpu
, run
, ret
);
752 /* Tell userspace about in-kernel device output levels */
753 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
))) {
754 kvm_timer_update_run(vcpu
);
755 kvm_pmu_update_run(vcpu
);
758 kvm_sigset_deactivate(vcpu
);
763 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
769 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
770 bit_index
= __ffs(HCR_VI
);
771 else /* KVM_ARM_IRQ_CPU_FIQ */
772 bit_index
= __ffs(HCR_VF
);
774 ptr
= (unsigned long *)&vcpu
->arch
.irq_lines
;
776 set
= test_and_set_bit(bit_index
, ptr
);
778 set
= test_and_clear_bit(bit_index
, ptr
);
781 * If we didn't change anything, no need to wake up or kick other CPUs
787 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
788 * trigger a world-switch round on the running physical CPU to set the
789 * virtual IRQ/FIQ fields in the HCR appropriately.
791 kvm_make_request(KVM_REQ_IRQ_PENDING
, vcpu
);
797 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
800 u32 irq
= irq_level
->irq
;
801 unsigned int irq_type
, vcpu_idx
, irq_num
;
802 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
803 struct kvm_vcpu
*vcpu
= NULL
;
804 bool level
= irq_level
->level
;
806 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
807 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
808 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
810 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
813 case KVM_ARM_IRQ_TYPE_CPU
:
814 if (irqchip_in_kernel(kvm
))
817 if (vcpu_idx
>= nrcpus
)
820 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
824 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
827 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
828 case KVM_ARM_IRQ_TYPE_PPI
:
829 if (!irqchip_in_kernel(kvm
))
832 if (vcpu_idx
>= nrcpus
)
835 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
839 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
842 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
, NULL
);
843 case KVM_ARM_IRQ_TYPE_SPI
:
844 if (!irqchip_in_kernel(kvm
))
847 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
850 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
, NULL
);
856 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
857 const struct kvm_vcpu_init
*init
)
860 int phys_target
= kvm_target_cpu();
862 if (init
->target
!= phys_target
)
866 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
867 * use the same target.
869 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
872 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
873 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
874 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
876 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
880 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
881 * use the same feature set.
883 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
884 test_bit(i
, vcpu
->arch
.features
) != set
)
888 set_bit(i
, vcpu
->arch
.features
);
891 vcpu
->arch
.target
= phys_target
;
893 /* Now we know what it is, we can reset it. */
894 return kvm_reset_vcpu(vcpu
);
898 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
899 struct kvm_vcpu_init
*init
)
903 ret
= kvm_vcpu_set_target(vcpu
, init
);
908 * Ensure a rebooted VM will fault in RAM pages and detect if the
909 * guest MMU is turned off and flush the caches as needed.
911 if (vcpu
->arch
.has_run_once
)
912 stage2_unmap_vm(vcpu
->kvm
);
914 vcpu_reset_hcr(vcpu
);
917 * Handle the "start in power-off" case.
919 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
920 vcpu_power_off(vcpu
);
922 vcpu
->arch
.power_off
= false;
927 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu
*vcpu
,
928 struct kvm_device_attr
*attr
)
932 switch (attr
->group
) {
934 ret
= kvm_arm_vcpu_arch_set_attr(vcpu
, attr
);
941 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu
*vcpu
,
942 struct kvm_device_attr
*attr
)
946 switch (attr
->group
) {
948 ret
= kvm_arm_vcpu_arch_get_attr(vcpu
, attr
);
955 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu
*vcpu
,
956 struct kvm_device_attr
*attr
)
960 switch (attr
->group
) {
962 ret
= kvm_arm_vcpu_arch_has_attr(vcpu
, attr
);
969 long kvm_arch_vcpu_ioctl(struct file
*filp
,
970 unsigned int ioctl
, unsigned long arg
)
972 struct kvm_vcpu
*vcpu
= filp
->private_data
;
973 void __user
*argp
= (void __user
*)arg
;
974 struct kvm_device_attr attr
;
977 case KVM_ARM_VCPU_INIT
: {
978 struct kvm_vcpu_init init
;
980 if (copy_from_user(&init
, argp
, sizeof(init
)))
983 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
985 case KVM_SET_ONE_REG
:
986 case KVM_GET_ONE_REG
: {
987 struct kvm_one_reg reg
;
989 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
992 if (copy_from_user(®
, argp
, sizeof(reg
)))
994 if (ioctl
== KVM_SET_ONE_REG
)
995 return kvm_arm_set_reg(vcpu
, ®
);
997 return kvm_arm_get_reg(vcpu
, ®
);
999 case KVM_GET_REG_LIST
: {
1000 struct kvm_reg_list __user
*user_list
= argp
;
1001 struct kvm_reg_list reg_list
;
1004 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
1007 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
1010 reg_list
.n
= kvm_arm_num_regs(vcpu
);
1011 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
1015 return kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
1017 case KVM_SET_DEVICE_ATTR
: {
1018 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1020 return kvm_arm_vcpu_set_attr(vcpu
, &attr
);
1022 case KVM_GET_DEVICE_ATTR
: {
1023 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1025 return kvm_arm_vcpu_get_attr(vcpu
, &attr
);
1027 case KVM_HAS_DEVICE_ATTR
: {
1028 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
1030 return kvm_arm_vcpu_has_attr(vcpu
, &attr
);
1038 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1039 * @kvm: kvm instance
1040 * @log: slot id and address to which we copy the log
1042 * Steps 1-4 below provide general overview of dirty page logging. See
1043 * kvm_get_dirty_log_protect() function description for additional details.
1045 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1046 * always flush the TLB (step 4) even if previous step failed and the dirty
1047 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1048 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1049 * writes will be marked dirty for next log read.
1051 * 1. Take a snapshot of the bit and clear it if needed.
1052 * 2. Write protect the corresponding page.
1053 * 3. Copy the snapshot to the userspace.
1054 * 4. Flush TLB's if needed.
1056 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
1058 bool is_dirty
= false;
1061 mutex_lock(&kvm
->slots_lock
);
1063 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
1066 kvm_flush_remote_tlbs(kvm
);
1068 mutex_unlock(&kvm
->slots_lock
);
1072 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
1073 struct kvm_arm_device_addr
*dev_addr
)
1075 unsigned long dev_id
, type
;
1077 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
1078 KVM_ARM_DEVICE_ID_SHIFT
;
1079 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
1080 KVM_ARM_DEVICE_TYPE_SHIFT
;
1083 case KVM_ARM_DEVICE_VGIC_V2
:
1086 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
1092 long kvm_arch_vm_ioctl(struct file
*filp
,
1093 unsigned int ioctl
, unsigned long arg
)
1095 struct kvm
*kvm
= filp
->private_data
;
1096 void __user
*argp
= (void __user
*)arg
;
1099 case KVM_CREATE_IRQCHIP
: {
1103 mutex_lock(&kvm
->lock
);
1104 ret
= kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
1105 mutex_unlock(&kvm
->lock
);
1108 case KVM_ARM_SET_DEVICE_ADDR
: {
1109 struct kvm_arm_device_addr dev_addr
;
1111 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
1113 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
1115 case KVM_ARM_PREFERRED_TARGET
: {
1117 struct kvm_vcpu_init init
;
1119 err
= kvm_vcpu_preferred_target(&init
);
1123 if (copy_to_user(argp
, &init
, sizeof(init
)))
1133 static void cpu_init_hyp_mode(void *dummy
)
1135 phys_addr_t pgd_ptr
;
1136 unsigned long hyp_stack_ptr
;
1137 unsigned long stack_page
;
1138 unsigned long vector_ptr
;
1140 /* Switch from the HYP stub to our own HYP init vector */
1141 __hyp_set_vectors(kvm_get_idmap_vector());
1143 pgd_ptr
= kvm_mmu_get_httbr();
1144 stack_page
= __this_cpu_read(kvm_arm_hyp_stack_page
);
1145 hyp_stack_ptr
= stack_page
+ PAGE_SIZE
;
1146 vector_ptr
= (unsigned long)kvm_get_hyp_vector();
1148 __cpu_init_hyp_mode(pgd_ptr
, hyp_stack_ptr
, vector_ptr
);
1149 __cpu_init_stage2();
1152 static void cpu_hyp_reset(void)
1154 if (!is_kernel_in_hyp_mode())
1155 __hyp_reset_vectors();
1158 static void cpu_hyp_reinit(void)
1162 if (is_kernel_in_hyp_mode()) {
1164 * __cpu_init_stage2() is safe to call even if the PM
1165 * event was cancelled before the CPU was reset.
1167 __cpu_init_stage2();
1168 kvm_timer_init_vhe();
1170 cpu_init_hyp_mode(NULL
);
1173 kvm_arm_init_debug();
1176 kvm_vgic_init_cpu_hardware();
1179 static void _kvm_arch_hardware_enable(void *discard
)
1181 if (!__this_cpu_read(kvm_arm_hardware_enabled
)) {
1183 __this_cpu_write(kvm_arm_hardware_enabled
, 1);
1187 int kvm_arch_hardware_enable(void)
1189 _kvm_arch_hardware_enable(NULL
);
1193 static void _kvm_arch_hardware_disable(void *discard
)
1195 if (__this_cpu_read(kvm_arm_hardware_enabled
)) {
1197 __this_cpu_write(kvm_arm_hardware_enabled
, 0);
1201 void kvm_arch_hardware_disable(void)
1203 _kvm_arch_hardware_disable(NULL
);
1206 #ifdef CONFIG_CPU_PM
1207 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
1212 * kvm_arm_hardware_enabled is left with its old value over
1213 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1218 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1220 * don't update kvm_arm_hardware_enabled here
1221 * so that the hardware will be re-enabled
1222 * when we resume. See below.
1227 case CPU_PM_ENTER_FAILED
:
1229 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1230 /* The hardware was enabled before suspend. */
1240 static struct notifier_block hyp_init_cpu_pm_nb
= {
1241 .notifier_call
= hyp_init_cpu_pm_notifier
,
1244 static void __init
hyp_cpu_pm_init(void)
1246 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
1248 static void __init
hyp_cpu_pm_exit(void)
1250 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb
);
1253 static inline void hyp_cpu_pm_init(void)
1256 static inline void hyp_cpu_pm_exit(void)
1261 static int init_common_resources(void)
1263 /* set size of VMID supported by CPU */
1264 kvm_vmid_bits
= kvm_get_vmid_bits();
1265 kvm_info("%d-bit VMID\n", kvm_vmid_bits
);
1270 static int init_subsystems(void)
1275 * Enable hardware so that subsystem initialisation can access EL2.
1277 on_each_cpu(_kvm_arch_hardware_enable
, NULL
, 1);
1280 * Register CPU lower-power notifier
1285 * Init HYP view of VGIC
1287 err
= kvm_vgic_hyp_init();
1290 vgic_present
= true;
1294 vgic_present
= false;
1302 * Init HYP architected timer support
1304 err
= kvm_timer_hyp_init();
1309 kvm_coproc_table_init();
1312 on_each_cpu(_kvm_arch_hardware_disable
, NULL
, 1);
1317 static void teardown_hyp_mode(void)
1322 for_each_possible_cpu(cpu
)
1323 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1328 * Inits Hyp-mode on all online CPUs
1330 static int init_hyp_mode(void)
1336 * Allocate Hyp PGD and setup Hyp identity mapping
1338 err
= kvm_mmu_init();
1343 * Allocate stack pages for Hypervisor-mode
1345 for_each_possible_cpu(cpu
) {
1346 unsigned long stack_page
;
1348 stack_page
= __get_free_page(GFP_KERNEL
);
1354 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1358 * Map the Hyp-code called directly from the host
1360 err
= create_hyp_mappings(kvm_ksym_ref(__hyp_text_start
),
1361 kvm_ksym_ref(__hyp_text_end
), PAGE_HYP_EXEC
);
1363 kvm_err("Cannot map world-switch code\n");
1367 err
= create_hyp_mappings(kvm_ksym_ref(__start_rodata
),
1368 kvm_ksym_ref(__end_rodata
), PAGE_HYP_RO
);
1370 kvm_err("Cannot map rodata section\n");
1374 err
= create_hyp_mappings(kvm_ksym_ref(__bss_start
),
1375 kvm_ksym_ref(__bss_stop
), PAGE_HYP_RO
);
1377 kvm_err("Cannot map bss section\n");
1381 err
= kvm_map_vectors();
1383 kvm_err("Cannot map vectors\n");
1388 * Map the Hyp stack pages
1390 for_each_possible_cpu(cpu
) {
1391 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1392 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
,
1396 kvm_err("Cannot map hyp stack\n");
1401 for_each_possible_cpu(cpu
) {
1402 kvm_cpu_context_t
*cpu_ctxt
;
1404 cpu_ctxt
= per_cpu_ptr(&kvm_host_cpu_state
, cpu
);
1405 err
= create_hyp_mappings(cpu_ctxt
, cpu_ctxt
+ 1, PAGE_HYP
);
1408 kvm_err("Cannot map host CPU state: %d\n", err
);
1413 err
= hyp_map_aux_data();
1415 kvm_err("Cannot map host auxilary data: %d\n", err
);
1420 teardown_hyp_mode();
1421 kvm_err("error initializing Hyp mode: %d\n", err
);
1425 static void check_kvm_target_cpu(void *ret
)
1427 *(int *)ret
= kvm_target_cpu();
1430 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1432 struct kvm_vcpu
*vcpu
;
1435 mpidr
&= MPIDR_HWID_BITMASK
;
1436 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1437 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1444 * Initialize Hyp-mode and memory mappings on all CPUs.
1446 int kvm_arch_init(void *opaque
)
1452 if (!is_hyp_mode_available()) {
1453 kvm_info("HYP mode not available\n");
1457 for_each_online_cpu(cpu
) {
1458 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1460 kvm_err("Error, CPU %d not supported!\n", cpu
);
1465 err
= init_common_resources();
1469 in_hyp_mode
= is_kernel_in_hyp_mode();
1472 err
= init_hyp_mode();
1477 err
= init_subsystems();
1482 kvm_info("VHE mode initialized successfully\n");
1484 kvm_info("Hyp mode initialized successfully\n");
1490 teardown_hyp_mode();
1495 /* NOP: Compiling as a module not supported */
1496 void kvm_arch_exit(void)
1498 kvm_perf_teardown();
1501 static int arm_init(void)
1503 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1507 module_init(arm_init
);