KVM: arm/arm64: Fix VMID alloc race by reverting to lock-less
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blob4f35f0dfe681ad98f1aca376c5aff0f1b67a76e3
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
90 * Ordering of locks:
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
128 __visible bool kvm_rebooting;
129 EXPORT_SYMBOL_GPL(kvm_rebooting);
131 static bool largepages_enabled = true;
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
136 static unsigned long long kvm_createvm_count;
137 static unsigned long long kvm_active_vms;
139 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
140 unsigned long start, unsigned long end)
144 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
146 if (pfn_valid(pfn))
147 return PageReserved(pfn_to_page(pfn));
149 return true;
153 * Switches to specified vcpu, until a matching vcpu_put()
155 int vcpu_load(struct kvm_vcpu *vcpu)
157 int cpu;
159 if (mutex_lock_killable(&vcpu->mutex))
160 return -EINTR;
161 cpu = get_cpu();
162 preempt_notifier_register(&vcpu->preempt_notifier);
163 kvm_arch_vcpu_load(vcpu, cpu);
164 put_cpu();
165 return 0;
167 EXPORT_SYMBOL_GPL(vcpu_load);
169 void vcpu_put(struct kvm_vcpu *vcpu)
171 preempt_disable();
172 kvm_arch_vcpu_put(vcpu);
173 preempt_notifier_unregister(&vcpu->preempt_notifier);
174 preempt_enable();
175 mutex_unlock(&vcpu->mutex);
177 EXPORT_SYMBOL_GPL(vcpu_put);
179 /* TODO: merge with kvm_arch_vcpu_should_kick */
180 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
182 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185 * We need to wait for the VCPU to reenable interrupts and get out of
186 * READING_SHADOW_PAGE_TABLES mode.
188 if (req & KVM_REQUEST_WAIT)
189 return mode != OUTSIDE_GUEST_MODE;
192 * Need to kick a running VCPU, but otherwise there is nothing to do.
194 return mode == IN_GUEST_MODE;
197 static void ack_flush(void *_completed)
201 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
203 if (unlikely(!cpus))
204 cpus = cpu_online_mask;
206 if (cpumask_empty(cpus))
207 return false;
209 smp_call_function_many(cpus, ack_flush, NULL, wait);
210 return true;
213 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
215 int i, cpu, me;
216 cpumask_var_t cpus;
217 bool called;
218 struct kvm_vcpu *vcpu;
220 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
222 me = get_cpu();
223 kvm_for_each_vcpu(i, vcpu, kvm) {
224 kvm_make_request(req, vcpu);
225 cpu = vcpu->cpu;
227 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
228 continue;
230 if (cpus != NULL && cpu != -1 && cpu != me &&
231 kvm_request_needs_ipi(vcpu, req))
232 __cpumask_set_cpu(cpu, cpus);
234 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
235 put_cpu();
236 free_cpumask_var(cpus);
237 return called;
240 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
241 void kvm_flush_remote_tlbs(struct kvm *kvm)
244 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
245 * kvm_make_all_cpus_request.
247 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
250 * We want to publish modifications to the page tables before reading
251 * mode. Pairs with a memory barrier in arch-specific code.
252 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
253 * and smp_mb in walk_shadow_page_lockless_begin/end.
254 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
256 * There is already an smp_mb__after_atomic() before
257 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
258 * barrier here.
260 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
261 ++kvm->stat.remote_tlb_flush;
262 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
264 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
265 #endif
267 void kvm_reload_remote_mmus(struct kvm *kvm)
269 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
272 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
274 struct page *page;
275 int r;
277 mutex_init(&vcpu->mutex);
278 vcpu->cpu = -1;
279 vcpu->kvm = kvm;
280 vcpu->vcpu_id = id;
281 vcpu->pid = NULL;
282 init_swait_queue_head(&vcpu->wq);
283 kvm_async_pf_vcpu_init(vcpu);
285 vcpu->pre_pcpu = -1;
286 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
288 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
289 if (!page) {
290 r = -ENOMEM;
291 goto fail;
293 vcpu->run = page_address(page);
295 kvm_vcpu_set_in_spin_loop(vcpu, false);
296 kvm_vcpu_set_dy_eligible(vcpu, false);
297 vcpu->preempted = false;
299 r = kvm_arch_vcpu_init(vcpu);
300 if (r < 0)
301 goto fail_free_run;
302 return 0;
304 fail_free_run:
305 free_page((unsigned long)vcpu->run);
306 fail:
307 return r;
309 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
311 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
314 * no need for rcu_read_lock as VCPU_RUN is the only place that
315 * will change the vcpu->pid pointer and on uninit all file
316 * descriptors are already gone.
318 put_pid(rcu_dereference_protected(vcpu->pid, 1));
319 kvm_arch_vcpu_uninit(vcpu);
320 free_page((unsigned long)vcpu->run);
322 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
325 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
327 return container_of(mn, struct kvm, mmu_notifier);
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
331 struct mm_struct *mm,
332 unsigned long address,
333 pte_t pte)
335 struct kvm *kvm = mmu_notifier_to_kvm(mn);
336 int idx;
338 idx = srcu_read_lock(&kvm->srcu);
339 spin_lock(&kvm->mmu_lock);
340 kvm->mmu_notifier_seq++;
341 kvm_set_spte_hva(kvm, address, pte);
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 int need_tlb_flush = 0, idx;
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
357 * The count increase must become visible at unlock time as no
358 * spte can be established without taking the mmu_lock and
359 * count is also read inside the mmu_lock critical section.
361 kvm->mmu_notifier_count++;
362 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
363 need_tlb_flush |= kvm->tlbs_dirty;
364 /* we've to flush the tlb before the pages can be freed */
365 if (need_tlb_flush)
366 kvm_flush_remote_tlbs(kvm);
368 spin_unlock(&kvm->mmu_lock);
370 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
372 srcu_read_unlock(&kvm->srcu, idx);
375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
376 struct mm_struct *mm,
377 unsigned long start,
378 unsigned long end)
380 struct kvm *kvm = mmu_notifier_to_kvm(mn);
382 spin_lock(&kvm->mmu_lock);
384 * This sequence increase will notify the kvm page fault that
385 * the page that is going to be mapped in the spte could have
386 * been freed.
388 kvm->mmu_notifier_seq++;
389 smp_wmb();
391 * The above sequence increase must be visible before the
392 * below count decrease, which is ensured by the smp_wmb above
393 * in conjunction with the smp_rmb in mmu_notifier_retry().
395 kvm->mmu_notifier_count--;
396 spin_unlock(&kvm->mmu_lock);
398 BUG_ON(kvm->mmu_notifier_count < 0);
401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
402 struct mm_struct *mm,
403 unsigned long start,
404 unsigned long end)
406 struct kvm *kvm = mmu_notifier_to_kvm(mn);
407 int young, idx;
409 idx = srcu_read_lock(&kvm->srcu);
410 spin_lock(&kvm->mmu_lock);
412 young = kvm_age_hva(kvm, start, end);
413 if (young)
414 kvm_flush_remote_tlbs(kvm);
416 spin_unlock(&kvm->mmu_lock);
417 srcu_read_unlock(&kvm->srcu, idx);
419 return young;
422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
423 struct mm_struct *mm,
424 unsigned long start,
425 unsigned long end)
427 struct kvm *kvm = mmu_notifier_to_kvm(mn);
428 int young, idx;
430 idx = srcu_read_lock(&kvm->srcu);
431 spin_lock(&kvm->mmu_lock);
433 * Even though we do not flush TLB, this will still adversely
434 * affect performance on pre-Haswell Intel EPT, where there is
435 * no EPT Access Bit to clear so that we have to tear down EPT
436 * tables instead. If we find this unacceptable, we can always
437 * add a parameter to kvm_age_hva so that it effectively doesn't
438 * do anything on clear_young.
440 * Also note that currently we never issue secondary TLB flushes
441 * from clear_young, leaving this job up to the regular system
442 * cadence. If we find this inaccurate, we might come up with a
443 * more sophisticated heuristic later.
445 young = kvm_age_hva(kvm, start, end);
446 spin_unlock(&kvm->mmu_lock);
447 srcu_read_unlock(&kvm->srcu, idx);
449 return young;
452 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
453 struct mm_struct *mm,
454 unsigned long address)
456 struct kvm *kvm = mmu_notifier_to_kvm(mn);
457 int young, idx;
459 idx = srcu_read_lock(&kvm->srcu);
460 spin_lock(&kvm->mmu_lock);
461 young = kvm_test_age_hva(kvm, address);
462 spin_unlock(&kvm->mmu_lock);
463 srcu_read_unlock(&kvm->srcu, idx);
465 return young;
468 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
469 struct mm_struct *mm)
471 struct kvm *kvm = mmu_notifier_to_kvm(mn);
472 int idx;
474 idx = srcu_read_lock(&kvm->srcu);
475 kvm_arch_flush_shadow_all(kvm);
476 srcu_read_unlock(&kvm->srcu, idx);
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
480 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
481 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
482 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
483 .clear_young = kvm_mmu_notifier_clear_young,
484 .test_young = kvm_mmu_notifier_test_young,
485 .change_pte = kvm_mmu_notifier_change_pte,
486 .release = kvm_mmu_notifier_release,
489 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
492 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
495 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
497 static int kvm_init_mmu_notifier(struct kvm *kvm)
499 return 0;
502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
504 static struct kvm_memslots *kvm_alloc_memslots(void)
506 int i;
507 struct kvm_memslots *slots;
509 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
510 if (!slots)
511 return NULL;
513 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
514 slots->id_to_index[i] = slots->memslots[i].id = i;
516 return slots;
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
521 if (!memslot->dirty_bitmap)
522 return;
524 kvfree(memslot->dirty_bitmap);
525 memslot->dirty_bitmap = NULL;
529 * Free any memory in @free but not in @dont.
531 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
532 struct kvm_memory_slot *dont)
534 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
535 kvm_destroy_dirty_bitmap(free);
537 kvm_arch_free_memslot(kvm, free, dont);
539 free->npages = 0;
542 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
544 struct kvm_memory_slot *memslot;
546 if (!slots)
547 return;
549 kvm_for_each_memslot(memslot, slots)
550 kvm_free_memslot(kvm, memslot, NULL);
552 kvfree(slots);
555 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
557 int i;
559 if (!kvm->debugfs_dentry)
560 return;
562 debugfs_remove_recursive(kvm->debugfs_dentry);
564 if (kvm->debugfs_stat_data) {
565 for (i = 0; i < kvm_debugfs_num_entries; i++)
566 kfree(kvm->debugfs_stat_data[i]);
567 kfree(kvm->debugfs_stat_data);
571 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
573 char dir_name[ITOA_MAX_LEN * 2];
574 struct kvm_stat_data *stat_data;
575 struct kvm_stats_debugfs_item *p;
577 if (!debugfs_initialized())
578 return 0;
580 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
581 kvm->debugfs_dentry = debugfs_create_dir(dir_name,
582 kvm_debugfs_dir);
583 if (!kvm->debugfs_dentry)
584 return -ENOMEM;
586 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
587 sizeof(*kvm->debugfs_stat_data),
588 GFP_KERNEL);
589 if (!kvm->debugfs_stat_data)
590 return -ENOMEM;
592 for (p = debugfs_entries; p->name; p++) {
593 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
594 if (!stat_data)
595 return -ENOMEM;
597 stat_data->kvm = kvm;
598 stat_data->offset = p->offset;
599 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
600 if (!debugfs_create_file(p->name, 0644,
601 kvm->debugfs_dentry,
602 stat_data,
603 stat_fops_per_vm[p->kind]))
604 return -ENOMEM;
606 return 0;
609 static struct kvm *kvm_create_vm(unsigned long type)
611 int r, i;
612 struct kvm *kvm = kvm_arch_alloc_vm();
614 if (!kvm)
615 return ERR_PTR(-ENOMEM);
617 spin_lock_init(&kvm->mmu_lock);
618 mmgrab(current->mm);
619 kvm->mm = current->mm;
620 kvm_eventfd_init(kvm);
621 mutex_init(&kvm->lock);
622 mutex_init(&kvm->irq_lock);
623 mutex_init(&kvm->slots_lock);
624 refcount_set(&kvm->users_count, 1);
625 INIT_LIST_HEAD(&kvm->devices);
627 r = kvm_arch_init_vm(kvm, type);
628 if (r)
629 goto out_err_no_disable;
631 r = hardware_enable_all();
632 if (r)
633 goto out_err_no_disable;
635 #ifdef CONFIG_HAVE_KVM_IRQFD
636 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
637 #endif
639 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
641 r = -ENOMEM;
642 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
643 struct kvm_memslots *slots = kvm_alloc_memslots();
644 if (!slots)
645 goto out_err_no_srcu;
647 * Generations must be different for each address space.
648 * Init kvm generation close to the maximum to easily test the
649 * code of handling generation number wrap-around.
651 slots->generation = i * 2 - 150;
652 rcu_assign_pointer(kvm->memslots[i], slots);
655 if (init_srcu_struct(&kvm->srcu))
656 goto out_err_no_srcu;
657 if (init_srcu_struct(&kvm->irq_srcu))
658 goto out_err_no_irq_srcu;
659 for (i = 0; i < KVM_NR_BUSES; i++) {
660 rcu_assign_pointer(kvm->buses[i],
661 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
662 if (!kvm->buses[i])
663 goto out_err;
666 r = kvm_init_mmu_notifier(kvm);
667 if (r)
668 goto out_err;
670 spin_lock(&kvm_lock);
671 list_add(&kvm->vm_list, &vm_list);
672 spin_unlock(&kvm_lock);
674 preempt_notifier_inc();
676 return kvm;
678 out_err:
679 cleanup_srcu_struct(&kvm->irq_srcu);
680 out_err_no_irq_srcu:
681 cleanup_srcu_struct(&kvm->srcu);
682 out_err_no_srcu:
683 hardware_disable_all();
684 out_err_no_disable:
685 refcount_set(&kvm->users_count, 0);
686 for (i = 0; i < KVM_NR_BUSES; i++)
687 kfree(kvm_get_bus(kvm, i));
688 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
689 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
690 kvm_arch_free_vm(kvm);
691 mmdrop(current->mm);
692 return ERR_PTR(r);
695 static void kvm_destroy_devices(struct kvm *kvm)
697 struct kvm_device *dev, *tmp;
700 * We do not need to take the kvm->lock here, because nobody else
701 * has a reference to the struct kvm at this point and therefore
702 * cannot access the devices list anyhow.
704 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
705 list_del(&dev->vm_node);
706 dev->ops->destroy(dev);
710 static void kvm_destroy_vm(struct kvm *kvm)
712 int i;
713 struct mm_struct *mm = kvm->mm;
715 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
716 kvm_destroy_vm_debugfs(kvm);
717 kvm_arch_sync_events(kvm);
718 spin_lock(&kvm_lock);
719 list_del(&kvm->vm_list);
720 spin_unlock(&kvm_lock);
721 kvm_free_irq_routing(kvm);
722 for (i = 0; i < KVM_NR_BUSES; i++) {
723 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
725 if (bus)
726 kvm_io_bus_destroy(bus);
727 kvm->buses[i] = NULL;
729 kvm_coalesced_mmio_free(kvm);
730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
731 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
732 #else
733 kvm_arch_flush_shadow_all(kvm);
734 #endif
735 kvm_arch_destroy_vm(kvm);
736 kvm_destroy_devices(kvm);
737 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
738 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
739 cleanup_srcu_struct(&kvm->irq_srcu);
740 cleanup_srcu_struct(&kvm->srcu);
741 kvm_arch_free_vm(kvm);
742 preempt_notifier_dec();
743 hardware_disable_all();
744 mmdrop(mm);
747 void kvm_get_kvm(struct kvm *kvm)
749 refcount_inc(&kvm->users_count);
751 EXPORT_SYMBOL_GPL(kvm_get_kvm);
753 void kvm_put_kvm(struct kvm *kvm)
755 if (refcount_dec_and_test(&kvm->users_count))
756 kvm_destroy_vm(kvm);
758 EXPORT_SYMBOL_GPL(kvm_put_kvm);
761 static int kvm_vm_release(struct inode *inode, struct file *filp)
763 struct kvm *kvm = filp->private_data;
765 kvm_irqfd_release(kvm);
767 kvm_put_kvm(kvm);
768 return 0;
772 * Allocation size is twice as large as the actual dirty bitmap size.
773 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
777 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
779 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
780 if (!memslot->dirty_bitmap)
781 return -ENOMEM;
783 return 0;
787 * Insert memslot and re-sort memslots based on their GFN,
788 * so binary search could be used to lookup GFN.
789 * Sorting algorithm takes advantage of having initially
790 * sorted array and known changed memslot position.
792 static void update_memslots(struct kvm_memslots *slots,
793 struct kvm_memory_slot *new)
795 int id = new->id;
796 int i = slots->id_to_index[id];
797 struct kvm_memory_slot *mslots = slots->memslots;
799 WARN_ON(mslots[i].id != id);
800 if (!new->npages) {
801 WARN_ON(!mslots[i].npages);
802 if (mslots[i].npages)
803 slots->used_slots--;
804 } else {
805 if (!mslots[i].npages)
806 slots->used_slots++;
809 while (i < KVM_MEM_SLOTS_NUM - 1 &&
810 new->base_gfn <= mslots[i + 1].base_gfn) {
811 if (!mslots[i + 1].npages)
812 break;
813 mslots[i] = mslots[i + 1];
814 slots->id_to_index[mslots[i].id] = i;
815 i++;
819 * The ">=" is needed when creating a slot with base_gfn == 0,
820 * so that it moves before all those with base_gfn == npages == 0.
822 * On the other hand, if new->npages is zero, the above loop has
823 * already left i pointing to the beginning of the empty part of
824 * mslots, and the ">=" would move the hole backwards in this
825 * case---which is wrong. So skip the loop when deleting a slot.
827 if (new->npages) {
828 while (i > 0 &&
829 new->base_gfn >= mslots[i - 1].base_gfn) {
830 mslots[i] = mslots[i - 1];
831 slots->id_to_index[mslots[i].id] = i;
832 i--;
834 } else
835 WARN_ON_ONCE(i != slots->used_slots);
837 mslots[i] = *new;
838 slots->id_to_index[mslots[i].id] = i;
841 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
843 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
845 #ifdef __KVM_HAVE_READONLY_MEM
846 valid_flags |= KVM_MEM_READONLY;
847 #endif
849 if (mem->flags & ~valid_flags)
850 return -EINVAL;
852 return 0;
855 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
856 int as_id, struct kvm_memslots *slots)
858 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
861 * Set the low bit in the generation, which disables SPTE caching
862 * until the end of synchronize_srcu_expedited.
864 WARN_ON(old_memslots->generation & 1);
865 slots->generation = old_memslots->generation + 1;
867 rcu_assign_pointer(kvm->memslots[as_id], slots);
868 synchronize_srcu_expedited(&kvm->srcu);
871 * Increment the new memslot generation a second time. This prevents
872 * vm exits that race with memslot updates from caching a memslot
873 * generation that will (potentially) be valid forever.
875 * Generations must be unique even across address spaces. We do not need
876 * a global counter for that, instead the generation space is evenly split
877 * across address spaces. For example, with two address spaces, address
878 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879 * use generations 2, 6, 10, 14, ...
881 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
883 kvm_arch_memslots_updated(kvm, slots);
885 return old_memslots;
889 * Allocate some memory and give it an address in the guest physical address
890 * space.
892 * Discontiguous memory is allowed, mostly for framebuffers.
894 * Must be called holding kvm->slots_lock for write.
896 int __kvm_set_memory_region(struct kvm *kvm,
897 const struct kvm_userspace_memory_region *mem)
899 int r;
900 gfn_t base_gfn;
901 unsigned long npages;
902 struct kvm_memory_slot *slot;
903 struct kvm_memory_slot old, new;
904 struct kvm_memslots *slots = NULL, *old_memslots;
905 int as_id, id;
906 enum kvm_mr_change change;
908 r = check_memory_region_flags(mem);
909 if (r)
910 goto out;
912 r = -EINVAL;
913 as_id = mem->slot >> 16;
914 id = (u16)mem->slot;
916 /* General sanity checks */
917 if (mem->memory_size & (PAGE_SIZE - 1))
918 goto out;
919 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
920 goto out;
921 /* We can read the guest memory with __xxx_user() later on. */
922 if ((id < KVM_USER_MEM_SLOTS) &&
923 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
924 !access_ok(VERIFY_WRITE,
925 (void __user *)(unsigned long)mem->userspace_addr,
926 mem->memory_size)))
927 goto out;
928 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
929 goto out;
930 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
931 goto out;
933 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
934 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
935 npages = mem->memory_size >> PAGE_SHIFT;
937 if (npages > KVM_MEM_MAX_NR_PAGES)
938 goto out;
940 new = old = *slot;
942 new.id = id;
943 new.base_gfn = base_gfn;
944 new.npages = npages;
945 new.flags = mem->flags;
947 if (npages) {
948 if (!old.npages)
949 change = KVM_MR_CREATE;
950 else { /* Modify an existing slot. */
951 if ((mem->userspace_addr != old.userspace_addr) ||
952 (npages != old.npages) ||
953 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
954 goto out;
956 if (base_gfn != old.base_gfn)
957 change = KVM_MR_MOVE;
958 else if (new.flags != old.flags)
959 change = KVM_MR_FLAGS_ONLY;
960 else { /* Nothing to change. */
961 r = 0;
962 goto out;
965 } else {
966 if (!old.npages)
967 goto out;
969 change = KVM_MR_DELETE;
970 new.base_gfn = 0;
971 new.flags = 0;
974 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
975 /* Check for overlaps */
976 r = -EEXIST;
977 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
978 if (slot->id == id)
979 continue;
980 if (!((base_gfn + npages <= slot->base_gfn) ||
981 (base_gfn >= slot->base_gfn + slot->npages)))
982 goto out;
986 /* Free page dirty bitmap if unneeded */
987 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
988 new.dirty_bitmap = NULL;
990 r = -ENOMEM;
991 if (change == KVM_MR_CREATE) {
992 new.userspace_addr = mem->userspace_addr;
994 if (kvm_arch_create_memslot(kvm, &new, npages))
995 goto out_free;
998 /* Allocate page dirty bitmap if needed */
999 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1000 if (kvm_create_dirty_bitmap(&new) < 0)
1001 goto out_free;
1004 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1005 if (!slots)
1006 goto out_free;
1007 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1009 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1010 slot = id_to_memslot(slots, id);
1011 slot->flags |= KVM_MEMSLOT_INVALID;
1013 old_memslots = install_new_memslots(kvm, as_id, slots);
1015 /* From this point no new shadow pages pointing to a deleted,
1016 * or moved, memslot will be created.
1018 * validation of sp->gfn happens in:
1019 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1020 * - kvm_is_visible_gfn (mmu_check_roots)
1022 kvm_arch_flush_shadow_memslot(kvm, slot);
1025 * We can re-use the old_memslots from above, the only difference
1026 * from the currently installed memslots is the invalid flag. This
1027 * will get overwritten by update_memslots anyway.
1029 slots = old_memslots;
1032 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1033 if (r)
1034 goto out_slots;
1036 /* actual memory is freed via old in kvm_free_memslot below */
1037 if (change == KVM_MR_DELETE) {
1038 new.dirty_bitmap = NULL;
1039 memset(&new.arch, 0, sizeof(new.arch));
1042 update_memslots(slots, &new);
1043 old_memslots = install_new_memslots(kvm, as_id, slots);
1045 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1047 kvm_free_memslot(kvm, &old, &new);
1048 kvfree(old_memslots);
1049 return 0;
1051 out_slots:
1052 kvfree(slots);
1053 out_free:
1054 kvm_free_memslot(kvm, &new, &old);
1055 out:
1056 return r;
1058 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1060 int kvm_set_memory_region(struct kvm *kvm,
1061 const struct kvm_userspace_memory_region *mem)
1063 int r;
1065 mutex_lock(&kvm->slots_lock);
1066 r = __kvm_set_memory_region(kvm, mem);
1067 mutex_unlock(&kvm->slots_lock);
1068 return r;
1070 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1072 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1073 struct kvm_userspace_memory_region *mem)
1075 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1076 return -EINVAL;
1078 return kvm_set_memory_region(kvm, mem);
1081 int kvm_get_dirty_log(struct kvm *kvm,
1082 struct kvm_dirty_log *log, int *is_dirty)
1084 struct kvm_memslots *slots;
1085 struct kvm_memory_slot *memslot;
1086 int i, as_id, id;
1087 unsigned long n;
1088 unsigned long any = 0;
1090 as_id = log->slot >> 16;
1091 id = (u16)log->slot;
1092 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1093 return -EINVAL;
1095 slots = __kvm_memslots(kvm, as_id);
1096 memslot = id_to_memslot(slots, id);
1097 if (!memslot->dirty_bitmap)
1098 return -ENOENT;
1100 n = kvm_dirty_bitmap_bytes(memslot);
1102 for (i = 0; !any && i < n/sizeof(long); ++i)
1103 any = memslot->dirty_bitmap[i];
1105 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1106 return -EFAULT;
1108 if (any)
1109 *is_dirty = 1;
1110 return 0;
1112 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1114 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1116 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1117 * are dirty write protect them for next write.
1118 * @kvm: pointer to kvm instance
1119 * @log: slot id and address to which we copy the log
1120 * @is_dirty: flag set if any page is dirty
1122 * We need to keep it in mind that VCPU threads can write to the bitmap
1123 * concurrently. So, to avoid losing track of dirty pages we keep the
1124 * following order:
1126 * 1. Take a snapshot of the bit and clear it if needed.
1127 * 2. Write protect the corresponding page.
1128 * 3. Copy the snapshot to the userspace.
1129 * 4. Upon return caller flushes TLB's if needed.
1131 * Between 2 and 4, the guest may write to the page using the remaining TLB
1132 * entry. This is not a problem because the page is reported dirty using
1133 * the snapshot taken before and step 4 ensures that writes done after
1134 * exiting to userspace will be logged for the next call.
1137 int kvm_get_dirty_log_protect(struct kvm *kvm,
1138 struct kvm_dirty_log *log, bool *is_dirty)
1140 struct kvm_memslots *slots;
1141 struct kvm_memory_slot *memslot;
1142 int i, as_id, id;
1143 unsigned long n;
1144 unsigned long *dirty_bitmap;
1145 unsigned long *dirty_bitmap_buffer;
1147 as_id = log->slot >> 16;
1148 id = (u16)log->slot;
1149 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1150 return -EINVAL;
1152 slots = __kvm_memslots(kvm, as_id);
1153 memslot = id_to_memslot(slots, id);
1155 dirty_bitmap = memslot->dirty_bitmap;
1156 if (!dirty_bitmap)
1157 return -ENOENT;
1159 n = kvm_dirty_bitmap_bytes(memslot);
1161 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1162 memset(dirty_bitmap_buffer, 0, n);
1164 spin_lock(&kvm->mmu_lock);
1165 *is_dirty = false;
1166 for (i = 0; i < n / sizeof(long); i++) {
1167 unsigned long mask;
1168 gfn_t offset;
1170 if (!dirty_bitmap[i])
1171 continue;
1173 *is_dirty = true;
1175 mask = xchg(&dirty_bitmap[i], 0);
1176 dirty_bitmap_buffer[i] = mask;
1178 if (mask) {
1179 offset = i * BITS_PER_LONG;
1180 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1181 offset, mask);
1185 spin_unlock(&kvm->mmu_lock);
1186 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1187 return -EFAULT;
1188 return 0;
1190 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1191 #endif
1193 bool kvm_largepages_enabled(void)
1195 return largepages_enabled;
1198 void kvm_disable_largepages(void)
1200 largepages_enabled = false;
1202 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1204 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1206 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1208 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1210 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1212 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1215 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1217 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1219 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1220 memslot->flags & KVM_MEMSLOT_INVALID)
1221 return false;
1223 return true;
1225 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1227 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1229 struct vm_area_struct *vma;
1230 unsigned long addr, size;
1232 size = PAGE_SIZE;
1234 addr = gfn_to_hva(kvm, gfn);
1235 if (kvm_is_error_hva(addr))
1236 return PAGE_SIZE;
1238 down_read(&current->mm->mmap_sem);
1239 vma = find_vma(current->mm, addr);
1240 if (!vma)
1241 goto out;
1243 size = vma_kernel_pagesize(vma);
1245 out:
1246 up_read(&current->mm->mmap_sem);
1248 return size;
1251 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1253 return slot->flags & KVM_MEM_READONLY;
1256 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1257 gfn_t *nr_pages, bool write)
1259 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1260 return KVM_HVA_ERR_BAD;
1262 if (memslot_is_readonly(slot) && write)
1263 return KVM_HVA_ERR_RO_BAD;
1265 if (nr_pages)
1266 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1268 return __gfn_to_hva_memslot(slot, gfn);
1271 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1272 gfn_t *nr_pages)
1274 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1277 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1278 gfn_t gfn)
1280 return gfn_to_hva_many(slot, gfn, NULL);
1282 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1284 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1286 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1288 EXPORT_SYMBOL_GPL(gfn_to_hva);
1290 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1292 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1294 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1297 * If writable is set to false, the hva returned by this function is only
1298 * allowed to be read.
1300 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1301 gfn_t gfn, bool *writable)
1303 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1305 if (!kvm_is_error_hva(hva) && writable)
1306 *writable = !memslot_is_readonly(slot);
1308 return hva;
1311 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1313 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1315 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1318 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1320 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1322 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1325 static int get_user_page_nowait(unsigned long start, int write,
1326 struct page **page)
1328 int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1330 if (write)
1331 flags |= FOLL_WRITE;
1333 return get_user_pages(start, 1, flags, page, NULL);
1336 static inline int check_user_page_hwpoison(unsigned long addr)
1338 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1340 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1341 return rc == -EHWPOISON;
1345 * The atomic path to get the writable pfn which will be stored in @pfn,
1346 * true indicates success, otherwise false is returned.
1348 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1349 bool write_fault, bool *writable, kvm_pfn_t *pfn)
1351 struct page *page[1];
1352 int npages;
1354 if (!(async || atomic))
1355 return false;
1358 * Fast pin a writable pfn only if it is a write fault request
1359 * or the caller allows to map a writable pfn for a read fault
1360 * request.
1362 if (!(write_fault || writable))
1363 return false;
1365 npages = __get_user_pages_fast(addr, 1, 1, page);
1366 if (npages == 1) {
1367 *pfn = page_to_pfn(page[0]);
1369 if (writable)
1370 *writable = true;
1371 return true;
1374 return false;
1378 * The slow path to get the pfn of the specified host virtual address,
1379 * 1 indicates success, -errno is returned if error is detected.
1381 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1382 bool *writable, kvm_pfn_t *pfn)
1384 struct page *page[1];
1385 int npages = 0;
1387 might_sleep();
1389 if (writable)
1390 *writable = write_fault;
1392 if (async) {
1393 down_read(&current->mm->mmap_sem);
1394 npages = get_user_page_nowait(addr, write_fault, page);
1395 up_read(&current->mm->mmap_sem);
1396 } else {
1397 unsigned int flags = FOLL_HWPOISON;
1399 if (write_fault)
1400 flags |= FOLL_WRITE;
1402 npages = get_user_pages_unlocked(addr, 1, page, flags);
1404 if (npages != 1)
1405 return npages;
1407 /* map read fault as writable if possible */
1408 if (unlikely(!write_fault) && writable) {
1409 struct page *wpage[1];
1411 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1412 if (npages == 1) {
1413 *writable = true;
1414 put_page(page[0]);
1415 page[0] = wpage[0];
1418 npages = 1;
1420 *pfn = page_to_pfn(page[0]);
1421 return npages;
1424 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1426 if (unlikely(!(vma->vm_flags & VM_READ)))
1427 return false;
1429 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1430 return false;
1432 return true;
1435 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1436 unsigned long addr, bool *async,
1437 bool write_fault, bool *writable,
1438 kvm_pfn_t *p_pfn)
1440 unsigned long pfn;
1441 int r;
1443 r = follow_pfn(vma, addr, &pfn);
1444 if (r) {
1446 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1447 * not call the fault handler, so do it here.
1449 bool unlocked = false;
1450 r = fixup_user_fault(current, current->mm, addr,
1451 (write_fault ? FAULT_FLAG_WRITE : 0),
1452 &unlocked);
1453 if (unlocked)
1454 return -EAGAIN;
1455 if (r)
1456 return r;
1458 r = follow_pfn(vma, addr, &pfn);
1459 if (r)
1460 return r;
1464 if (writable)
1465 *writable = true;
1468 * Get a reference here because callers of *hva_to_pfn* and
1469 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1470 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1471 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1472 * simply do nothing for reserved pfns.
1474 * Whoever called remap_pfn_range is also going to call e.g.
1475 * unmap_mapping_range before the underlying pages are freed,
1476 * causing a call to our MMU notifier.
1478 kvm_get_pfn(pfn);
1480 *p_pfn = pfn;
1481 return 0;
1485 * Pin guest page in memory and return its pfn.
1486 * @addr: host virtual address which maps memory to the guest
1487 * @atomic: whether this function can sleep
1488 * @async: whether this function need to wait IO complete if the
1489 * host page is not in the memory
1490 * @write_fault: whether we should get a writable host page
1491 * @writable: whether it allows to map a writable host page for !@write_fault
1493 * The function will map a writable host page for these two cases:
1494 * 1): @write_fault = true
1495 * 2): @write_fault = false && @writable, @writable will tell the caller
1496 * whether the mapping is writable.
1498 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1499 bool write_fault, bool *writable)
1501 struct vm_area_struct *vma;
1502 kvm_pfn_t pfn = 0;
1503 int npages, r;
1505 /* we can do it either atomically or asynchronously, not both */
1506 BUG_ON(atomic && async);
1508 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1509 return pfn;
1511 if (atomic)
1512 return KVM_PFN_ERR_FAULT;
1514 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1515 if (npages == 1)
1516 return pfn;
1518 down_read(&current->mm->mmap_sem);
1519 if (npages == -EHWPOISON ||
1520 (!async && check_user_page_hwpoison(addr))) {
1521 pfn = KVM_PFN_ERR_HWPOISON;
1522 goto exit;
1525 retry:
1526 vma = find_vma_intersection(current->mm, addr, addr + 1);
1528 if (vma == NULL)
1529 pfn = KVM_PFN_ERR_FAULT;
1530 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1531 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1532 if (r == -EAGAIN)
1533 goto retry;
1534 if (r < 0)
1535 pfn = KVM_PFN_ERR_FAULT;
1536 } else {
1537 if (async && vma_is_valid(vma, write_fault))
1538 *async = true;
1539 pfn = KVM_PFN_ERR_FAULT;
1541 exit:
1542 up_read(&current->mm->mmap_sem);
1543 return pfn;
1546 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1547 bool atomic, bool *async, bool write_fault,
1548 bool *writable)
1550 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1552 if (addr == KVM_HVA_ERR_RO_BAD) {
1553 if (writable)
1554 *writable = false;
1555 return KVM_PFN_ERR_RO_FAULT;
1558 if (kvm_is_error_hva(addr)) {
1559 if (writable)
1560 *writable = false;
1561 return KVM_PFN_NOSLOT;
1564 /* Do not map writable pfn in the readonly memslot. */
1565 if (writable && memslot_is_readonly(slot)) {
1566 *writable = false;
1567 writable = NULL;
1570 return hva_to_pfn(addr, atomic, async, write_fault,
1571 writable);
1573 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1575 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1576 bool *writable)
1578 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1579 write_fault, writable);
1581 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1583 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1585 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1587 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1589 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1591 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1593 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1595 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1597 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1599 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1601 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1603 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1605 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1607 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1609 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1611 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1613 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1615 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1617 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1619 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1620 struct page **pages, int nr_pages)
1622 unsigned long addr;
1623 gfn_t entry = 0;
1625 addr = gfn_to_hva_many(slot, gfn, &entry);
1626 if (kvm_is_error_hva(addr))
1627 return -1;
1629 if (entry < nr_pages)
1630 return 0;
1632 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1634 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1636 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1638 if (is_error_noslot_pfn(pfn))
1639 return KVM_ERR_PTR_BAD_PAGE;
1641 if (kvm_is_reserved_pfn(pfn)) {
1642 WARN_ON(1);
1643 return KVM_ERR_PTR_BAD_PAGE;
1646 return pfn_to_page(pfn);
1649 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1651 kvm_pfn_t pfn;
1653 pfn = gfn_to_pfn(kvm, gfn);
1655 return kvm_pfn_to_page(pfn);
1657 EXPORT_SYMBOL_GPL(gfn_to_page);
1659 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1661 kvm_pfn_t pfn;
1663 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1665 return kvm_pfn_to_page(pfn);
1667 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1669 void kvm_release_page_clean(struct page *page)
1671 WARN_ON(is_error_page(page));
1673 kvm_release_pfn_clean(page_to_pfn(page));
1675 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1677 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1679 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1680 put_page(pfn_to_page(pfn));
1682 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1684 void kvm_release_page_dirty(struct page *page)
1686 WARN_ON(is_error_page(page));
1688 kvm_release_pfn_dirty(page_to_pfn(page));
1690 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1692 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1694 kvm_set_pfn_dirty(pfn);
1695 kvm_release_pfn_clean(pfn);
1698 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1700 if (!kvm_is_reserved_pfn(pfn)) {
1701 struct page *page = pfn_to_page(pfn);
1703 if (!PageReserved(page))
1704 SetPageDirty(page);
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1709 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1711 if (!kvm_is_reserved_pfn(pfn))
1712 mark_page_accessed(pfn_to_page(pfn));
1714 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1716 void kvm_get_pfn(kvm_pfn_t pfn)
1718 if (!kvm_is_reserved_pfn(pfn))
1719 get_page(pfn_to_page(pfn));
1721 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1723 static int next_segment(unsigned long len, int offset)
1725 if (len > PAGE_SIZE - offset)
1726 return PAGE_SIZE - offset;
1727 else
1728 return len;
1731 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1732 void *data, int offset, int len)
1734 int r;
1735 unsigned long addr;
1737 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1738 if (kvm_is_error_hva(addr))
1739 return -EFAULT;
1740 r = __copy_from_user(data, (void __user *)addr + offset, len);
1741 if (r)
1742 return -EFAULT;
1743 return 0;
1746 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1747 int len)
1749 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1751 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1753 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1755 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1756 int offset, int len)
1758 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1760 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1764 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1766 gfn_t gfn = gpa >> PAGE_SHIFT;
1767 int seg;
1768 int offset = offset_in_page(gpa);
1769 int ret;
1771 while ((seg = next_segment(len, offset)) != 0) {
1772 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1773 if (ret < 0)
1774 return ret;
1775 offset = 0;
1776 len -= seg;
1777 data += seg;
1778 ++gfn;
1780 return 0;
1782 EXPORT_SYMBOL_GPL(kvm_read_guest);
1784 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1786 gfn_t gfn = gpa >> PAGE_SHIFT;
1787 int seg;
1788 int offset = offset_in_page(gpa);
1789 int ret;
1791 while ((seg = next_segment(len, offset)) != 0) {
1792 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1793 if (ret < 0)
1794 return ret;
1795 offset = 0;
1796 len -= seg;
1797 data += seg;
1798 ++gfn;
1800 return 0;
1802 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1804 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1805 void *data, int offset, unsigned long len)
1807 int r;
1808 unsigned long addr;
1810 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1811 if (kvm_is_error_hva(addr))
1812 return -EFAULT;
1813 pagefault_disable();
1814 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1815 pagefault_enable();
1816 if (r)
1817 return -EFAULT;
1818 return 0;
1821 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1822 unsigned long len)
1824 gfn_t gfn = gpa >> PAGE_SHIFT;
1825 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1826 int offset = offset_in_page(gpa);
1828 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1830 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1832 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1833 void *data, unsigned long len)
1835 gfn_t gfn = gpa >> PAGE_SHIFT;
1836 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1837 int offset = offset_in_page(gpa);
1839 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1843 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1844 const void *data, int offset, int len)
1846 int r;
1847 unsigned long addr;
1849 addr = gfn_to_hva_memslot(memslot, gfn);
1850 if (kvm_is_error_hva(addr))
1851 return -EFAULT;
1852 r = __copy_to_user((void __user *)addr + offset, data, len);
1853 if (r)
1854 return -EFAULT;
1855 mark_page_dirty_in_slot(memslot, gfn);
1856 return 0;
1859 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1860 const void *data, int offset, int len)
1862 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1864 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1866 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1868 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1869 const void *data, int offset, int len)
1871 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1873 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1877 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1878 unsigned long len)
1880 gfn_t gfn = gpa >> PAGE_SHIFT;
1881 int seg;
1882 int offset = offset_in_page(gpa);
1883 int ret;
1885 while ((seg = next_segment(len, offset)) != 0) {
1886 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1887 if (ret < 0)
1888 return ret;
1889 offset = 0;
1890 len -= seg;
1891 data += seg;
1892 ++gfn;
1894 return 0;
1896 EXPORT_SYMBOL_GPL(kvm_write_guest);
1898 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1899 unsigned long len)
1901 gfn_t gfn = gpa >> PAGE_SHIFT;
1902 int seg;
1903 int offset = offset_in_page(gpa);
1904 int ret;
1906 while ((seg = next_segment(len, offset)) != 0) {
1907 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1908 if (ret < 0)
1909 return ret;
1910 offset = 0;
1911 len -= seg;
1912 data += seg;
1913 ++gfn;
1915 return 0;
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1919 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1920 struct gfn_to_hva_cache *ghc,
1921 gpa_t gpa, unsigned long len)
1923 int offset = offset_in_page(gpa);
1924 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1925 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1926 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1927 gfn_t nr_pages_avail;
1929 ghc->gpa = gpa;
1930 ghc->generation = slots->generation;
1931 ghc->len = len;
1932 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1933 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1934 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1935 ghc->hva += offset;
1936 } else {
1938 * If the requested region crosses two memslots, we still
1939 * verify that the entire region is valid here.
1941 while (start_gfn <= end_gfn) {
1942 nr_pages_avail = 0;
1943 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1944 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1945 &nr_pages_avail);
1946 if (kvm_is_error_hva(ghc->hva))
1947 return -EFAULT;
1948 start_gfn += nr_pages_avail;
1950 /* Use the slow path for cross page reads and writes. */
1951 ghc->memslot = NULL;
1953 return 0;
1956 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1957 gpa_t gpa, unsigned long len)
1959 struct kvm_memslots *slots = kvm_memslots(kvm);
1960 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1962 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1964 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1965 void *data, int offset, unsigned long len)
1967 struct kvm_memslots *slots = kvm_memslots(kvm);
1968 int r;
1969 gpa_t gpa = ghc->gpa + offset;
1971 BUG_ON(len + offset > ghc->len);
1973 if (slots->generation != ghc->generation)
1974 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1976 if (unlikely(!ghc->memslot))
1977 return kvm_write_guest(kvm, gpa, data, len);
1979 if (kvm_is_error_hva(ghc->hva))
1980 return -EFAULT;
1982 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1983 if (r)
1984 return -EFAULT;
1985 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1987 return 0;
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1991 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1992 void *data, unsigned long len)
1994 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1996 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1998 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1999 void *data, unsigned long len)
2001 struct kvm_memslots *slots = kvm_memslots(kvm);
2002 int r;
2004 BUG_ON(len > ghc->len);
2006 if (slots->generation != ghc->generation)
2007 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2009 if (unlikely(!ghc->memslot))
2010 return kvm_read_guest(kvm, ghc->gpa, data, len);
2012 if (kvm_is_error_hva(ghc->hva))
2013 return -EFAULT;
2015 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2016 if (r)
2017 return -EFAULT;
2019 return 0;
2021 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2023 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2025 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2027 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2029 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2031 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2033 gfn_t gfn = gpa >> PAGE_SHIFT;
2034 int seg;
2035 int offset = offset_in_page(gpa);
2036 int ret;
2038 while ((seg = next_segment(len, offset)) != 0) {
2039 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2040 if (ret < 0)
2041 return ret;
2042 offset = 0;
2043 len -= seg;
2044 ++gfn;
2046 return 0;
2048 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2050 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2051 gfn_t gfn)
2053 if (memslot && memslot->dirty_bitmap) {
2054 unsigned long rel_gfn = gfn - memslot->base_gfn;
2056 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2060 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2062 struct kvm_memory_slot *memslot;
2064 memslot = gfn_to_memslot(kvm, gfn);
2065 mark_page_dirty_in_slot(memslot, gfn);
2067 EXPORT_SYMBOL_GPL(mark_page_dirty);
2069 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2071 struct kvm_memory_slot *memslot;
2073 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2074 mark_page_dirty_in_slot(memslot, gfn);
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2078 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2080 if (!vcpu->sigset_active)
2081 return;
2084 * This does a lockless modification of ->real_blocked, which is fine
2085 * because, only current can change ->real_blocked and all readers of
2086 * ->real_blocked don't care as long ->real_blocked is always a subset
2087 * of ->blocked.
2089 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2092 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2094 if (!vcpu->sigset_active)
2095 return;
2097 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2098 sigemptyset(&current->real_blocked);
2101 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2103 unsigned int old, val, grow;
2105 old = val = vcpu->halt_poll_ns;
2106 grow = READ_ONCE(halt_poll_ns_grow);
2107 /* 10us base */
2108 if (val == 0 && grow)
2109 val = 10000;
2110 else
2111 val *= grow;
2113 if (val > halt_poll_ns)
2114 val = halt_poll_ns;
2116 vcpu->halt_poll_ns = val;
2117 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2120 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2122 unsigned int old, val, shrink;
2124 old = val = vcpu->halt_poll_ns;
2125 shrink = READ_ONCE(halt_poll_ns_shrink);
2126 if (shrink == 0)
2127 val = 0;
2128 else
2129 val /= shrink;
2131 vcpu->halt_poll_ns = val;
2132 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2135 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2137 if (kvm_arch_vcpu_runnable(vcpu)) {
2138 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2139 return -EINTR;
2141 if (kvm_cpu_has_pending_timer(vcpu))
2142 return -EINTR;
2143 if (signal_pending(current))
2144 return -EINTR;
2146 return 0;
2150 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2152 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2154 ktime_t start, cur;
2155 DECLARE_SWAITQUEUE(wait);
2156 bool waited = false;
2157 u64 block_ns;
2159 start = cur = ktime_get();
2160 if (vcpu->halt_poll_ns) {
2161 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2163 ++vcpu->stat.halt_attempted_poll;
2164 do {
2166 * This sets KVM_REQ_UNHALT if an interrupt
2167 * arrives.
2169 if (kvm_vcpu_check_block(vcpu) < 0) {
2170 ++vcpu->stat.halt_successful_poll;
2171 if (!vcpu_valid_wakeup(vcpu))
2172 ++vcpu->stat.halt_poll_invalid;
2173 goto out;
2175 cur = ktime_get();
2176 } while (single_task_running() && ktime_before(cur, stop));
2179 kvm_arch_vcpu_blocking(vcpu);
2181 for (;;) {
2182 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2184 if (kvm_vcpu_check_block(vcpu) < 0)
2185 break;
2187 waited = true;
2188 schedule();
2191 finish_swait(&vcpu->wq, &wait);
2192 cur = ktime_get();
2194 kvm_arch_vcpu_unblocking(vcpu);
2195 out:
2196 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2198 if (!vcpu_valid_wakeup(vcpu))
2199 shrink_halt_poll_ns(vcpu);
2200 else if (halt_poll_ns) {
2201 if (block_ns <= vcpu->halt_poll_ns)
2203 /* we had a long block, shrink polling */
2204 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2205 shrink_halt_poll_ns(vcpu);
2206 /* we had a short halt and our poll time is too small */
2207 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2208 block_ns < halt_poll_ns)
2209 grow_halt_poll_ns(vcpu);
2210 } else
2211 vcpu->halt_poll_ns = 0;
2213 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2214 kvm_arch_vcpu_block_finish(vcpu);
2216 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2218 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2220 struct swait_queue_head *wqp;
2222 wqp = kvm_arch_vcpu_wq(vcpu);
2223 if (swq_has_sleeper(wqp)) {
2224 swake_up(wqp);
2225 ++vcpu->stat.halt_wakeup;
2226 return true;
2229 return false;
2231 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2233 #ifndef CONFIG_S390
2235 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2237 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2239 int me;
2240 int cpu = vcpu->cpu;
2242 if (kvm_vcpu_wake_up(vcpu))
2243 return;
2245 me = get_cpu();
2246 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2247 if (kvm_arch_vcpu_should_kick(vcpu))
2248 smp_send_reschedule(cpu);
2249 put_cpu();
2251 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2252 #endif /* !CONFIG_S390 */
2254 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2256 struct pid *pid;
2257 struct task_struct *task = NULL;
2258 int ret = 0;
2260 rcu_read_lock();
2261 pid = rcu_dereference(target->pid);
2262 if (pid)
2263 task = get_pid_task(pid, PIDTYPE_PID);
2264 rcu_read_unlock();
2265 if (!task)
2266 return ret;
2267 ret = yield_to(task, 1);
2268 put_task_struct(task);
2270 return ret;
2272 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2275 * Helper that checks whether a VCPU is eligible for directed yield.
2276 * Most eligible candidate to yield is decided by following heuristics:
2278 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2279 * (preempted lock holder), indicated by @in_spin_loop.
2280 * Set at the beiginning and cleared at the end of interception/PLE handler.
2282 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2283 * chance last time (mostly it has become eligible now since we have probably
2284 * yielded to lockholder in last iteration. This is done by toggling
2285 * @dy_eligible each time a VCPU checked for eligibility.)
2287 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2288 * to preempted lock-holder could result in wrong VCPU selection and CPU
2289 * burning. Giving priority for a potential lock-holder increases lock
2290 * progress.
2292 * Since algorithm is based on heuristics, accessing another VCPU data without
2293 * locking does not harm. It may result in trying to yield to same VCPU, fail
2294 * and continue with next VCPU and so on.
2296 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2298 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2299 bool eligible;
2301 eligible = !vcpu->spin_loop.in_spin_loop ||
2302 vcpu->spin_loop.dy_eligible;
2304 if (vcpu->spin_loop.in_spin_loop)
2305 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2307 return eligible;
2308 #else
2309 return true;
2310 #endif
2313 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2315 struct kvm *kvm = me->kvm;
2316 struct kvm_vcpu *vcpu;
2317 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2318 int yielded = 0;
2319 int try = 3;
2320 int pass;
2321 int i;
2323 kvm_vcpu_set_in_spin_loop(me, true);
2325 * We boost the priority of a VCPU that is runnable but not
2326 * currently running, because it got preempted by something
2327 * else and called schedule in __vcpu_run. Hopefully that
2328 * VCPU is holding the lock that we need and will release it.
2329 * We approximate round-robin by starting at the last boosted VCPU.
2331 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2332 kvm_for_each_vcpu(i, vcpu, kvm) {
2333 if (!pass && i <= last_boosted_vcpu) {
2334 i = last_boosted_vcpu;
2335 continue;
2336 } else if (pass && i > last_boosted_vcpu)
2337 break;
2338 if (!ACCESS_ONCE(vcpu->preempted))
2339 continue;
2340 if (vcpu == me)
2341 continue;
2342 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2343 continue;
2344 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2345 continue;
2346 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2347 continue;
2349 yielded = kvm_vcpu_yield_to(vcpu);
2350 if (yielded > 0) {
2351 kvm->last_boosted_vcpu = i;
2352 break;
2353 } else if (yielded < 0) {
2354 try--;
2355 if (!try)
2356 break;
2360 kvm_vcpu_set_in_spin_loop(me, false);
2362 /* Ensure vcpu is not eligible during next spinloop */
2363 kvm_vcpu_set_dy_eligible(me, false);
2365 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2367 static int kvm_vcpu_fault(struct vm_fault *vmf)
2369 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2370 struct page *page;
2372 if (vmf->pgoff == 0)
2373 page = virt_to_page(vcpu->run);
2374 #ifdef CONFIG_X86
2375 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2376 page = virt_to_page(vcpu->arch.pio_data);
2377 #endif
2378 #ifdef CONFIG_KVM_MMIO
2379 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2380 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2381 #endif
2382 else
2383 return kvm_arch_vcpu_fault(vcpu, vmf);
2384 get_page(page);
2385 vmf->page = page;
2386 return 0;
2389 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2390 .fault = kvm_vcpu_fault,
2393 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2395 vma->vm_ops = &kvm_vcpu_vm_ops;
2396 return 0;
2399 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2401 struct kvm_vcpu *vcpu = filp->private_data;
2403 debugfs_remove_recursive(vcpu->debugfs_dentry);
2404 kvm_put_kvm(vcpu->kvm);
2405 return 0;
2408 static struct file_operations kvm_vcpu_fops = {
2409 .release = kvm_vcpu_release,
2410 .unlocked_ioctl = kvm_vcpu_ioctl,
2411 #ifdef CONFIG_KVM_COMPAT
2412 .compat_ioctl = kvm_vcpu_compat_ioctl,
2413 #endif
2414 .mmap = kvm_vcpu_mmap,
2415 .llseek = noop_llseek,
2419 * Allocates an inode for the vcpu.
2421 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2423 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2426 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2428 char dir_name[ITOA_MAX_LEN * 2];
2429 int ret;
2431 if (!kvm_arch_has_vcpu_debugfs())
2432 return 0;
2434 if (!debugfs_initialized())
2435 return 0;
2437 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2438 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2439 vcpu->kvm->debugfs_dentry);
2440 if (!vcpu->debugfs_dentry)
2441 return -ENOMEM;
2443 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2444 if (ret < 0) {
2445 debugfs_remove_recursive(vcpu->debugfs_dentry);
2446 return ret;
2449 return 0;
2453 * Creates some virtual cpus. Good luck creating more than one.
2455 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2457 int r;
2458 struct kvm_vcpu *vcpu;
2460 if (id >= KVM_MAX_VCPU_ID)
2461 return -EINVAL;
2463 mutex_lock(&kvm->lock);
2464 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2465 mutex_unlock(&kvm->lock);
2466 return -EINVAL;
2469 kvm->created_vcpus++;
2470 mutex_unlock(&kvm->lock);
2472 vcpu = kvm_arch_vcpu_create(kvm, id);
2473 if (IS_ERR(vcpu)) {
2474 r = PTR_ERR(vcpu);
2475 goto vcpu_decrement;
2478 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2480 r = kvm_arch_vcpu_setup(vcpu);
2481 if (r)
2482 goto vcpu_destroy;
2484 r = kvm_create_vcpu_debugfs(vcpu);
2485 if (r)
2486 goto vcpu_destroy;
2488 mutex_lock(&kvm->lock);
2489 if (kvm_get_vcpu_by_id(kvm, id)) {
2490 r = -EEXIST;
2491 goto unlock_vcpu_destroy;
2494 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2496 /* Now it's all set up, let userspace reach it */
2497 kvm_get_kvm(kvm);
2498 r = create_vcpu_fd(vcpu);
2499 if (r < 0) {
2500 kvm_put_kvm(kvm);
2501 goto unlock_vcpu_destroy;
2504 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2507 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2508 * before kvm->online_vcpu's incremented value.
2510 smp_wmb();
2511 atomic_inc(&kvm->online_vcpus);
2513 mutex_unlock(&kvm->lock);
2514 kvm_arch_vcpu_postcreate(vcpu);
2515 return r;
2517 unlock_vcpu_destroy:
2518 mutex_unlock(&kvm->lock);
2519 debugfs_remove_recursive(vcpu->debugfs_dentry);
2520 vcpu_destroy:
2521 kvm_arch_vcpu_destroy(vcpu);
2522 vcpu_decrement:
2523 mutex_lock(&kvm->lock);
2524 kvm->created_vcpus--;
2525 mutex_unlock(&kvm->lock);
2526 return r;
2529 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2531 if (sigset) {
2532 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2533 vcpu->sigset_active = 1;
2534 vcpu->sigset = *sigset;
2535 } else
2536 vcpu->sigset_active = 0;
2537 return 0;
2540 static long kvm_vcpu_ioctl(struct file *filp,
2541 unsigned int ioctl, unsigned long arg)
2543 struct kvm_vcpu *vcpu = filp->private_data;
2544 void __user *argp = (void __user *)arg;
2545 int r;
2546 struct kvm_fpu *fpu = NULL;
2547 struct kvm_sregs *kvm_sregs = NULL;
2549 if (vcpu->kvm->mm != current->mm)
2550 return -EIO;
2552 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2553 return -EINVAL;
2555 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2557 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2558 * so vcpu_load() would break it.
2560 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2561 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2562 #endif
2565 r = vcpu_load(vcpu);
2566 if (r)
2567 return r;
2568 switch (ioctl) {
2569 case KVM_RUN: {
2570 struct pid *oldpid;
2571 r = -EINVAL;
2572 if (arg)
2573 goto out;
2574 oldpid = rcu_access_pointer(vcpu->pid);
2575 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2576 /* The thread running this VCPU changed. */
2577 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2579 rcu_assign_pointer(vcpu->pid, newpid);
2580 if (oldpid)
2581 synchronize_rcu();
2582 put_pid(oldpid);
2584 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2585 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2586 break;
2588 case KVM_GET_REGS: {
2589 struct kvm_regs *kvm_regs;
2591 r = -ENOMEM;
2592 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2593 if (!kvm_regs)
2594 goto out;
2595 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2596 if (r)
2597 goto out_free1;
2598 r = -EFAULT;
2599 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2600 goto out_free1;
2601 r = 0;
2602 out_free1:
2603 kfree(kvm_regs);
2604 break;
2606 case KVM_SET_REGS: {
2607 struct kvm_regs *kvm_regs;
2609 r = -ENOMEM;
2610 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2611 if (IS_ERR(kvm_regs)) {
2612 r = PTR_ERR(kvm_regs);
2613 goto out;
2615 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2616 kfree(kvm_regs);
2617 break;
2619 case KVM_GET_SREGS: {
2620 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2621 r = -ENOMEM;
2622 if (!kvm_sregs)
2623 goto out;
2624 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2625 if (r)
2626 goto out;
2627 r = -EFAULT;
2628 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2629 goto out;
2630 r = 0;
2631 break;
2633 case KVM_SET_SREGS: {
2634 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2635 if (IS_ERR(kvm_sregs)) {
2636 r = PTR_ERR(kvm_sregs);
2637 kvm_sregs = NULL;
2638 goto out;
2640 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2641 break;
2643 case KVM_GET_MP_STATE: {
2644 struct kvm_mp_state mp_state;
2646 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2647 if (r)
2648 goto out;
2649 r = -EFAULT;
2650 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2651 goto out;
2652 r = 0;
2653 break;
2655 case KVM_SET_MP_STATE: {
2656 struct kvm_mp_state mp_state;
2658 r = -EFAULT;
2659 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2660 goto out;
2661 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2662 break;
2664 case KVM_TRANSLATE: {
2665 struct kvm_translation tr;
2667 r = -EFAULT;
2668 if (copy_from_user(&tr, argp, sizeof(tr)))
2669 goto out;
2670 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2671 if (r)
2672 goto out;
2673 r = -EFAULT;
2674 if (copy_to_user(argp, &tr, sizeof(tr)))
2675 goto out;
2676 r = 0;
2677 break;
2679 case KVM_SET_GUEST_DEBUG: {
2680 struct kvm_guest_debug dbg;
2682 r = -EFAULT;
2683 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2684 goto out;
2685 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2686 break;
2688 case KVM_SET_SIGNAL_MASK: {
2689 struct kvm_signal_mask __user *sigmask_arg = argp;
2690 struct kvm_signal_mask kvm_sigmask;
2691 sigset_t sigset, *p;
2693 p = NULL;
2694 if (argp) {
2695 r = -EFAULT;
2696 if (copy_from_user(&kvm_sigmask, argp,
2697 sizeof(kvm_sigmask)))
2698 goto out;
2699 r = -EINVAL;
2700 if (kvm_sigmask.len != sizeof(sigset))
2701 goto out;
2702 r = -EFAULT;
2703 if (copy_from_user(&sigset, sigmask_arg->sigset,
2704 sizeof(sigset)))
2705 goto out;
2706 p = &sigset;
2708 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2709 break;
2711 case KVM_GET_FPU: {
2712 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2713 r = -ENOMEM;
2714 if (!fpu)
2715 goto out;
2716 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2717 if (r)
2718 goto out;
2719 r = -EFAULT;
2720 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2721 goto out;
2722 r = 0;
2723 break;
2725 case KVM_SET_FPU: {
2726 fpu = memdup_user(argp, sizeof(*fpu));
2727 if (IS_ERR(fpu)) {
2728 r = PTR_ERR(fpu);
2729 fpu = NULL;
2730 goto out;
2732 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2733 break;
2735 default:
2736 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2738 out:
2739 vcpu_put(vcpu);
2740 kfree(fpu);
2741 kfree(kvm_sregs);
2742 return r;
2745 #ifdef CONFIG_KVM_COMPAT
2746 static long kvm_vcpu_compat_ioctl(struct file *filp,
2747 unsigned int ioctl, unsigned long arg)
2749 struct kvm_vcpu *vcpu = filp->private_data;
2750 void __user *argp = compat_ptr(arg);
2751 int r;
2753 if (vcpu->kvm->mm != current->mm)
2754 return -EIO;
2756 switch (ioctl) {
2757 case KVM_SET_SIGNAL_MASK: {
2758 struct kvm_signal_mask __user *sigmask_arg = argp;
2759 struct kvm_signal_mask kvm_sigmask;
2760 compat_sigset_t csigset;
2761 sigset_t sigset;
2763 if (argp) {
2764 r = -EFAULT;
2765 if (copy_from_user(&kvm_sigmask, argp,
2766 sizeof(kvm_sigmask)))
2767 goto out;
2768 r = -EINVAL;
2769 if (kvm_sigmask.len != sizeof(csigset))
2770 goto out;
2771 r = -EFAULT;
2772 if (copy_from_user(&csigset, sigmask_arg->sigset,
2773 sizeof(csigset)))
2774 goto out;
2775 sigset_from_compat(&sigset, &csigset);
2776 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2777 } else
2778 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2779 break;
2781 default:
2782 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2785 out:
2786 return r;
2788 #endif
2790 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2791 int (*accessor)(struct kvm_device *dev,
2792 struct kvm_device_attr *attr),
2793 unsigned long arg)
2795 struct kvm_device_attr attr;
2797 if (!accessor)
2798 return -EPERM;
2800 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2801 return -EFAULT;
2803 return accessor(dev, &attr);
2806 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2807 unsigned long arg)
2809 struct kvm_device *dev = filp->private_data;
2811 switch (ioctl) {
2812 case KVM_SET_DEVICE_ATTR:
2813 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2814 case KVM_GET_DEVICE_ATTR:
2815 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2816 case KVM_HAS_DEVICE_ATTR:
2817 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2818 default:
2819 if (dev->ops->ioctl)
2820 return dev->ops->ioctl(dev, ioctl, arg);
2822 return -ENOTTY;
2826 static int kvm_device_release(struct inode *inode, struct file *filp)
2828 struct kvm_device *dev = filp->private_data;
2829 struct kvm *kvm = dev->kvm;
2831 kvm_put_kvm(kvm);
2832 return 0;
2835 static const struct file_operations kvm_device_fops = {
2836 .unlocked_ioctl = kvm_device_ioctl,
2837 #ifdef CONFIG_KVM_COMPAT
2838 .compat_ioctl = kvm_device_ioctl,
2839 #endif
2840 .release = kvm_device_release,
2843 struct kvm_device *kvm_device_from_filp(struct file *filp)
2845 if (filp->f_op != &kvm_device_fops)
2846 return NULL;
2848 return filp->private_data;
2851 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2852 #ifdef CONFIG_KVM_MPIC
2853 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2854 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2855 #endif
2858 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2860 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2861 return -ENOSPC;
2863 if (kvm_device_ops_table[type] != NULL)
2864 return -EEXIST;
2866 kvm_device_ops_table[type] = ops;
2867 return 0;
2870 void kvm_unregister_device_ops(u32 type)
2872 if (kvm_device_ops_table[type] != NULL)
2873 kvm_device_ops_table[type] = NULL;
2876 static int kvm_ioctl_create_device(struct kvm *kvm,
2877 struct kvm_create_device *cd)
2879 struct kvm_device_ops *ops = NULL;
2880 struct kvm_device *dev;
2881 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2882 int ret;
2884 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2885 return -ENODEV;
2887 ops = kvm_device_ops_table[cd->type];
2888 if (ops == NULL)
2889 return -ENODEV;
2891 if (test)
2892 return 0;
2894 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2895 if (!dev)
2896 return -ENOMEM;
2898 dev->ops = ops;
2899 dev->kvm = kvm;
2901 mutex_lock(&kvm->lock);
2902 ret = ops->create(dev, cd->type);
2903 if (ret < 0) {
2904 mutex_unlock(&kvm->lock);
2905 kfree(dev);
2906 return ret;
2908 list_add(&dev->vm_node, &kvm->devices);
2909 mutex_unlock(&kvm->lock);
2911 if (ops->init)
2912 ops->init(dev);
2914 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2915 if (ret < 0) {
2916 mutex_lock(&kvm->lock);
2917 list_del(&dev->vm_node);
2918 mutex_unlock(&kvm->lock);
2919 ops->destroy(dev);
2920 return ret;
2923 kvm_get_kvm(kvm);
2924 cd->fd = ret;
2925 return 0;
2928 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2930 switch (arg) {
2931 case KVM_CAP_USER_MEMORY:
2932 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2933 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2934 case KVM_CAP_INTERNAL_ERROR_DATA:
2935 #ifdef CONFIG_HAVE_KVM_MSI
2936 case KVM_CAP_SIGNAL_MSI:
2937 #endif
2938 #ifdef CONFIG_HAVE_KVM_IRQFD
2939 case KVM_CAP_IRQFD:
2940 case KVM_CAP_IRQFD_RESAMPLE:
2941 #endif
2942 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2943 case KVM_CAP_CHECK_EXTENSION_VM:
2944 return 1;
2945 #ifdef CONFIG_KVM_MMIO
2946 case KVM_CAP_COALESCED_MMIO:
2947 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2948 #endif
2949 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2950 case KVM_CAP_IRQ_ROUTING:
2951 return KVM_MAX_IRQ_ROUTES;
2952 #endif
2953 #if KVM_ADDRESS_SPACE_NUM > 1
2954 case KVM_CAP_MULTI_ADDRESS_SPACE:
2955 return KVM_ADDRESS_SPACE_NUM;
2956 #endif
2957 case KVM_CAP_MAX_VCPU_ID:
2958 return KVM_MAX_VCPU_ID;
2959 default:
2960 break;
2962 return kvm_vm_ioctl_check_extension(kvm, arg);
2965 static long kvm_vm_ioctl(struct file *filp,
2966 unsigned int ioctl, unsigned long arg)
2968 struct kvm *kvm = filp->private_data;
2969 void __user *argp = (void __user *)arg;
2970 int r;
2972 if (kvm->mm != current->mm)
2973 return -EIO;
2974 switch (ioctl) {
2975 case KVM_CREATE_VCPU:
2976 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2977 break;
2978 case KVM_SET_USER_MEMORY_REGION: {
2979 struct kvm_userspace_memory_region kvm_userspace_mem;
2981 r = -EFAULT;
2982 if (copy_from_user(&kvm_userspace_mem, argp,
2983 sizeof(kvm_userspace_mem)))
2984 goto out;
2986 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2987 break;
2989 case KVM_GET_DIRTY_LOG: {
2990 struct kvm_dirty_log log;
2992 r = -EFAULT;
2993 if (copy_from_user(&log, argp, sizeof(log)))
2994 goto out;
2995 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2996 break;
2998 #ifdef CONFIG_KVM_MMIO
2999 case KVM_REGISTER_COALESCED_MMIO: {
3000 struct kvm_coalesced_mmio_zone zone;
3002 r = -EFAULT;
3003 if (copy_from_user(&zone, argp, sizeof(zone)))
3004 goto out;
3005 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3006 break;
3008 case KVM_UNREGISTER_COALESCED_MMIO: {
3009 struct kvm_coalesced_mmio_zone zone;
3011 r = -EFAULT;
3012 if (copy_from_user(&zone, argp, sizeof(zone)))
3013 goto out;
3014 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3015 break;
3017 #endif
3018 case KVM_IRQFD: {
3019 struct kvm_irqfd data;
3021 r = -EFAULT;
3022 if (copy_from_user(&data, argp, sizeof(data)))
3023 goto out;
3024 r = kvm_irqfd(kvm, &data);
3025 break;
3027 case KVM_IOEVENTFD: {
3028 struct kvm_ioeventfd data;
3030 r = -EFAULT;
3031 if (copy_from_user(&data, argp, sizeof(data)))
3032 goto out;
3033 r = kvm_ioeventfd(kvm, &data);
3034 break;
3036 #ifdef CONFIG_HAVE_KVM_MSI
3037 case KVM_SIGNAL_MSI: {
3038 struct kvm_msi msi;
3040 r = -EFAULT;
3041 if (copy_from_user(&msi, argp, sizeof(msi)))
3042 goto out;
3043 r = kvm_send_userspace_msi(kvm, &msi);
3044 break;
3046 #endif
3047 #ifdef __KVM_HAVE_IRQ_LINE
3048 case KVM_IRQ_LINE_STATUS:
3049 case KVM_IRQ_LINE: {
3050 struct kvm_irq_level irq_event;
3052 r = -EFAULT;
3053 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3054 goto out;
3056 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3057 ioctl == KVM_IRQ_LINE_STATUS);
3058 if (r)
3059 goto out;
3061 r = -EFAULT;
3062 if (ioctl == KVM_IRQ_LINE_STATUS) {
3063 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3064 goto out;
3067 r = 0;
3068 break;
3070 #endif
3071 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3072 case KVM_SET_GSI_ROUTING: {
3073 struct kvm_irq_routing routing;
3074 struct kvm_irq_routing __user *urouting;
3075 struct kvm_irq_routing_entry *entries = NULL;
3077 r = -EFAULT;
3078 if (copy_from_user(&routing, argp, sizeof(routing)))
3079 goto out;
3080 r = -EINVAL;
3081 if (!kvm_arch_can_set_irq_routing(kvm))
3082 goto out;
3083 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3084 goto out;
3085 if (routing.flags)
3086 goto out;
3087 if (routing.nr) {
3088 r = -ENOMEM;
3089 entries = vmalloc(routing.nr * sizeof(*entries));
3090 if (!entries)
3091 goto out;
3092 r = -EFAULT;
3093 urouting = argp;
3094 if (copy_from_user(entries, urouting->entries,
3095 routing.nr * sizeof(*entries)))
3096 goto out_free_irq_routing;
3098 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3099 routing.flags);
3100 out_free_irq_routing:
3101 vfree(entries);
3102 break;
3104 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3105 case KVM_CREATE_DEVICE: {
3106 struct kvm_create_device cd;
3108 r = -EFAULT;
3109 if (copy_from_user(&cd, argp, sizeof(cd)))
3110 goto out;
3112 r = kvm_ioctl_create_device(kvm, &cd);
3113 if (r)
3114 goto out;
3116 r = -EFAULT;
3117 if (copy_to_user(argp, &cd, sizeof(cd)))
3118 goto out;
3120 r = 0;
3121 break;
3123 case KVM_CHECK_EXTENSION:
3124 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3125 break;
3126 default:
3127 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3129 out:
3130 return r;
3133 #ifdef CONFIG_KVM_COMPAT
3134 struct compat_kvm_dirty_log {
3135 __u32 slot;
3136 __u32 padding1;
3137 union {
3138 compat_uptr_t dirty_bitmap; /* one bit per page */
3139 __u64 padding2;
3143 static long kvm_vm_compat_ioctl(struct file *filp,
3144 unsigned int ioctl, unsigned long arg)
3146 struct kvm *kvm = filp->private_data;
3147 int r;
3149 if (kvm->mm != current->mm)
3150 return -EIO;
3151 switch (ioctl) {
3152 case KVM_GET_DIRTY_LOG: {
3153 struct compat_kvm_dirty_log compat_log;
3154 struct kvm_dirty_log log;
3156 if (copy_from_user(&compat_log, (void __user *)arg,
3157 sizeof(compat_log)))
3158 return -EFAULT;
3159 log.slot = compat_log.slot;
3160 log.padding1 = compat_log.padding1;
3161 log.padding2 = compat_log.padding2;
3162 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3164 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3165 break;
3167 default:
3168 r = kvm_vm_ioctl(filp, ioctl, arg);
3170 return r;
3172 #endif
3174 static struct file_operations kvm_vm_fops = {
3175 .release = kvm_vm_release,
3176 .unlocked_ioctl = kvm_vm_ioctl,
3177 #ifdef CONFIG_KVM_COMPAT
3178 .compat_ioctl = kvm_vm_compat_ioctl,
3179 #endif
3180 .llseek = noop_llseek,
3183 static int kvm_dev_ioctl_create_vm(unsigned long type)
3185 int r;
3186 struct kvm *kvm;
3187 struct file *file;
3189 kvm = kvm_create_vm(type);
3190 if (IS_ERR(kvm))
3191 return PTR_ERR(kvm);
3192 #ifdef CONFIG_KVM_MMIO
3193 r = kvm_coalesced_mmio_init(kvm);
3194 if (r < 0) {
3195 kvm_put_kvm(kvm);
3196 return r;
3198 #endif
3199 r = get_unused_fd_flags(O_CLOEXEC);
3200 if (r < 0) {
3201 kvm_put_kvm(kvm);
3202 return r;
3204 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3205 if (IS_ERR(file)) {
3206 put_unused_fd(r);
3207 kvm_put_kvm(kvm);
3208 return PTR_ERR(file);
3212 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3213 * already set, with ->release() being kvm_vm_release(). In error
3214 * cases it will be called by the final fput(file) and will take
3215 * care of doing kvm_put_kvm(kvm).
3217 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3218 put_unused_fd(r);
3219 fput(file);
3220 return -ENOMEM;
3222 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3224 fd_install(r, file);
3225 return r;
3228 static long kvm_dev_ioctl(struct file *filp,
3229 unsigned int ioctl, unsigned long arg)
3231 long r = -EINVAL;
3233 switch (ioctl) {
3234 case KVM_GET_API_VERSION:
3235 if (arg)
3236 goto out;
3237 r = KVM_API_VERSION;
3238 break;
3239 case KVM_CREATE_VM:
3240 r = kvm_dev_ioctl_create_vm(arg);
3241 break;
3242 case KVM_CHECK_EXTENSION:
3243 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3244 break;
3245 case KVM_GET_VCPU_MMAP_SIZE:
3246 if (arg)
3247 goto out;
3248 r = PAGE_SIZE; /* struct kvm_run */
3249 #ifdef CONFIG_X86
3250 r += PAGE_SIZE; /* pio data page */
3251 #endif
3252 #ifdef CONFIG_KVM_MMIO
3253 r += PAGE_SIZE; /* coalesced mmio ring page */
3254 #endif
3255 break;
3256 case KVM_TRACE_ENABLE:
3257 case KVM_TRACE_PAUSE:
3258 case KVM_TRACE_DISABLE:
3259 r = -EOPNOTSUPP;
3260 break;
3261 default:
3262 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3264 out:
3265 return r;
3268 static struct file_operations kvm_chardev_ops = {
3269 .unlocked_ioctl = kvm_dev_ioctl,
3270 .compat_ioctl = kvm_dev_ioctl,
3271 .llseek = noop_llseek,
3274 static struct miscdevice kvm_dev = {
3275 KVM_MINOR,
3276 "kvm",
3277 &kvm_chardev_ops,
3280 static void hardware_enable_nolock(void *junk)
3282 int cpu = raw_smp_processor_id();
3283 int r;
3285 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3286 return;
3288 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3290 r = kvm_arch_hardware_enable();
3292 if (r) {
3293 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3294 atomic_inc(&hardware_enable_failed);
3295 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3299 static int kvm_starting_cpu(unsigned int cpu)
3301 raw_spin_lock(&kvm_count_lock);
3302 if (kvm_usage_count)
3303 hardware_enable_nolock(NULL);
3304 raw_spin_unlock(&kvm_count_lock);
3305 return 0;
3308 static void hardware_disable_nolock(void *junk)
3310 int cpu = raw_smp_processor_id();
3312 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3313 return;
3314 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3315 kvm_arch_hardware_disable();
3318 static int kvm_dying_cpu(unsigned int cpu)
3320 raw_spin_lock(&kvm_count_lock);
3321 if (kvm_usage_count)
3322 hardware_disable_nolock(NULL);
3323 raw_spin_unlock(&kvm_count_lock);
3324 return 0;
3327 static void hardware_disable_all_nolock(void)
3329 BUG_ON(!kvm_usage_count);
3331 kvm_usage_count--;
3332 if (!kvm_usage_count)
3333 on_each_cpu(hardware_disable_nolock, NULL, 1);
3336 static void hardware_disable_all(void)
3338 raw_spin_lock(&kvm_count_lock);
3339 hardware_disable_all_nolock();
3340 raw_spin_unlock(&kvm_count_lock);
3343 static int hardware_enable_all(void)
3345 int r = 0;
3347 raw_spin_lock(&kvm_count_lock);
3349 kvm_usage_count++;
3350 if (kvm_usage_count == 1) {
3351 atomic_set(&hardware_enable_failed, 0);
3352 on_each_cpu(hardware_enable_nolock, NULL, 1);
3354 if (atomic_read(&hardware_enable_failed)) {
3355 hardware_disable_all_nolock();
3356 r = -EBUSY;
3360 raw_spin_unlock(&kvm_count_lock);
3362 return r;
3365 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3366 void *v)
3369 * Some (well, at least mine) BIOSes hang on reboot if
3370 * in vmx root mode.
3372 * And Intel TXT required VMX off for all cpu when system shutdown.
3374 pr_info("kvm: exiting hardware virtualization\n");
3375 kvm_rebooting = true;
3376 on_each_cpu(hardware_disable_nolock, NULL, 1);
3377 return NOTIFY_OK;
3380 static struct notifier_block kvm_reboot_notifier = {
3381 .notifier_call = kvm_reboot,
3382 .priority = 0,
3385 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3387 int i;
3389 for (i = 0; i < bus->dev_count; i++) {
3390 struct kvm_io_device *pos = bus->range[i].dev;
3392 kvm_iodevice_destructor(pos);
3394 kfree(bus);
3397 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3398 const struct kvm_io_range *r2)
3400 gpa_t addr1 = r1->addr;
3401 gpa_t addr2 = r2->addr;
3403 if (addr1 < addr2)
3404 return -1;
3406 /* If r2->len == 0, match the exact address. If r2->len != 0,
3407 * accept any overlapping write. Any order is acceptable for
3408 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3409 * we process all of them.
3411 if (r2->len) {
3412 addr1 += r1->len;
3413 addr2 += r2->len;
3416 if (addr1 > addr2)
3417 return 1;
3419 return 0;
3422 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3424 return kvm_io_bus_cmp(p1, p2);
3427 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3428 gpa_t addr, int len)
3430 bus->range[bus->dev_count++] = (struct kvm_io_range) {
3431 .addr = addr,
3432 .len = len,
3433 .dev = dev,
3436 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3437 kvm_io_bus_sort_cmp, NULL);
3439 return 0;
3442 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3443 gpa_t addr, int len)
3445 struct kvm_io_range *range, key;
3446 int off;
3448 key = (struct kvm_io_range) {
3449 .addr = addr,
3450 .len = len,
3453 range = bsearch(&key, bus->range, bus->dev_count,
3454 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3455 if (range == NULL)
3456 return -ENOENT;
3458 off = range - bus->range;
3460 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3461 off--;
3463 return off;
3466 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3467 struct kvm_io_range *range, const void *val)
3469 int idx;
3471 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3472 if (idx < 0)
3473 return -EOPNOTSUPP;
3475 while (idx < bus->dev_count &&
3476 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3477 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3478 range->len, val))
3479 return idx;
3480 idx++;
3483 return -EOPNOTSUPP;
3486 /* kvm_io_bus_write - called under kvm->slots_lock */
3487 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3488 int len, const void *val)
3490 struct kvm_io_bus *bus;
3491 struct kvm_io_range range;
3492 int r;
3494 range = (struct kvm_io_range) {
3495 .addr = addr,
3496 .len = len,
3499 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3500 if (!bus)
3501 return -ENOMEM;
3502 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3503 return r < 0 ? r : 0;
3506 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3507 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3508 gpa_t addr, int len, const void *val, long cookie)
3510 struct kvm_io_bus *bus;
3511 struct kvm_io_range range;
3513 range = (struct kvm_io_range) {
3514 .addr = addr,
3515 .len = len,
3518 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3519 if (!bus)
3520 return -ENOMEM;
3522 /* First try the device referenced by cookie. */
3523 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3524 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3525 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3526 val))
3527 return cookie;
3530 * cookie contained garbage; fall back to search and return the
3531 * correct cookie value.
3533 return __kvm_io_bus_write(vcpu, bus, &range, val);
3536 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3537 struct kvm_io_range *range, void *val)
3539 int idx;
3541 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3542 if (idx < 0)
3543 return -EOPNOTSUPP;
3545 while (idx < bus->dev_count &&
3546 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3547 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3548 range->len, val))
3549 return idx;
3550 idx++;
3553 return -EOPNOTSUPP;
3555 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3557 /* kvm_io_bus_read - called under kvm->slots_lock */
3558 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3559 int len, void *val)
3561 struct kvm_io_bus *bus;
3562 struct kvm_io_range range;
3563 int r;
3565 range = (struct kvm_io_range) {
3566 .addr = addr,
3567 .len = len,
3570 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3571 if (!bus)
3572 return -ENOMEM;
3573 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3574 return r < 0 ? r : 0;
3578 /* Caller must hold slots_lock. */
3579 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3580 int len, struct kvm_io_device *dev)
3582 struct kvm_io_bus *new_bus, *bus;
3584 bus = kvm_get_bus(kvm, bus_idx);
3585 if (!bus)
3586 return -ENOMEM;
3588 /* exclude ioeventfd which is limited by maximum fd */
3589 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3590 return -ENOSPC;
3592 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3593 sizeof(struct kvm_io_range)), GFP_KERNEL);
3594 if (!new_bus)
3595 return -ENOMEM;
3596 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3597 sizeof(struct kvm_io_range)));
3598 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3599 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3600 synchronize_srcu_expedited(&kvm->srcu);
3601 kfree(bus);
3603 return 0;
3606 /* Caller must hold slots_lock. */
3607 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3608 struct kvm_io_device *dev)
3610 int i;
3611 struct kvm_io_bus *new_bus, *bus;
3613 bus = kvm_get_bus(kvm, bus_idx);
3614 if (!bus)
3615 return;
3617 for (i = 0; i < bus->dev_count; i++)
3618 if (bus->range[i].dev == dev) {
3619 break;
3622 if (i == bus->dev_count)
3623 return;
3625 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3626 sizeof(struct kvm_io_range)), GFP_KERNEL);
3627 if (!new_bus) {
3628 pr_err("kvm: failed to shrink bus, removing it completely\n");
3629 goto broken;
3632 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3633 new_bus->dev_count--;
3634 memcpy(new_bus->range + i, bus->range + i + 1,
3635 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3637 broken:
3638 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3639 synchronize_srcu_expedited(&kvm->srcu);
3640 kfree(bus);
3641 return;
3644 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3645 gpa_t addr)
3647 struct kvm_io_bus *bus;
3648 int dev_idx, srcu_idx;
3649 struct kvm_io_device *iodev = NULL;
3651 srcu_idx = srcu_read_lock(&kvm->srcu);
3653 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3654 if (!bus)
3655 goto out_unlock;
3657 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3658 if (dev_idx < 0)
3659 goto out_unlock;
3661 iodev = bus->range[dev_idx].dev;
3663 out_unlock:
3664 srcu_read_unlock(&kvm->srcu, srcu_idx);
3666 return iodev;
3668 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3670 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3671 int (*get)(void *, u64 *), int (*set)(void *, u64),
3672 const char *fmt)
3674 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3675 inode->i_private;
3677 /* The debugfs files are a reference to the kvm struct which
3678 * is still valid when kvm_destroy_vm is called.
3679 * To avoid the race between open and the removal of the debugfs
3680 * directory we test against the users count.
3682 if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3683 return -ENOENT;
3685 if (simple_attr_open(inode, file, get, set, fmt)) {
3686 kvm_put_kvm(stat_data->kvm);
3687 return -ENOMEM;
3690 return 0;
3693 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3695 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3696 inode->i_private;
3698 simple_attr_release(inode, file);
3699 kvm_put_kvm(stat_data->kvm);
3701 return 0;
3704 static int vm_stat_get_per_vm(void *data, u64 *val)
3706 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3710 return 0;
3713 static int vm_stat_clear_per_vm(void *data, u64 val)
3715 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3717 if (val)
3718 return -EINVAL;
3720 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3722 return 0;
3725 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3727 __simple_attr_check_format("%llu\n", 0ull);
3728 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3729 vm_stat_clear_per_vm, "%llu\n");
3732 static const struct file_operations vm_stat_get_per_vm_fops = {
3733 .owner = THIS_MODULE,
3734 .open = vm_stat_get_per_vm_open,
3735 .release = kvm_debugfs_release,
3736 .read = simple_attr_read,
3737 .write = simple_attr_write,
3738 .llseek = no_llseek,
3741 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3743 int i;
3744 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3745 struct kvm_vcpu *vcpu;
3747 *val = 0;
3749 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3750 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3752 return 0;
3755 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3757 int i;
3758 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3759 struct kvm_vcpu *vcpu;
3761 if (val)
3762 return -EINVAL;
3764 kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3765 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3767 return 0;
3770 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3772 __simple_attr_check_format("%llu\n", 0ull);
3773 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3774 vcpu_stat_clear_per_vm, "%llu\n");
3777 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3778 .owner = THIS_MODULE,
3779 .open = vcpu_stat_get_per_vm_open,
3780 .release = kvm_debugfs_release,
3781 .read = simple_attr_read,
3782 .write = simple_attr_write,
3783 .llseek = no_llseek,
3786 static const struct file_operations *stat_fops_per_vm[] = {
3787 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3788 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops,
3791 static int vm_stat_get(void *_offset, u64 *val)
3793 unsigned offset = (long)_offset;
3794 struct kvm *kvm;
3795 struct kvm_stat_data stat_tmp = {.offset = offset};
3796 u64 tmp_val;
3798 *val = 0;
3799 spin_lock(&kvm_lock);
3800 list_for_each_entry(kvm, &vm_list, vm_list) {
3801 stat_tmp.kvm = kvm;
3802 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3803 *val += tmp_val;
3805 spin_unlock(&kvm_lock);
3806 return 0;
3809 static int vm_stat_clear(void *_offset, u64 val)
3811 unsigned offset = (long)_offset;
3812 struct kvm *kvm;
3813 struct kvm_stat_data stat_tmp = {.offset = offset};
3815 if (val)
3816 return -EINVAL;
3818 spin_lock(&kvm_lock);
3819 list_for_each_entry(kvm, &vm_list, vm_list) {
3820 stat_tmp.kvm = kvm;
3821 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3823 spin_unlock(&kvm_lock);
3825 return 0;
3828 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3830 static int vcpu_stat_get(void *_offset, u64 *val)
3832 unsigned offset = (long)_offset;
3833 struct kvm *kvm;
3834 struct kvm_stat_data stat_tmp = {.offset = offset};
3835 u64 tmp_val;
3837 *val = 0;
3838 spin_lock(&kvm_lock);
3839 list_for_each_entry(kvm, &vm_list, vm_list) {
3840 stat_tmp.kvm = kvm;
3841 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3842 *val += tmp_val;
3844 spin_unlock(&kvm_lock);
3845 return 0;
3848 static int vcpu_stat_clear(void *_offset, u64 val)
3850 unsigned offset = (long)_offset;
3851 struct kvm *kvm;
3852 struct kvm_stat_data stat_tmp = {.offset = offset};
3854 if (val)
3855 return -EINVAL;
3857 spin_lock(&kvm_lock);
3858 list_for_each_entry(kvm, &vm_list, vm_list) {
3859 stat_tmp.kvm = kvm;
3860 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3862 spin_unlock(&kvm_lock);
3864 return 0;
3867 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3868 "%llu\n");
3870 static const struct file_operations *stat_fops[] = {
3871 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3872 [KVM_STAT_VM] = &vm_stat_fops,
3875 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3877 struct kobj_uevent_env *env;
3878 unsigned long long created, active;
3880 if (!kvm_dev.this_device || !kvm)
3881 return;
3883 spin_lock(&kvm_lock);
3884 if (type == KVM_EVENT_CREATE_VM) {
3885 kvm_createvm_count++;
3886 kvm_active_vms++;
3887 } else if (type == KVM_EVENT_DESTROY_VM) {
3888 kvm_active_vms--;
3890 created = kvm_createvm_count;
3891 active = kvm_active_vms;
3892 spin_unlock(&kvm_lock);
3894 env = kzalloc(sizeof(*env), GFP_KERNEL);
3895 if (!env)
3896 return;
3898 add_uevent_var(env, "CREATED=%llu", created);
3899 add_uevent_var(env, "COUNT=%llu", active);
3901 if (type == KVM_EVENT_CREATE_VM) {
3902 add_uevent_var(env, "EVENT=create");
3903 kvm->userspace_pid = task_pid_nr(current);
3904 } else if (type == KVM_EVENT_DESTROY_VM) {
3905 add_uevent_var(env, "EVENT=destroy");
3907 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3909 if (kvm->debugfs_dentry) {
3910 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3912 if (p) {
3913 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3914 if (!IS_ERR(tmp))
3915 add_uevent_var(env, "STATS_PATH=%s", tmp);
3916 kfree(p);
3919 /* no need for checks, since we are adding at most only 5 keys */
3920 env->envp[env->envp_idx++] = NULL;
3921 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3922 kfree(env);
3925 static int kvm_init_debug(void)
3927 int r = -EEXIST;
3928 struct kvm_stats_debugfs_item *p;
3930 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3931 if (kvm_debugfs_dir == NULL)
3932 goto out;
3934 kvm_debugfs_num_entries = 0;
3935 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3936 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3937 (void *)(long)p->offset,
3938 stat_fops[p->kind]))
3939 goto out_dir;
3942 return 0;
3944 out_dir:
3945 debugfs_remove_recursive(kvm_debugfs_dir);
3946 out:
3947 return r;
3950 static int kvm_suspend(void)
3952 if (kvm_usage_count)
3953 hardware_disable_nolock(NULL);
3954 return 0;
3957 static void kvm_resume(void)
3959 if (kvm_usage_count) {
3960 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3961 hardware_enable_nolock(NULL);
3965 static struct syscore_ops kvm_syscore_ops = {
3966 .suspend = kvm_suspend,
3967 .resume = kvm_resume,
3970 static inline
3971 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3973 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3976 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3978 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3980 if (vcpu->preempted)
3981 vcpu->preempted = false;
3983 kvm_arch_sched_in(vcpu, cpu);
3985 kvm_arch_vcpu_load(vcpu, cpu);
3988 static void kvm_sched_out(struct preempt_notifier *pn,
3989 struct task_struct *next)
3991 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3993 if (current->state == TASK_RUNNING)
3994 vcpu->preempted = true;
3995 kvm_arch_vcpu_put(vcpu);
3998 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3999 struct module *module)
4001 int r;
4002 int cpu;
4004 r = kvm_arch_init(opaque);
4005 if (r)
4006 goto out_fail;
4009 * kvm_arch_init makes sure there's at most one caller
4010 * for architectures that support multiple implementations,
4011 * like intel and amd on x86.
4012 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4013 * conflicts in case kvm is already setup for another implementation.
4015 r = kvm_irqfd_init();
4016 if (r)
4017 goto out_irqfd;
4019 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4020 r = -ENOMEM;
4021 goto out_free_0;
4024 r = kvm_arch_hardware_setup();
4025 if (r < 0)
4026 goto out_free_0a;
4028 for_each_online_cpu(cpu) {
4029 smp_call_function_single(cpu,
4030 kvm_arch_check_processor_compat,
4031 &r, 1);
4032 if (r < 0)
4033 goto out_free_1;
4036 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4037 kvm_starting_cpu, kvm_dying_cpu);
4038 if (r)
4039 goto out_free_2;
4040 register_reboot_notifier(&kvm_reboot_notifier);
4042 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4043 if (!vcpu_align)
4044 vcpu_align = __alignof__(struct kvm_vcpu);
4045 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4046 SLAB_ACCOUNT, NULL);
4047 if (!kvm_vcpu_cache) {
4048 r = -ENOMEM;
4049 goto out_free_3;
4052 r = kvm_async_pf_init();
4053 if (r)
4054 goto out_free;
4056 kvm_chardev_ops.owner = module;
4057 kvm_vm_fops.owner = module;
4058 kvm_vcpu_fops.owner = module;
4060 r = misc_register(&kvm_dev);
4061 if (r) {
4062 pr_err("kvm: misc device register failed\n");
4063 goto out_unreg;
4066 register_syscore_ops(&kvm_syscore_ops);
4068 kvm_preempt_ops.sched_in = kvm_sched_in;
4069 kvm_preempt_ops.sched_out = kvm_sched_out;
4071 r = kvm_init_debug();
4072 if (r) {
4073 pr_err("kvm: create debugfs files failed\n");
4074 goto out_undebugfs;
4077 r = kvm_vfio_ops_init();
4078 WARN_ON(r);
4080 return 0;
4082 out_undebugfs:
4083 unregister_syscore_ops(&kvm_syscore_ops);
4084 misc_deregister(&kvm_dev);
4085 out_unreg:
4086 kvm_async_pf_deinit();
4087 out_free:
4088 kmem_cache_destroy(kvm_vcpu_cache);
4089 out_free_3:
4090 unregister_reboot_notifier(&kvm_reboot_notifier);
4091 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4092 out_free_2:
4093 out_free_1:
4094 kvm_arch_hardware_unsetup();
4095 out_free_0a:
4096 free_cpumask_var(cpus_hardware_enabled);
4097 out_free_0:
4098 kvm_irqfd_exit();
4099 out_irqfd:
4100 kvm_arch_exit();
4101 out_fail:
4102 return r;
4104 EXPORT_SYMBOL_GPL(kvm_init);
4106 void kvm_exit(void)
4108 debugfs_remove_recursive(kvm_debugfs_dir);
4109 misc_deregister(&kvm_dev);
4110 kmem_cache_destroy(kvm_vcpu_cache);
4111 kvm_async_pf_deinit();
4112 unregister_syscore_ops(&kvm_syscore_ops);
4113 unregister_reboot_notifier(&kvm_reboot_notifier);
4114 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4115 on_each_cpu(hardware_disable_nolock, NULL, 1);
4116 kvm_arch_hardware_unsetup();
4117 kvm_arch_exit();
4118 kvm_irqfd_exit();
4119 free_cpumask_var(cpus_hardware_enabled);
4120 kvm_vfio_ops_exit();
4122 EXPORT_SYMBOL_GPL(kvm_exit);