2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
76 module_param(halt_poll_ns
, uint
, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns
);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow
= 2;
81 module_param(halt_poll_ns_grow
, uint
, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow
);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink
;
86 module_param(halt_poll_ns_shrink
, uint
, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink
);
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock
);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
99 static cpumask_var_t cpus_hardware_enabled
;
100 static int kvm_usage_count
;
101 static atomic_t hardware_enable_failed
;
103 struct kmem_cache
*kvm_vcpu_cache
;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
106 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
108 struct dentry
*kvm_debugfs_dir
;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
111 static int kvm_debugfs_num_entries
;
112 static const struct file_operations
*stat_fops_per_vm
[];
114 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
123 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
125 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
);
126 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
128 __visible
bool kvm_rebooting
;
129 EXPORT_SYMBOL_GPL(kvm_rebooting
);
131 static bool largepages_enabled
= true;
133 #define KVM_EVENT_CREATE_VM 0
134 #define KVM_EVENT_DESTROY_VM 1
135 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
);
136 static unsigned long long kvm_createvm_count
;
137 static unsigned long long kvm_active_vms
;
139 __weak
void kvm_arch_mmu_notifier_invalidate_range(struct kvm
*kvm
,
140 unsigned long start
, unsigned long end
)
144 bool kvm_is_reserved_pfn(kvm_pfn_t pfn
)
147 return PageReserved(pfn_to_page(pfn
));
153 * Switches to specified vcpu, until a matching vcpu_put()
155 int vcpu_load(struct kvm_vcpu
*vcpu
)
159 if (mutex_lock_killable(&vcpu
->mutex
))
162 preempt_notifier_register(&vcpu
->preempt_notifier
);
163 kvm_arch_vcpu_load(vcpu
, cpu
);
167 EXPORT_SYMBOL_GPL(vcpu_load
);
169 void vcpu_put(struct kvm_vcpu
*vcpu
)
172 kvm_arch_vcpu_put(vcpu
);
173 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
175 mutex_unlock(&vcpu
->mutex
);
177 EXPORT_SYMBOL_GPL(vcpu_put
);
179 /* TODO: merge with kvm_arch_vcpu_should_kick */
180 static bool kvm_request_needs_ipi(struct kvm_vcpu
*vcpu
, unsigned req
)
182 int mode
= kvm_vcpu_exiting_guest_mode(vcpu
);
185 * We need to wait for the VCPU to reenable interrupts and get out of
186 * READING_SHADOW_PAGE_TABLES mode.
188 if (req
& KVM_REQUEST_WAIT
)
189 return mode
!= OUTSIDE_GUEST_MODE
;
192 * Need to kick a running VCPU, but otherwise there is nothing to do.
194 return mode
== IN_GUEST_MODE
;
197 static void ack_flush(void *_completed
)
201 static inline bool kvm_kick_many_cpus(const struct cpumask
*cpus
, bool wait
)
204 cpus
= cpu_online_mask
;
206 if (cpumask_empty(cpus
))
209 smp_call_function_many(cpus
, ack_flush
, NULL
, wait
);
213 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
218 struct kvm_vcpu
*vcpu
;
220 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
223 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
224 kvm_make_request(req
, vcpu
);
227 if (!(req
& KVM_REQUEST_NO_WAKEUP
) && kvm_vcpu_wake_up(vcpu
))
230 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
231 kvm_request_needs_ipi(vcpu
, req
))
232 __cpumask_set_cpu(cpu
, cpus
);
234 called
= kvm_kick_many_cpus(cpus
, !!(req
& KVM_REQUEST_WAIT
));
236 free_cpumask_var(cpus
);
240 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
241 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
244 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
245 * kvm_make_all_cpus_request.
247 long dirty_count
= smp_load_acquire(&kvm
->tlbs_dirty
);
250 * We want to publish modifications to the page tables before reading
251 * mode. Pairs with a memory barrier in arch-specific code.
252 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
253 * and smp_mb in walk_shadow_page_lockless_begin/end.
254 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
256 * There is already an smp_mb__after_atomic() before
257 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
260 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
261 ++kvm
->stat
.remote_tlb_flush
;
262 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
264 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
267 void kvm_reload_remote_mmus(struct kvm
*kvm
)
269 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
272 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
277 mutex_init(&vcpu
->mutex
);
282 init_swait_queue_head(&vcpu
->wq
);
283 kvm_async_pf_vcpu_init(vcpu
);
286 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
288 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
293 vcpu
->run
= page_address(page
);
295 kvm_vcpu_set_in_spin_loop(vcpu
, false);
296 kvm_vcpu_set_dy_eligible(vcpu
, false);
297 vcpu
->preempted
= false;
299 r
= kvm_arch_vcpu_init(vcpu
);
305 free_page((unsigned long)vcpu
->run
);
309 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
311 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
314 * no need for rcu_read_lock as VCPU_RUN is the only place that
315 * will change the vcpu->pid pointer and on uninit all file
316 * descriptors are already gone.
318 put_pid(rcu_dereference_protected(vcpu
->pid
, 1));
319 kvm_arch_vcpu_uninit(vcpu
);
320 free_page((unsigned long)vcpu
->run
);
322 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
324 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
325 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
327 return container_of(mn
, struct kvm
, mmu_notifier
);
330 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
331 struct mm_struct
*mm
,
332 unsigned long address
,
335 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
338 idx
= srcu_read_lock(&kvm
->srcu
);
339 spin_lock(&kvm
->mmu_lock
);
340 kvm
->mmu_notifier_seq
++;
341 kvm_set_spte_hva(kvm
, address
, pte
);
342 spin_unlock(&kvm
->mmu_lock
);
343 srcu_read_unlock(&kvm
->srcu
, idx
);
346 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
347 struct mm_struct
*mm
,
351 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
352 int need_tlb_flush
= 0, idx
;
354 idx
= srcu_read_lock(&kvm
->srcu
);
355 spin_lock(&kvm
->mmu_lock
);
357 * The count increase must become visible at unlock time as no
358 * spte can be established without taking the mmu_lock and
359 * count is also read inside the mmu_lock critical section.
361 kvm
->mmu_notifier_count
++;
362 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
363 need_tlb_flush
|= kvm
->tlbs_dirty
;
364 /* we've to flush the tlb before the pages can be freed */
366 kvm_flush_remote_tlbs(kvm
);
368 spin_unlock(&kvm
->mmu_lock
);
370 kvm_arch_mmu_notifier_invalidate_range(kvm
, start
, end
);
372 srcu_read_unlock(&kvm
->srcu
, idx
);
375 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
376 struct mm_struct
*mm
,
380 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
382 spin_lock(&kvm
->mmu_lock
);
384 * This sequence increase will notify the kvm page fault that
385 * the page that is going to be mapped in the spte could have
388 kvm
->mmu_notifier_seq
++;
391 * The above sequence increase must be visible before the
392 * below count decrease, which is ensured by the smp_wmb above
393 * in conjunction with the smp_rmb in mmu_notifier_retry().
395 kvm
->mmu_notifier_count
--;
396 spin_unlock(&kvm
->mmu_lock
);
398 BUG_ON(kvm
->mmu_notifier_count
< 0);
401 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
402 struct mm_struct
*mm
,
406 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
409 idx
= srcu_read_lock(&kvm
->srcu
);
410 spin_lock(&kvm
->mmu_lock
);
412 young
= kvm_age_hva(kvm
, start
, end
);
414 kvm_flush_remote_tlbs(kvm
);
416 spin_unlock(&kvm
->mmu_lock
);
417 srcu_read_unlock(&kvm
->srcu
, idx
);
422 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
423 struct mm_struct
*mm
,
427 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
430 idx
= srcu_read_lock(&kvm
->srcu
);
431 spin_lock(&kvm
->mmu_lock
);
433 * Even though we do not flush TLB, this will still adversely
434 * affect performance on pre-Haswell Intel EPT, where there is
435 * no EPT Access Bit to clear so that we have to tear down EPT
436 * tables instead. If we find this unacceptable, we can always
437 * add a parameter to kvm_age_hva so that it effectively doesn't
438 * do anything on clear_young.
440 * Also note that currently we never issue secondary TLB flushes
441 * from clear_young, leaving this job up to the regular system
442 * cadence. If we find this inaccurate, we might come up with a
443 * more sophisticated heuristic later.
445 young
= kvm_age_hva(kvm
, start
, end
);
446 spin_unlock(&kvm
->mmu_lock
);
447 srcu_read_unlock(&kvm
->srcu
, idx
);
452 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
453 struct mm_struct
*mm
,
454 unsigned long address
)
456 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
459 idx
= srcu_read_lock(&kvm
->srcu
);
460 spin_lock(&kvm
->mmu_lock
);
461 young
= kvm_test_age_hva(kvm
, address
);
462 spin_unlock(&kvm
->mmu_lock
);
463 srcu_read_unlock(&kvm
->srcu
, idx
);
468 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
469 struct mm_struct
*mm
)
471 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
474 idx
= srcu_read_lock(&kvm
->srcu
);
475 kvm_arch_flush_shadow_all(kvm
);
476 srcu_read_unlock(&kvm
->srcu
, idx
);
479 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
480 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
481 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
482 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
483 .clear_young
= kvm_mmu_notifier_clear_young
,
484 .test_young
= kvm_mmu_notifier_test_young
,
485 .change_pte
= kvm_mmu_notifier_change_pte
,
486 .release
= kvm_mmu_notifier_release
,
489 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
491 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
492 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
495 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
497 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
502 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
504 static struct kvm_memslots
*kvm_alloc_memslots(void)
507 struct kvm_memslots
*slots
;
509 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
513 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
514 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
519 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
521 if (!memslot
->dirty_bitmap
)
524 kvfree(memslot
->dirty_bitmap
);
525 memslot
->dirty_bitmap
= NULL
;
529 * Free any memory in @free but not in @dont.
531 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
532 struct kvm_memory_slot
*dont
)
534 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
535 kvm_destroy_dirty_bitmap(free
);
537 kvm_arch_free_memslot(kvm
, free
, dont
);
542 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
544 struct kvm_memory_slot
*memslot
;
549 kvm_for_each_memslot(memslot
, slots
)
550 kvm_free_memslot(kvm
, memslot
, NULL
);
555 static void kvm_destroy_vm_debugfs(struct kvm
*kvm
)
559 if (!kvm
->debugfs_dentry
)
562 debugfs_remove_recursive(kvm
->debugfs_dentry
);
564 if (kvm
->debugfs_stat_data
) {
565 for (i
= 0; i
< kvm_debugfs_num_entries
; i
++)
566 kfree(kvm
->debugfs_stat_data
[i
]);
567 kfree(kvm
->debugfs_stat_data
);
571 static int kvm_create_vm_debugfs(struct kvm
*kvm
, int fd
)
573 char dir_name
[ITOA_MAX_LEN
* 2];
574 struct kvm_stat_data
*stat_data
;
575 struct kvm_stats_debugfs_item
*p
;
577 if (!debugfs_initialized())
580 snprintf(dir_name
, sizeof(dir_name
), "%d-%d", task_pid_nr(current
), fd
);
581 kvm
->debugfs_dentry
= debugfs_create_dir(dir_name
,
583 if (!kvm
->debugfs_dentry
)
586 kvm
->debugfs_stat_data
= kcalloc(kvm_debugfs_num_entries
,
587 sizeof(*kvm
->debugfs_stat_data
),
589 if (!kvm
->debugfs_stat_data
)
592 for (p
= debugfs_entries
; p
->name
; p
++) {
593 stat_data
= kzalloc(sizeof(*stat_data
), GFP_KERNEL
);
597 stat_data
->kvm
= kvm
;
598 stat_data
->offset
= p
->offset
;
599 kvm
->debugfs_stat_data
[p
- debugfs_entries
] = stat_data
;
600 if (!debugfs_create_file(p
->name
, 0644,
603 stat_fops_per_vm
[p
->kind
]))
609 static struct kvm
*kvm_create_vm(unsigned long type
)
612 struct kvm
*kvm
= kvm_arch_alloc_vm();
615 return ERR_PTR(-ENOMEM
);
617 spin_lock_init(&kvm
->mmu_lock
);
619 kvm
->mm
= current
->mm
;
620 kvm_eventfd_init(kvm
);
621 mutex_init(&kvm
->lock
);
622 mutex_init(&kvm
->irq_lock
);
623 mutex_init(&kvm
->slots_lock
);
624 refcount_set(&kvm
->users_count
, 1);
625 INIT_LIST_HEAD(&kvm
->devices
);
627 r
= kvm_arch_init_vm(kvm
, type
);
629 goto out_err_no_disable
;
631 r
= hardware_enable_all();
633 goto out_err_no_disable
;
635 #ifdef CONFIG_HAVE_KVM_IRQFD
636 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
639 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
642 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
643 struct kvm_memslots
*slots
= kvm_alloc_memslots();
645 goto out_err_no_srcu
;
647 * Generations must be different for each address space.
648 * Init kvm generation close to the maximum to easily test the
649 * code of handling generation number wrap-around.
651 slots
->generation
= i
* 2 - 150;
652 rcu_assign_pointer(kvm
->memslots
[i
], slots
);
655 if (init_srcu_struct(&kvm
->srcu
))
656 goto out_err_no_srcu
;
657 if (init_srcu_struct(&kvm
->irq_srcu
))
658 goto out_err_no_irq_srcu
;
659 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
660 rcu_assign_pointer(kvm
->buses
[i
],
661 kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
));
666 r
= kvm_init_mmu_notifier(kvm
);
670 spin_lock(&kvm_lock
);
671 list_add(&kvm
->vm_list
, &vm_list
);
672 spin_unlock(&kvm_lock
);
674 preempt_notifier_inc();
679 cleanup_srcu_struct(&kvm
->irq_srcu
);
681 cleanup_srcu_struct(&kvm
->srcu
);
683 hardware_disable_all();
685 refcount_set(&kvm
->users_count
, 0);
686 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
687 kfree(kvm_get_bus(kvm
, i
));
688 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
689 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
690 kvm_arch_free_vm(kvm
);
695 static void kvm_destroy_devices(struct kvm
*kvm
)
697 struct kvm_device
*dev
, *tmp
;
700 * We do not need to take the kvm->lock here, because nobody else
701 * has a reference to the struct kvm at this point and therefore
702 * cannot access the devices list anyhow.
704 list_for_each_entry_safe(dev
, tmp
, &kvm
->devices
, vm_node
) {
705 list_del(&dev
->vm_node
);
706 dev
->ops
->destroy(dev
);
710 static void kvm_destroy_vm(struct kvm
*kvm
)
713 struct mm_struct
*mm
= kvm
->mm
;
715 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM
, kvm
);
716 kvm_destroy_vm_debugfs(kvm
);
717 kvm_arch_sync_events(kvm
);
718 spin_lock(&kvm_lock
);
719 list_del(&kvm
->vm_list
);
720 spin_unlock(&kvm_lock
);
721 kvm_free_irq_routing(kvm
);
722 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
723 struct kvm_io_bus
*bus
= kvm_get_bus(kvm
, i
);
726 kvm_io_bus_destroy(bus
);
727 kvm
->buses
[i
] = NULL
;
729 kvm_coalesced_mmio_free(kvm
);
730 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
731 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
733 kvm_arch_flush_shadow_all(kvm
);
735 kvm_arch_destroy_vm(kvm
);
736 kvm_destroy_devices(kvm
);
737 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
738 kvm_free_memslots(kvm
, __kvm_memslots(kvm
, i
));
739 cleanup_srcu_struct(&kvm
->irq_srcu
);
740 cleanup_srcu_struct(&kvm
->srcu
);
741 kvm_arch_free_vm(kvm
);
742 preempt_notifier_dec();
743 hardware_disable_all();
747 void kvm_get_kvm(struct kvm
*kvm
)
749 refcount_inc(&kvm
->users_count
);
751 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
753 void kvm_put_kvm(struct kvm
*kvm
)
755 if (refcount_dec_and_test(&kvm
->users_count
))
758 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
761 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
763 struct kvm
*kvm
= filp
->private_data
;
765 kvm_irqfd_release(kvm
);
772 * Allocation size is twice as large as the actual dirty bitmap size.
773 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
775 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
777 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
779 memslot
->dirty_bitmap
= kvzalloc(dirty_bytes
, GFP_KERNEL
);
780 if (!memslot
->dirty_bitmap
)
787 * Insert memslot and re-sort memslots based on their GFN,
788 * so binary search could be used to lookup GFN.
789 * Sorting algorithm takes advantage of having initially
790 * sorted array and known changed memslot position.
792 static void update_memslots(struct kvm_memslots
*slots
,
793 struct kvm_memory_slot
*new)
796 int i
= slots
->id_to_index
[id
];
797 struct kvm_memory_slot
*mslots
= slots
->memslots
;
799 WARN_ON(mslots
[i
].id
!= id
);
801 WARN_ON(!mslots
[i
].npages
);
802 if (mslots
[i
].npages
)
805 if (!mslots
[i
].npages
)
809 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
810 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
811 if (!mslots
[i
+ 1].npages
)
813 mslots
[i
] = mslots
[i
+ 1];
814 slots
->id_to_index
[mslots
[i
].id
] = i
;
819 * The ">=" is needed when creating a slot with base_gfn == 0,
820 * so that it moves before all those with base_gfn == npages == 0.
822 * On the other hand, if new->npages is zero, the above loop has
823 * already left i pointing to the beginning of the empty part of
824 * mslots, and the ">=" would move the hole backwards in this
825 * case---which is wrong. So skip the loop when deleting a slot.
829 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
830 mslots
[i
] = mslots
[i
- 1];
831 slots
->id_to_index
[mslots
[i
].id
] = i
;
835 WARN_ON_ONCE(i
!= slots
->used_slots
);
838 slots
->id_to_index
[mslots
[i
].id
] = i
;
841 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
843 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
845 #ifdef __KVM_HAVE_READONLY_MEM
846 valid_flags
|= KVM_MEM_READONLY
;
849 if (mem
->flags
& ~valid_flags
)
855 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
856 int as_id
, struct kvm_memslots
*slots
)
858 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
861 * Set the low bit in the generation, which disables SPTE caching
862 * until the end of synchronize_srcu_expedited.
864 WARN_ON(old_memslots
->generation
& 1);
865 slots
->generation
= old_memslots
->generation
+ 1;
867 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
868 synchronize_srcu_expedited(&kvm
->srcu
);
871 * Increment the new memslot generation a second time. This prevents
872 * vm exits that race with memslot updates from caching a memslot
873 * generation that will (potentially) be valid forever.
875 * Generations must be unique even across address spaces. We do not need
876 * a global counter for that, instead the generation space is evenly split
877 * across address spaces. For example, with two address spaces, address
878 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
879 * use generations 2, 6, 10, 14, ...
881 slots
->generation
+= KVM_ADDRESS_SPACE_NUM
* 2 - 1;
883 kvm_arch_memslots_updated(kvm
, slots
);
889 * Allocate some memory and give it an address in the guest physical address
892 * Discontiguous memory is allowed, mostly for framebuffers.
894 * Must be called holding kvm->slots_lock for write.
896 int __kvm_set_memory_region(struct kvm
*kvm
,
897 const struct kvm_userspace_memory_region
*mem
)
901 unsigned long npages
;
902 struct kvm_memory_slot
*slot
;
903 struct kvm_memory_slot old
, new;
904 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
906 enum kvm_mr_change change
;
908 r
= check_memory_region_flags(mem
);
913 as_id
= mem
->slot
>> 16;
916 /* General sanity checks */
917 if (mem
->memory_size
& (PAGE_SIZE
- 1))
919 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
921 /* We can read the guest memory with __xxx_user() later on. */
922 if ((id
< KVM_USER_MEM_SLOTS
) &&
923 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
924 !access_ok(VERIFY_WRITE
,
925 (void __user
*)(unsigned long)mem
->userspace_addr
,
928 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
930 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
933 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
934 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
935 npages
= mem
->memory_size
>> PAGE_SHIFT
;
937 if (npages
> KVM_MEM_MAX_NR_PAGES
)
943 new.base_gfn
= base_gfn
;
945 new.flags
= mem
->flags
;
949 change
= KVM_MR_CREATE
;
950 else { /* Modify an existing slot. */
951 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
952 (npages
!= old
.npages
) ||
953 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
956 if (base_gfn
!= old
.base_gfn
)
957 change
= KVM_MR_MOVE
;
958 else if (new.flags
!= old
.flags
)
959 change
= KVM_MR_FLAGS_ONLY
;
960 else { /* Nothing to change. */
969 change
= KVM_MR_DELETE
;
974 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
975 /* Check for overlaps */
977 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
980 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
981 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
986 /* Free page dirty bitmap if unneeded */
987 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
988 new.dirty_bitmap
= NULL
;
991 if (change
== KVM_MR_CREATE
) {
992 new.userspace_addr
= mem
->userspace_addr
;
994 if (kvm_arch_create_memslot(kvm
, &new, npages
))
998 /* Allocate page dirty bitmap if needed */
999 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
1000 if (kvm_create_dirty_bitmap(&new) < 0)
1004 slots
= kvzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
1007 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
1009 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
1010 slot
= id_to_memslot(slots
, id
);
1011 slot
->flags
|= KVM_MEMSLOT_INVALID
;
1013 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1015 /* From this point no new shadow pages pointing to a deleted,
1016 * or moved, memslot will be created.
1018 * validation of sp->gfn happens in:
1019 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1020 * - kvm_is_visible_gfn (mmu_check_roots)
1022 kvm_arch_flush_shadow_memslot(kvm
, slot
);
1025 * We can re-use the old_memslots from above, the only difference
1026 * from the currently installed memslots is the invalid flag. This
1027 * will get overwritten by update_memslots anyway.
1029 slots
= old_memslots
;
1032 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
1036 /* actual memory is freed via old in kvm_free_memslot below */
1037 if (change
== KVM_MR_DELETE
) {
1038 new.dirty_bitmap
= NULL
;
1039 memset(&new.arch
, 0, sizeof(new.arch
));
1042 update_memslots(slots
, &new);
1043 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
1045 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
1047 kvm_free_memslot(kvm
, &old
, &new);
1048 kvfree(old_memslots
);
1054 kvm_free_memslot(kvm
, &new, &old
);
1058 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1060 int kvm_set_memory_region(struct kvm
*kvm
,
1061 const struct kvm_userspace_memory_region
*mem
)
1065 mutex_lock(&kvm
->slots_lock
);
1066 r
= __kvm_set_memory_region(kvm
, mem
);
1067 mutex_unlock(&kvm
->slots_lock
);
1070 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1072 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1073 struct kvm_userspace_memory_region
*mem
)
1075 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1078 return kvm_set_memory_region(kvm
, mem
);
1081 int kvm_get_dirty_log(struct kvm
*kvm
,
1082 struct kvm_dirty_log
*log
, int *is_dirty
)
1084 struct kvm_memslots
*slots
;
1085 struct kvm_memory_slot
*memslot
;
1088 unsigned long any
= 0;
1090 as_id
= log
->slot
>> 16;
1091 id
= (u16
)log
->slot
;
1092 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1095 slots
= __kvm_memslots(kvm
, as_id
);
1096 memslot
= id_to_memslot(slots
, id
);
1097 if (!memslot
->dirty_bitmap
)
1100 n
= kvm_dirty_bitmap_bytes(memslot
);
1102 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1103 any
= memslot
->dirty_bitmap
[i
];
1105 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1112 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1114 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1116 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1117 * are dirty write protect them for next write.
1118 * @kvm: pointer to kvm instance
1119 * @log: slot id and address to which we copy the log
1120 * @is_dirty: flag set if any page is dirty
1122 * We need to keep it in mind that VCPU threads can write to the bitmap
1123 * concurrently. So, to avoid losing track of dirty pages we keep the
1126 * 1. Take a snapshot of the bit and clear it if needed.
1127 * 2. Write protect the corresponding page.
1128 * 3. Copy the snapshot to the userspace.
1129 * 4. Upon return caller flushes TLB's if needed.
1131 * Between 2 and 4, the guest may write to the page using the remaining TLB
1132 * entry. This is not a problem because the page is reported dirty using
1133 * the snapshot taken before and step 4 ensures that writes done after
1134 * exiting to userspace will be logged for the next call.
1137 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1138 struct kvm_dirty_log
*log
, bool *is_dirty
)
1140 struct kvm_memslots
*slots
;
1141 struct kvm_memory_slot
*memslot
;
1144 unsigned long *dirty_bitmap
;
1145 unsigned long *dirty_bitmap_buffer
;
1147 as_id
= log
->slot
>> 16;
1148 id
= (u16
)log
->slot
;
1149 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1152 slots
= __kvm_memslots(kvm
, as_id
);
1153 memslot
= id_to_memslot(slots
, id
);
1155 dirty_bitmap
= memslot
->dirty_bitmap
;
1159 n
= kvm_dirty_bitmap_bytes(memslot
);
1161 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1162 memset(dirty_bitmap_buffer
, 0, n
);
1164 spin_lock(&kvm
->mmu_lock
);
1166 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1170 if (!dirty_bitmap
[i
])
1175 mask
= xchg(&dirty_bitmap
[i
], 0);
1176 dirty_bitmap_buffer
[i
] = mask
;
1179 offset
= i
* BITS_PER_LONG
;
1180 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1185 spin_unlock(&kvm
->mmu_lock
);
1186 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1190 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1193 bool kvm_largepages_enabled(void)
1195 return largepages_enabled
;
1198 void kvm_disable_largepages(void)
1200 largepages_enabled
= false;
1202 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1204 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1206 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1208 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1210 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1212 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1215 bool kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1217 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1219 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1220 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1225 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1227 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1229 struct vm_area_struct
*vma
;
1230 unsigned long addr
, size
;
1234 addr
= gfn_to_hva(kvm
, gfn
);
1235 if (kvm_is_error_hva(addr
))
1238 down_read(¤t
->mm
->mmap_sem
);
1239 vma
= find_vma(current
->mm
, addr
);
1243 size
= vma_kernel_pagesize(vma
);
1246 up_read(¤t
->mm
->mmap_sem
);
1251 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1253 return slot
->flags
& KVM_MEM_READONLY
;
1256 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1257 gfn_t
*nr_pages
, bool write
)
1259 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1260 return KVM_HVA_ERR_BAD
;
1262 if (memslot_is_readonly(slot
) && write
)
1263 return KVM_HVA_ERR_RO_BAD
;
1266 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1268 return __gfn_to_hva_memslot(slot
, gfn
);
1271 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1274 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1277 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1280 return gfn_to_hva_many(slot
, gfn
, NULL
);
1282 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1284 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1286 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1288 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1290 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1292 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1294 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1297 * If writable is set to false, the hva returned by this function is only
1298 * allowed to be read.
1300 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1301 gfn_t gfn
, bool *writable
)
1303 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1305 if (!kvm_is_error_hva(hva
) && writable
)
1306 *writable
= !memslot_is_readonly(slot
);
1311 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1313 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1315 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1318 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1320 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1322 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1325 static int get_user_page_nowait(unsigned long start
, int write
,
1328 int flags
= FOLL_NOWAIT
| FOLL_HWPOISON
;
1331 flags
|= FOLL_WRITE
;
1333 return get_user_pages(start
, 1, flags
, page
, NULL
);
1336 static inline int check_user_page_hwpoison(unsigned long addr
)
1338 int rc
, flags
= FOLL_HWPOISON
| FOLL_WRITE
;
1340 rc
= get_user_pages(addr
, 1, flags
, NULL
, NULL
);
1341 return rc
== -EHWPOISON
;
1345 * The atomic path to get the writable pfn which will be stored in @pfn,
1346 * true indicates success, otherwise false is returned.
1348 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1349 bool write_fault
, bool *writable
, kvm_pfn_t
*pfn
)
1351 struct page
*page
[1];
1354 if (!(async
|| atomic
))
1358 * Fast pin a writable pfn only if it is a write fault request
1359 * or the caller allows to map a writable pfn for a read fault
1362 if (!(write_fault
|| writable
))
1365 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1367 *pfn
= page_to_pfn(page
[0]);
1378 * The slow path to get the pfn of the specified host virtual address,
1379 * 1 indicates success, -errno is returned if error is detected.
1381 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1382 bool *writable
, kvm_pfn_t
*pfn
)
1384 struct page
*page
[1];
1390 *writable
= write_fault
;
1393 down_read(¤t
->mm
->mmap_sem
);
1394 npages
= get_user_page_nowait(addr
, write_fault
, page
);
1395 up_read(¤t
->mm
->mmap_sem
);
1397 unsigned int flags
= FOLL_HWPOISON
;
1400 flags
|= FOLL_WRITE
;
1402 npages
= get_user_pages_unlocked(addr
, 1, page
, flags
);
1407 /* map read fault as writable if possible */
1408 if (unlikely(!write_fault
) && writable
) {
1409 struct page
*wpage
[1];
1411 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1420 *pfn
= page_to_pfn(page
[0]);
1424 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1426 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1429 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1435 static int hva_to_pfn_remapped(struct vm_area_struct
*vma
,
1436 unsigned long addr
, bool *async
,
1437 bool write_fault
, bool *writable
,
1443 r
= follow_pfn(vma
, addr
, &pfn
);
1446 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1447 * not call the fault handler, so do it here.
1449 bool unlocked
= false;
1450 r
= fixup_user_fault(current
, current
->mm
, addr
,
1451 (write_fault
? FAULT_FLAG_WRITE
: 0),
1458 r
= follow_pfn(vma
, addr
, &pfn
);
1468 * Get a reference here because callers of *hva_to_pfn* and
1469 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1470 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1471 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1472 * simply do nothing for reserved pfns.
1474 * Whoever called remap_pfn_range is also going to call e.g.
1475 * unmap_mapping_range before the underlying pages are freed,
1476 * causing a call to our MMU notifier.
1485 * Pin guest page in memory and return its pfn.
1486 * @addr: host virtual address which maps memory to the guest
1487 * @atomic: whether this function can sleep
1488 * @async: whether this function need to wait IO complete if the
1489 * host page is not in the memory
1490 * @write_fault: whether we should get a writable host page
1491 * @writable: whether it allows to map a writable host page for !@write_fault
1493 * The function will map a writable host page for these two cases:
1494 * 1): @write_fault = true
1495 * 2): @write_fault = false && @writable, @writable will tell the caller
1496 * whether the mapping is writable.
1498 static kvm_pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1499 bool write_fault
, bool *writable
)
1501 struct vm_area_struct
*vma
;
1505 /* we can do it either atomically or asynchronously, not both */
1506 BUG_ON(atomic
&& async
);
1508 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1512 return KVM_PFN_ERR_FAULT
;
1514 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1518 down_read(¤t
->mm
->mmap_sem
);
1519 if (npages
== -EHWPOISON
||
1520 (!async
&& check_user_page_hwpoison(addr
))) {
1521 pfn
= KVM_PFN_ERR_HWPOISON
;
1526 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1529 pfn
= KVM_PFN_ERR_FAULT
;
1530 else if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) {
1531 r
= hva_to_pfn_remapped(vma
, addr
, async
, write_fault
, writable
, &pfn
);
1535 pfn
= KVM_PFN_ERR_FAULT
;
1537 if (async
&& vma_is_valid(vma
, write_fault
))
1539 pfn
= KVM_PFN_ERR_FAULT
;
1542 up_read(¤t
->mm
->mmap_sem
);
1546 kvm_pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1547 bool atomic
, bool *async
, bool write_fault
,
1550 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1552 if (addr
== KVM_HVA_ERR_RO_BAD
) {
1555 return KVM_PFN_ERR_RO_FAULT
;
1558 if (kvm_is_error_hva(addr
)) {
1561 return KVM_PFN_NOSLOT
;
1564 /* Do not map writable pfn in the readonly memslot. */
1565 if (writable
&& memslot_is_readonly(slot
)) {
1570 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1573 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1575 kvm_pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1578 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1579 write_fault
, writable
);
1581 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1583 kvm_pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1585 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1587 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1589 kvm_pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1591 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1593 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1595 kvm_pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1597 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1599 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1601 kvm_pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1603 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1605 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1607 kvm_pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1609 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1611 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1613 kvm_pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1615 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1617 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1619 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1620 struct page
**pages
, int nr_pages
)
1625 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1626 if (kvm_is_error_hva(addr
))
1629 if (entry
< nr_pages
)
1632 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1634 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1636 static struct page
*kvm_pfn_to_page(kvm_pfn_t pfn
)
1638 if (is_error_noslot_pfn(pfn
))
1639 return KVM_ERR_PTR_BAD_PAGE
;
1641 if (kvm_is_reserved_pfn(pfn
)) {
1643 return KVM_ERR_PTR_BAD_PAGE
;
1646 return pfn_to_page(pfn
);
1649 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1653 pfn
= gfn_to_pfn(kvm
, gfn
);
1655 return kvm_pfn_to_page(pfn
);
1657 EXPORT_SYMBOL_GPL(gfn_to_page
);
1659 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1663 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1665 return kvm_pfn_to_page(pfn
);
1667 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1669 void kvm_release_page_clean(struct page
*page
)
1671 WARN_ON(is_error_page(page
));
1673 kvm_release_pfn_clean(page_to_pfn(page
));
1675 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1677 void kvm_release_pfn_clean(kvm_pfn_t pfn
)
1679 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1680 put_page(pfn_to_page(pfn
));
1682 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1684 void kvm_release_page_dirty(struct page
*page
)
1686 WARN_ON(is_error_page(page
));
1688 kvm_release_pfn_dirty(page_to_pfn(page
));
1690 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1692 static void kvm_release_pfn_dirty(kvm_pfn_t pfn
)
1694 kvm_set_pfn_dirty(pfn
);
1695 kvm_release_pfn_clean(pfn
);
1698 void kvm_set_pfn_dirty(kvm_pfn_t pfn
)
1700 if (!kvm_is_reserved_pfn(pfn
)) {
1701 struct page
*page
= pfn_to_page(pfn
);
1703 if (!PageReserved(page
))
1707 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1709 void kvm_set_pfn_accessed(kvm_pfn_t pfn
)
1711 if (!kvm_is_reserved_pfn(pfn
))
1712 mark_page_accessed(pfn_to_page(pfn
));
1714 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1716 void kvm_get_pfn(kvm_pfn_t pfn
)
1718 if (!kvm_is_reserved_pfn(pfn
))
1719 get_page(pfn_to_page(pfn
));
1721 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1723 static int next_segment(unsigned long len
, int offset
)
1725 if (len
> PAGE_SIZE
- offset
)
1726 return PAGE_SIZE
- offset
;
1731 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1732 void *data
, int offset
, int len
)
1737 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1738 if (kvm_is_error_hva(addr
))
1740 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1746 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1749 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1751 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1753 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1755 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1756 int offset
, int len
)
1758 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1760 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1762 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1764 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1766 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1768 int offset
= offset_in_page(gpa
);
1771 while ((seg
= next_segment(len
, offset
)) != 0) {
1772 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1782 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1784 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1786 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1788 int offset
= offset_in_page(gpa
);
1791 while ((seg
= next_segment(len
, offset
)) != 0) {
1792 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1802 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1804 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1805 void *data
, int offset
, unsigned long len
)
1810 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1811 if (kvm_is_error_hva(addr
))
1813 pagefault_disable();
1814 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1821 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1824 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1825 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1826 int offset
= offset_in_page(gpa
);
1828 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1830 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1832 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1833 void *data
, unsigned long len
)
1835 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1836 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1837 int offset
= offset_in_page(gpa
);
1839 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1841 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1843 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1844 const void *data
, int offset
, int len
)
1849 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1850 if (kvm_is_error_hva(addr
))
1852 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1855 mark_page_dirty_in_slot(memslot
, gfn
);
1859 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1860 const void *data
, int offset
, int len
)
1862 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1864 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1866 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1868 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1869 const void *data
, int offset
, int len
)
1871 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1873 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1875 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1877 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1880 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1882 int offset
= offset_in_page(gpa
);
1885 while ((seg
= next_segment(len
, offset
)) != 0) {
1886 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1896 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1898 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1901 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1903 int offset
= offset_in_page(gpa
);
1906 while ((seg
= next_segment(len
, offset
)) != 0) {
1907 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1919 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots
*slots
,
1920 struct gfn_to_hva_cache
*ghc
,
1921 gpa_t gpa
, unsigned long len
)
1923 int offset
= offset_in_page(gpa
);
1924 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1925 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1926 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1927 gfn_t nr_pages_avail
;
1930 ghc
->generation
= slots
->generation
;
1932 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1933 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1934 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1938 * If the requested region crosses two memslots, we still
1939 * verify that the entire region is valid here.
1941 while (start_gfn
<= end_gfn
) {
1943 ghc
->memslot
= __gfn_to_memslot(slots
, start_gfn
);
1944 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1946 if (kvm_is_error_hva(ghc
->hva
))
1948 start_gfn
+= nr_pages_avail
;
1950 /* Use the slow path for cross page reads and writes. */
1951 ghc
->memslot
= NULL
;
1956 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1957 gpa_t gpa
, unsigned long len
)
1959 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1960 return __kvm_gfn_to_hva_cache_init(slots
, ghc
, gpa
, len
);
1962 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1964 int kvm_write_guest_offset_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1965 void *data
, int offset
, unsigned long len
)
1967 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1969 gpa_t gpa
= ghc
->gpa
+ offset
;
1971 BUG_ON(len
+ offset
> ghc
->len
);
1973 if (slots
->generation
!= ghc
->generation
)
1974 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
1976 if (unlikely(!ghc
->memslot
))
1977 return kvm_write_guest(kvm
, gpa
, data
, len
);
1979 if (kvm_is_error_hva(ghc
->hva
))
1982 r
= __copy_to_user((void __user
*)ghc
->hva
+ offset
, data
, len
);
1985 mark_page_dirty_in_slot(ghc
->memslot
, gpa
>> PAGE_SHIFT
);
1989 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached
);
1991 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1992 void *data
, unsigned long len
)
1994 return kvm_write_guest_offset_cached(kvm
, ghc
, data
, 0, len
);
1996 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1998 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1999 void *data
, unsigned long len
)
2001 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
2004 BUG_ON(len
> ghc
->len
);
2006 if (slots
->generation
!= ghc
->generation
)
2007 __kvm_gfn_to_hva_cache_init(slots
, ghc
, ghc
->gpa
, ghc
->len
);
2009 if (unlikely(!ghc
->memslot
))
2010 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
2012 if (kvm_is_error_hva(ghc
->hva
))
2015 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
2021 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
2023 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
2025 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2027 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
2029 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
2031 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
2033 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2035 int offset
= offset_in_page(gpa
);
2038 while ((seg
= next_segment(len
, offset
)) != 0) {
2039 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
2048 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
2050 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
2053 if (memslot
&& memslot
->dirty_bitmap
) {
2054 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
2056 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
2060 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
2062 struct kvm_memory_slot
*memslot
;
2064 memslot
= gfn_to_memslot(kvm
, gfn
);
2065 mark_page_dirty_in_slot(memslot
, gfn
);
2067 EXPORT_SYMBOL_GPL(mark_page_dirty
);
2069 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2071 struct kvm_memory_slot
*memslot
;
2073 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
2074 mark_page_dirty_in_slot(memslot
, gfn
);
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
2078 void kvm_sigset_activate(struct kvm_vcpu
*vcpu
)
2080 if (!vcpu
->sigset_active
)
2084 * This does a lockless modification of ->real_blocked, which is fine
2085 * because, only current can change ->real_blocked and all readers of
2086 * ->real_blocked don't care as long ->real_blocked is always a subset
2089 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, ¤t
->real_blocked
);
2092 void kvm_sigset_deactivate(struct kvm_vcpu
*vcpu
)
2094 if (!vcpu
->sigset_active
)
2097 sigprocmask(SIG_SETMASK
, ¤t
->real_blocked
, NULL
);
2098 sigemptyset(¤t
->real_blocked
);
2101 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2103 unsigned int old
, val
, grow
;
2105 old
= val
= vcpu
->halt_poll_ns
;
2106 grow
= READ_ONCE(halt_poll_ns_grow
);
2108 if (val
== 0 && grow
)
2113 if (val
> halt_poll_ns
)
2116 vcpu
->halt_poll_ns
= val
;
2117 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
2120 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
2122 unsigned int old
, val
, shrink
;
2124 old
= val
= vcpu
->halt_poll_ns
;
2125 shrink
= READ_ONCE(halt_poll_ns_shrink
);
2131 vcpu
->halt_poll_ns
= val
;
2132 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
2135 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
2137 if (kvm_arch_vcpu_runnable(vcpu
)) {
2138 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
2141 if (kvm_cpu_has_pending_timer(vcpu
))
2143 if (signal_pending(current
))
2150 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2152 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2155 DECLARE_SWAITQUEUE(wait
);
2156 bool waited
= false;
2159 start
= cur
= ktime_get();
2160 if (vcpu
->halt_poll_ns
) {
2161 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2163 ++vcpu
->stat
.halt_attempted_poll
;
2166 * This sets KVM_REQ_UNHALT if an interrupt
2169 if (kvm_vcpu_check_block(vcpu
) < 0) {
2170 ++vcpu
->stat
.halt_successful_poll
;
2171 if (!vcpu_valid_wakeup(vcpu
))
2172 ++vcpu
->stat
.halt_poll_invalid
;
2176 } while (single_task_running() && ktime_before(cur
, stop
));
2179 kvm_arch_vcpu_blocking(vcpu
);
2182 prepare_to_swait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2184 if (kvm_vcpu_check_block(vcpu
) < 0)
2191 finish_swait(&vcpu
->wq
, &wait
);
2194 kvm_arch_vcpu_unblocking(vcpu
);
2196 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2198 if (!vcpu_valid_wakeup(vcpu
))
2199 shrink_halt_poll_ns(vcpu
);
2200 else if (halt_poll_ns
) {
2201 if (block_ns
<= vcpu
->halt_poll_ns
)
2203 /* we had a long block, shrink polling */
2204 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2205 shrink_halt_poll_ns(vcpu
);
2206 /* we had a short halt and our poll time is too small */
2207 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2208 block_ns
< halt_poll_ns
)
2209 grow_halt_poll_ns(vcpu
);
2211 vcpu
->halt_poll_ns
= 0;
2213 trace_kvm_vcpu_wakeup(block_ns
, waited
, vcpu_valid_wakeup(vcpu
));
2214 kvm_arch_vcpu_block_finish(vcpu
);
2216 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2218 bool kvm_vcpu_wake_up(struct kvm_vcpu
*vcpu
)
2220 struct swait_queue_head
*wqp
;
2222 wqp
= kvm_arch_vcpu_wq(vcpu
);
2223 if (swq_has_sleeper(wqp
)) {
2225 ++vcpu
->stat
.halt_wakeup
;
2231 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up
);
2235 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2237 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2240 int cpu
= vcpu
->cpu
;
2242 if (kvm_vcpu_wake_up(vcpu
))
2246 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2247 if (kvm_arch_vcpu_should_kick(vcpu
))
2248 smp_send_reschedule(cpu
);
2251 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2252 #endif /* !CONFIG_S390 */
2254 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2257 struct task_struct
*task
= NULL
;
2261 pid
= rcu_dereference(target
->pid
);
2263 task
= get_pid_task(pid
, PIDTYPE_PID
);
2267 ret
= yield_to(task
, 1);
2268 put_task_struct(task
);
2272 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2275 * Helper that checks whether a VCPU is eligible for directed yield.
2276 * Most eligible candidate to yield is decided by following heuristics:
2278 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2279 * (preempted lock holder), indicated by @in_spin_loop.
2280 * Set at the beiginning and cleared at the end of interception/PLE handler.
2282 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2283 * chance last time (mostly it has become eligible now since we have probably
2284 * yielded to lockholder in last iteration. This is done by toggling
2285 * @dy_eligible each time a VCPU checked for eligibility.)
2287 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2288 * to preempted lock-holder could result in wrong VCPU selection and CPU
2289 * burning. Giving priority for a potential lock-holder increases lock
2292 * Since algorithm is based on heuristics, accessing another VCPU data without
2293 * locking does not harm. It may result in trying to yield to same VCPU, fail
2294 * and continue with next VCPU and so on.
2296 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2298 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2301 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2302 vcpu
->spin_loop
.dy_eligible
;
2304 if (vcpu
->spin_loop
.in_spin_loop
)
2305 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2313 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
, bool yield_to_kernel_mode
)
2315 struct kvm
*kvm
= me
->kvm
;
2316 struct kvm_vcpu
*vcpu
;
2317 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2323 kvm_vcpu_set_in_spin_loop(me
, true);
2325 * We boost the priority of a VCPU that is runnable but not
2326 * currently running, because it got preempted by something
2327 * else and called schedule in __vcpu_run. Hopefully that
2328 * VCPU is holding the lock that we need and will release it.
2329 * We approximate round-robin by starting at the last boosted VCPU.
2331 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2332 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2333 if (!pass
&& i
<= last_boosted_vcpu
) {
2334 i
= last_boosted_vcpu
;
2336 } else if (pass
&& i
> last_boosted_vcpu
)
2338 if (!ACCESS_ONCE(vcpu
->preempted
))
2342 if (swait_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2344 if (yield_to_kernel_mode
&& !kvm_arch_vcpu_in_kernel(vcpu
))
2346 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2349 yielded
= kvm_vcpu_yield_to(vcpu
);
2351 kvm
->last_boosted_vcpu
= i
;
2353 } else if (yielded
< 0) {
2360 kvm_vcpu_set_in_spin_loop(me
, false);
2362 /* Ensure vcpu is not eligible during next spinloop */
2363 kvm_vcpu_set_dy_eligible(me
, false);
2365 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2367 static int kvm_vcpu_fault(struct vm_fault
*vmf
)
2369 struct kvm_vcpu
*vcpu
= vmf
->vma
->vm_file
->private_data
;
2372 if (vmf
->pgoff
== 0)
2373 page
= virt_to_page(vcpu
->run
);
2375 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2376 page
= virt_to_page(vcpu
->arch
.pio_data
);
2378 #ifdef CONFIG_KVM_MMIO
2379 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2380 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2383 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2389 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2390 .fault
= kvm_vcpu_fault
,
2393 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2395 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2399 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2401 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2403 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2404 kvm_put_kvm(vcpu
->kvm
);
2408 static struct file_operations kvm_vcpu_fops
= {
2409 .release
= kvm_vcpu_release
,
2410 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2411 #ifdef CONFIG_KVM_COMPAT
2412 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2414 .mmap
= kvm_vcpu_mmap
,
2415 .llseek
= noop_llseek
,
2419 * Allocates an inode for the vcpu.
2421 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2423 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2426 static int kvm_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
2428 char dir_name
[ITOA_MAX_LEN
* 2];
2431 if (!kvm_arch_has_vcpu_debugfs())
2434 if (!debugfs_initialized())
2437 snprintf(dir_name
, sizeof(dir_name
), "vcpu%d", vcpu
->vcpu_id
);
2438 vcpu
->debugfs_dentry
= debugfs_create_dir(dir_name
,
2439 vcpu
->kvm
->debugfs_dentry
);
2440 if (!vcpu
->debugfs_dentry
)
2443 ret
= kvm_arch_create_vcpu_debugfs(vcpu
);
2445 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2453 * Creates some virtual cpus. Good luck creating more than one.
2455 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2458 struct kvm_vcpu
*vcpu
;
2460 if (id
>= KVM_MAX_VCPU_ID
)
2463 mutex_lock(&kvm
->lock
);
2464 if (kvm
->created_vcpus
== KVM_MAX_VCPUS
) {
2465 mutex_unlock(&kvm
->lock
);
2469 kvm
->created_vcpus
++;
2470 mutex_unlock(&kvm
->lock
);
2472 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2475 goto vcpu_decrement
;
2478 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2480 r
= kvm_arch_vcpu_setup(vcpu
);
2484 r
= kvm_create_vcpu_debugfs(vcpu
);
2488 mutex_lock(&kvm
->lock
);
2489 if (kvm_get_vcpu_by_id(kvm
, id
)) {
2491 goto unlock_vcpu_destroy
;
2494 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2496 /* Now it's all set up, let userspace reach it */
2498 r
= create_vcpu_fd(vcpu
);
2501 goto unlock_vcpu_destroy
;
2504 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2507 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2508 * before kvm->online_vcpu's incremented value.
2511 atomic_inc(&kvm
->online_vcpus
);
2513 mutex_unlock(&kvm
->lock
);
2514 kvm_arch_vcpu_postcreate(vcpu
);
2517 unlock_vcpu_destroy
:
2518 mutex_unlock(&kvm
->lock
);
2519 debugfs_remove_recursive(vcpu
->debugfs_dentry
);
2521 kvm_arch_vcpu_destroy(vcpu
);
2523 mutex_lock(&kvm
->lock
);
2524 kvm
->created_vcpus
--;
2525 mutex_unlock(&kvm
->lock
);
2529 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2532 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2533 vcpu
->sigset_active
= 1;
2534 vcpu
->sigset
= *sigset
;
2536 vcpu
->sigset_active
= 0;
2540 static long kvm_vcpu_ioctl(struct file
*filp
,
2541 unsigned int ioctl
, unsigned long arg
)
2543 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2544 void __user
*argp
= (void __user
*)arg
;
2546 struct kvm_fpu
*fpu
= NULL
;
2547 struct kvm_sregs
*kvm_sregs
= NULL
;
2549 if (vcpu
->kvm
->mm
!= current
->mm
)
2552 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2555 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2557 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2558 * so vcpu_load() would break it.
2560 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2561 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2565 r
= vcpu_load(vcpu
);
2574 oldpid
= rcu_access_pointer(vcpu
->pid
);
2575 if (unlikely(oldpid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2576 /* The thread running this VCPU changed. */
2577 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2579 rcu_assign_pointer(vcpu
->pid
, newpid
);
2584 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2585 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2588 case KVM_GET_REGS
: {
2589 struct kvm_regs
*kvm_regs
;
2592 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2595 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2599 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2606 case KVM_SET_REGS
: {
2607 struct kvm_regs
*kvm_regs
;
2610 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2611 if (IS_ERR(kvm_regs
)) {
2612 r
= PTR_ERR(kvm_regs
);
2615 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2619 case KVM_GET_SREGS
: {
2620 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2624 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2628 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2633 case KVM_SET_SREGS
: {
2634 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2635 if (IS_ERR(kvm_sregs
)) {
2636 r
= PTR_ERR(kvm_sregs
);
2640 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2643 case KVM_GET_MP_STATE
: {
2644 struct kvm_mp_state mp_state
;
2646 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2650 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2655 case KVM_SET_MP_STATE
: {
2656 struct kvm_mp_state mp_state
;
2659 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2661 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2664 case KVM_TRANSLATE
: {
2665 struct kvm_translation tr
;
2668 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2670 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2674 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2679 case KVM_SET_GUEST_DEBUG
: {
2680 struct kvm_guest_debug dbg
;
2683 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2685 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2688 case KVM_SET_SIGNAL_MASK
: {
2689 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2690 struct kvm_signal_mask kvm_sigmask
;
2691 sigset_t sigset
, *p
;
2696 if (copy_from_user(&kvm_sigmask
, argp
,
2697 sizeof(kvm_sigmask
)))
2700 if (kvm_sigmask
.len
!= sizeof(sigset
))
2703 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2708 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2712 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2716 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2720 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2726 fpu
= memdup_user(argp
, sizeof(*fpu
));
2732 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2736 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2745 #ifdef CONFIG_KVM_COMPAT
2746 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2747 unsigned int ioctl
, unsigned long arg
)
2749 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2750 void __user
*argp
= compat_ptr(arg
);
2753 if (vcpu
->kvm
->mm
!= current
->mm
)
2757 case KVM_SET_SIGNAL_MASK
: {
2758 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2759 struct kvm_signal_mask kvm_sigmask
;
2760 compat_sigset_t csigset
;
2765 if (copy_from_user(&kvm_sigmask
, argp
,
2766 sizeof(kvm_sigmask
)))
2769 if (kvm_sigmask
.len
!= sizeof(csigset
))
2772 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2775 sigset_from_compat(&sigset
, &csigset
);
2776 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2778 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2782 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2790 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2791 int (*accessor
)(struct kvm_device
*dev
,
2792 struct kvm_device_attr
*attr
),
2795 struct kvm_device_attr attr
;
2800 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2803 return accessor(dev
, &attr
);
2806 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2809 struct kvm_device
*dev
= filp
->private_data
;
2812 case KVM_SET_DEVICE_ATTR
:
2813 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2814 case KVM_GET_DEVICE_ATTR
:
2815 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2816 case KVM_HAS_DEVICE_ATTR
:
2817 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2819 if (dev
->ops
->ioctl
)
2820 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2826 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2828 struct kvm_device
*dev
= filp
->private_data
;
2829 struct kvm
*kvm
= dev
->kvm
;
2835 static const struct file_operations kvm_device_fops
= {
2836 .unlocked_ioctl
= kvm_device_ioctl
,
2837 #ifdef CONFIG_KVM_COMPAT
2838 .compat_ioctl
= kvm_device_ioctl
,
2840 .release
= kvm_device_release
,
2843 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2845 if (filp
->f_op
!= &kvm_device_fops
)
2848 return filp
->private_data
;
2851 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2852 #ifdef CONFIG_KVM_MPIC
2853 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2854 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2858 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2860 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2863 if (kvm_device_ops_table
[type
] != NULL
)
2866 kvm_device_ops_table
[type
] = ops
;
2870 void kvm_unregister_device_ops(u32 type
)
2872 if (kvm_device_ops_table
[type
] != NULL
)
2873 kvm_device_ops_table
[type
] = NULL
;
2876 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2877 struct kvm_create_device
*cd
)
2879 struct kvm_device_ops
*ops
= NULL
;
2880 struct kvm_device
*dev
;
2881 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2884 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2887 ops
= kvm_device_ops_table
[cd
->type
];
2894 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2901 mutex_lock(&kvm
->lock
);
2902 ret
= ops
->create(dev
, cd
->type
);
2904 mutex_unlock(&kvm
->lock
);
2908 list_add(&dev
->vm_node
, &kvm
->devices
);
2909 mutex_unlock(&kvm
->lock
);
2914 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2916 mutex_lock(&kvm
->lock
);
2917 list_del(&dev
->vm_node
);
2918 mutex_unlock(&kvm
->lock
);
2928 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2931 case KVM_CAP_USER_MEMORY
:
2932 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2933 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2934 case KVM_CAP_INTERNAL_ERROR_DATA
:
2935 #ifdef CONFIG_HAVE_KVM_MSI
2936 case KVM_CAP_SIGNAL_MSI
:
2938 #ifdef CONFIG_HAVE_KVM_IRQFD
2940 case KVM_CAP_IRQFD_RESAMPLE
:
2942 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2943 case KVM_CAP_CHECK_EXTENSION_VM
:
2945 #ifdef CONFIG_KVM_MMIO
2946 case KVM_CAP_COALESCED_MMIO
:
2947 return KVM_COALESCED_MMIO_PAGE_OFFSET
;
2949 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2950 case KVM_CAP_IRQ_ROUTING
:
2951 return KVM_MAX_IRQ_ROUTES
;
2953 #if KVM_ADDRESS_SPACE_NUM > 1
2954 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2955 return KVM_ADDRESS_SPACE_NUM
;
2957 case KVM_CAP_MAX_VCPU_ID
:
2958 return KVM_MAX_VCPU_ID
;
2962 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2965 static long kvm_vm_ioctl(struct file
*filp
,
2966 unsigned int ioctl
, unsigned long arg
)
2968 struct kvm
*kvm
= filp
->private_data
;
2969 void __user
*argp
= (void __user
*)arg
;
2972 if (kvm
->mm
!= current
->mm
)
2975 case KVM_CREATE_VCPU
:
2976 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2978 case KVM_SET_USER_MEMORY_REGION
: {
2979 struct kvm_userspace_memory_region kvm_userspace_mem
;
2982 if (copy_from_user(&kvm_userspace_mem
, argp
,
2983 sizeof(kvm_userspace_mem
)))
2986 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2989 case KVM_GET_DIRTY_LOG
: {
2990 struct kvm_dirty_log log
;
2993 if (copy_from_user(&log
, argp
, sizeof(log
)))
2995 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2998 #ifdef CONFIG_KVM_MMIO
2999 case KVM_REGISTER_COALESCED_MMIO
: {
3000 struct kvm_coalesced_mmio_zone zone
;
3003 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3005 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
3008 case KVM_UNREGISTER_COALESCED_MMIO
: {
3009 struct kvm_coalesced_mmio_zone zone
;
3012 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
3014 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
3019 struct kvm_irqfd data
;
3022 if (copy_from_user(&data
, argp
, sizeof(data
)))
3024 r
= kvm_irqfd(kvm
, &data
);
3027 case KVM_IOEVENTFD
: {
3028 struct kvm_ioeventfd data
;
3031 if (copy_from_user(&data
, argp
, sizeof(data
)))
3033 r
= kvm_ioeventfd(kvm
, &data
);
3036 #ifdef CONFIG_HAVE_KVM_MSI
3037 case KVM_SIGNAL_MSI
: {
3041 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
3043 r
= kvm_send_userspace_msi(kvm
, &msi
);
3047 #ifdef __KVM_HAVE_IRQ_LINE
3048 case KVM_IRQ_LINE_STATUS
:
3049 case KVM_IRQ_LINE
: {
3050 struct kvm_irq_level irq_event
;
3053 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
3056 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
3057 ioctl
== KVM_IRQ_LINE_STATUS
);
3062 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
3063 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
3071 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3072 case KVM_SET_GSI_ROUTING
: {
3073 struct kvm_irq_routing routing
;
3074 struct kvm_irq_routing __user
*urouting
;
3075 struct kvm_irq_routing_entry
*entries
= NULL
;
3078 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
3081 if (!kvm_arch_can_set_irq_routing(kvm
))
3083 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
3089 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
3094 if (copy_from_user(entries
, urouting
->entries
,
3095 routing
.nr
* sizeof(*entries
)))
3096 goto out_free_irq_routing
;
3098 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
3100 out_free_irq_routing
:
3104 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3105 case KVM_CREATE_DEVICE
: {
3106 struct kvm_create_device cd
;
3109 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
3112 r
= kvm_ioctl_create_device(kvm
, &cd
);
3117 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
3123 case KVM_CHECK_EXTENSION
:
3124 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
3127 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
3133 #ifdef CONFIG_KVM_COMPAT
3134 struct compat_kvm_dirty_log
{
3138 compat_uptr_t dirty_bitmap
; /* one bit per page */
3143 static long kvm_vm_compat_ioctl(struct file
*filp
,
3144 unsigned int ioctl
, unsigned long arg
)
3146 struct kvm
*kvm
= filp
->private_data
;
3149 if (kvm
->mm
!= current
->mm
)
3152 case KVM_GET_DIRTY_LOG
: {
3153 struct compat_kvm_dirty_log compat_log
;
3154 struct kvm_dirty_log log
;
3156 if (copy_from_user(&compat_log
, (void __user
*)arg
,
3157 sizeof(compat_log
)))
3159 log
.slot
= compat_log
.slot
;
3160 log
.padding1
= compat_log
.padding1
;
3161 log
.padding2
= compat_log
.padding2
;
3162 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
3164 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3168 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
3174 static struct file_operations kvm_vm_fops
= {
3175 .release
= kvm_vm_release
,
3176 .unlocked_ioctl
= kvm_vm_ioctl
,
3177 #ifdef CONFIG_KVM_COMPAT
3178 .compat_ioctl
= kvm_vm_compat_ioctl
,
3180 .llseek
= noop_llseek
,
3183 static int kvm_dev_ioctl_create_vm(unsigned long type
)
3189 kvm
= kvm_create_vm(type
);
3191 return PTR_ERR(kvm
);
3192 #ifdef CONFIG_KVM_MMIO
3193 r
= kvm_coalesced_mmio_init(kvm
);
3199 r
= get_unused_fd_flags(O_CLOEXEC
);
3204 file
= anon_inode_getfile("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
3208 return PTR_ERR(file
);
3212 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3213 * already set, with ->release() being kvm_vm_release(). In error
3214 * cases it will be called by the final fput(file) and will take
3215 * care of doing kvm_put_kvm(kvm).
3217 if (kvm_create_vm_debugfs(kvm
, r
) < 0) {
3222 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM
, kvm
);
3224 fd_install(r
, file
);
3228 static long kvm_dev_ioctl(struct file
*filp
,
3229 unsigned int ioctl
, unsigned long arg
)
3234 case KVM_GET_API_VERSION
:
3237 r
= KVM_API_VERSION
;
3240 r
= kvm_dev_ioctl_create_vm(arg
);
3242 case KVM_CHECK_EXTENSION
:
3243 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3245 case KVM_GET_VCPU_MMAP_SIZE
:
3248 r
= PAGE_SIZE
; /* struct kvm_run */
3250 r
+= PAGE_SIZE
; /* pio data page */
3252 #ifdef CONFIG_KVM_MMIO
3253 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3256 case KVM_TRACE_ENABLE
:
3257 case KVM_TRACE_PAUSE
:
3258 case KVM_TRACE_DISABLE
:
3262 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3268 static struct file_operations kvm_chardev_ops
= {
3269 .unlocked_ioctl
= kvm_dev_ioctl
,
3270 .compat_ioctl
= kvm_dev_ioctl
,
3271 .llseek
= noop_llseek
,
3274 static struct miscdevice kvm_dev
= {
3280 static void hardware_enable_nolock(void *junk
)
3282 int cpu
= raw_smp_processor_id();
3285 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3288 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3290 r
= kvm_arch_hardware_enable();
3293 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3294 atomic_inc(&hardware_enable_failed
);
3295 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3299 static int kvm_starting_cpu(unsigned int cpu
)
3301 raw_spin_lock(&kvm_count_lock
);
3302 if (kvm_usage_count
)
3303 hardware_enable_nolock(NULL
);
3304 raw_spin_unlock(&kvm_count_lock
);
3308 static void hardware_disable_nolock(void *junk
)
3310 int cpu
= raw_smp_processor_id();
3312 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3314 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3315 kvm_arch_hardware_disable();
3318 static int kvm_dying_cpu(unsigned int cpu
)
3320 raw_spin_lock(&kvm_count_lock
);
3321 if (kvm_usage_count
)
3322 hardware_disable_nolock(NULL
);
3323 raw_spin_unlock(&kvm_count_lock
);
3327 static void hardware_disable_all_nolock(void)
3329 BUG_ON(!kvm_usage_count
);
3332 if (!kvm_usage_count
)
3333 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3336 static void hardware_disable_all(void)
3338 raw_spin_lock(&kvm_count_lock
);
3339 hardware_disable_all_nolock();
3340 raw_spin_unlock(&kvm_count_lock
);
3343 static int hardware_enable_all(void)
3347 raw_spin_lock(&kvm_count_lock
);
3350 if (kvm_usage_count
== 1) {
3351 atomic_set(&hardware_enable_failed
, 0);
3352 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3354 if (atomic_read(&hardware_enable_failed
)) {
3355 hardware_disable_all_nolock();
3360 raw_spin_unlock(&kvm_count_lock
);
3365 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3369 * Some (well, at least mine) BIOSes hang on reboot if
3372 * And Intel TXT required VMX off for all cpu when system shutdown.
3374 pr_info("kvm: exiting hardware virtualization\n");
3375 kvm_rebooting
= true;
3376 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3380 static struct notifier_block kvm_reboot_notifier
= {
3381 .notifier_call
= kvm_reboot
,
3385 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3389 for (i
= 0; i
< bus
->dev_count
; i
++) {
3390 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3392 kvm_iodevice_destructor(pos
);
3397 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3398 const struct kvm_io_range
*r2
)
3400 gpa_t addr1
= r1
->addr
;
3401 gpa_t addr2
= r2
->addr
;
3406 /* If r2->len == 0, match the exact address. If r2->len != 0,
3407 * accept any overlapping write. Any order is acceptable for
3408 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3409 * we process all of them.
3422 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3424 return kvm_io_bus_cmp(p1
, p2
);
3427 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
3428 gpa_t addr
, int len
)
3430 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
3436 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
3437 kvm_io_bus_sort_cmp
, NULL
);
3442 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3443 gpa_t addr
, int len
)
3445 struct kvm_io_range
*range
, key
;
3448 key
= (struct kvm_io_range
) {
3453 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3454 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3458 off
= range
- bus
->range
;
3460 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3466 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3467 struct kvm_io_range
*range
, const void *val
)
3471 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3475 while (idx
< bus
->dev_count
&&
3476 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3477 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3486 /* kvm_io_bus_write - called under kvm->slots_lock */
3487 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3488 int len
, const void *val
)
3490 struct kvm_io_bus
*bus
;
3491 struct kvm_io_range range
;
3494 range
= (struct kvm_io_range
) {
3499 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3502 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3503 return r
< 0 ? r
: 0;
3506 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3507 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3508 gpa_t addr
, int len
, const void *val
, long cookie
)
3510 struct kvm_io_bus
*bus
;
3511 struct kvm_io_range range
;
3513 range
= (struct kvm_io_range
) {
3518 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3522 /* First try the device referenced by cookie. */
3523 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3524 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3525 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3530 * cookie contained garbage; fall back to search and return the
3531 * correct cookie value.
3533 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3536 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3537 struct kvm_io_range
*range
, void *val
)
3541 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3545 while (idx
< bus
->dev_count
&&
3546 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3547 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3555 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3557 /* kvm_io_bus_read - called under kvm->slots_lock */
3558 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3561 struct kvm_io_bus
*bus
;
3562 struct kvm_io_range range
;
3565 range
= (struct kvm_io_range
) {
3570 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3573 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3574 return r
< 0 ? r
: 0;
3578 /* Caller must hold slots_lock. */
3579 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3580 int len
, struct kvm_io_device
*dev
)
3582 struct kvm_io_bus
*new_bus
, *bus
;
3584 bus
= kvm_get_bus(kvm
, bus_idx
);
3588 /* exclude ioeventfd which is limited by maximum fd */
3589 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3592 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3593 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3596 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3597 sizeof(struct kvm_io_range
)));
3598 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3599 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3600 synchronize_srcu_expedited(&kvm
->srcu
);
3606 /* Caller must hold slots_lock. */
3607 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3608 struct kvm_io_device
*dev
)
3611 struct kvm_io_bus
*new_bus
, *bus
;
3613 bus
= kvm_get_bus(kvm
, bus_idx
);
3617 for (i
= 0; i
< bus
->dev_count
; i
++)
3618 if (bus
->range
[i
].dev
== dev
) {
3622 if (i
== bus
->dev_count
)
3625 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3626 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3628 pr_err("kvm: failed to shrink bus, removing it completely\n");
3632 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3633 new_bus
->dev_count
--;
3634 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3635 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3638 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3639 synchronize_srcu_expedited(&kvm
->srcu
);
3644 struct kvm_io_device
*kvm_io_bus_get_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3647 struct kvm_io_bus
*bus
;
3648 int dev_idx
, srcu_idx
;
3649 struct kvm_io_device
*iodev
= NULL
;
3651 srcu_idx
= srcu_read_lock(&kvm
->srcu
);
3653 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
3657 dev_idx
= kvm_io_bus_get_first_dev(bus
, addr
, 1);
3661 iodev
= bus
->range
[dev_idx
].dev
;
3664 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
3668 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev
);
3670 static int kvm_debugfs_open(struct inode
*inode
, struct file
*file
,
3671 int (*get
)(void *, u64
*), int (*set
)(void *, u64
),
3674 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3677 /* The debugfs files are a reference to the kvm struct which
3678 * is still valid when kvm_destroy_vm is called.
3679 * To avoid the race between open and the removal of the debugfs
3680 * directory we test against the users count.
3682 if (!refcount_inc_not_zero(&stat_data
->kvm
->users_count
))
3685 if (simple_attr_open(inode
, file
, get
, set
, fmt
)) {
3686 kvm_put_kvm(stat_data
->kvm
);
3693 static int kvm_debugfs_release(struct inode
*inode
, struct file
*file
)
3695 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)
3698 simple_attr_release(inode
, file
);
3699 kvm_put_kvm(stat_data
->kvm
);
3704 static int vm_stat_get_per_vm(void *data
, u64
*val
)
3706 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3708 *val
= *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
);
3713 static int vm_stat_clear_per_vm(void *data
, u64 val
)
3715 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3720 *(ulong
*)((void *)stat_data
->kvm
+ stat_data
->offset
) = 0;
3725 static int vm_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3727 __simple_attr_check_format("%llu\n", 0ull);
3728 return kvm_debugfs_open(inode
, file
, vm_stat_get_per_vm
,
3729 vm_stat_clear_per_vm
, "%llu\n");
3732 static const struct file_operations vm_stat_get_per_vm_fops
= {
3733 .owner
= THIS_MODULE
,
3734 .open
= vm_stat_get_per_vm_open
,
3735 .release
= kvm_debugfs_release
,
3736 .read
= simple_attr_read
,
3737 .write
= simple_attr_write
,
3738 .llseek
= no_llseek
,
3741 static int vcpu_stat_get_per_vm(void *data
, u64
*val
)
3744 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3745 struct kvm_vcpu
*vcpu
;
3749 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3750 *val
+= *(u64
*)((void *)vcpu
+ stat_data
->offset
);
3755 static int vcpu_stat_clear_per_vm(void *data
, u64 val
)
3758 struct kvm_stat_data
*stat_data
= (struct kvm_stat_data
*)data
;
3759 struct kvm_vcpu
*vcpu
;
3764 kvm_for_each_vcpu(i
, vcpu
, stat_data
->kvm
)
3765 *(u64
*)((void *)vcpu
+ stat_data
->offset
) = 0;
3770 static int vcpu_stat_get_per_vm_open(struct inode
*inode
, struct file
*file
)
3772 __simple_attr_check_format("%llu\n", 0ull);
3773 return kvm_debugfs_open(inode
, file
, vcpu_stat_get_per_vm
,
3774 vcpu_stat_clear_per_vm
, "%llu\n");
3777 static const struct file_operations vcpu_stat_get_per_vm_fops
= {
3778 .owner
= THIS_MODULE
,
3779 .open
= vcpu_stat_get_per_vm_open
,
3780 .release
= kvm_debugfs_release
,
3781 .read
= simple_attr_read
,
3782 .write
= simple_attr_write
,
3783 .llseek
= no_llseek
,
3786 static const struct file_operations
*stat_fops_per_vm
[] = {
3787 [KVM_STAT_VCPU
] = &vcpu_stat_get_per_vm_fops
,
3788 [KVM_STAT_VM
] = &vm_stat_get_per_vm_fops
,
3791 static int vm_stat_get(void *_offset
, u64
*val
)
3793 unsigned offset
= (long)_offset
;
3795 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3799 spin_lock(&kvm_lock
);
3800 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3802 vm_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3805 spin_unlock(&kvm_lock
);
3809 static int vm_stat_clear(void *_offset
, u64 val
)
3811 unsigned offset
= (long)_offset
;
3813 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3818 spin_lock(&kvm_lock
);
3819 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3821 vm_stat_clear_per_vm((void *)&stat_tmp
, 0);
3823 spin_unlock(&kvm_lock
);
3828 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, vm_stat_clear
, "%llu\n");
3830 static int vcpu_stat_get(void *_offset
, u64
*val
)
3832 unsigned offset
= (long)_offset
;
3834 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3838 spin_lock(&kvm_lock
);
3839 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3841 vcpu_stat_get_per_vm((void *)&stat_tmp
, &tmp_val
);
3844 spin_unlock(&kvm_lock
);
3848 static int vcpu_stat_clear(void *_offset
, u64 val
)
3850 unsigned offset
= (long)_offset
;
3852 struct kvm_stat_data stat_tmp
= {.offset
= offset
};
3857 spin_lock(&kvm_lock
);
3858 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3860 vcpu_stat_clear_per_vm((void *)&stat_tmp
, 0);
3862 spin_unlock(&kvm_lock
);
3867 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, vcpu_stat_clear
,
3870 static const struct file_operations
*stat_fops
[] = {
3871 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3872 [KVM_STAT_VM
] = &vm_stat_fops
,
3875 static void kvm_uevent_notify_change(unsigned int type
, struct kvm
*kvm
)
3877 struct kobj_uevent_env
*env
;
3878 unsigned long long created
, active
;
3880 if (!kvm_dev
.this_device
|| !kvm
)
3883 spin_lock(&kvm_lock
);
3884 if (type
== KVM_EVENT_CREATE_VM
) {
3885 kvm_createvm_count
++;
3887 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3890 created
= kvm_createvm_count
;
3891 active
= kvm_active_vms
;
3892 spin_unlock(&kvm_lock
);
3894 env
= kzalloc(sizeof(*env
), GFP_KERNEL
);
3898 add_uevent_var(env
, "CREATED=%llu", created
);
3899 add_uevent_var(env
, "COUNT=%llu", active
);
3901 if (type
== KVM_EVENT_CREATE_VM
) {
3902 add_uevent_var(env
, "EVENT=create");
3903 kvm
->userspace_pid
= task_pid_nr(current
);
3904 } else if (type
== KVM_EVENT_DESTROY_VM
) {
3905 add_uevent_var(env
, "EVENT=destroy");
3907 add_uevent_var(env
, "PID=%d", kvm
->userspace_pid
);
3909 if (kvm
->debugfs_dentry
) {
3910 char *tmp
, *p
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3913 tmp
= dentry_path_raw(kvm
->debugfs_dentry
, p
, PATH_MAX
);
3915 add_uevent_var(env
, "STATS_PATH=%s", tmp
);
3919 /* no need for checks, since we are adding at most only 5 keys */
3920 env
->envp
[env
->envp_idx
++] = NULL
;
3921 kobject_uevent_env(&kvm_dev
.this_device
->kobj
, KOBJ_CHANGE
, env
->envp
);
3925 static int kvm_init_debug(void)
3928 struct kvm_stats_debugfs_item
*p
;
3930 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3931 if (kvm_debugfs_dir
== NULL
)
3934 kvm_debugfs_num_entries
= 0;
3935 for (p
= debugfs_entries
; p
->name
; ++p
, kvm_debugfs_num_entries
++) {
3936 if (!debugfs_create_file(p
->name
, 0644, kvm_debugfs_dir
,
3937 (void *)(long)p
->offset
,
3938 stat_fops
[p
->kind
]))
3945 debugfs_remove_recursive(kvm_debugfs_dir
);
3950 static int kvm_suspend(void)
3952 if (kvm_usage_count
)
3953 hardware_disable_nolock(NULL
);
3957 static void kvm_resume(void)
3959 if (kvm_usage_count
) {
3960 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3961 hardware_enable_nolock(NULL
);
3965 static struct syscore_ops kvm_syscore_ops
= {
3966 .suspend
= kvm_suspend
,
3967 .resume
= kvm_resume
,
3971 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3973 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3976 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3978 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3980 if (vcpu
->preempted
)
3981 vcpu
->preempted
= false;
3983 kvm_arch_sched_in(vcpu
, cpu
);
3985 kvm_arch_vcpu_load(vcpu
, cpu
);
3988 static void kvm_sched_out(struct preempt_notifier
*pn
,
3989 struct task_struct
*next
)
3991 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3993 if (current
->state
== TASK_RUNNING
)
3994 vcpu
->preempted
= true;
3995 kvm_arch_vcpu_put(vcpu
);
3998 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3999 struct module
*module
)
4004 r
= kvm_arch_init(opaque
);
4009 * kvm_arch_init makes sure there's at most one caller
4010 * for architectures that support multiple implementations,
4011 * like intel and amd on x86.
4012 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4013 * conflicts in case kvm is already setup for another implementation.
4015 r
= kvm_irqfd_init();
4019 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
4024 r
= kvm_arch_hardware_setup();
4028 for_each_online_cpu(cpu
) {
4029 smp_call_function_single(cpu
,
4030 kvm_arch_check_processor_compat
,
4036 r
= cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING
, "kvm/cpu:starting",
4037 kvm_starting_cpu
, kvm_dying_cpu
);
4040 register_reboot_notifier(&kvm_reboot_notifier
);
4042 /* A kmem cache lets us meet the alignment requirements of fx_save. */
4044 vcpu_align
= __alignof__(struct kvm_vcpu
);
4045 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
4046 SLAB_ACCOUNT
, NULL
);
4047 if (!kvm_vcpu_cache
) {
4052 r
= kvm_async_pf_init();
4056 kvm_chardev_ops
.owner
= module
;
4057 kvm_vm_fops
.owner
= module
;
4058 kvm_vcpu_fops
.owner
= module
;
4060 r
= misc_register(&kvm_dev
);
4062 pr_err("kvm: misc device register failed\n");
4066 register_syscore_ops(&kvm_syscore_ops
);
4068 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
4069 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
4071 r
= kvm_init_debug();
4073 pr_err("kvm: create debugfs files failed\n");
4077 r
= kvm_vfio_ops_init();
4083 unregister_syscore_ops(&kvm_syscore_ops
);
4084 misc_deregister(&kvm_dev
);
4086 kvm_async_pf_deinit();
4088 kmem_cache_destroy(kvm_vcpu_cache
);
4090 unregister_reboot_notifier(&kvm_reboot_notifier
);
4091 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4094 kvm_arch_hardware_unsetup();
4096 free_cpumask_var(cpus_hardware_enabled
);
4104 EXPORT_SYMBOL_GPL(kvm_init
);
4108 debugfs_remove_recursive(kvm_debugfs_dir
);
4109 misc_deregister(&kvm_dev
);
4110 kmem_cache_destroy(kvm_vcpu_cache
);
4111 kvm_async_pf_deinit();
4112 unregister_syscore_ops(&kvm_syscore_ops
);
4113 unregister_reboot_notifier(&kvm_reboot_notifier
);
4114 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING
);
4115 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
4116 kvm_arch_hardware_unsetup();
4119 free_cpumask_var(cpus_hardware_enabled
);
4120 kvm_vfio_ops_exit();
4122 EXPORT_SYMBOL_GPL(kvm_exit
);