rt2x00usb: fix anchor initialization
[linux/fpc-iii.git] / net / mac80211 / sta_info.c
blob8e05032689f08677d37942c1549812bfee43cf05
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 * Copyright (C) 2015 - 2016 Intel Deutschland GmbH
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/etherdevice.h>
15 #include <linux/netdevice.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/timer.h>
21 #include <linux/rtnetlink.h>
23 #include <net/mac80211.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "rate.h"
27 #include "sta_info.h"
28 #include "debugfs_sta.h"
29 #include "mesh.h"
30 #include "wme.h"
32 /**
33 * DOC: STA information lifetime rules
35 * STA info structures (&struct sta_info) are managed in a hash table
36 * for faster lookup and a list for iteration. They are managed using
37 * RCU, i.e. access to the list and hash table is protected by RCU.
39 * Upon allocating a STA info structure with sta_info_alloc(), the caller
40 * owns that structure. It must then insert it into the hash table using
41 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
42 * case (which acquires an rcu read section but must not be called from
43 * within one) will the pointer still be valid after the call. Note that
44 * the caller may not do much with the STA info before inserting it, in
45 * particular, it may not start any mesh peer link management or add
46 * encryption keys.
48 * When the insertion fails (sta_info_insert()) returns non-zero), the
49 * structure will have been freed by sta_info_insert()!
51 * Station entries are added by mac80211 when you establish a link with a
52 * peer. This means different things for the different type of interfaces
53 * we support. For a regular station this mean we add the AP sta when we
54 * receive an association response from the AP. For IBSS this occurs when
55 * get to know about a peer on the same IBSS. For WDS we add the sta for
56 * the peer immediately upon device open. When using AP mode we add stations
57 * for each respective station upon request from userspace through nl80211.
59 * In order to remove a STA info structure, various sta_info_destroy_*()
60 * calls are available.
62 * There is no concept of ownership on a STA entry, each structure is
63 * owned by the global hash table/list until it is removed. All users of
64 * the structure need to be RCU protected so that the structure won't be
65 * freed before they are done using it.
68 static const struct rhashtable_params sta_rht_params = {
69 .nelem_hint = 3, /* start small */
70 .automatic_shrinking = true,
71 .head_offset = offsetof(struct sta_info, hash_node),
72 .key_offset = offsetof(struct sta_info, addr),
73 .key_len = ETH_ALEN,
74 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
77 /* Caller must hold local->sta_mtx */
78 static int sta_info_hash_del(struct ieee80211_local *local,
79 struct sta_info *sta)
81 return rhltable_remove(&local->sta_hash, &sta->hash_node,
82 sta_rht_params);
85 static void __cleanup_single_sta(struct sta_info *sta)
87 int ac, i;
88 struct tid_ampdu_tx *tid_tx;
89 struct ieee80211_sub_if_data *sdata = sta->sdata;
90 struct ieee80211_local *local = sdata->local;
91 struct fq *fq = &local->fq;
92 struct ps_data *ps;
94 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
95 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
96 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
97 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
98 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
99 ps = &sdata->bss->ps;
100 else if (ieee80211_vif_is_mesh(&sdata->vif))
101 ps = &sdata->u.mesh.ps;
102 else
103 return;
105 clear_sta_flag(sta, WLAN_STA_PS_STA);
106 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
107 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
109 atomic_dec(&ps->num_sta_ps);
112 if (sta->sta.txq[0]) {
113 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
114 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
116 spin_lock_bh(&fq->lock);
117 ieee80211_txq_purge(local, txqi);
118 spin_unlock_bh(&fq->lock);
122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
128 if (ieee80211_vif_is_mesh(&sdata->vif))
129 mesh_sta_cleanup(sta);
131 cancel_work_sync(&sta->drv_deliver_wk);
134 * Destroy aggregation state here. It would be nice to wait for the
135 * driver to finish aggregation stop and then clean up, but for now
136 * drivers have to handle aggregation stop being requested, followed
137 * directly by station destruction.
139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
140 kfree(sta->ampdu_mlme.tid_start_tx[i]);
141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
142 if (!tid_tx)
143 continue;
144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
145 kfree(tid_tx);
149 static void cleanup_single_sta(struct sta_info *sta)
151 struct ieee80211_sub_if_data *sdata = sta->sdata;
152 struct ieee80211_local *local = sdata->local;
154 __cleanup_single_sta(sta);
155 sta_info_free(local, sta);
158 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
159 const u8 *addr)
161 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
164 /* protected by RCU */
165 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
166 const u8 *addr)
168 struct ieee80211_local *local = sdata->local;
169 struct rhlist_head *tmp;
170 struct sta_info *sta;
172 rcu_read_lock();
173 for_each_sta_info(local, addr, sta, tmp) {
174 if (sta->sdata == sdata) {
175 rcu_read_unlock();
176 /* this is safe as the caller must already hold
177 * another rcu read section or the mutex
179 return sta;
182 rcu_read_unlock();
183 return NULL;
187 * Get sta info either from the specified interface
188 * or from one of its vlans
190 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
191 const u8 *addr)
193 struct ieee80211_local *local = sdata->local;
194 struct rhlist_head *tmp;
195 struct sta_info *sta;
197 rcu_read_lock();
198 for_each_sta_info(local, addr, sta, tmp) {
199 if (sta->sdata == sdata ||
200 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
201 rcu_read_unlock();
202 /* this is safe as the caller must already hold
203 * another rcu read section or the mutex
205 return sta;
208 rcu_read_unlock();
209 return NULL;
212 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
213 int idx)
215 struct ieee80211_local *local = sdata->local;
216 struct sta_info *sta;
217 int i = 0;
219 list_for_each_entry_rcu(sta, &local->sta_list, list) {
220 if (sdata != sta->sdata)
221 continue;
222 if (i < idx) {
223 ++i;
224 continue;
226 return sta;
229 return NULL;
233 * sta_info_free - free STA
235 * @local: pointer to the global information
236 * @sta: STA info to free
238 * This function must undo everything done by sta_info_alloc()
239 * that may happen before sta_info_insert(). It may only be
240 * called when sta_info_insert() has not been attempted (and
241 * if that fails, the station is freed anyway.)
243 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
245 if (sta->rate_ctrl)
246 rate_control_free_sta(sta);
248 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
250 if (sta->sta.txq[0])
251 kfree(to_txq_info(sta->sta.txq[0]));
252 kfree(rcu_dereference_raw(sta->sta.rates));
253 #ifdef CONFIG_MAC80211_MESH
254 kfree(sta->mesh);
255 #endif
256 free_percpu(sta->pcpu_rx_stats);
257 kfree(sta);
260 /* Caller must hold local->sta_mtx */
261 static int sta_info_hash_add(struct ieee80211_local *local,
262 struct sta_info *sta)
264 return rhltable_insert(&local->sta_hash, &sta->hash_node,
265 sta_rht_params);
268 static void sta_deliver_ps_frames(struct work_struct *wk)
270 struct sta_info *sta;
272 sta = container_of(wk, struct sta_info, drv_deliver_wk);
274 if (sta->dead)
275 return;
277 local_bh_disable();
278 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
279 ieee80211_sta_ps_deliver_wakeup(sta);
280 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
281 ieee80211_sta_ps_deliver_poll_response(sta);
282 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
283 ieee80211_sta_ps_deliver_uapsd(sta);
284 local_bh_enable();
287 static int sta_prepare_rate_control(struct ieee80211_local *local,
288 struct sta_info *sta, gfp_t gfp)
290 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
291 return 0;
293 sta->rate_ctrl = local->rate_ctrl;
294 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
295 sta, gfp);
296 if (!sta->rate_ctrl_priv)
297 return -ENOMEM;
299 return 0;
302 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
303 const u8 *addr, gfp_t gfp)
305 struct ieee80211_local *local = sdata->local;
306 struct ieee80211_hw *hw = &local->hw;
307 struct sta_info *sta;
308 int i;
310 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
311 if (!sta)
312 return NULL;
314 if (ieee80211_hw_check(hw, USES_RSS)) {
315 sta->pcpu_rx_stats =
316 alloc_percpu(struct ieee80211_sta_rx_stats);
317 if (!sta->pcpu_rx_stats)
318 goto free;
321 spin_lock_init(&sta->lock);
322 spin_lock_init(&sta->ps_lock);
323 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
324 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
325 mutex_init(&sta->ampdu_mlme.mtx);
326 #ifdef CONFIG_MAC80211_MESH
327 if (ieee80211_vif_is_mesh(&sdata->vif)) {
328 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
329 if (!sta->mesh)
330 goto free;
331 spin_lock_init(&sta->mesh->plink_lock);
332 if (ieee80211_vif_is_mesh(&sdata->vif) &&
333 !sdata->u.mesh.user_mpm)
334 init_timer(&sta->mesh->plink_timer);
335 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
337 #endif
339 memcpy(sta->addr, addr, ETH_ALEN);
340 memcpy(sta->sta.addr, addr, ETH_ALEN);
341 sta->sta.max_rx_aggregation_subframes =
342 local->hw.max_rx_aggregation_subframes;
344 sta->local = local;
345 sta->sdata = sdata;
346 sta->rx_stats.last_rx = jiffies;
348 u64_stats_init(&sta->rx_stats.syncp);
350 sta->sta_state = IEEE80211_STA_NONE;
352 /* Mark TID as unreserved */
353 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
355 sta->last_connected = ktime_get_seconds();
356 ewma_signal_init(&sta->rx_stats_avg.signal);
357 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
358 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
360 if (local->ops->wake_tx_queue) {
361 void *txq_data;
362 int size = sizeof(struct txq_info) +
363 ALIGN(hw->txq_data_size, sizeof(void *));
365 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
366 if (!txq_data)
367 goto free;
369 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
370 struct txq_info *txq = txq_data + i * size;
372 ieee80211_txq_init(sdata, sta, txq, i);
376 if (sta_prepare_rate_control(local, sta, gfp))
377 goto free_txq;
379 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
381 * timer_to_tid must be initialized with identity mapping
382 * to enable session_timer's data differentiation. See
383 * sta_rx_agg_session_timer_expired for usage.
385 sta->timer_to_tid[i] = i;
387 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
388 skb_queue_head_init(&sta->ps_tx_buf[i]);
389 skb_queue_head_init(&sta->tx_filtered[i]);
392 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
393 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
395 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
396 if (sdata->vif.type == NL80211_IFTYPE_AP ||
397 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
398 struct ieee80211_supported_band *sband =
399 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)];
400 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
401 IEEE80211_HT_CAP_SM_PS_SHIFT;
403 * Assume that hostapd advertises our caps in the beacon and
404 * this is the known_smps_mode for a station that just assciated
406 switch (smps) {
407 case WLAN_HT_SMPS_CONTROL_DISABLED:
408 sta->known_smps_mode = IEEE80211_SMPS_OFF;
409 break;
410 case WLAN_HT_SMPS_CONTROL_STATIC:
411 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
412 break;
413 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
414 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
415 break;
416 default:
417 WARN_ON(1);
421 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
423 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
425 return sta;
427 free_txq:
428 if (sta->sta.txq[0])
429 kfree(to_txq_info(sta->sta.txq[0]));
430 free:
431 #ifdef CONFIG_MAC80211_MESH
432 kfree(sta->mesh);
433 #endif
434 kfree(sta);
435 return NULL;
438 static int sta_info_insert_check(struct sta_info *sta)
440 struct ieee80211_sub_if_data *sdata = sta->sdata;
443 * Can't be a WARN_ON because it can be triggered through a race:
444 * something inserts a STA (on one CPU) without holding the RTNL
445 * and another CPU turns off the net device.
447 if (unlikely(!ieee80211_sdata_running(sdata)))
448 return -ENETDOWN;
450 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
451 is_multicast_ether_addr(sta->sta.addr)))
452 return -EINVAL;
454 /* The RCU read lock is required by rhashtable due to
455 * asynchronous resize/rehash. We also require the mutex
456 * for correctness.
458 rcu_read_lock();
459 lockdep_assert_held(&sdata->local->sta_mtx);
460 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
461 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
462 rcu_read_unlock();
463 return -ENOTUNIQ;
465 rcu_read_unlock();
467 return 0;
470 static int sta_info_insert_drv_state(struct ieee80211_local *local,
471 struct ieee80211_sub_if_data *sdata,
472 struct sta_info *sta)
474 enum ieee80211_sta_state state;
475 int err = 0;
477 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
478 err = drv_sta_state(local, sdata, sta, state, state + 1);
479 if (err)
480 break;
483 if (!err) {
485 * Drivers using legacy sta_add/sta_remove callbacks only
486 * get uploaded set to true after sta_add is called.
488 if (!local->ops->sta_add)
489 sta->uploaded = true;
490 return 0;
493 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
494 sdata_info(sdata,
495 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
496 sta->sta.addr, state + 1, err);
497 err = 0;
500 /* unwind on error */
501 for (; state > IEEE80211_STA_NOTEXIST; state--)
502 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
504 return err;
508 * should be called with sta_mtx locked
509 * this function replaces the mutex lock
510 * with a RCU lock
512 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
514 struct ieee80211_local *local = sta->local;
515 struct ieee80211_sub_if_data *sdata = sta->sdata;
516 struct station_info *sinfo;
517 int err = 0;
519 lockdep_assert_held(&local->sta_mtx);
521 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
522 if (!sinfo) {
523 err = -ENOMEM;
524 goto out_err;
527 /* check if STA exists already */
528 if (sta_info_get_bss(sdata, sta->sta.addr)) {
529 err = -EEXIST;
530 goto out_err;
533 local->num_sta++;
534 local->sta_generation++;
535 smp_mb();
537 /* simplify things and don't accept BA sessions yet */
538 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
540 /* make the station visible */
541 err = sta_info_hash_add(local, sta);
542 if (err)
543 goto out_drop_sta;
545 list_add_tail_rcu(&sta->list, &local->sta_list);
547 /* notify driver */
548 err = sta_info_insert_drv_state(local, sdata, sta);
549 if (err)
550 goto out_remove;
552 set_sta_flag(sta, WLAN_STA_INSERTED);
553 /* accept BA sessions now */
554 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
556 ieee80211_sta_debugfs_add(sta);
557 rate_control_add_sta_debugfs(sta);
559 sinfo->generation = local->sta_generation;
560 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
561 kfree(sinfo);
563 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
565 /* move reference to rcu-protected */
566 rcu_read_lock();
567 mutex_unlock(&local->sta_mtx);
569 if (ieee80211_vif_is_mesh(&sdata->vif))
570 mesh_accept_plinks_update(sdata);
572 return 0;
573 out_remove:
574 sta_info_hash_del(local, sta);
575 list_del_rcu(&sta->list);
576 out_drop_sta:
577 local->num_sta--;
578 synchronize_net();
579 __cleanup_single_sta(sta);
580 out_err:
581 mutex_unlock(&local->sta_mtx);
582 kfree(sinfo);
583 rcu_read_lock();
584 return err;
587 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
589 struct ieee80211_local *local = sta->local;
590 int err;
592 might_sleep();
594 mutex_lock(&local->sta_mtx);
596 err = sta_info_insert_check(sta);
597 if (err) {
598 mutex_unlock(&local->sta_mtx);
599 rcu_read_lock();
600 goto out_free;
603 err = sta_info_insert_finish(sta);
604 if (err)
605 goto out_free;
607 return 0;
608 out_free:
609 sta_info_free(local, sta);
610 return err;
613 int sta_info_insert(struct sta_info *sta)
615 int err = sta_info_insert_rcu(sta);
617 rcu_read_unlock();
619 return err;
622 static inline void __bss_tim_set(u8 *tim, u16 id)
625 * This format has been mandated by the IEEE specifications,
626 * so this line may not be changed to use the __set_bit() format.
628 tim[id / 8] |= (1 << (id % 8));
631 static inline void __bss_tim_clear(u8 *tim, u16 id)
634 * This format has been mandated by the IEEE specifications,
635 * so this line may not be changed to use the __clear_bit() format.
637 tim[id / 8] &= ~(1 << (id % 8));
640 static inline bool __bss_tim_get(u8 *tim, u16 id)
643 * This format has been mandated by the IEEE specifications,
644 * so this line may not be changed to use the test_bit() format.
646 return tim[id / 8] & (1 << (id % 8));
649 static unsigned long ieee80211_tids_for_ac(int ac)
651 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
652 switch (ac) {
653 case IEEE80211_AC_VO:
654 return BIT(6) | BIT(7);
655 case IEEE80211_AC_VI:
656 return BIT(4) | BIT(5);
657 case IEEE80211_AC_BE:
658 return BIT(0) | BIT(3);
659 case IEEE80211_AC_BK:
660 return BIT(1) | BIT(2);
661 default:
662 WARN_ON(1);
663 return 0;
667 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
669 struct ieee80211_local *local = sta->local;
670 struct ps_data *ps;
671 bool indicate_tim = false;
672 u8 ignore_for_tim = sta->sta.uapsd_queues;
673 int ac;
674 u16 id = sta->sta.aid;
676 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
677 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
678 if (WARN_ON_ONCE(!sta->sdata->bss))
679 return;
681 ps = &sta->sdata->bss->ps;
682 #ifdef CONFIG_MAC80211_MESH
683 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
684 ps = &sta->sdata->u.mesh.ps;
685 #endif
686 } else {
687 return;
690 /* No need to do anything if the driver does all */
691 if (ieee80211_hw_check(&local->hw, AP_LINK_PS))
692 return;
694 if (sta->dead)
695 goto done;
698 * If all ACs are delivery-enabled then we should build
699 * the TIM bit for all ACs anyway; if only some are then
700 * we ignore those and build the TIM bit using only the
701 * non-enabled ones.
703 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
704 ignore_for_tim = 0;
706 if (ignore_pending)
707 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
709 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
710 unsigned long tids;
712 if (ignore_for_tim & BIT(ac))
713 continue;
715 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
716 !skb_queue_empty(&sta->ps_tx_buf[ac]);
717 if (indicate_tim)
718 break;
720 tids = ieee80211_tids_for_ac(ac);
722 indicate_tim |=
723 sta->driver_buffered_tids & tids;
724 indicate_tim |=
725 sta->txq_buffered_tids & tids;
728 done:
729 spin_lock_bh(&local->tim_lock);
731 if (indicate_tim == __bss_tim_get(ps->tim, id))
732 goto out_unlock;
734 if (indicate_tim)
735 __bss_tim_set(ps->tim, id);
736 else
737 __bss_tim_clear(ps->tim, id);
739 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
740 local->tim_in_locked_section = true;
741 drv_set_tim(local, &sta->sta, indicate_tim);
742 local->tim_in_locked_section = false;
745 out_unlock:
746 spin_unlock_bh(&local->tim_lock);
749 void sta_info_recalc_tim(struct sta_info *sta)
751 __sta_info_recalc_tim(sta, false);
754 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
756 struct ieee80211_tx_info *info;
757 int timeout;
759 if (!skb)
760 return false;
762 info = IEEE80211_SKB_CB(skb);
764 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
765 timeout = (sta->listen_interval *
766 sta->sdata->vif.bss_conf.beacon_int *
767 32 / 15625) * HZ;
768 if (timeout < STA_TX_BUFFER_EXPIRE)
769 timeout = STA_TX_BUFFER_EXPIRE;
770 return time_after(jiffies, info->control.jiffies + timeout);
774 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
775 struct sta_info *sta, int ac)
777 unsigned long flags;
778 struct sk_buff *skb;
781 * First check for frames that should expire on the filtered
782 * queue. Frames here were rejected by the driver and are on
783 * a separate queue to avoid reordering with normal PS-buffered
784 * frames. They also aren't accounted for right now in the
785 * total_ps_buffered counter.
787 for (;;) {
788 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
789 skb = skb_peek(&sta->tx_filtered[ac]);
790 if (sta_info_buffer_expired(sta, skb))
791 skb = __skb_dequeue(&sta->tx_filtered[ac]);
792 else
793 skb = NULL;
794 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
797 * Frames are queued in order, so if this one
798 * hasn't expired yet we can stop testing. If
799 * we actually reached the end of the queue we
800 * also need to stop, of course.
802 if (!skb)
803 break;
804 ieee80211_free_txskb(&local->hw, skb);
808 * Now also check the normal PS-buffered queue, this will
809 * only find something if the filtered queue was emptied
810 * since the filtered frames are all before the normal PS
811 * buffered frames.
813 for (;;) {
814 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
815 skb = skb_peek(&sta->ps_tx_buf[ac]);
816 if (sta_info_buffer_expired(sta, skb))
817 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
818 else
819 skb = NULL;
820 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
823 * frames are queued in order, so if this one
824 * hasn't expired yet (or we reached the end of
825 * the queue) we can stop testing
827 if (!skb)
828 break;
830 local->total_ps_buffered--;
831 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
832 sta->sta.addr);
833 ieee80211_free_txskb(&local->hw, skb);
837 * Finally, recalculate the TIM bit for this station -- it might
838 * now be clear because the station was too slow to retrieve its
839 * frames.
841 sta_info_recalc_tim(sta);
844 * Return whether there are any frames still buffered, this is
845 * used to check whether the cleanup timer still needs to run,
846 * if there are no frames we don't need to rearm the timer.
848 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
849 skb_queue_empty(&sta->tx_filtered[ac]));
852 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
853 struct sta_info *sta)
855 bool have_buffered = false;
856 int ac;
858 /* This is only necessary for stations on BSS/MBSS interfaces */
859 if (!sta->sdata->bss &&
860 !ieee80211_vif_is_mesh(&sta->sdata->vif))
861 return false;
863 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
864 have_buffered |=
865 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
867 return have_buffered;
870 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
872 struct ieee80211_local *local;
873 struct ieee80211_sub_if_data *sdata;
874 int ret;
876 might_sleep();
878 if (!sta)
879 return -ENOENT;
881 local = sta->local;
882 sdata = sta->sdata;
884 lockdep_assert_held(&local->sta_mtx);
887 * Before removing the station from the driver and
888 * rate control, it might still start new aggregation
889 * sessions -- block that to make sure the tear-down
890 * will be sufficient.
892 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
893 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
896 * Before removing the station from the driver there might be pending
897 * rx frames on RSS queues sent prior to the disassociation - wait for
898 * all such frames to be processed.
900 drv_sync_rx_queues(local, sta);
902 ret = sta_info_hash_del(local, sta);
903 if (WARN_ON(ret))
904 return ret;
907 * for TDLS peers, make sure to return to the base channel before
908 * removal.
910 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
911 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
912 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
915 list_del_rcu(&sta->list);
916 sta->removed = true;
918 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
920 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
921 rcu_access_pointer(sdata->u.vlan.sta) == sta)
922 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
924 return 0;
927 static void __sta_info_destroy_part2(struct sta_info *sta)
929 struct ieee80211_local *local = sta->local;
930 struct ieee80211_sub_if_data *sdata = sta->sdata;
931 struct station_info *sinfo;
932 int ret;
935 * NOTE: This assumes at least synchronize_net() was done
936 * after _part1 and before _part2!
939 might_sleep();
940 lockdep_assert_held(&local->sta_mtx);
942 /* now keys can no longer be reached */
943 ieee80211_free_sta_keys(local, sta);
945 /* disable TIM bit - last chance to tell driver */
946 __sta_info_recalc_tim(sta, true);
948 sta->dead = true;
950 local->num_sta--;
951 local->sta_generation++;
953 while (sta->sta_state > IEEE80211_STA_NONE) {
954 ret = sta_info_move_state(sta, sta->sta_state - 1);
955 if (ret) {
956 WARN_ON_ONCE(1);
957 break;
961 if (sta->uploaded) {
962 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
963 IEEE80211_STA_NOTEXIST);
964 WARN_ON_ONCE(ret != 0);
967 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
969 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
970 if (sinfo)
971 sta_set_sinfo(sta, sinfo);
972 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
973 kfree(sinfo);
975 rate_control_remove_sta_debugfs(sta);
976 ieee80211_sta_debugfs_remove(sta);
978 cleanup_single_sta(sta);
981 int __must_check __sta_info_destroy(struct sta_info *sta)
983 int err = __sta_info_destroy_part1(sta);
985 if (err)
986 return err;
988 synchronize_net();
990 __sta_info_destroy_part2(sta);
992 return 0;
995 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
997 struct sta_info *sta;
998 int ret;
1000 mutex_lock(&sdata->local->sta_mtx);
1001 sta = sta_info_get(sdata, addr);
1002 ret = __sta_info_destroy(sta);
1003 mutex_unlock(&sdata->local->sta_mtx);
1005 return ret;
1008 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1009 const u8 *addr)
1011 struct sta_info *sta;
1012 int ret;
1014 mutex_lock(&sdata->local->sta_mtx);
1015 sta = sta_info_get_bss(sdata, addr);
1016 ret = __sta_info_destroy(sta);
1017 mutex_unlock(&sdata->local->sta_mtx);
1019 return ret;
1022 static void sta_info_cleanup(unsigned long data)
1024 struct ieee80211_local *local = (struct ieee80211_local *) data;
1025 struct sta_info *sta;
1026 bool timer_needed = false;
1028 rcu_read_lock();
1029 list_for_each_entry_rcu(sta, &local->sta_list, list)
1030 if (sta_info_cleanup_expire_buffered(local, sta))
1031 timer_needed = true;
1032 rcu_read_unlock();
1034 if (local->quiescing)
1035 return;
1037 if (!timer_needed)
1038 return;
1040 mod_timer(&local->sta_cleanup,
1041 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1044 int sta_info_init(struct ieee80211_local *local)
1046 int err;
1048 err = rhltable_init(&local->sta_hash, &sta_rht_params);
1049 if (err)
1050 return err;
1052 spin_lock_init(&local->tim_lock);
1053 mutex_init(&local->sta_mtx);
1054 INIT_LIST_HEAD(&local->sta_list);
1056 setup_timer(&local->sta_cleanup, sta_info_cleanup,
1057 (unsigned long)local);
1058 return 0;
1061 void sta_info_stop(struct ieee80211_local *local)
1063 del_timer_sync(&local->sta_cleanup);
1064 rhltable_destroy(&local->sta_hash);
1068 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1070 struct ieee80211_local *local = sdata->local;
1071 struct sta_info *sta, *tmp;
1072 LIST_HEAD(free_list);
1073 int ret = 0;
1075 might_sleep();
1077 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1078 WARN_ON(vlans && !sdata->bss);
1080 mutex_lock(&local->sta_mtx);
1081 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1082 if (sdata == sta->sdata ||
1083 (vlans && sdata->bss == sta->sdata->bss)) {
1084 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1085 list_add(&sta->free_list, &free_list);
1086 ret++;
1090 if (!list_empty(&free_list)) {
1091 synchronize_net();
1092 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1093 __sta_info_destroy_part2(sta);
1095 mutex_unlock(&local->sta_mtx);
1097 return ret;
1100 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1101 unsigned long exp_time)
1103 struct ieee80211_local *local = sdata->local;
1104 struct sta_info *sta, *tmp;
1106 mutex_lock(&local->sta_mtx);
1108 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1109 unsigned long last_active = ieee80211_sta_last_active(sta);
1111 if (sdata != sta->sdata)
1112 continue;
1114 if (time_is_before_jiffies(last_active + exp_time)) {
1115 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1116 sta->sta.addr);
1118 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1119 test_sta_flag(sta, WLAN_STA_PS_STA))
1120 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1122 WARN_ON(__sta_info_destroy(sta));
1126 mutex_unlock(&local->sta_mtx);
1129 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1130 const u8 *addr,
1131 const u8 *localaddr)
1133 struct ieee80211_local *local = hw_to_local(hw);
1134 struct rhlist_head *tmp;
1135 struct sta_info *sta;
1138 * Just return a random station if localaddr is NULL
1139 * ... first in list.
1141 for_each_sta_info(local, addr, sta, tmp) {
1142 if (localaddr &&
1143 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1144 continue;
1145 if (!sta->uploaded)
1146 return NULL;
1147 return &sta->sta;
1150 return NULL;
1152 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1154 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1155 const u8 *addr)
1157 struct sta_info *sta;
1159 if (!vif)
1160 return NULL;
1162 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1163 if (!sta)
1164 return NULL;
1166 if (!sta->uploaded)
1167 return NULL;
1169 return &sta->sta;
1171 EXPORT_SYMBOL(ieee80211_find_sta);
1173 /* powersave support code */
1174 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1176 struct ieee80211_sub_if_data *sdata = sta->sdata;
1177 struct ieee80211_local *local = sdata->local;
1178 struct sk_buff_head pending;
1179 int filtered = 0, buffered = 0, ac, i;
1180 unsigned long flags;
1181 struct ps_data *ps;
1183 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1184 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1185 u.ap);
1187 if (sdata->vif.type == NL80211_IFTYPE_AP)
1188 ps = &sdata->bss->ps;
1189 else if (ieee80211_vif_is_mesh(&sdata->vif))
1190 ps = &sdata->u.mesh.ps;
1191 else
1192 return;
1194 clear_sta_flag(sta, WLAN_STA_SP);
1196 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1197 sta->driver_buffered_tids = 0;
1198 sta->txq_buffered_tids = 0;
1200 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1201 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1203 if (sta->sta.txq[0]) {
1204 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1205 if (!txq_has_queue(sta->sta.txq[i]))
1206 continue;
1208 drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i]));
1212 skb_queue_head_init(&pending);
1214 /* sync with ieee80211_tx_h_unicast_ps_buf */
1215 spin_lock(&sta->ps_lock);
1216 /* Send all buffered frames to the station */
1217 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1218 int count = skb_queue_len(&pending), tmp;
1220 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1221 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1222 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1223 tmp = skb_queue_len(&pending);
1224 filtered += tmp - count;
1225 count = tmp;
1227 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1228 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1229 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1230 tmp = skb_queue_len(&pending);
1231 buffered += tmp - count;
1234 ieee80211_add_pending_skbs(local, &pending);
1236 /* now we're no longer in the deliver code */
1237 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1239 /* The station might have polled and then woken up before we responded,
1240 * so clear these flags now to avoid them sticking around.
1242 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1243 clear_sta_flag(sta, WLAN_STA_UAPSD);
1244 spin_unlock(&sta->ps_lock);
1246 atomic_dec(&ps->num_sta_ps);
1248 /* This station just woke up and isn't aware of our SMPS state */
1249 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1250 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1251 sdata->smps_mode) &&
1252 sta->known_smps_mode != sdata->bss->req_smps &&
1253 sta_info_tx_streams(sta) != 1) {
1254 ht_dbg(sdata,
1255 "%pM just woke up and MIMO capable - update SMPS\n",
1256 sta->sta.addr);
1257 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1258 sta->sta.addr,
1259 sdata->vif.bss_conf.bssid);
1262 local->total_ps_buffered -= buffered;
1264 sta_info_recalc_tim(sta);
1266 ps_dbg(sdata,
1267 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1268 sta->sta.addr, sta->sta.aid, filtered, buffered);
1270 ieee80211_check_fast_xmit(sta);
1273 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1274 enum ieee80211_frame_release_type reason,
1275 bool call_driver, bool more_data)
1277 struct ieee80211_sub_if_data *sdata = sta->sdata;
1278 struct ieee80211_local *local = sdata->local;
1279 struct ieee80211_qos_hdr *nullfunc;
1280 struct sk_buff *skb;
1281 int size = sizeof(*nullfunc);
1282 __le16 fc;
1283 bool qos = sta->sta.wme;
1284 struct ieee80211_tx_info *info;
1285 struct ieee80211_chanctx_conf *chanctx_conf;
1287 if (qos) {
1288 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1289 IEEE80211_STYPE_QOS_NULLFUNC |
1290 IEEE80211_FCTL_FROMDS);
1291 } else {
1292 size -= 2;
1293 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1294 IEEE80211_STYPE_NULLFUNC |
1295 IEEE80211_FCTL_FROMDS);
1298 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1299 if (!skb)
1300 return;
1302 skb_reserve(skb, local->hw.extra_tx_headroom);
1304 nullfunc = (void *) skb_put(skb, size);
1305 nullfunc->frame_control = fc;
1306 nullfunc->duration_id = 0;
1307 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1308 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1309 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1310 nullfunc->seq_ctrl = 0;
1312 skb->priority = tid;
1313 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1314 if (qos) {
1315 nullfunc->qos_ctrl = cpu_to_le16(tid);
1317 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1318 nullfunc->qos_ctrl |=
1319 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1320 if (more_data)
1321 nullfunc->frame_control |=
1322 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1326 info = IEEE80211_SKB_CB(skb);
1329 * Tell TX path to send this frame even though the
1330 * STA may still remain is PS mode after this frame
1331 * exchange. Also set EOSP to indicate this packet
1332 * ends the poll/service period.
1334 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1335 IEEE80211_TX_STATUS_EOSP |
1336 IEEE80211_TX_CTL_REQ_TX_STATUS;
1338 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1340 if (call_driver)
1341 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1342 reason, false);
1344 skb->dev = sdata->dev;
1346 rcu_read_lock();
1347 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1348 if (WARN_ON(!chanctx_conf)) {
1349 rcu_read_unlock();
1350 kfree_skb(skb);
1351 return;
1354 info->band = chanctx_conf->def.chan->band;
1355 ieee80211_xmit(sdata, sta, skb);
1356 rcu_read_unlock();
1359 static int find_highest_prio_tid(unsigned long tids)
1361 /* lower 3 TIDs aren't ordered perfectly */
1362 if (tids & 0xF8)
1363 return fls(tids) - 1;
1364 /* TID 0 is BE just like TID 3 */
1365 if (tids & BIT(0))
1366 return 0;
1367 return fls(tids) - 1;
1370 /* Indicates if the MORE_DATA bit should be set in the last
1371 * frame obtained by ieee80211_sta_ps_get_frames.
1372 * Note that driver_release_tids is relevant only if
1373 * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1375 static bool
1376 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1377 enum ieee80211_frame_release_type reason,
1378 unsigned long driver_release_tids)
1380 int ac;
1382 /* If the driver has data on more than one TID then
1383 * certainly there's more data if we release just a
1384 * single frame now (from a single TID). This will
1385 * only happen for PS-Poll.
1387 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1388 hweight16(driver_release_tids) > 1)
1389 return true;
1391 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1392 if (ignored_acs & BIT(ac))
1393 continue;
1395 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1396 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1397 return true;
1400 return false;
1403 static void
1404 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1405 enum ieee80211_frame_release_type reason,
1406 struct sk_buff_head *frames,
1407 unsigned long *driver_release_tids)
1409 struct ieee80211_sub_if_data *sdata = sta->sdata;
1410 struct ieee80211_local *local = sdata->local;
1411 int ac;
1413 /* Get response frame(s) and more data bit for the last one. */
1414 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1415 unsigned long tids;
1417 if (ignored_acs & BIT(ac))
1418 continue;
1420 tids = ieee80211_tids_for_ac(ac);
1422 /* if we already have frames from software, then we can't also
1423 * release from hardware queues
1425 if (skb_queue_empty(frames)) {
1426 *driver_release_tids |=
1427 sta->driver_buffered_tids & tids;
1428 *driver_release_tids |= sta->txq_buffered_tids & tids;
1431 if (!*driver_release_tids) {
1432 struct sk_buff *skb;
1434 while (n_frames > 0) {
1435 skb = skb_dequeue(&sta->tx_filtered[ac]);
1436 if (!skb) {
1437 skb = skb_dequeue(
1438 &sta->ps_tx_buf[ac]);
1439 if (skb)
1440 local->total_ps_buffered--;
1442 if (!skb)
1443 break;
1444 n_frames--;
1445 __skb_queue_tail(frames, skb);
1449 /* If we have more frames buffered on this AC, then abort the
1450 * loop since we can't send more data from other ACs before
1451 * the buffered frames from this.
1453 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1454 !skb_queue_empty(&sta->ps_tx_buf[ac]))
1455 break;
1459 static void
1460 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1461 int n_frames, u8 ignored_acs,
1462 enum ieee80211_frame_release_type reason)
1464 struct ieee80211_sub_if_data *sdata = sta->sdata;
1465 struct ieee80211_local *local = sdata->local;
1466 unsigned long driver_release_tids = 0;
1467 struct sk_buff_head frames;
1468 bool more_data;
1470 /* Service or PS-Poll period starts */
1471 set_sta_flag(sta, WLAN_STA_SP);
1473 __skb_queue_head_init(&frames);
1475 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1476 &frames, &driver_release_tids);
1478 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1480 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1481 driver_release_tids =
1482 BIT(find_highest_prio_tid(driver_release_tids));
1484 if (skb_queue_empty(&frames) && !driver_release_tids) {
1485 int tid;
1488 * For PS-Poll, this can only happen due to a race condition
1489 * when we set the TIM bit and the station notices it, but
1490 * before it can poll for the frame we expire it.
1492 * For uAPSD, this is said in the standard (11.2.1.5 h):
1493 * At each unscheduled SP for a non-AP STA, the AP shall
1494 * attempt to transmit at least one MSDU or MMPDU, but no
1495 * more than the value specified in the Max SP Length field
1496 * in the QoS Capability element from delivery-enabled ACs,
1497 * that are destined for the non-AP STA.
1499 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1502 /* This will evaluate to 1, 3, 5 or 7. */
1503 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1505 ieee80211_send_null_response(sta, tid, reason, true, false);
1506 } else if (!driver_release_tids) {
1507 struct sk_buff_head pending;
1508 struct sk_buff *skb;
1509 int num = 0;
1510 u16 tids = 0;
1511 bool need_null = false;
1513 skb_queue_head_init(&pending);
1515 while ((skb = __skb_dequeue(&frames))) {
1516 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1517 struct ieee80211_hdr *hdr = (void *) skb->data;
1518 u8 *qoshdr = NULL;
1520 num++;
1523 * Tell TX path to send this frame even though the
1524 * STA may still remain is PS mode after this frame
1525 * exchange.
1527 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1528 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1531 * Use MoreData flag to indicate whether there are
1532 * more buffered frames for this STA
1534 if (more_data || !skb_queue_empty(&frames))
1535 hdr->frame_control |=
1536 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1537 else
1538 hdr->frame_control &=
1539 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1541 if (ieee80211_is_data_qos(hdr->frame_control) ||
1542 ieee80211_is_qos_nullfunc(hdr->frame_control))
1543 qoshdr = ieee80211_get_qos_ctl(hdr);
1545 tids |= BIT(skb->priority);
1547 __skb_queue_tail(&pending, skb);
1549 /* end service period after last frame or add one */
1550 if (!skb_queue_empty(&frames))
1551 continue;
1553 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1554 /* for PS-Poll, there's only one frame */
1555 info->flags |= IEEE80211_TX_STATUS_EOSP |
1556 IEEE80211_TX_CTL_REQ_TX_STATUS;
1557 break;
1560 /* For uAPSD, things are a bit more complicated. If the
1561 * last frame has a QoS header (i.e. is a QoS-data or
1562 * QoS-nulldata frame) then just set the EOSP bit there
1563 * and be done.
1564 * If the frame doesn't have a QoS header (which means
1565 * it should be a bufferable MMPDU) then we can't set
1566 * the EOSP bit in the QoS header; add a QoS-nulldata
1567 * frame to the list to send it after the MMPDU.
1569 * Note that this code is only in the mac80211-release
1570 * code path, we assume that the driver will not buffer
1571 * anything but QoS-data frames, or if it does, will
1572 * create the QoS-nulldata frame by itself if needed.
1574 * Cf. 802.11-2012 10.2.1.10 (c).
1576 if (qoshdr) {
1577 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1579 info->flags |= IEEE80211_TX_STATUS_EOSP |
1580 IEEE80211_TX_CTL_REQ_TX_STATUS;
1581 } else {
1582 /* The standard isn't completely clear on this
1583 * as it says the more-data bit should be set
1584 * if there are more BUs. The QoS-Null frame
1585 * we're about to send isn't buffered yet, we
1586 * only create it below, but let's pretend it
1587 * was buffered just in case some clients only
1588 * expect more-data=0 when eosp=1.
1590 hdr->frame_control |=
1591 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1592 need_null = true;
1593 num++;
1595 break;
1598 drv_allow_buffered_frames(local, sta, tids, num,
1599 reason, more_data);
1601 ieee80211_add_pending_skbs(local, &pending);
1603 if (need_null)
1604 ieee80211_send_null_response(
1605 sta, find_highest_prio_tid(tids),
1606 reason, false, false);
1608 sta_info_recalc_tim(sta);
1609 } else {
1610 int tid;
1613 * We need to release a frame that is buffered somewhere in the
1614 * driver ... it'll have to handle that.
1615 * Note that the driver also has to check the number of frames
1616 * on the TIDs we're releasing from - if there are more than
1617 * n_frames it has to set the more-data bit (if we didn't ask
1618 * it to set it anyway due to other buffered frames); if there
1619 * are fewer than n_frames it has to make sure to adjust that
1620 * to allow the service period to end properly.
1622 drv_release_buffered_frames(local, sta, driver_release_tids,
1623 n_frames, reason, more_data);
1626 * Note that we don't recalculate the TIM bit here as it would
1627 * most likely have no effect at all unless the driver told us
1628 * that the TID(s) became empty before returning here from the
1629 * release function.
1630 * Either way, however, when the driver tells us that the TID(s)
1631 * became empty or we find that a txq became empty, we'll do the
1632 * TIM recalculation.
1635 if (!sta->sta.txq[0])
1636 return;
1638 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1639 if (!(driver_release_tids & BIT(tid)) ||
1640 txq_has_queue(sta->sta.txq[tid]))
1641 continue;
1643 sta_info_recalc_tim(sta);
1644 break;
1649 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1651 u8 ignore_for_response = sta->sta.uapsd_queues;
1654 * If all ACs are delivery-enabled then we should reply
1655 * from any of them, if only some are enabled we reply
1656 * only from the non-enabled ones.
1658 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1659 ignore_for_response = 0;
1661 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1662 IEEE80211_FRAME_RELEASE_PSPOLL);
1665 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1667 int n_frames = sta->sta.max_sp;
1668 u8 delivery_enabled = sta->sta.uapsd_queues;
1671 * If we ever grow support for TSPEC this might happen if
1672 * the TSPEC update from hostapd comes in between a trigger
1673 * frame setting WLAN_STA_UAPSD in the RX path and this
1674 * actually getting called.
1676 if (!delivery_enabled)
1677 return;
1679 switch (sta->sta.max_sp) {
1680 case 1:
1681 n_frames = 2;
1682 break;
1683 case 2:
1684 n_frames = 4;
1685 break;
1686 case 3:
1687 n_frames = 6;
1688 break;
1689 case 0:
1690 /* XXX: what is a good value? */
1691 n_frames = 128;
1692 break;
1695 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1696 IEEE80211_FRAME_RELEASE_UAPSD);
1699 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1700 struct ieee80211_sta *pubsta, bool block)
1702 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1704 trace_api_sta_block_awake(sta->local, pubsta, block);
1706 if (block) {
1707 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1708 ieee80211_clear_fast_xmit(sta);
1709 return;
1712 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1713 return;
1715 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1716 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1717 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1718 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1719 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1720 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1721 /* must be asleep in this case */
1722 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1723 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1724 } else {
1725 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1726 ieee80211_check_fast_xmit(sta);
1729 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1731 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1733 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1734 struct ieee80211_local *local = sta->local;
1736 trace_api_eosp(local, pubsta);
1738 clear_sta_flag(sta, WLAN_STA_SP);
1740 EXPORT_SYMBOL(ieee80211_sta_eosp);
1742 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1744 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1745 enum ieee80211_frame_release_type reason;
1746 bool more_data;
1748 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1750 reason = IEEE80211_FRAME_RELEASE_UAPSD;
1751 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1752 reason, 0);
1754 ieee80211_send_null_response(sta, tid, reason, false, more_data);
1756 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1758 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1759 u8 tid, bool buffered)
1761 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1763 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1764 return;
1766 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1768 if (buffered)
1769 set_bit(tid, &sta->driver_buffered_tids);
1770 else
1771 clear_bit(tid, &sta->driver_buffered_tids);
1773 sta_info_recalc_tim(sta);
1775 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1777 static void
1778 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
1780 struct ieee80211_local *local = sdata->local;
1781 bool allow_p2p_go_ps = sdata->vif.p2p;
1782 struct sta_info *sta;
1784 rcu_read_lock();
1785 list_for_each_entry_rcu(sta, &local->sta_list, list) {
1786 if (sdata != sta->sdata ||
1787 !test_sta_flag(sta, WLAN_STA_ASSOC))
1788 continue;
1789 if (!sta->sta.support_p2p_ps) {
1790 allow_p2p_go_ps = false;
1791 break;
1794 rcu_read_unlock();
1796 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
1797 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
1798 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
1802 int sta_info_move_state(struct sta_info *sta,
1803 enum ieee80211_sta_state new_state)
1805 might_sleep();
1807 if (sta->sta_state == new_state)
1808 return 0;
1810 /* check allowed transitions first */
1812 switch (new_state) {
1813 case IEEE80211_STA_NONE:
1814 if (sta->sta_state != IEEE80211_STA_AUTH)
1815 return -EINVAL;
1816 break;
1817 case IEEE80211_STA_AUTH:
1818 if (sta->sta_state != IEEE80211_STA_NONE &&
1819 sta->sta_state != IEEE80211_STA_ASSOC)
1820 return -EINVAL;
1821 break;
1822 case IEEE80211_STA_ASSOC:
1823 if (sta->sta_state != IEEE80211_STA_AUTH &&
1824 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1825 return -EINVAL;
1826 break;
1827 case IEEE80211_STA_AUTHORIZED:
1828 if (sta->sta_state != IEEE80211_STA_ASSOC)
1829 return -EINVAL;
1830 break;
1831 default:
1832 WARN(1, "invalid state %d", new_state);
1833 return -EINVAL;
1836 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1837 sta->sta.addr, new_state);
1840 * notify the driver before the actual changes so it can
1841 * fail the transition
1843 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1844 int err = drv_sta_state(sta->local, sta->sdata, sta,
1845 sta->sta_state, new_state);
1846 if (err)
1847 return err;
1850 /* reflect the change in all state variables */
1852 switch (new_state) {
1853 case IEEE80211_STA_NONE:
1854 if (sta->sta_state == IEEE80211_STA_AUTH)
1855 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1856 break;
1857 case IEEE80211_STA_AUTH:
1858 if (sta->sta_state == IEEE80211_STA_NONE) {
1859 set_bit(WLAN_STA_AUTH, &sta->_flags);
1860 } else if (sta->sta_state == IEEE80211_STA_ASSOC) {
1861 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1862 ieee80211_recalc_min_chandef(sta->sdata);
1863 if (!sta->sta.support_p2p_ps)
1864 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1866 break;
1867 case IEEE80211_STA_ASSOC:
1868 if (sta->sta_state == IEEE80211_STA_AUTH) {
1869 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1870 ieee80211_recalc_min_chandef(sta->sdata);
1871 if (!sta->sta.support_p2p_ps)
1872 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
1873 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1874 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1875 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1876 !sta->sdata->u.vlan.sta))
1877 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1878 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1879 ieee80211_clear_fast_xmit(sta);
1880 ieee80211_clear_fast_rx(sta);
1882 break;
1883 case IEEE80211_STA_AUTHORIZED:
1884 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1885 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1886 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1887 !sta->sdata->u.vlan.sta))
1888 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1889 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1890 ieee80211_check_fast_xmit(sta);
1891 ieee80211_check_fast_rx(sta);
1893 break;
1894 default:
1895 break;
1898 sta->sta_state = new_state;
1900 return 0;
1903 u8 sta_info_tx_streams(struct sta_info *sta)
1905 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1906 u8 rx_streams;
1908 if (!sta->sta.ht_cap.ht_supported)
1909 return 1;
1911 if (sta->sta.vht_cap.vht_supported) {
1912 int i;
1913 u16 tx_mcs_map =
1914 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1916 for (i = 7; i >= 0; i--)
1917 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1918 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1919 return i + 1;
1922 if (ht_cap->mcs.rx_mask[3])
1923 rx_streams = 4;
1924 else if (ht_cap->mcs.rx_mask[2])
1925 rx_streams = 3;
1926 else if (ht_cap->mcs.rx_mask[1])
1927 rx_streams = 2;
1928 else
1929 rx_streams = 1;
1931 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1932 return rx_streams;
1934 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1935 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1938 static struct ieee80211_sta_rx_stats *
1939 sta_get_last_rx_stats(struct sta_info *sta)
1941 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
1942 struct ieee80211_local *local = sta->local;
1943 int cpu;
1945 if (!ieee80211_hw_check(&local->hw, USES_RSS))
1946 return stats;
1948 for_each_possible_cpu(cpu) {
1949 struct ieee80211_sta_rx_stats *cpustats;
1951 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
1953 if (time_after(cpustats->last_rx, stats->last_rx))
1954 stats = cpustats;
1957 return stats;
1960 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate,
1961 struct rate_info *rinfo)
1963 rinfo->bw = (rate & STA_STATS_RATE_BW_MASK) >>
1964 STA_STATS_RATE_BW_SHIFT;
1966 if (rate & STA_STATS_RATE_VHT) {
1967 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
1968 rinfo->mcs = rate & 0xf;
1969 rinfo->nss = (rate & 0xf0) >> 4;
1970 } else if (rate & STA_STATS_RATE_HT) {
1971 rinfo->flags = RATE_INFO_FLAGS_MCS;
1972 rinfo->mcs = rate & 0xff;
1973 } else if (rate & STA_STATS_RATE_LEGACY) {
1974 struct ieee80211_supported_band *sband;
1975 u16 brate;
1976 unsigned int shift;
1978 sband = local->hw.wiphy->bands[(rate >> 4) & 0xf];
1979 brate = sband->bitrates[rate & 0xf].bitrate;
1980 if (rinfo->bw == RATE_INFO_BW_5)
1981 shift = 2;
1982 else if (rinfo->bw == RATE_INFO_BW_10)
1983 shift = 1;
1984 else
1985 shift = 0;
1986 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
1989 if (rate & STA_STATS_RATE_SGI)
1990 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1993 static void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
1995 u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate);
1997 if (rate == STA_STATS_RATE_INVALID)
1998 rinfo->flags = 0;
1999 else
2000 sta_stats_decode_rate(sta->local, rate, rinfo);
2003 static void sta_set_tidstats(struct sta_info *sta,
2004 struct cfg80211_tid_stats *tidstats,
2005 int tid)
2007 struct ieee80211_local *local = sta->local;
2009 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2010 unsigned int start;
2012 do {
2013 start = u64_stats_fetch_begin(&sta->rx_stats.syncp);
2014 tidstats->rx_msdu = sta->rx_stats.msdu[tid];
2015 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start));
2017 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2020 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2021 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2022 tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2025 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2026 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2027 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2028 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2031 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2032 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2033 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2034 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2038 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2040 unsigned int start;
2041 u64 value;
2043 do {
2044 start = u64_stats_fetch_begin(&rxstats->syncp);
2045 value = rxstats->bytes;
2046 } while (u64_stats_fetch_retry(&rxstats->syncp, start));
2048 return value;
2051 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
2053 struct ieee80211_sub_if_data *sdata = sta->sdata;
2054 struct ieee80211_local *local = sdata->local;
2055 struct rate_control_ref *ref = NULL;
2056 u32 thr = 0;
2057 int i, ac, cpu;
2058 struct ieee80211_sta_rx_stats *last_rxstats;
2060 last_rxstats = sta_get_last_rx_stats(sta);
2062 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2063 ref = local->rate_ctrl;
2065 sinfo->generation = sdata->local->sta_generation;
2067 /* do before driver, so beacon filtering drivers have a
2068 * chance to e.g. just add the number of filtered beacons
2069 * (or just modify the value entirely, of course)
2071 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2072 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2074 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2076 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
2077 BIT(NL80211_STA_INFO_STA_FLAGS) |
2078 BIT(NL80211_STA_INFO_BSS_PARAM) |
2079 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
2080 BIT(NL80211_STA_INFO_RX_DROP_MISC);
2082 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2083 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2084 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
2087 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2088 sinfo->inactive_time =
2089 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2091 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
2092 BIT(NL80211_STA_INFO_TX_BYTES)))) {
2093 sinfo->tx_bytes = 0;
2094 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2095 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2096 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
2099 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
2100 sinfo->tx_packets = 0;
2101 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2102 sinfo->tx_packets += sta->tx_stats.packets[ac];
2103 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
2106 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
2107 BIT(NL80211_STA_INFO_RX_BYTES)))) {
2108 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2110 if (sta->pcpu_rx_stats) {
2111 for_each_possible_cpu(cpu) {
2112 struct ieee80211_sta_rx_stats *cpurxs;
2114 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2115 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2119 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
2122 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
2123 sinfo->rx_packets = sta->rx_stats.packets;
2124 if (sta->pcpu_rx_stats) {
2125 for_each_possible_cpu(cpu) {
2126 struct ieee80211_sta_rx_stats *cpurxs;
2128 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2129 sinfo->rx_packets += cpurxs->packets;
2132 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
2135 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
2136 sinfo->tx_retries = sta->status_stats.retry_count;
2137 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
2140 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
2141 sinfo->tx_failed = sta->status_stats.retry_failed;
2142 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
2145 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2146 if (sta->pcpu_rx_stats) {
2147 for_each_possible_cpu(cpu) {
2148 struct ieee80211_sta_rx_stats *cpurxs;
2150 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2151 sinfo->rx_packets += cpurxs->dropped;
2155 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2156 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2157 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
2158 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2159 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2162 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2163 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2164 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
2165 sinfo->signal = (s8)last_rxstats->last_signal;
2166 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
2169 if (!sta->pcpu_rx_stats &&
2170 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
2171 sinfo->signal_avg =
2172 -ewma_signal_read(&sta->rx_stats_avg.signal);
2173 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
2177 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2178 * the sta->rx_stats struct, so the check here is fine with and without
2179 * pcpu statistics
2181 if (last_rxstats->chains &&
2182 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
2183 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2184 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL);
2185 if (!sta->pcpu_rx_stats)
2186 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2188 sinfo->chains = last_rxstats->chains;
2190 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2191 sinfo->chain_signal[i] =
2192 last_rxstats->chain_signal_last[i];
2193 sinfo->chain_signal_avg[i] =
2194 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2198 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
2199 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2200 &sinfo->txrate);
2201 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
2204 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
2205 sta_set_rate_info_rx(sta, &sinfo->rxrate);
2206 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
2209 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
2210 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
2211 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
2213 sta_set_tidstats(sta, tidstats, i);
2216 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2217 #ifdef CONFIG_MAC80211_MESH
2218 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2219 BIT(NL80211_STA_INFO_PLID) |
2220 BIT(NL80211_STA_INFO_PLINK_STATE) |
2221 BIT(NL80211_STA_INFO_LOCAL_PM) |
2222 BIT(NL80211_STA_INFO_PEER_PM) |
2223 BIT(NL80211_STA_INFO_NONPEER_PM);
2225 sinfo->llid = sta->mesh->llid;
2226 sinfo->plid = sta->mesh->plid;
2227 sinfo->plink_state = sta->mesh->plink_state;
2228 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2229 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2230 sinfo->t_offset = sta->mesh->t_offset;
2232 sinfo->local_pm = sta->mesh->local_pm;
2233 sinfo->peer_pm = sta->mesh->peer_pm;
2234 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2235 #endif
2238 sinfo->bss_param.flags = 0;
2239 if (sdata->vif.bss_conf.use_cts_prot)
2240 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2241 if (sdata->vif.bss_conf.use_short_preamble)
2242 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2243 if (sdata->vif.bss_conf.use_short_slot)
2244 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2245 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2246 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2248 sinfo->sta_flags.set = 0;
2249 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2250 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2251 BIT(NL80211_STA_FLAG_WME) |
2252 BIT(NL80211_STA_FLAG_MFP) |
2253 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2254 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2255 BIT(NL80211_STA_FLAG_TDLS_PEER);
2256 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2257 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2258 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2259 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2260 if (sta->sta.wme)
2261 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2262 if (test_sta_flag(sta, WLAN_STA_MFP))
2263 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2264 if (test_sta_flag(sta, WLAN_STA_AUTH))
2265 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2266 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2267 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2268 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2269 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2271 thr = sta_get_expected_throughput(sta);
2273 if (thr != 0) {
2274 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2275 sinfo->expected_throughput = thr;
2279 u32 sta_get_expected_throughput(struct sta_info *sta)
2281 struct ieee80211_sub_if_data *sdata = sta->sdata;
2282 struct ieee80211_local *local = sdata->local;
2283 struct rate_control_ref *ref = NULL;
2284 u32 thr = 0;
2286 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2287 ref = local->rate_ctrl;
2289 /* check if the driver has a SW RC implementation */
2290 if (ref && ref->ops->get_expected_throughput)
2291 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2292 else
2293 thr = drv_get_expected_throughput(local, sta);
2295 return thr;
2298 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2300 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2302 if (time_after(stats->last_rx, sta->status_stats.last_ack))
2303 return stats->last_rx;
2304 return sta->status_stats.last_ack;