Fix up CIFS for "test_clear_page_dirty()" removal
[linux/fpc-iii.git] / fs / reiserfs / inode.c
blobf3d1c4a77979d1506903c88df9c8cdc76c388a09
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/smp_lock.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <asm/uaccess.h>
14 #include <asm/unaligned.h>
15 #include <linux/buffer_head.h>
16 #include <linux/mpage.h>
17 #include <linux/writeback.h>
18 #include <linux/quotaops.h>
20 static int reiserfs_commit_write(struct file *f, struct page *page,
21 unsigned from, unsigned to);
22 static int reiserfs_prepare_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
25 void reiserfs_delete_inode(struct inode *inode)
27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 int jbegin_count =
29 JOURNAL_PER_BALANCE_CNT * 2 +
30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 struct reiserfs_transaction_handle th;
32 int err;
34 truncate_inode_pages(&inode->i_data, 0);
36 reiserfs_write_lock(inode->i_sb);
38 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
39 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
40 reiserfs_delete_xattrs(inode);
42 if (journal_begin(&th, inode->i_sb, jbegin_count))
43 goto out;
44 reiserfs_update_inode_transaction(inode);
46 err = reiserfs_delete_object(&th, inode);
48 /* Do quota update inside a transaction for journaled quotas. We must do that
49 * after delete_object so that quota updates go into the same transaction as
50 * stat data deletion */
51 if (!err)
52 DQUOT_FREE_INODE(inode);
54 if (journal_end(&th, inode->i_sb, jbegin_count))
55 goto out;
57 /* check return value from reiserfs_delete_object after
58 * ending the transaction
60 if (err)
61 goto out;
63 /* all items of file are deleted, so we can remove "save" link */
64 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
65 * about an error here */
66 } else {
67 /* no object items are in the tree */
70 out:
71 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
72 inode->i_blocks = 0;
73 reiserfs_write_unlock(inode->i_sb);
76 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
77 __u32 objectid, loff_t offset, int type, int length)
79 key->version = version;
81 key->on_disk_key.k_dir_id = dirid;
82 key->on_disk_key.k_objectid = objectid;
83 set_cpu_key_k_offset(key, offset);
84 set_cpu_key_k_type(key, type);
85 key->key_length = length;
88 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
89 offset and type of key */
90 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
91 int type, int length)
93 _make_cpu_key(key, get_inode_item_key_version(inode),
94 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
95 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
96 length);
100 // when key is 0, do not set version and short key
102 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
103 int version,
104 loff_t offset, int type, int length,
105 int entry_count /*or ih_free_space */ )
107 if (key) {
108 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
109 ih->ih_key.k_objectid =
110 cpu_to_le32(key->on_disk_key.k_objectid);
112 put_ih_version(ih, version);
113 set_le_ih_k_offset(ih, offset);
114 set_le_ih_k_type(ih, type);
115 put_ih_item_len(ih, length);
116 /* set_ih_free_space (ih, 0); */
117 // for directory items it is entry count, for directs and stat
118 // datas - 0xffff, for indirects - 0
119 put_ih_entry_count(ih, entry_count);
123 // FIXME: we might cache recently accessed indirect item
125 // Ugh. Not too eager for that....
126 // I cut the code until such time as I see a convincing argument (benchmark).
127 // I don't want a bloated inode struct..., and I don't like code complexity....
129 /* cutting the code is fine, since it really isn't in use yet and is easy
130 ** to add back in. But, Vladimir has a really good idea here. Think
131 ** about what happens for reading a file. For each page,
132 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
133 ** an indirect item. This indirect item has X number of pointers, where
134 ** X is a big number if we've done the block allocation right. But,
135 ** we only use one or two of these pointers during each call to readpage,
136 ** needlessly researching again later on.
138 ** The size of the cache could be dynamic based on the size of the file.
140 ** I'd also like to see us cache the location the stat data item, since
141 ** we are needlessly researching for that frequently.
143 ** --chris
146 /* If this page has a file tail in it, and
147 ** it was read in by get_block_create_0, the page data is valid,
148 ** but tail is still sitting in a direct item, and we can't write to
149 ** it. So, look through this page, and check all the mapped buffers
150 ** to make sure they have valid block numbers. Any that don't need
151 ** to be unmapped, so that block_prepare_write will correctly call
152 ** reiserfs_get_block to convert the tail into an unformatted node
154 static inline void fix_tail_page_for_writing(struct page *page)
156 struct buffer_head *head, *next, *bh;
158 if (page && page_has_buffers(page)) {
159 head = page_buffers(page);
160 bh = head;
161 do {
162 next = bh->b_this_page;
163 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
164 reiserfs_unmap_buffer(bh);
166 bh = next;
167 } while (bh != head);
171 /* reiserfs_get_block does not need to allocate a block only if it has been
172 done already or non-hole position has been found in the indirect item */
173 static inline int allocation_needed(int retval, b_blocknr_t allocated,
174 struct item_head *ih,
175 __le32 * item, int pos_in_item)
177 if (allocated)
178 return 0;
179 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
180 get_block_num(item, pos_in_item))
181 return 0;
182 return 1;
185 static inline int indirect_item_found(int retval, struct item_head *ih)
187 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
190 static inline void set_block_dev_mapped(struct buffer_head *bh,
191 b_blocknr_t block, struct inode *inode)
193 map_bh(bh, inode->i_sb, block);
197 // files which were created in the earlier version can not be longer,
198 // than 2 gb
200 static int file_capable(struct inode *inode, long block)
202 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
203 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
204 return 1;
206 return 0;
209 /*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
210 struct inode *inode, struct treepath *path)
212 struct super_block *s = th->t_super;
213 int len = th->t_blocks_allocated;
214 int err;
216 BUG_ON(!th->t_trans_id);
217 BUG_ON(!th->t_refcount);
219 pathrelse(path);
221 /* we cannot restart while nested */
222 if (th->t_refcount > 1) {
223 return 0;
225 reiserfs_update_sd(th, inode);
226 err = journal_end(th, s, len);
227 if (!err) {
228 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
229 if (!err)
230 reiserfs_update_inode_transaction(inode);
232 return err;
235 // it is called by get_block when create == 0. Returns block number
236 // for 'block'-th logical block of file. When it hits direct item it
237 // returns 0 (being called from bmap) or read direct item into piece
238 // of page (bh_result)
240 // Please improve the english/clarity in the comment above, as it is
241 // hard to understand.
243 static int _get_block_create_0(struct inode *inode, long block,
244 struct buffer_head *bh_result, int args)
246 INITIALIZE_PATH(path);
247 struct cpu_key key;
248 struct buffer_head *bh;
249 struct item_head *ih, tmp_ih;
250 int fs_gen;
251 int blocknr;
252 char *p = NULL;
253 int chars;
254 int ret;
255 int result;
256 int done = 0;
257 unsigned long offset;
259 // prepare the key to look for the 'block'-th block of file
260 make_cpu_key(&key, inode,
261 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
264 research:
265 result = search_for_position_by_key(inode->i_sb, &key, &path);
266 if (result != POSITION_FOUND) {
267 pathrelse(&path);
268 if (p)
269 kunmap(bh_result->b_page);
270 if (result == IO_ERROR)
271 return -EIO;
272 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
273 // That there is some MMAPED data associated with it that is yet to be written to disk.
274 if ((args & GET_BLOCK_NO_HOLE)
275 && !PageUptodate(bh_result->b_page)) {
276 return -ENOENT;
278 return 0;
281 bh = get_last_bh(&path);
282 ih = get_ih(&path);
283 if (is_indirect_le_ih(ih)) {
284 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
286 /* FIXME: here we could cache indirect item or part of it in
287 the inode to avoid search_by_key in case of subsequent
288 access to file */
289 blocknr = get_block_num(ind_item, path.pos_in_item);
290 ret = 0;
291 if (blocknr) {
292 map_bh(bh_result, inode->i_sb, blocknr);
293 if (path.pos_in_item ==
294 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
295 set_buffer_boundary(bh_result);
297 } else
298 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
299 // That there is some MMAPED data associated with it that is yet to be written to disk.
300 if ((args & GET_BLOCK_NO_HOLE)
301 && !PageUptodate(bh_result->b_page)) {
302 ret = -ENOENT;
305 pathrelse(&path);
306 if (p)
307 kunmap(bh_result->b_page);
308 return ret;
310 // requested data are in direct item(s)
311 if (!(args & GET_BLOCK_READ_DIRECT)) {
312 // we are called by bmap. FIXME: we can not map block of file
313 // when it is stored in direct item(s)
314 pathrelse(&path);
315 if (p)
316 kunmap(bh_result->b_page);
317 return -ENOENT;
320 /* if we've got a direct item, and the buffer or page was uptodate,
321 ** we don't want to pull data off disk again. skip to the
322 ** end, where we map the buffer and return
324 if (buffer_uptodate(bh_result)) {
325 goto finished;
326 } else
328 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
329 ** pages without any buffers. If the page is up to date, we don't want
330 ** read old data off disk. Set the up to date bit on the buffer instead
331 ** and jump to the end
333 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
334 set_buffer_uptodate(bh_result);
335 goto finished;
337 // read file tail into part of page
338 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
339 fs_gen = get_generation(inode->i_sb);
340 copy_item_head(&tmp_ih, ih);
342 /* we only want to kmap if we are reading the tail into the page.
343 ** this is not the common case, so we don't kmap until we are
344 ** sure we need to. But, this means the item might move if
345 ** kmap schedules
347 if (!p) {
348 p = (char *)kmap(bh_result->b_page);
349 if (fs_changed(fs_gen, inode->i_sb)
350 && item_moved(&tmp_ih, &path)) {
351 goto research;
354 p += offset;
355 memset(p, 0, inode->i_sb->s_blocksize);
356 do {
357 if (!is_direct_le_ih(ih)) {
358 BUG();
360 /* make sure we don't read more bytes than actually exist in
361 ** the file. This can happen in odd cases where i_size isn't
362 ** correct, and when direct item padding results in a few
363 ** extra bytes at the end of the direct item
365 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
366 break;
367 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
368 chars =
369 inode->i_size - (le_ih_k_offset(ih) - 1) -
370 path.pos_in_item;
371 done = 1;
372 } else {
373 chars = ih_item_len(ih) - path.pos_in_item;
375 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
377 if (done)
378 break;
380 p += chars;
382 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
383 // we done, if read direct item is not the last item of
384 // node FIXME: we could try to check right delimiting key
385 // to see whether direct item continues in the right
386 // neighbor or rely on i_size
387 break;
389 // update key to look for the next piece
390 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
391 result = search_for_position_by_key(inode->i_sb, &key, &path);
392 if (result != POSITION_FOUND)
393 // i/o error most likely
394 break;
395 bh = get_last_bh(&path);
396 ih = get_ih(&path);
397 } while (1);
399 flush_dcache_page(bh_result->b_page);
400 kunmap(bh_result->b_page);
402 finished:
403 pathrelse(&path);
405 if (result == IO_ERROR)
406 return -EIO;
408 /* this buffer has valid data, but isn't valid for io. mapping it to
409 * block #0 tells the rest of reiserfs it just has a tail in it
411 map_bh(bh_result, inode->i_sb, 0);
412 set_buffer_uptodate(bh_result);
413 return 0;
416 // this is called to create file map. So, _get_block_create_0 will not
417 // read direct item
418 static int reiserfs_bmap(struct inode *inode, sector_t block,
419 struct buffer_head *bh_result, int create)
421 if (!file_capable(inode, block))
422 return -EFBIG;
424 reiserfs_write_lock(inode->i_sb);
425 /* do not read the direct item */
426 _get_block_create_0(inode, block, bh_result, 0);
427 reiserfs_write_unlock(inode->i_sb);
428 return 0;
431 /* special version of get_block that is only used by grab_tail_page right
432 ** now. It is sent to block_prepare_write, and when you try to get a
433 ** block past the end of the file (or a block from a hole) it returns
434 ** -ENOENT instead of a valid buffer. block_prepare_write expects to
435 ** be able to do i/o on the buffers returned, unless an error value
436 ** is also returned.
438 ** So, this allows block_prepare_write to be used for reading a single block
439 ** in a page. Where it does not produce a valid page for holes, or past the
440 ** end of the file. This turns out to be exactly what we need for reading
441 ** tails for conversion.
443 ** The point of the wrapper is forcing a certain value for create, even
444 ** though the VFS layer is calling this function with create==1. If you
445 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
446 ** don't use this function.
448 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
449 struct buffer_head *bh_result,
450 int create)
452 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
455 /* This is special helper for reiserfs_get_block in case we are executing
456 direct_IO request. */
457 static int reiserfs_get_blocks_direct_io(struct inode *inode,
458 sector_t iblock,
459 struct buffer_head *bh_result,
460 int create)
462 int ret;
464 bh_result->b_page = NULL;
466 /* We set the b_size before reiserfs_get_block call since it is
467 referenced in convert_tail_for_hole() that may be called from
468 reiserfs_get_block() */
469 bh_result->b_size = (1 << inode->i_blkbits);
471 ret = reiserfs_get_block(inode, iblock, bh_result,
472 create | GET_BLOCK_NO_DANGLE);
473 if (ret)
474 goto out;
476 /* don't allow direct io onto tail pages */
477 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
478 /* make sure future calls to the direct io funcs for this offset
479 ** in the file fail by unmapping the buffer
481 clear_buffer_mapped(bh_result);
482 ret = -EINVAL;
484 /* Possible unpacked tail. Flush the data before pages have
485 disappeared */
486 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
487 int err;
488 lock_kernel();
489 err = reiserfs_commit_for_inode(inode);
490 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
491 unlock_kernel();
492 if (err < 0)
493 ret = err;
495 out:
496 return ret;
500 ** helper function for when reiserfs_get_block is called for a hole
501 ** but the file tail is still in a direct item
502 ** bh_result is the buffer head for the hole
503 ** tail_offset is the offset of the start of the tail in the file
505 ** This calls prepare_write, which will start a new transaction
506 ** you should not be in a transaction, or have any paths held when you
507 ** call this.
509 static int convert_tail_for_hole(struct inode *inode,
510 struct buffer_head *bh_result,
511 loff_t tail_offset)
513 unsigned long index;
514 unsigned long tail_end;
515 unsigned long tail_start;
516 struct page *tail_page;
517 struct page *hole_page = bh_result->b_page;
518 int retval = 0;
520 if ((tail_offset & (bh_result->b_size - 1)) != 1)
521 return -EIO;
523 /* always try to read until the end of the block */
524 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
525 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
527 index = tail_offset >> PAGE_CACHE_SHIFT;
528 /* hole_page can be zero in case of direct_io, we are sure
529 that we cannot get here if we write with O_DIRECT into
530 tail page */
531 if (!hole_page || index != hole_page->index) {
532 tail_page = grab_cache_page(inode->i_mapping, index);
533 retval = -ENOMEM;
534 if (!tail_page) {
535 goto out;
537 } else {
538 tail_page = hole_page;
541 /* we don't have to make sure the conversion did not happen while
542 ** we were locking the page because anyone that could convert
543 ** must first take i_mutex.
545 ** We must fix the tail page for writing because it might have buffers
546 ** that are mapped, but have a block number of 0. This indicates tail
547 ** data that has been read directly into the page, and block_prepare_write
548 ** won't trigger a get_block in this case.
550 fix_tail_page_for_writing(tail_page);
551 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
552 if (retval)
553 goto unlock;
555 /* tail conversion might change the data in the page */
556 flush_dcache_page(tail_page);
558 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
560 unlock:
561 if (tail_page != hole_page) {
562 unlock_page(tail_page);
563 page_cache_release(tail_page);
565 out:
566 return retval;
569 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
570 long block,
571 struct inode *inode,
572 b_blocknr_t * allocated_block_nr,
573 struct treepath *path, int flags)
575 BUG_ON(!th->t_trans_id);
577 #ifdef REISERFS_PREALLOCATE
578 if (!(flags & GET_BLOCK_NO_IMUX)) {
579 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
580 path, block);
582 #endif
583 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
584 block);
587 int reiserfs_get_block(struct inode *inode, sector_t block,
588 struct buffer_head *bh_result, int create)
590 int repeat, retval = 0;
591 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
592 INITIALIZE_PATH(path);
593 int pos_in_item;
594 struct cpu_key key;
595 struct buffer_head *bh, *unbh = NULL;
596 struct item_head *ih, tmp_ih;
597 __le32 *item;
598 int done;
599 int fs_gen;
600 struct reiserfs_transaction_handle *th = NULL;
601 /* space reserved in transaction batch:
602 . 3 balancings in direct->indirect conversion
603 . 1 block involved into reiserfs_update_sd()
604 XXX in practically impossible worst case direct2indirect()
605 can incur (much) more than 3 balancings.
606 quota update for user, group */
607 int jbegin_count =
608 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
609 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
610 int version;
611 int dangle = 1;
612 loff_t new_offset =
613 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
615 /* bad.... */
616 reiserfs_write_lock(inode->i_sb);
617 version = get_inode_item_key_version(inode);
619 if (!file_capable(inode, block)) {
620 reiserfs_write_unlock(inode->i_sb);
621 return -EFBIG;
624 /* if !create, we aren't changing the FS, so we don't need to
625 ** log anything, so we don't need to start a transaction
627 if (!(create & GET_BLOCK_CREATE)) {
628 int ret;
629 /* find number of block-th logical block of the file */
630 ret = _get_block_create_0(inode, block, bh_result,
631 create | GET_BLOCK_READ_DIRECT);
632 reiserfs_write_unlock(inode->i_sb);
633 return ret;
636 * if we're already in a transaction, make sure to close
637 * any new transactions we start in this func
639 if ((create & GET_BLOCK_NO_DANGLE) ||
640 reiserfs_transaction_running(inode->i_sb))
641 dangle = 0;
643 /* If file is of such a size, that it might have a tail and tails are enabled
644 ** we should mark it as possibly needing tail packing on close
646 if ((have_large_tails(inode->i_sb)
647 && inode->i_size < i_block_size(inode) * 4)
648 || (have_small_tails(inode->i_sb)
649 && inode->i_size < i_block_size(inode)))
650 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
652 /* set the key of the first byte in the 'block'-th block of file */
653 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
654 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
655 start_trans:
656 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
657 if (!th) {
658 retval = -ENOMEM;
659 goto failure;
661 reiserfs_update_inode_transaction(inode);
663 research:
665 retval = search_for_position_by_key(inode->i_sb, &key, &path);
666 if (retval == IO_ERROR) {
667 retval = -EIO;
668 goto failure;
671 bh = get_last_bh(&path);
672 ih = get_ih(&path);
673 item = get_item(&path);
674 pos_in_item = path.pos_in_item;
676 fs_gen = get_generation(inode->i_sb);
677 copy_item_head(&tmp_ih, ih);
679 if (allocation_needed
680 (retval, allocated_block_nr, ih, item, pos_in_item)) {
681 /* we have to allocate block for the unformatted node */
682 if (!th) {
683 pathrelse(&path);
684 goto start_trans;
687 repeat =
688 _allocate_block(th, block, inode, &allocated_block_nr,
689 &path, create);
691 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
692 /* restart the transaction to give the journal a chance to free
693 ** some blocks. releases the path, so we have to go back to
694 ** research if we succeed on the second try
696 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
697 retval = restart_transaction(th, inode, &path);
698 if (retval)
699 goto failure;
700 repeat =
701 _allocate_block(th, block, inode,
702 &allocated_block_nr, NULL, create);
704 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
705 goto research;
707 if (repeat == QUOTA_EXCEEDED)
708 retval = -EDQUOT;
709 else
710 retval = -ENOSPC;
711 goto failure;
714 if (fs_changed(fs_gen, inode->i_sb)
715 && item_moved(&tmp_ih, &path)) {
716 goto research;
720 if (indirect_item_found(retval, ih)) {
721 b_blocknr_t unfm_ptr;
722 /* 'block'-th block is in the file already (there is
723 corresponding cell in some indirect item). But it may be
724 zero unformatted node pointer (hole) */
725 unfm_ptr = get_block_num(item, pos_in_item);
726 if (unfm_ptr == 0) {
727 /* use allocated block to plug the hole */
728 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
729 if (fs_changed(fs_gen, inode->i_sb)
730 && item_moved(&tmp_ih, &path)) {
731 reiserfs_restore_prepared_buffer(inode->i_sb,
732 bh);
733 goto research;
735 set_buffer_new(bh_result);
736 if (buffer_dirty(bh_result)
737 && reiserfs_data_ordered(inode->i_sb))
738 reiserfs_add_ordered_list(inode, bh_result);
739 put_block_num(item, pos_in_item, allocated_block_nr);
740 unfm_ptr = allocated_block_nr;
741 journal_mark_dirty(th, inode->i_sb, bh);
742 reiserfs_update_sd(th, inode);
744 set_block_dev_mapped(bh_result, unfm_ptr, inode);
745 pathrelse(&path);
746 retval = 0;
747 if (!dangle && th)
748 retval = reiserfs_end_persistent_transaction(th);
750 reiserfs_write_unlock(inode->i_sb);
752 /* the item was found, so new blocks were not added to the file
753 ** there is no need to make sure the inode is updated with this
754 ** transaction
756 return retval;
759 if (!th) {
760 pathrelse(&path);
761 goto start_trans;
764 /* desired position is not found or is in the direct item. We have
765 to append file with holes up to 'block'-th block converting
766 direct items to indirect one if necessary */
767 done = 0;
768 do {
769 if (is_statdata_le_ih(ih)) {
770 __le32 unp = 0;
771 struct cpu_key tmp_key;
773 /* indirect item has to be inserted */
774 make_le_item_head(&tmp_ih, &key, version, 1,
775 TYPE_INDIRECT, UNFM_P_SIZE,
776 0 /* free_space */ );
778 if (cpu_key_k_offset(&key) == 1) {
779 /* we are going to add 'block'-th block to the file. Use
780 allocated block for that */
781 unp = cpu_to_le32(allocated_block_nr);
782 set_block_dev_mapped(bh_result,
783 allocated_block_nr, inode);
784 set_buffer_new(bh_result);
785 done = 1;
787 tmp_key = key; // ;)
788 set_cpu_key_k_offset(&tmp_key, 1);
789 PATH_LAST_POSITION(&path)++;
791 retval =
792 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
793 inode, (char *)&unp);
794 if (retval) {
795 reiserfs_free_block(th, inode,
796 allocated_block_nr, 1);
797 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
799 //mark_tail_converted (inode);
800 } else if (is_direct_le_ih(ih)) {
801 /* direct item has to be converted */
802 loff_t tail_offset;
804 tail_offset =
805 ((le_ih_k_offset(ih) -
806 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
807 if (tail_offset == cpu_key_k_offset(&key)) {
808 /* direct item we just found fits into block we have
809 to map. Convert it into unformatted node: use
810 bh_result for the conversion */
811 set_block_dev_mapped(bh_result,
812 allocated_block_nr, inode);
813 unbh = bh_result;
814 done = 1;
815 } else {
816 /* we have to padd file tail stored in direct item(s)
817 up to block size and convert it to unformatted
818 node. FIXME: this should also get into page cache */
820 pathrelse(&path);
822 * ugly, but we can only end the transaction if
823 * we aren't nested
825 BUG_ON(!th->t_refcount);
826 if (th->t_refcount == 1) {
827 retval =
828 reiserfs_end_persistent_transaction
829 (th);
830 th = NULL;
831 if (retval)
832 goto failure;
835 retval =
836 convert_tail_for_hole(inode, bh_result,
837 tail_offset);
838 if (retval) {
839 if (retval != -ENOSPC)
840 reiserfs_warning(inode->i_sb,
841 "clm-6004: convert tail failed inode %lu, error %d",
842 inode->i_ino,
843 retval);
844 if (allocated_block_nr) {
845 /* the bitmap, the super, and the stat data == 3 */
846 if (!th)
847 th = reiserfs_persistent_transaction(inode->i_sb, 3);
848 if (th)
849 reiserfs_free_block(th,
850 inode,
851 allocated_block_nr,
854 goto failure;
856 goto research;
858 retval =
859 direct2indirect(th, inode, &path, unbh,
860 tail_offset);
861 if (retval) {
862 reiserfs_unmap_buffer(unbh);
863 reiserfs_free_block(th, inode,
864 allocated_block_nr, 1);
865 goto failure;
867 /* it is important the set_buffer_uptodate is done after
868 ** the direct2indirect. The buffer might contain valid
869 ** data newer than the data on disk (read by readpage, changed,
870 ** and then sent here by writepage). direct2indirect needs
871 ** to know if unbh was already up to date, so it can decide
872 ** if the data in unbh needs to be replaced with data from
873 ** the disk
875 set_buffer_uptodate(unbh);
877 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
878 buffer will disappear shortly, so it should not be added to
880 if (unbh->b_page) {
881 /* we've converted the tail, so we must
882 ** flush unbh before the transaction commits
884 reiserfs_add_tail_list(inode, unbh);
886 /* mark it dirty now to prevent commit_write from adding
887 ** this buffer to the inode's dirty buffer list
890 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
891 * It's still atomic, but it sets the page dirty too,
892 * which makes it eligible for writeback at any time by the
893 * VM (which was also the case with __mark_buffer_dirty())
895 mark_buffer_dirty(unbh);
897 } else {
898 /* append indirect item with holes if needed, when appending
899 pointer to 'block'-th block use block, which is already
900 allocated */
901 struct cpu_key tmp_key;
902 unp_t unf_single = 0; // We use this in case we need to allocate only
903 // one block which is a fastpath
904 unp_t *un;
905 __u64 max_to_insert =
906 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
907 UNFM_P_SIZE;
908 __u64 blocks_needed;
910 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
911 "vs-804: invalid position for append");
912 /* indirect item has to be appended, set up key of that position */
913 make_cpu_key(&tmp_key, inode,
914 le_key_k_offset(version,
915 &(ih->ih_key)) +
916 op_bytes_number(ih,
917 inode->i_sb->s_blocksize),
918 //pos_in_item * inode->i_sb->s_blocksize,
919 TYPE_INDIRECT, 3); // key type is unimportant
921 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
922 "green-805: invalid offset");
923 blocks_needed =
925 ((cpu_key_k_offset(&key) -
926 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
927 s_blocksize_bits);
929 if (blocks_needed == 1) {
930 un = &unf_single;
931 } else {
932 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling.
933 if (!un) {
934 un = &unf_single;
935 blocks_needed = 1;
936 max_to_insert = 0;
939 if (blocks_needed <= max_to_insert) {
940 /* we are going to add target block to the file. Use allocated
941 block for that */
942 un[blocks_needed - 1] =
943 cpu_to_le32(allocated_block_nr);
944 set_block_dev_mapped(bh_result,
945 allocated_block_nr, inode);
946 set_buffer_new(bh_result);
947 done = 1;
948 } else {
949 /* paste hole to the indirect item */
950 /* If kmalloc failed, max_to_insert becomes zero and it means we
951 only have space for one block */
952 blocks_needed =
953 max_to_insert ? max_to_insert : 1;
955 retval =
956 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
957 (char *)un,
958 UNFM_P_SIZE *
959 blocks_needed);
961 if (blocks_needed != 1)
962 kfree(un);
964 if (retval) {
965 reiserfs_free_block(th, inode,
966 allocated_block_nr, 1);
967 goto failure;
969 if (!done) {
970 /* We need to mark new file size in case this function will be
971 interrupted/aborted later on. And we may do this only for
972 holes. */
973 inode->i_size +=
974 inode->i_sb->s_blocksize * blocks_needed;
978 if (done == 1)
979 break;
981 /* this loop could log more blocks than we had originally asked
982 ** for. So, we have to allow the transaction to end if it is
983 ** too big or too full. Update the inode so things are
984 ** consistent if we crash before the function returns
986 ** release the path so that anybody waiting on the path before
987 ** ending their transaction will be able to continue.
989 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
990 retval = restart_transaction(th, inode, &path);
991 if (retval)
992 goto failure;
994 /* inserting indirect pointers for a hole can take a
995 ** long time. reschedule if needed
997 cond_resched();
999 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1000 if (retval == IO_ERROR) {
1001 retval = -EIO;
1002 goto failure;
1004 if (retval == POSITION_FOUND) {
1005 reiserfs_warning(inode->i_sb,
1006 "vs-825: reiserfs_get_block: "
1007 "%K should not be found", &key);
1008 retval = -EEXIST;
1009 if (allocated_block_nr)
1010 reiserfs_free_block(th, inode,
1011 allocated_block_nr, 1);
1012 pathrelse(&path);
1013 goto failure;
1015 bh = get_last_bh(&path);
1016 ih = get_ih(&path);
1017 item = get_item(&path);
1018 pos_in_item = path.pos_in_item;
1019 } while (1);
1021 retval = 0;
1023 failure:
1024 if (th && (!dangle || (retval && !th->t_trans_id))) {
1025 int err;
1026 if (th->t_trans_id)
1027 reiserfs_update_sd(th, inode);
1028 err = reiserfs_end_persistent_transaction(th);
1029 if (err)
1030 retval = err;
1033 reiserfs_write_unlock(inode->i_sb);
1034 reiserfs_check_path(&path);
1035 return retval;
1038 static int
1039 reiserfs_readpages(struct file *file, struct address_space *mapping,
1040 struct list_head *pages, unsigned nr_pages)
1042 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1045 /* Compute real number of used bytes by file
1046 * Following three functions can go away when we'll have enough space in stat item
1048 static int real_space_diff(struct inode *inode, int sd_size)
1050 int bytes;
1051 loff_t blocksize = inode->i_sb->s_blocksize;
1053 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1054 return sd_size;
1056 /* End of file is also in full block with indirect reference, so round
1057 ** up to the next block.
1059 ** there is just no way to know if the tail is actually packed
1060 ** on the file, so we have to assume it isn't. When we pack the
1061 ** tail, we add 4 bytes to pretend there really is an unformatted
1062 ** node pointer
1064 bytes =
1065 ((inode->i_size +
1066 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1067 sd_size;
1068 return bytes;
1071 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1072 int sd_size)
1074 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1075 return inode->i_size +
1076 (loff_t) (real_space_diff(inode, sd_size));
1078 return ((loff_t) real_space_diff(inode, sd_size)) +
1079 (((loff_t) blocks) << 9);
1082 /* Compute number of blocks used by file in ReiserFS counting */
1083 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1085 loff_t bytes = inode_get_bytes(inode);
1086 loff_t real_space = real_space_diff(inode, sd_size);
1088 /* keeps fsck and non-quota versions of reiserfs happy */
1089 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1090 bytes += (loff_t) 511;
1093 /* files from before the quota patch might i_blocks such that
1094 ** bytes < real_space. Deal with that here to prevent it from
1095 ** going negative.
1097 if (bytes < real_space)
1098 return 0;
1099 return (bytes - real_space) >> 9;
1103 // BAD: new directories have stat data of new type and all other items
1104 // of old type. Version stored in the inode says about body items, so
1105 // in update_stat_data we can not rely on inode, but have to check
1106 // item version directly
1109 // called by read_locked_inode
1110 static void init_inode(struct inode *inode, struct treepath *path)
1112 struct buffer_head *bh;
1113 struct item_head *ih;
1114 __u32 rdev;
1115 //int version = ITEM_VERSION_1;
1117 bh = PATH_PLAST_BUFFER(path);
1118 ih = PATH_PITEM_HEAD(path);
1120 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1122 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1123 REISERFS_I(inode)->i_flags = 0;
1124 REISERFS_I(inode)->i_prealloc_block = 0;
1125 REISERFS_I(inode)->i_prealloc_count = 0;
1126 REISERFS_I(inode)->i_trans_id = 0;
1127 REISERFS_I(inode)->i_jl = NULL;
1128 reiserfs_init_acl_access(inode);
1129 reiserfs_init_acl_default(inode);
1130 reiserfs_init_xattr_rwsem(inode);
1132 if (stat_data_v1(ih)) {
1133 struct stat_data_v1 *sd =
1134 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1135 unsigned long blocks;
1137 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1138 set_inode_sd_version(inode, STAT_DATA_V1);
1139 inode->i_mode = sd_v1_mode(sd);
1140 inode->i_nlink = sd_v1_nlink(sd);
1141 inode->i_uid = sd_v1_uid(sd);
1142 inode->i_gid = sd_v1_gid(sd);
1143 inode->i_size = sd_v1_size(sd);
1144 inode->i_atime.tv_sec = sd_v1_atime(sd);
1145 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1146 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1147 inode->i_atime.tv_nsec = 0;
1148 inode->i_ctime.tv_nsec = 0;
1149 inode->i_mtime.tv_nsec = 0;
1151 inode->i_blocks = sd_v1_blocks(sd);
1152 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1153 blocks = (inode->i_size + 511) >> 9;
1154 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1155 if (inode->i_blocks > blocks) {
1156 // there was a bug in <=3.5.23 when i_blocks could take negative
1157 // values. Starting from 3.5.17 this value could even be stored in
1158 // stat data. For such files we set i_blocks based on file
1159 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1160 // only updated if file's inode will ever change
1161 inode->i_blocks = blocks;
1164 rdev = sd_v1_rdev(sd);
1165 REISERFS_I(inode)->i_first_direct_byte =
1166 sd_v1_first_direct_byte(sd);
1167 /* an early bug in the quota code can give us an odd number for the
1168 ** block count. This is incorrect, fix it here.
1170 if (inode->i_blocks & 1) {
1171 inode->i_blocks++;
1173 inode_set_bytes(inode,
1174 to_real_used_space(inode, inode->i_blocks,
1175 SD_V1_SIZE));
1176 /* nopack is initially zero for v1 objects. For v2 objects,
1177 nopack is initialised from sd_attrs */
1178 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1179 } else {
1180 // new stat data found, but object may have old items
1181 // (directories and symlinks)
1182 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1184 inode->i_mode = sd_v2_mode(sd);
1185 inode->i_nlink = sd_v2_nlink(sd);
1186 inode->i_uid = sd_v2_uid(sd);
1187 inode->i_size = sd_v2_size(sd);
1188 inode->i_gid = sd_v2_gid(sd);
1189 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1190 inode->i_atime.tv_sec = sd_v2_atime(sd);
1191 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1192 inode->i_ctime.tv_nsec = 0;
1193 inode->i_mtime.tv_nsec = 0;
1194 inode->i_atime.tv_nsec = 0;
1195 inode->i_blocks = sd_v2_blocks(sd);
1196 rdev = sd_v2_rdev(sd);
1197 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1198 inode->i_generation =
1199 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1200 else
1201 inode->i_generation = sd_v2_generation(sd);
1203 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1204 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1205 else
1206 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1207 REISERFS_I(inode)->i_first_direct_byte = 0;
1208 set_inode_sd_version(inode, STAT_DATA_V2);
1209 inode_set_bytes(inode,
1210 to_real_used_space(inode, inode->i_blocks,
1211 SD_V2_SIZE));
1212 /* read persistent inode attributes from sd and initalise
1213 generic inode flags from them */
1214 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1215 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1218 pathrelse(path);
1219 if (S_ISREG(inode->i_mode)) {
1220 inode->i_op = &reiserfs_file_inode_operations;
1221 inode->i_fop = &reiserfs_file_operations;
1222 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1223 } else if (S_ISDIR(inode->i_mode)) {
1224 inode->i_op = &reiserfs_dir_inode_operations;
1225 inode->i_fop = &reiserfs_dir_operations;
1226 } else if (S_ISLNK(inode->i_mode)) {
1227 inode->i_op = &reiserfs_symlink_inode_operations;
1228 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1229 } else {
1230 inode->i_blocks = 0;
1231 inode->i_op = &reiserfs_special_inode_operations;
1232 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1236 // update new stat data with inode fields
1237 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1239 struct stat_data *sd_v2 = (struct stat_data *)sd;
1240 __u16 flags;
1242 set_sd_v2_mode(sd_v2, inode->i_mode);
1243 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1244 set_sd_v2_uid(sd_v2, inode->i_uid);
1245 set_sd_v2_size(sd_v2, size);
1246 set_sd_v2_gid(sd_v2, inode->i_gid);
1247 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1248 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1249 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1250 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1251 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1252 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1253 else
1254 set_sd_v2_generation(sd_v2, inode->i_generation);
1255 flags = REISERFS_I(inode)->i_attrs;
1256 i_attrs_to_sd_attrs(inode, &flags);
1257 set_sd_v2_attrs(sd_v2, flags);
1260 // used to copy inode's fields to old stat data
1261 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1263 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1265 set_sd_v1_mode(sd_v1, inode->i_mode);
1266 set_sd_v1_uid(sd_v1, inode->i_uid);
1267 set_sd_v1_gid(sd_v1, inode->i_gid);
1268 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1269 set_sd_v1_size(sd_v1, size);
1270 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1271 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1272 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1274 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1275 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1276 else
1277 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1279 // Sigh. i_first_direct_byte is back
1280 set_sd_v1_first_direct_byte(sd_v1,
1281 REISERFS_I(inode)->i_first_direct_byte);
1284 /* NOTE, you must prepare the buffer head before sending it here,
1285 ** and then log it after the call
1287 static void update_stat_data(struct treepath *path, struct inode *inode,
1288 loff_t size)
1290 struct buffer_head *bh;
1291 struct item_head *ih;
1293 bh = PATH_PLAST_BUFFER(path);
1294 ih = PATH_PITEM_HEAD(path);
1296 if (!is_statdata_le_ih(ih))
1297 reiserfs_panic(inode->i_sb,
1298 "vs-13065: update_stat_data: key %k, found item %h",
1299 INODE_PKEY(inode), ih);
1301 if (stat_data_v1(ih)) {
1302 // path points to old stat data
1303 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1304 } else {
1305 inode2sd(B_I_PITEM(bh, ih), inode, size);
1308 return;
1311 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1312 struct inode *inode, loff_t size)
1314 struct cpu_key key;
1315 INITIALIZE_PATH(path);
1316 struct buffer_head *bh;
1317 int fs_gen;
1318 struct item_head *ih, tmp_ih;
1319 int retval;
1321 BUG_ON(!th->t_trans_id);
1323 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1325 for (;;) {
1326 int pos;
1327 /* look for the object's stat data */
1328 retval = search_item(inode->i_sb, &key, &path);
1329 if (retval == IO_ERROR) {
1330 reiserfs_warning(inode->i_sb,
1331 "vs-13050: reiserfs_update_sd: "
1332 "i/o failure occurred trying to update %K stat data",
1333 &key);
1334 return;
1336 if (retval == ITEM_NOT_FOUND) {
1337 pos = PATH_LAST_POSITION(&path);
1338 pathrelse(&path);
1339 if (inode->i_nlink == 0) {
1340 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1341 return;
1343 reiserfs_warning(inode->i_sb,
1344 "vs-13060: reiserfs_update_sd: "
1345 "stat data of object %k (nlink == %d) not found (pos %d)",
1346 INODE_PKEY(inode), inode->i_nlink,
1347 pos);
1348 reiserfs_check_path(&path);
1349 return;
1352 /* sigh, prepare_for_journal might schedule. When it schedules the
1353 ** FS might change. We have to detect that, and loop back to the
1354 ** search if the stat data item has moved
1356 bh = get_last_bh(&path);
1357 ih = get_ih(&path);
1358 copy_item_head(&tmp_ih, ih);
1359 fs_gen = get_generation(inode->i_sb);
1360 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1361 if (fs_changed(fs_gen, inode->i_sb)
1362 && item_moved(&tmp_ih, &path)) {
1363 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1364 continue; /* Stat_data item has been moved after scheduling. */
1366 break;
1368 update_stat_data(&path, inode, size);
1369 journal_mark_dirty(th, th->t_super, bh);
1370 pathrelse(&path);
1371 return;
1374 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1375 ** does a make_bad_inode when things go wrong. But, we need to make sure
1376 ** and clear the key in the private portion of the inode, otherwise a
1377 ** corresponding iput might try to delete whatever object the inode last
1378 ** represented.
1380 static void reiserfs_make_bad_inode(struct inode *inode)
1382 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1383 make_bad_inode(inode);
1387 // initially this function was derived from minix or ext2's analog and
1388 // evolved as the prototype did
1391 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1393 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1394 inode->i_ino = args->objectid;
1395 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1396 return 0;
1399 /* looks for stat data in the tree, and fills up the fields of in-core
1400 inode stat data fields */
1401 void reiserfs_read_locked_inode(struct inode *inode,
1402 struct reiserfs_iget_args *args)
1404 INITIALIZE_PATH(path_to_sd);
1405 struct cpu_key key;
1406 unsigned long dirino;
1407 int retval;
1409 dirino = args->dirid;
1411 /* set version 1, version 2 could be used too, because stat data
1412 key is the same in both versions */
1413 key.version = KEY_FORMAT_3_5;
1414 key.on_disk_key.k_dir_id = dirino;
1415 key.on_disk_key.k_objectid = inode->i_ino;
1416 key.on_disk_key.k_offset = 0;
1417 key.on_disk_key.k_type = 0;
1419 /* look for the object's stat data */
1420 retval = search_item(inode->i_sb, &key, &path_to_sd);
1421 if (retval == IO_ERROR) {
1422 reiserfs_warning(inode->i_sb,
1423 "vs-13070: reiserfs_read_locked_inode: "
1424 "i/o failure occurred trying to find stat data of %K",
1425 &key);
1426 reiserfs_make_bad_inode(inode);
1427 return;
1429 if (retval != ITEM_FOUND) {
1430 /* a stale NFS handle can trigger this without it being an error */
1431 pathrelse(&path_to_sd);
1432 reiserfs_make_bad_inode(inode);
1433 inode->i_nlink = 0;
1434 return;
1437 init_inode(inode, &path_to_sd);
1439 /* It is possible that knfsd is trying to access inode of a file
1440 that is being removed from the disk by some other thread. As we
1441 update sd on unlink all that is required is to check for nlink
1442 here. This bug was first found by Sizif when debugging
1443 SquidNG/Butterfly, forgotten, and found again after Philippe
1444 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1446 More logical fix would require changes in fs/inode.c:iput() to
1447 remove inode from hash-table _after_ fs cleaned disk stuff up and
1448 in iget() to return NULL if I_FREEING inode is found in
1449 hash-table. */
1450 /* Currently there is one place where it's ok to meet inode with
1451 nlink==0: processing of open-unlinked and half-truncated files
1452 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1453 if ((inode->i_nlink == 0) &&
1454 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1455 reiserfs_warning(inode->i_sb,
1456 "vs-13075: reiserfs_read_locked_inode: "
1457 "dead inode read from disk %K. "
1458 "This is likely to be race with knfsd. Ignore",
1459 &key);
1460 reiserfs_make_bad_inode(inode);
1463 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1468 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1470 * @inode: inode from hash table to check
1471 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1473 * This function is called by iget5_locked() to distinguish reiserfs inodes
1474 * having the same inode numbers. Such inodes can only exist due to some
1475 * error condition. One of them should be bad. Inodes with identical
1476 * inode numbers (objectids) are distinguished by parent directory ids.
1479 int reiserfs_find_actor(struct inode *inode, void *opaque)
1481 struct reiserfs_iget_args *args;
1483 args = opaque;
1484 /* args is already in CPU order */
1485 return (inode->i_ino == args->objectid) &&
1486 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1489 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1491 struct inode *inode;
1492 struct reiserfs_iget_args args;
1494 args.objectid = key->on_disk_key.k_objectid;
1495 args.dirid = key->on_disk_key.k_dir_id;
1496 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1497 reiserfs_find_actor, reiserfs_init_locked_inode,
1498 (void *)(&args));
1499 if (!inode)
1500 return ERR_PTR(-ENOMEM);
1502 if (inode->i_state & I_NEW) {
1503 reiserfs_read_locked_inode(inode, &args);
1504 unlock_new_inode(inode);
1507 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1508 /* either due to i/o error or a stale NFS handle */
1509 iput(inode);
1510 inode = NULL;
1512 return inode;
1515 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1517 __u32 *data = vobjp;
1518 struct cpu_key key;
1519 struct dentry *result;
1520 struct inode *inode;
1522 key.on_disk_key.k_objectid = data[0];
1523 key.on_disk_key.k_dir_id = data[1];
1524 reiserfs_write_lock(sb);
1525 inode = reiserfs_iget(sb, &key);
1526 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1527 data[2] != inode->i_generation) {
1528 iput(inode);
1529 inode = NULL;
1531 reiserfs_write_unlock(sb);
1532 if (!inode)
1533 inode = ERR_PTR(-ESTALE);
1534 if (IS_ERR(inode))
1535 return ERR_PTR(PTR_ERR(inode));
1536 result = d_alloc_anon(inode);
1537 if (!result) {
1538 iput(inode);
1539 return ERR_PTR(-ENOMEM);
1541 return result;
1544 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1545 int len, int fhtype,
1546 int (*acceptable) (void *contect,
1547 struct dentry * de),
1548 void *context)
1550 __u32 obj[3], parent[3];
1552 /* fhtype happens to reflect the number of u32s encoded.
1553 * due to a bug in earlier code, fhtype might indicate there
1554 * are more u32s then actually fitted.
1555 * so if fhtype seems to be more than len, reduce fhtype.
1556 * Valid types are:
1557 * 2 - objectid + dir_id - legacy support
1558 * 3 - objectid + dir_id + generation
1559 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1560 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1561 * 6 - as above plus generation of directory
1562 * 6 does not fit in NFSv2 handles
1564 if (fhtype > len) {
1565 if (fhtype != 6 || len != 5)
1566 reiserfs_warning(sb,
1567 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1568 fhtype, len);
1569 fhtype = 5;
1572 obj[0] = data[0];
1573 obj[1] = data[1];
1574 if (fhtype == 3 || fhtype >= 5)
1575 obj[2] = data[2];
1576 else
1577 obj[2] = 0; /* generation number */
1579 if (fhtype >= 4) {
1580 parent[0] = data[fhtype >= 5 ? 3 : 2];
1581 parent[1] = data[fhtype >= 5 ? 4 : 3];
1582 if (fhtype == 6)
1583 parent[2] = data[5];
1584 else
1585 parent[2] = 0;
1587 return sb->s_export_op->find_exported_dentry(sb, obj,
1588 fhtype < 4 ? NULL : parent,
1589 acceptable, context);
1592 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1593 int need_parent)
1595 struct inode *inode = dentry->d_inode;
1596 int maxlen = *lenp;
1598 if (maxlen < 3)
1599 return 255;
1601 data[0] = inode->i_ino;
1602 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1603 data[2] = inode->i_generation;
1604 *lenp = 3;
1605 /* no room for directory info? return what we've stored so far */
1606 if (maxlen < 5 || !need_parent)
1607 return 3;
1609 spin_lock(&dentry->d_lock);
1610 inode = dentry->d_parent->d_inode;
1611 data[3] = inode->i_ino;
1612 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1613 *lenp = 5;
1614 if (maxlen >= 6) {
1615 data[5] = inode->i_generation;
1616 *lenp = 6;
1618 spin_unlock(&dentry->d_lock);
1619 return *lenp;
1622 /* looks for stat data, then copies fields to it, marks the buffer
1623 containing stat data as dirty */
1624 /* reiserfs inodes are never really dirty, since the dirty inode call
1625 ** always logs them. This call allows the VFS inode marking routines
1626 ** to properly mark inodes for datasync and such, but only actually
1627 ** does something when called for a synchronous update.
1629 int reiserfs_write_inode(struct inode *inode, int do_sync)
1631 struct reiserfs_transaction_handle th;
1632 int jbegin_count = 1;
1634 if (inode->i_sb->s_flags & MS_RDONLY)
1635 return -EROFS;
1636 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1637 ** these cases are just when the system needs ram, not when the
1638 ** inode needs to reach disk for safety, and they can safely be
1639 ** ignored because the altered inode has already been logged.
1641 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1642 reiserfs_write_lock(inode->i_sb);
1643 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1644 reiserfs_update_sd(&th, inode);
1645 journal_end_sync(&th, inode->i_sb, jbegin_count);
1647 reiserfs_write_unlock(inode->i_sb);
1649 return 0;
1652 /* stat data of new object is inserted already, this inserts the item
1653 containing "." and ".." entries */
1654 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1655 struct inode *inode,
1656 struct item_head *ih, struct treepath *path,
1657 struct inode *dir)
1659 struct super_block *sb = th->t_super;
1660 char empty_dir[EMPTY_DIR_SIZE];
1661 char *body = empty_dir;
1662 struct cpu_key key;
1663 int retval;
1665 BUG_ON(!th->t_trans_id);
1667 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1668 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1669 TYPE_DIRENTRY, 3 /*key length */ );
1671 /* compose item head for new item. Directories consist of items of
1672 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1673 is done by reiserfs_new_inode */
1674 if (old_format_only(sb)) {
1675 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1676 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1678 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1679 ih->ih_key.k_objectid,
1680 INODE_PKEY(dir)->k_dir_id,
1681 INODE_PKEY(dir)->k_objectid);
1682 } else {
1683 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1684 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1686 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1687 ih->ih_key.k_objectid,
1688 INODE_PKEY(dir)->k_dir_id,
1689 INODE_PKEY(dir)->k_objectid);
1692 /* look for place in the tree for new item */
1693 retval = search_item(sb, &key, path);
1694 if (retval == IO_ERROR) {
1695 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1696 "i/o failure occurred creating new directory");
1697 return -EIO;
1699 if (retval == ITEM_FOUND) {
1700 pathrelse(path);
1701 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1702 "object with this key exists (%k)",
1703 &(ih->ih_key));
1704 return -EEXIST;
1707 /* insert item, that is empty directory item */
1708 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1711 /* stat data of object has been inserted, this inserts the item
1712 containing the body of symlink */
1713 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1714 struct item_head *ih,
1715 struct treepath *path, const char *symname,
1716 int item_len)
1718 struct super_block *sb = th->t_super;
1719 struct cpu_key key;
1720 int retval;
1722 BUG_ON(!th->t_trans_id);
1724 _make_cpu_key(&key, KEY_FORMAT_3_5,
1725 le32_to_cpu(ih->ih_key.k_dir_id),
1726 le32_to_cpu(ih->ih_key.k_objectid),
1727 1, TYPE_DIRECT, 3 /*key length */ );
1729 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1730 0 /*free_space */ );
1732 /* look for place in the tree for new item */
1733 retval = search_item(sb, &key, path);
1734 if (retval == IO_ERROR) {
1735 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1736 "i/o failure occurred creating new symlink");
1737 return -EIO;
1739 if (retval == ITEM_FOUND) {
1740 pathrelse(path);
1741 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1742 "object with this key exists (%k)",
1743 &(ih->ih_key));
1744 return -EEXIST;
1747 /* insert item, that is body of symlink */
1748 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1751 /* inserts the stat data into the tree, and then calls
1752 reiserfs_new_directory (to insert ".", ".." item if new object is
1753 directory) or reiserfs_new_symlink (to insert symlink body if new
1754 object is symlink) or nothing (if new object is regular file)
1756 NOTE! uid and gid must already be set in the inode. If we return
1757 non-zero due to an error, we have to drop the quota previously allocated
1758 for the fresh inode. This can only be done outside a transaction, so
1759 if we return non-zero, we also end the transaction. */
1760 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1761 struct inode *dir, int mode, const char *symname,
1762 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1763 strlen (symname) for symlinks) */
1764 loff_t i_size, struct dentry *dentry,
1765 struct inode *inode)
1767 struct super_block *sb;
1768 INITIALIZE_PATH(path_to_key);
1769 struct cpu_key key;
1770 struct item_head ih;
1771 struct stat_data sd;
1772 int retval;
1773 int err;
1775 BUG_ON(!th->t_trans_id);
1777 if (DQUOT_ALLOC_INODE(inode)) {
1778 err = -EDQUOT;
1779 goto out_end_trans;
1781 if (!dir->i_nlink) {
1782 err = -EPERM;
1783 goto out_bad_inode;
1786 sb = dir->i_sb;
1788 /* item head of new item */
1789 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1790 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1791 if (!ih.ih_key.k_objectid) {
1792 err = -ENOMEM;
1793 goto out_bad_inode;
1795 if (old_format_only(sb))
1796 /* not a perfect generation count, as object ids can be reused, but
1797 ** this is as good as reiserfs can do right now.
1798 ** note that the private part of inode isn't filled in yet, we have
1799 ** to use the directory.
1801 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1802 else
1803 #if defined( USE_INODE_GENERATION_COUNTER )
1804 inode->i_generation =
1805 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1806 #else
1807 inode->i_generation = ++event;
1808 #endif
1810 /* fill stat data */
1811 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1813 /* uid and gid must already be set by the caller for quota init */
1815 /* symlink cannot be immutable or append only, right? */
1816 if (S_ISLNK(inode->i_mode))
1817 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1819 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1820 inode->i_size = i_size;
1821 inode->i_blocks = 0;
1822 inode->i_bytes = 0;
1823 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1824 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1826 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1827 REISERFS_I(inode)->i_flags = 0;
1828 REISERFS_I(inode)->i_prealloc_block = 0;
1829 REISERFS_I(inode)->i_prealloc_count = 0;
1830 REISERFS_I(inode)->i_trans_id = 0;
1831 REISERFS_I(inode)->i_jl = NULL;
1832 REISERFS_I(inode)->i_attrs =
1833 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1834 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1835 reiserfs_init_acl_access(inode);
1836 reiserfs_init_acl_default(inode);
1837 reiserfs_init_xattr_rwsem(inode);
1839 if (old_format_only(sb))
1840 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1841 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1842 else
1843 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1844 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1846 /* key to search for correct place for new stat data */
1847 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1848 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1849 TYPE_STAT_DATA, 3 /*key length */ );
1851 /* find proper place for inserting of stat data */
1852 retval = search_item(sb, &key, &path_to_key);
1853 if (retval == IO_ERROR) {
1854 err = -EIO;
1855 goto out_bad_inode;
1857 if (retval == ITEM_FOUND) {
1858 pathrelse(&path_to_key);
1859 err = -EEXIST;
1860 goto out_bad_inode;
1862 if (old_format_only(sb)) {
1863 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1864 pathrelse(&path_to_key);
1865 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1866 err = -EINVAL;
1867 goto out_bad_inode;
1869 inode2sd_v1(&sd, inode, inode->i_size);
1870 } else {
1871 inode2sd(&sd, inode, inode->i_size);
1873 // these do not go to on-disk stat data
1874 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1876 // store in in-core inode the key of stat data and version all
1877 // object items will have (directory items will have old offset
1878 // format, other new objects will consist of new items)
1879 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1880 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1881 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1882 else
1883 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1884 if (old_format_only(sb))
1885 set_inode_sd_version(inode, STAT_DATA_V1);
1886 else
1887 set_inode_sd_version(inode, STAT_DATA_V2);
1889 /* insert the stat data into the tree */
1890 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1891 if (REISERFS_I(dir)->new_packing_locality)
1892 th->displace_new_blocks = 1;
1893 #endif
1894 retval =
1895 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1896 (char *)(&sd));
1897 if (retval) {
1898 err = retval;
1899 reiserfs_check_path(&path_to_key);
1900 goto out_bad_inode;
1902 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1903 if (!th->displace_new_blocks)
1904 REISERFS_I(dir)->new_packing_locality = 0;
1905 #endif
1906 if (S_ISDIR(mode)) {
1907 /* insert item with "." and ".." */
1908 retval =
1909 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1912 if (S_ISLNK(mode)) {
1913 /* insert body of symlink */
1914 if (!old_format_only(sb))
1915 i_size = ROUND_UP(i_size);
1916 retval =
1917 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1918 i_size);
1920 if (retval) {
1921 err = retval;
1922 reiserfs_check_path(&path_to_key);
1923 journal_end(th, th->t_super, th->t_blocks_allocated);
1924 goto out_inserted_sd;
1927 /* XXX CHECK THIS */
1928 if (reiserfs_posixacl(inode->i_sb)) {
1929 retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1930 if (retval) {
1931 err = retval;
1932 reiserfs_check_path(&path_to_key);
1933 journal_end(th, th->t_super, th->t_blocks_allocated);
1934 goto out_inserted_sd;
1936 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1937 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1938 "but vfs thinks they are!");
1939 } else if (is_reiserfs_priv_object(dir)) {
1940 reiserfs_mark_inode_private(inode);
1943 insert_inode_hash(inode);
1944 reiserfs_update_sd(th, inode);
1945 reiserfs_check_path(&path_to_key);
1947 return 0;
1949 /* it looks like you can easily compress these two goto targets into
1950 * one. Keeping it like this doesn't actually hurt anything, and they
1951 * are place holders for what the quota code actually needs.
1953 out_bad_inode:
1954 /* Invalidate the object, nothing was inserted yet */
1955 INODE_PKEY(inode)->k_objectid = 0;
1957 /* Quota change must be inside a transaction for journaling */
1958 DQUOT_FREE_INODE(inode);
1960 out_end_trans:
1961 journal_end(th, th->t_super, th->t_blocks_allocated);
1962 /* Drop can be outside and it needs more credits so it's better to have it outside */
1963 DQUOT_DROP(inode);
1964 inode->i_flags |= S_NOQUOTA;
1965 make_bad_inode(inode);
1967 out_inserted_sd:
1968 inode->i_nlink = 0;
1969 th->t_trans_id = 0; /* so the caller can't use this handle later */
1971 /* If we were inheriting an ACL, we need to release the lock so that
1972 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1973 * code really needs to be reworked, but this will take care of it
1974 * for now. -jeffm */
1975 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1976 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1977 reiserfs_write_unlock_xattrs(dir->i_sb);
1978 iput(inode);
1979 reiserfs_write_lock_xattrs(dir->i_sb);
1980 } else
1981 #endif
1982 iput(inode);
1983 return err;
1987 ** finds the tail page in the page cache,
1988 ** reads the last block in.
1990 ** On success, page_result is set to a locked, pinned page, and bh_result
1991 ** is set to an up to date buffer for the last block in the file. returns 0.
1993 ** tail conversion is not done, so bh_result might not be valid for writing
1994 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1995 ** trying to write the block.
1997 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1999 static int grab_tail_page(struct inode *p_s_inode,
2000 struct page **page_result,
2001 struct buffer_head **bh_result)
2004 /* we want the page with the last byte in the file,
2005 ** not the page that will hold the next byte for appending
2007 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2008 unsigned long pos = 0;
2009 unsigned long start = 0;
2010 unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2011 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2012 struct buffer_head *bh;
2013 struct buffer_head *head;
2014 struct page *page;
2015 int error;
2017 /* we know that we are only called with inode->i_size > 0.
2018 ** we also know that a file tail can never be as big as a block
2019 ** If i_size % blocksize == 0, our file is currently block aligned
2020 ** and it won't need converting or zeroing after a truncate.
2022 if ((offset & (blocksize - 1)) == 0) {
2023 return -ENOENT;
2025 page = grab_cache_page(p_s_inode->i_mapping, index);
2026 error = -ENOMEM;
2027 if (!page) {
2028 goto out;
2030 /* start within the page of the last block in the file */
2031 start = (offset / blocksize) * blocksize;
2033 error = block_prepare_write(page, start, offset,
2034 reiserfs_get_block_create_0);
2035 if (error)
2036 goto unlock;
2038 head = page_buffers(page);
2039 bh = head;
2040 do {
2041 if (pos >= start) {
2042 break;
2044 bh = bh->b_this_page;
2045 pos += blocksize;
2046 } while (bh != head);
2048 if (!buffer_uptodate(bh)) {
2049 /* note, this should never happen, prepare_write should
2050 ** be taking care of this for us. If the buffer isn't up to date,
2051 ** I've screwed up the code to find the buffer, or the code to
2052 ** call prepare_write
2054 reiserfs_warning(p_s_inode->i_sb,
2055 "clm-6000: error reading block %lu on dev %s",
2056 bh->b_blocknr,
2057 reiserfs_bdevname(p_s_inode->i_sb));
2058 error = -EIO;
2059 goto unlock;
2061 *bh_result = bh;
2062 *page_result = page;
2064 out:
2065 return error;
2067 unlock:
2068 unlock_page(page);
2069 page_cache_release(page);
2070 return error;
2074 ** vfs version of truncate file. Must NOT be called with
2075 ** a transaction already started.
2077 ** some code taken from block_truncate_page
2079 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2081 struct reiserfs_transaction_handle th;
2082 /* we want the offset for the first byte after the end of the file */
2083 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2084 unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2085 unsigned length;
2086 struct page *page = NULL;
2087 int error;
2088 struct buffer_head *bh = NULL;
2089 int err2;
2091 reiserfs_write_lock(p_s_inode->i_sb);
2093 if (p_s_inode->i_size > 0) {
2094 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2095 // -ENOENT means we truncated past the end of the file,
2096 // and get_block_create_0 could not find a block to read in,
2097 // which is ok.
2098 if (error != -ENOENT)
2099 reiserfs_warning(p_s_inode->i_sb,
2100 "clm-6001: grab_tail_page failed %d",
2101 error);
2102 page = NULL;
2103 bh = NULL;
2107 /* so, if page != NULL, we have a buffer head for the offset at
2108 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2109 ** then we have an unformatted node. Otherwise, we have a direct item,
2110 ** and no zeroing is required on disk. We zero after the truncate,
2111 ** because the truncate might pack the item anyway
2112 ** (it will unmap bh if it packs).
2114 /* it is enough to reserve space in transaction for 2 balancings:
2115 one for "save" link adding and another for the first
2116 cut_from_item. 1 is for update_sd */
2117 error = journal_begin(&th, p_s_inode->i_sb,
2118 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2119 if (error)
2120 goto out;
2121 reiserfs_update_inode_transaction(p_s_inode);
2122 if (update_timestamps)
2123 /* we are doing real truncate: if the system crashes before the last
2124 transaction of truncating gets committed - on reboot the file
2125 either appears truncated properly or not truncated at all */
2126 add_save_link(&th, p_s_inode, 1);
2127 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2128 error =
2129 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2130 if (error)
2131 goto out;
2133 /* check reiserfs_do_truncate after ending the transaction */
2134 if (err2) {
2135 error = err2;
2136 goto out;
2139 if (update_timestamps) {
2140 error = remove_save_link(p_s_inode, 1 /* truncate */ );
2141 if (error)
2142 goto out;
2145 if (page) {
2146 length = offset & (blocksize - 1);
2147 /* if we are not on a block boundary */
2148 if (length) {
2149 char *kaddr;
2151 length = blocksize - length;
2152 kaddr = kmap_atomic(page, KM_USER0);
2153 memset(kaddr + offset, 0, length);
2154 flush_dcache_page(page);
2155 kunmap_atomic(kaddr, KM_USER0);
2156 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2157 mark_buffer_dirty(bh);
2160 unlock_page(page);
2161 page_cache_release(page);
2164 reiserfs_write_unlock(p_s_inode->i_sb);
2165 return 0;
2166 out:
2167 if (page) {
2168 unlock_page(page);
2169 page_cache_release(page);
2171 reiserfs_write_unlock(p_s_inode->i_sb);
2172 return error;
2175 static int map_block_for_writepage(struct inode *inode,
2176 struct buffer_head *bh_result,
2177 unsigned long block)
2179 struct reiserfs_transaction_handle th;
2180 int fs_gen;
2181 struct item_head tmp_ih;
2182 struct item_head *ih;
2183 struct buffer_head *bh;
2184 __le32 *item;
2185 struct cpu_key key;
2186 INITIALIZE_PATH(path);
2187 int pos_in_item;
2188 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2189 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2190 int retval;
2191 int use_get_block = 0;
2192 int bytes_copied = 0;
2193 int copy_size;
2194 int trans_running = 0;
2196 /* catch places below that try to log something without starting a trans */
2197 th.t_trans_id = 0;
2199 if (!buffer_uptodate(bh_result)) {
2200 return -EIO;
2203 kmap(bh_result->b_page);
2204 start_over:
2205 reiserfs_write_lock(inode->i_sb);
2206 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2208 research:
2209 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2210 if (retval != POSITION_FOUND) {
2211 use_get_block = 1;
2212 goto out;
2215 bh = get_last_bh(&path);
2216 ih = get_ih(&path);
2217 item = get_item(&path);
2218 pos_in_item = path.pos_in_item;
2220 /* we've found an unformatted node */
2221 if (indirect_item_found(retval, ih)) {
2222 if (bytes_copied > 0) {
2223 reiserfs_warning(inode->i_sb,
2224 "clm-6002: bytes_copied %d",
2225 bytes_copied);
2227 if (!get_block_num(item, pos_in_item)) {
2228 /* crap, we are writing to a hole */
2229 use_get_block = 1;
2230 goto out;
2232 set_block_dev_mapped(bh_result,
2233 get_block_num(item, pos_in_item), inode);
2234 } else if (is_direct_le_ih(ih)) {
2235 char *p;
2236 p = page_address(bh_result->b_page);
2237 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2238 copy_size = ih_item_len(ih) - pos_in_item;
2240 fs_gen = get_generation(inode->i_sb);
2241 copy_item_head(&tmp_ih, ih);
2243 if (!trans_running) {
2244 /* vs-3050 is gone, no need to drop the path */
2245 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2246 if (retval)
2247 goto out;
2248 reiserfs_update_inode_transaction(inode);
2249 trans_running = 1;
2250 if (fs_changed(fs_gen, inode->i_sb)
2251 && item_moved(&tmp_ih, &path)) {
2252 reiserfs_restore_prepared_buffer(inode->i_sb,
2253 bh);
2254 goto research;
2258 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2260 if (fs_changed(fs_gen, inode->i_sb)
2261 && item_moved(&tmp_ih, &path)) {
2262 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2263 goto research;
2266 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2267 copy_size);
2269 journal_mark_dirty(&th, inode->i_sb, bh);
2270 bytes_copied += copy_size;
2271 set_block_dev_mapped(bh_result, 0, inode);
2273 /* are there still bytes left? */
2274 if (bytes_copied < bh_result->b_size &&
2275 (byte_offset + bytes_copied) < inode->i_size) {
2276 set_cpu_key_k_offset(&key,
2277 cpu_key_k_offset(&key) +
2278 copy_size);
2279 goto research;
2281 } else {
2282 reiserfs_warning(inode->i_sb,
2283 "clm-6003: bad item inode %lu, device %s",
2284 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2285 retval = -EIO;
2286 goto out;
2288 retval = 0;
2290 out:
2291 pathrelse(&path);
2292 if (trans_running) {
2293 int err = journal_end(&th, inode->i_sb, jbegin_count);
2294 if (err)
2295 retval = err;
2296 trans_running = 0;
2298 reiserfs_write_unlock(inode->i_sb);
2300 /* this is where we fill in holes in the file. */
2301 if (use_get_block) {
2302 retval = reiserfs_get_block(inode, block, bh_result,
2303 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2304 | GET_BLOCK_NO_DANGLE);
2305 if (!retval) {
2306 if (!buffer_mapped(bh_result)
2307 || bh_result->b_blocknr == 0) {
2308 /* get_block failed to find a mapped unformatted node. */
2309 use_get_block = 0;
2310 goto start_over;
2314 kunmap(bh_result->b_page);
2316 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2317 /* we've copied data from the page into the direct item, so the
2318 * buffer in the page is now clean, mark it to reflect that.
2320 lock_buffer(bh_result);
2321 clear_buffer_dirty(bh_result);
2322 unlock_buffer(bh_result);
2324 return retval;
2328 * mason@suse.com: updated in 2.5.54 to follow the same general io
2329 * start/recovery path as __block_write_full_page, along with special
2330 * code to handle reiserfs tails.
2332 static int reiserfs_write_full_page(struct page *page,
2333 struct writeback_control *wbc)
2335 struct inode *inode = page->mapping->host;
2336 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2337 int error = 0;
2338 unsigned long block;
2339 sector_t last_block;
2340 struct buffer_head *head, *bh;
2341 int partial = 0;
2342 int nr = 0;
2343 int checked = PageChecked(page);
2344 struct reiserfs_transaction_handle th;
2345 struct super_block *s = inode->i_sb;
2346 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2347 th.t_trans_id = 0;
2349 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2350 if (checked && (current->flags & PF_MEMALLOC)) {
2351 redirty_page_for_writepage(wbc, page);
2352 unlock_page(page);
2353 return 0;
2356 /* The page dirty bit is cleared before writepage is called, which
2357 * means we have to tell create_empty_buffers to make dirty buffers
2358 * The page really should be up to date at this point, so tossing
2359 * in the BH_Uptodate is just a sanity check.
2361 if (!page_has_buffers(page)) {
2362 create_empty_buffers(page, s->s_blocksize,
2363 (1 << BH_Dirty) | (1 << BH_Uptodate));
2365 head = page_buffers(page);
2367 /* last page in the file, zero out any contents past the
2368 ** last byte in the file
2370 if (page->index >= end_index) {
2371 char *kaddr;
2372 unsigned last_offset;
2374 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2375 /* no file contents in this page */
2376 if (page->index >= end_index + 1 || !last_offset) {
2377 unlock_page(page);
2378 return 0;
2380 kaddr = kmap_atomic(page, KM_USER0);
2381 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE - last_offset);
2382 flush_dcache_page(page);
2383 kunmap_atomic(kaddr, KM_USER0);
2385 bh = head;
2386 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2387 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2388 /* first map all the buffers, logging any direct items we find */
2389 do {
2390 if (block > last_block) {
2392 * This can happen when the block size is less than
2393 * the page size. The corresponding bytes in the page
2394 * were zero filled above
2396 clear_buffer_dirty(bh);
2397 set_buffer_uptodate(bh);
2398 } else if ((checked || buffer_dirty(bh)) &&
2399 (!buffer_mapped(bh) || (buffer_mapped(bh)
2400 && bh->b_blocknr ==
2401 0))) {
2402 /* not mapped yet, or it points to a direct item, search
2403 * the btree for the mapping info, and log any direct
2404 * items found
2406 if ((error = map_block_for_writepage(inode, bh, block))) {
2407 goto fail;
2410 bh = bh->b_this_page;
2411 block++;
2412 } while (bh != head);
2415 * we start the transaction after map_block_for_writepage,
2416 * because it can create holes in the file (an unbounded operation).
2417 * starting it here, we can make a reliable estimate for how many
2418 * blocks we're going to log
2420 if (checked) {
2421 ClearPageChecked(page);
2422 reiserfs_write_lock(s);
2423 error = journal_begin(&th, s, bh_per_page + 1);
2424 if (error) {
2425 reiserfs_write_unlock(s);
2426 goto fail;
2428 reiserfs_update_inode_transaction(inode);
2430 /* now go through and lock any dirty buffers on the page */
2431 do {
2432 get_bh(bh);
2433 if (!buffer_mapped(bh))
2434 continue;
2435 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2436 continue;
2438 if (checked) {
2439 reiserfs_prepare_for_journal(s, bh, 1);
2440 journal_mark_dirty(&th, s, bh);
2441 continue;
2443 /* from this point on, we know the buffer is mapped to a
2444 * real block and not a direct item
2446 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2447 lock_buffer(bh);
2448 } else {
2449 if (test_set_buffer_locked(bh)) {
2450 redirty_page_for_writepage(wbc, page);
2451 continue;
2454 if (test_clear_buffer_dirty(bh)) {
2455 mark_buffer_async_write(bh);
2456 } else {
2457 unlock_buffer(bh);
2459 } while ((bh = bh->b_this_page) != head);
2461 if (checked) {
2462 error = journal_end(&th, s, bh_per_page + 1);
2463 reiserfs_write_unlock(s);
2464 if (error)
2465 goto fail;
2467 BUG_ON(PageWriteback(page));
2468 set_page_writeback(page);
2469 unlock_page(page);
2472 * since any buffer might be the only dirty buffer on the page,
2473 * the first submit_bh can bring the page out of writeback.
2474 * be careful with the buffers.
2476 do {
2477 struct buffer_head *next = bh->b_this_page;
2478 if (buffer_async_write(bh)) {
2479 submit_bh(WRITE, bh);
2480 nr++;
2482 put_bh(bh);
2483 bh = next;
2484 } while (bh != head);
2486 error = 0;
2487 done:
2488 if (nr == 0) {
2490 * if this page only had a direct item, it is very possible for
2491 * no io to be required without there being an error. Or,
2492 * someone else could have locked them and sent them down the
2493 * pipe without locking the page
2495 bh = head;
2496 do {
2497 if (!buffer_uptodate(bh)) {
2498 partial = 1;
2499 break;
2501 bh = bh->b_this_page;
2502 } while (bh != head);
2503 if (!partial)
2504 SetPageUptodate(page);
2505 end_page_writeback(page);
2507 return error;
2509 fail:
2510 /* catches various errors, we need to make sure any valid dirty blocks
2511 * get to the media. The page is currently locked and not marked for
2512 * writeback
2514 ClearPageUptodate(page);
2515 bh = head;
2516 do {
2517 get_bh(bh);
2518 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2519 lock_buffer(bh);
2520 mark_buffer_async_write(bh);
2521 } else {
2523 * clear any dirty bits that might have come from getting
2524 * attached to a dirty page
2526 clear_buffer_dirty(bh);
2528 bh = bh->b_this_page;
2529 } while (bh != head);
2530 SetPageError(page);
2531 BUG_ON(PageWriteback(page));
2532 set_page_writeback(page);
2533 unlock_page(page);
2534 do {
2535 struct buffer_head *next = bh->b_this_page;
2536 if (buffer_async_write(bh)) {
2537 clear_buffer_dirty(bh);
2538 submit_bh(WRITE, bh);
2539 nr++;
2541 put_bh(bh);
2542 bh = next;
2543 } while (bh != head);
2544 goto done;
2547 static int reiserfs_readpage(struct file *f, struct page *page)
2549 return block_read_full_page(page, reiserfs_get_block);
2552 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2554 struct inode *inode = page->mapping->host;
2555 reiserfs_wait_on_write_block(inode->i_sb);
2556 return reiserfs_write_full_page(page, wbc);
2559 static int reiserfs_prepare_write(struct file *f, struct page *page,
2560 unsigned from, unsigned to)
2562 struct inode *inode = page->mapping->host;
2563 int ret;
2564 int old_ref = 0;
2566 reiserfs_wait_on_write_block(inode->i_sb);
2567 fix_tail_page_for_writing(page);
2568 if (reiserfs_transaction_running(inode->i_sb)) {
2569 struct reiserfs_transaction_handle *th;
2570 th = (struct reiserfs_transaction_handle *)current->
2571 journal_info;
2572 BUG_ON(!th->t_refcount);
2573 BUG_ON(!th->t_trans_id);
2574 old_ref = th->t_refcount;
2575 th->t_refcount++;
2578 ret = block_prepare_write(page, from, to, reiserfs_get_block);
2579 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2580 struct reiserfs_transaction_handle *th = current->journal_info;
2581 /* this gets a little ugly. If reiserfs_get_block returned an
2582 * error and left a transacstion running, we've got to close it,
2583 * and we've got to free handle if it was a persistent transaction.
2585 * But, if we had nested into an existing transaction, we need
2586 * to just drop the ref count on the handle.
2588 * If old_ref == 0, the transaction is from reiserfs_get_block,
2589 * and it was a persistent trans. Otherwise, it was nested above.
2591 if (th->t_refcount > old_ref) {
2592 if (old_ref)
2593 th->t_refcount--;
2594 else {
2595 int err;
2596 reiserfs_write_lock(inode->i_sb);
2597 err = reiserfs_end_persistent_transaction(th);
2598 reiserfs_write_unlock(inode->i_sb);
2599 if (err)
2600 ret = err;
2604 return ret;
2608 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2610 return generic_block_bmap(as, block, reiserfs_bmap);
2613 static int reiserfs_commit_write(struct file *f, struct page *page,
2614 unsigned from, unsigned to)
2616 struct inode *inode = page->mapping->host;
2617 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2618 int ret = 0;
2619 int update_sd = 0;
2620 struct reiserfs_transaction_handle *th = NULL;
2622 reiserfs_wait_on_write_block(inode->i_sb);
2623 if (reiserfs_transaction_running(inode->i_sb)) {
2624 th = current->journal_info;
2626 reiserfs_commit_page(inode, page, from, to);
2628 /* generic_commit_write does this for us, but does not update the
2629 ** transaction tracking stuff when the size changes. So, we have
2630 ** to do the i_size updates here.
2632 if (pos > inode->i_size) {
2633 struct reiserfs_transaction_handle myth;
2634 reiserfs_write_lock(inode->i_sb);
2635 /* If the file have grown beyond the border where it
2636 can have a tail, unmark it as needing a tail
2637 packing */
2638 if ((have_large_tails(inode->i_sb)
2639 && inode->i_size > i_block_size(inode) * 4)
2640 || (have_small_tails(inode->i_sb)
2641 && inode->i_size > i_block_size(inode)))
2642 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2644 ret = journal_begin(&myth, inode->i_sb, 1);
2645 if (ret) {
2646 reiserfs_write_unlock(inode->i_sb);
2647 goto journal_error;
2649 reiserfs_update_inode_transaction(inode);
2650 inode->i_size = pos;
2652 * this will just nest into our transaction. It's important
2653 * to use mark_inode_dirty so the inode gets pushed around on the
2654 * dirty lists, and so that O_SYNC works as expected
2656 mark_inode_dirty(inode);
2657 reiserfs_update_sd(&myth, inode);
2658 update_sd = 1;
2659 ret = journal_end(&myth, inode->i_sb, 1);
2660 reiserfs_write_unlock(inode->i_sb);
2661 if (ret)
2662 goto journal_error;
2664 if (th) {
2665 reiserfs_write_lock(inode->i_sb);
2666 if (!update_sd)
2667 mark_inode_dirty(inode);
2668 ret = reiserfs_end_persistent_transaction(th);
2669 reiserfs_write_unlock(inode->i_sb);
2670 if (ret)
2671 goto out;
2674 out:
2675 return ret;
2677 journal_error:
2678 if (th) {
2679 reiserfs_write_lock(inode->i_sb);
2680 if (!update_sd)
2681 reiserfs_update_sd(th, inode);
2682 ret = reiserfs_end_persistent_transaction(th);
2683 reiserfs_write_unlock(inode->i_sb);
2686 return ret;
2689 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2691 if (reiserfs_attrs(inode->i_sb)) {
2692 if (sd_attrs & REISERFS_SYNC_FL)
2693 inode->i_flags |= S_SYNC;
2694 else
2695 inode->i_flags &= ~S_SYNC;
2696 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2697 inode->i_flags |= S_IMMUTABLE;
2698 else
2699 inode->i_flags &= ~S_IMMUTABLE;
2700 if (sd_attrs & REISERFS_APPEND_FL)
2701 inode->i_flags |= S_APPEND;
2702 else
2703 inode->i_flags &= ~S_APPEND;
2704 if (sd_attrs & REISERFS_NOATIME_FL)
2705 inode->i_flags |= S_NOATIME;
2706 else
2707 inode->i_flags &= ~S_NOATIME;
2708 if (sd_attrs & REISERFS_NOTAIL_FL)
2709 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2710 else
2711 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2715 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2717 if (reiserfs_attrs(inode->i_sb)) {
2718 if (inode->i_flags & S_IMMUTABLE)
2719 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2720 else
2721 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2722 if (inode->i_flags & S_SYNC)
2723 *sd_attrs |= REISERFS_SYNC_FL;
2724 else
2725 *sd_attrs &= ~REISERFS_SYNC_FL;
2726 if (inode->i_flags & S_NOATIME)
2727 *sd_attrs |= REISERFS_NOATIME_FL;
2728 else
2729 *sd_attrs &= ~REISERFS_NOATIME_FL;
2730 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2731 *sd_attrs |= REISERFS_NOTAIL_FL;
2732 else
2733 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2737 /* decide if this buffer needs to stay around for data logging or ordered
2738 ** write purposes
2740 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2742 int ret = 1;
2743 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2745 lock_buffer(bh);
2746 spin_lock(&j->j_dirty_buffers_lock);
2747 if (!buffer_mapped(bh)) {
2748 goto free_jh;
2750 /* the page is locked, and the only places that log a data buffer
2751 * also lock the page.
2753 if (reiserfs_file_data_log(inode)) {
2755 * very conservative, leave the buffer pinned if
2756 * anyone might need it.
2758 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2759 ret = 0;
2761 } else if (buffer_dirty(bh)) {
2762 struct reiserfs_journal_list *jl;
2763 struct reiserfs_jh *jh = bh->b_private;
2765 /* why is this safe?
2766 * reiserfs_setattr updates i_size in the on disk
2767 * stat data before allowing vmtruncate to be called.
2769 * If buffer was put onto the ordered list for this
2770 * transaction, we know for sure either this transaction
2771 * or an older one already has updated i_size on disk,
2772 * and this ordered data won't be referenced in the file
2773 * if we crash.
2775 * if the buffer was put onto the ordered list for an older
2776 * transaction, we need to leave it around
2778 if (jh && (jl = jh->jl)
2779 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2780 ret = 0;
2782 free_jh:
2783 if (ret && bh->b_private) {
2784 reiserfs_free_jh(bh);
2786 spin_unlock(&j->j_dirty_buffers_lock);
2787 unlock_buffer(bh);
2788 return ret;
2791 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2792 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2794 struct buffer_head *head, *bh, *next;
2795 struct inode *inode = page->mapping->host;
2796 unsigned int curr_off = 0;
2797 int ret = 1;
2799 BUG_ON(!PageLocked(page));
2801 if (offset == 0)
2802 ClearPageChecked(page);
2804 if (!page_has_buffers(page))
2805 goto out;
2807 head = page_buffers(page);
2808 bh = head;
2809 do {
2810 unsigned int next_off = curr_off + bh->b_size;
2811 next = bh->b_this_page;
2814 * is this block fully invalidated?
2816 if (offset <= curr_off) {
2817 if (invalidatepage_can_drop(inode, bh))
2818 reiserfs_unmap_buffer(bh);
2819 else
2820 ret = 0;
2822 curr_off = next_off;
2823 bh = next;
2824 } while (bh != head);
2827 * We release buffers only if the entire page is being invalidated.
2828 * The get_block cached value has been unconditionally invalidated,
2829 * so real IO is not possible anymore.
2831 if (!offset && ret) {
2832 ret = try_to_release_page(page, 0);
2833 /* maybe should BUG_ON(!ret); - neilb */
2835 out:
2836 return;
2839 static int reiserfs_set_page_dirty(struct page *page)
2841 struct inode *inode = page->mapping->host;
2842 if (reiserfs_file_data_log(inode)) {
2843 SetPageChecked(page);
2844 return __set_page_dirty_nobuffers(page);
2846 return __set_page_dirty_buffers(page);
2850 * Returns 1 if the page's buffers were dropped. The page is locked.
2852 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2853 * in the buffers at page_buffers(page).
2855 * even in -o notail mode, we can't be sure an old mount without -o notail
2856 * didn't create files with tails.
2858 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2860 struct inode *inode = page->mapping->host;
2861 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2862 struct buffer_head *head;
2863 struct buffer_head *bh;
2864 int ret = 1;
2866 WARN_ON(PageChecked(page));
2867 spin_lock(&j->j_dirty_buffers_lock);
2868 head = page_buffers(page);
2869 bh = head;
2870 do {
2871 if (bh->b_private) {
2872 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2873 reiserfs_free_jh(bh);
2874 } else {
2875 ret = 0;
2876 break;
2879 bh = bh->b_this_page;
2880 } while (bh != head);
2881 if (ret)
2882 ret = try_to_free_buffers(page);
2883 spin_unlock(&j->j_dirty_buffers_lock);
2884 return ret;
2887 /* We thank Mingming Cao for helping us understand in great detail what
2888 to do in this section of the code. */
2889 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2890 const struct iovec *iov, loff_t offset,
2891 unsigned long nr_segs)
2893 struct file *file = iocb->ki_filp;
2894 struct inode *inode = file->f_mapping->host;
2896 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2897 offset, nr_segs,
2898 reiserfs_get_blocks_direct_io, NULL);
2901 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
2903 struct inode *inode = dentry->d_inode;
2904 int error;
2905 unsigned int ia_valid = attr->ia_valid;
2906 reiserfs_write_lock(inode->i_sb);
2907 if (attr->ia_valid & ATTR_SIZE) {
2908 /* version 2 items will be caught by the s_maxbytes check
2909 ** done for us in vmtruncate
2911 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2912 attr->ia_size > MAX_NON_LFS) {
2913 error = -EFBIG;
2914 goto out;
2916 /* fill in hole pointers in the expanding truncate case. */
2917 if (attr->ia_size > inode->i_size) {
2918 error = generic_cont_expand(inode, attr->ia_size);
2919 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2920 int err;
2921 struct reiserfs_transaction_handle th;
2922 /* we're changing at most 2 bitmaps, inode + super */
2923 err = journal_begin(&th, inode->i_sb, 4);
2924 if (!err) {
2925 reiserfs_discard_prealloc(&th, inode);
2926 err = journal_end(&th, inode->i_sb, 4);
2928 if (err)
2929 error = err;
2931 if (error)
2932 goto out;
2934 * file size is changed, ctime and mtime are
2935 * to be updated
2937 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
2941 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2942 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2943 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
2944 /* stat data of format v3.5 has 16 bit uid and gid */
2945 error = -EINVAL;
2946 goto out;
2949 error = inode_change_ok(inode, attr);
2950 if (!error) {
2951 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2952 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2953 error = reiserfs_chown_xattrs(inode, attr);
2955 if (!error) {
2956 struct reiserfs_transaction_handle th;
2957 int jbegin_count =
2959 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
2960 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
2963 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2964 error =
2965 journal_begin(&th, inode->i_sb,
2966 jbegin_count);
2967 if (error)
2968 goto out;
2969 error =
2970 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2971 if (error) {
2972 journal_end(&th, inode->i_sb,
2973 jbegin_count);
2974 goto out;
2976 /* Update corresponding info in inode so that everything is in
2977 * one transaction */
2978 if (attr->ia_valid & ATTR_UID)
2979 inode->i_uid = attr->ia_uid;
2980 if (attr->ia_valid & ATTR_GID)
2981 inode->i_gid = attr->ia_gid;
2982 mark_inode_dirty(inode);
2983 error =
2984 journal_end(&th, inode->i_sb, jbegin_count);
2987 if (!error)
2988 error = inode_setattr(inode, attr);
2991 if (!error && reiserfs_posixacl(inode->i_sb)) {
2992 if (attr->ia_valid & ATTR_MODE)
2993 error = reiserfs_acl_chmod(inode);
2996 out:
2997 reiserfs_write_unlock(inode->i_sb);
2998 return error;
3001 const struct address_space_operations reiserfs_address_space_operations = {
3002 .writepage = reiserfs_writepage,
3003 .readpage = reiserfs_readpage,
3004 .readpages = reiserfs_readpages,
3005 .releasepage = reiserfs_releasepage,
3006 .invalidatepage = reiserfs_invalidatepage,
3007 .sync_page = block_sync_page,
3008 .prepare_write = reiserfs_prepare_write,
3009 .commit_write = reiserfs_commit_write,
3010 .bmap = reiserfs_aop_bmap,
3011 .direct_IO = reiserfs_direct_IO,
3012 .set_page_dirty = reiserfs_set_page_dirty,