2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
81 #include <asm/uaccess.h>
83 static DEFINE_IDR(loop_index_idr
);
84 static DEFINE_MUTEX(loop_index_mutex
);
87 static int part_shift
;
89 static int transfer_xor(struct loop_device
*lo
, int cmd
,
90 struct page
*raw_page
, unsigned raw_off
,
91 struct page
*loop_page
, unsigned loop_off
,
92 int size
, sector_t real_block
)
94 char *raw_buf
= kmap_atomic(raw_page
) + raw_off
;
95 char *loop_buf
= kmap_atomic(loop_page
) + loop_off
;
107 key
= lo
->lo_encrypt_key
;
108 keysize
= lo
->lo_encrypt_key_size
;
109 for (i
= 0; i
< size
; i
++)
110 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
112 kunmap_atomic(loop_buf
);
113 kunmap_atomic(raw_buf
);
118 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
120 if (unlikely(info
->lo_encrypt_key_size
<= 0))
125 static struct loop_func_table none_funcs
= {
126 .number
= LO_CRYPT_NONE
,
129 static struct loop_func_table xor_funcs
= {
130 .number
= LO_CRYPT_XOR
,
131 .transfer
= transfer_xor
,
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
141 static loff_t
get_size(loff_t offset
, loff_t sizelimit
, struct file
*file
)
145 /* Compute loopsize in bytes */
146 loopsize
= i_size_read(file
->f_mapping
->host
);
149 /* offset is beyond i_size, weird but possible */
153 if (sizelimit
> 0 && sizelimit
< loopsize
)
154 loopsize
= sizelimit
;
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
159 return loopsize
>> 9;
162 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
164 return get_size(lo
->lo_offset
, lo
->lo_sizelimit
, file
);
167 static void __loop_update_dio(struct loop_device
*lo
, bool dio
)
169 struct file
*file
= lo
->lo_backing_file
;
170 struct address_space
*mapping
= file
->f_mapping
;
171 struct inode
*inode
= mapping
->host
;
172 unsigned short sb_bsize
= 0;
173 unsigned dio_align
= 0;
176 if (inode
->i_sb
->s_bdev
) {
177 sb_bsize
= bdev_logical_block_size(inode
->i_sb
->s_bdev
);
178 dio_align
= sb_bsize
- 1;
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane appplications should be PAGE_SIZE algined
192 if (queue_logical_block_size(lo
->lo_queue
) >= sb_bsize
&&
193 !(lo
->lo_offset
& dio_align
) &&
194 mapping
->a_ops
->direct_IO
&&
203 if (lo
->use_dio
== use_dio
)
206 /* flush dirty pages before changing direct IO */
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
214 blk_mq_freeze_queue(lo
->lo_queue
);
215 lo
->use_dio
= use_dio
;
217 lo
->lo_flags
|= LO_FLAGS_DIRECT_IO
;
219 lo
->lo_flags
&= ~LO_FLAGS_DIRECT_IO
;
220 blk_mq_unfreeze_queue(lo
->lo_queue
);
224 figure_loop_size(struct loop_device
*lo
, loff_t offset
, loff_t sizelimit
)
226 loff_t size
= get_size(offset
, sizelimit
, lo
->lo_backing_file
);
227 sector_t x
= (sector_t
)size
;
228 struct block_device
*bdev
= lo
->lo_device
;
230 if (unlikely((loff_t
)x
!= size
))
232 if (lo
->lo_offset
!= offset
)
233 lo
->lo_offset
= offset
;
234 if (lo
->lo_sizelimit
!= sizelimit
)
235 lo
->lo_sizelimit
= sizelimit
;
236 set_capacity(lo
->lo_disk
, x
);
237 bd_set_size(bdev
, (loff_t
)get_capacity(bdev
->bd_disk
) << 9);
238 /* let user-space know about the new size */
239 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
244 lo_do_transfer(struct loop_device
*lo
, int cmd
,
245 struct page
*rpage
, unsigned roffs
,
246 struct page
*lpage
, unsigned loffs
,
247 int size
, sector_t rblock
)
251 ret
= lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
255 printk_ratelimited(KERN_ERR
256 "loop: Transfer error at byte offset %llu, length %i.\n",
257 (unsigned long long)rblock
<< 9, size
);
261 static int lo_write_bvec(struct file
*file
, struct bio_vec
*bvec
, loff_t
*ppos
)
266 iov_iter_bvec(&i
, ITER_BVEC
, bvec
, 1, bvec
->bv_len
);
268 file_start_write(file
);
269 bw
= vfs_iter_write(file
, &i
, ppos
);
270 file_end_write(file
);
272 if (likely(bw
== bvec
->bv_len
))
275 printk_ratelimited(KERN_ERR
276 "loop: Write error at byte offset %llu, length %i.\n",
277 (unsigned long long)*ppos
, bvec
->bv_len
);
283 static int lo_write_simple(struct loop_device
*lo
, struct request
*rq
,
287 struct req_iterator iter
;
290 rq_for_each_segment(bvec
, rq
, iter
) {
291 ret
= lo_write_bvec(lo
->lo_backing_file
, &bvec
, &pos
);
301 * This is the slow, transforming version that needs to double buffer the
302 * data as it cannot do the transformations in place without having direct
303 * access to the destination pages of the backing file.
305 static int lo_write_transfer(struct loop_device
*lo
, struct request
*rq
,
308 struct bio_vec bvec
, b
;
309 struct req_iterator iter
;
313 page
= alloc_page(GFP_NOIO
);
317 rq_for_each_segment(bvec
, rq
, iter
) {
318 ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
.bv_page
,
319 bvec
.bv_offset
, bvec
.bv_len
, pos
>> 9);
325 b
.bv_len
= bvec
.bv_len
;
326 ret
= lo_write_bvec(lo
->lo_backing_file
, &b
, &pos
);
335 static int lo_read_simple(struct loop_device
*lo
, struct request
*rq
,
339 struct req_iterator iter
;
343 rq_for_each_segment(bvec
, rq
, iter
) {
344 iov_iter_bvec(&i
, ITER_BVEC
, &bvec
, 1, bvec
.bv_len
);
345 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
);
349 flush_dcache_page(bvec
.bv_page
);
351 if (len
!= bvec
.bv_len
) {
354 __rq_for_each_bio(bio
, rq
)
364 static int lo_read_transfer(struct loop_device
*lo
, struct request
*rq
,
367 struct bio_vec bvec
, b
;
368 struct req_iterator iter
;
374 page
= alloc_page(GFP_NOIO
);
378 rq_for_each_segment(bvec
, rq
, iter
) {
383 b
.bv_len
= bvec
.bv_len
;
385 iov_iter_bvec(&i
, ITER_BVEC
, &b
, 1, b
.bv_len
);
386 len
= vfs_iter_read(lo
->lo_backing_file
, &i
, &pos
);
392 ret
= lo_do_transfer(lo
, READ
, page
, 0, bvec
.bv_page
,
393 bvec
.bv_offset
, len
, offset
>> 9);
397 flush_dcache_page(bvec
.bv_page
);
399 if (len
!= bvec
.bv_len
) {
402 __rq_for_each_bio(bio
, rq
)
414 static int lo_discard(struct loop_device
*lo
, struct request
*rq
, loff_t pos
)
417 * We use punch hole to reclaim the free space used by the
418 * image a.k.a. discard. However we do not support discard if
419 * encryption is enabled, because it may give an attacker
420 * useful information.
422 struct file
*file
= lo
->lo_backing_file
;
423 int mode
= FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
;
426 if ((!file
->f_op
->fallocate
) || lo
->lo_encrypt_key_size
) {
431 ret
= file
->f_op
->fallocate(file
, mode
, pos
, blk_rq_bytes(rq
));
432 if (unlikely(ret
&& ret
!= -EINVAL
&& ret
!= -EOPNOTSUPP
))
438 static int lo_req_flush(struct loop_device
*lo
, struct request
*rq
)
440 struct file
*file
= lo
->lo_backing_file
;
441 int ret
= vfs_fsync(file
, 0);
442 if (unlikely(ret
&& ret
!= -EINVAL
))
448 static inline void handle_partial_read(struct loop_cmd
*cmd
, long bytes
)
450 if (bytes
< 0 || (cmd
->rq
->cmd_flags
& REQ_WRITE
))
453 if (unlikely(bytes
< blk_rq_bytes(cmd
->rq
))) {
454 struct bio
*bio
= cmd
->rq
->bio
;
456 bio_advance(bio
, bytes
);
461 static void lo_rw_aio_complete(struct kiocb
*iocb
, long ret
, long ret2
)
463 struct loop_cmd
*cmd
= container_of(iocb
, struct loop_cmd
, iocb
);
464 struct request
*rq
= cmd
->rq
;
466 handle_partial_read(cmd
, ret
);
473 blk_mq_complete_request(rq
, ret
);
476 static int lo_rw_aio(struct loop_device
*lo
, struct loop_cmd
*cmd
,
479 struct iov_iter iter
;
480 struct bio_vec
*bvec
;
481 struct bio
*bio
= cmd
->rq
->bio
;
482 struct file
*file
= lo
->lo_backing_file
;
485 /* nomerge for loop request queue */
486 WARN_ON(cmd
->rq
->bio
!= cmd
->rq
->biotail
);
488 bvec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
489 iov_iter_bvec(&iter
, ITER_BVEC
| rw
, bvec
,
490 bio_segments(bio
), blk_rq_bytes(cmd
->rq
));
492 cmd
->iocb
.ki_pos
= pos
;
493 cmd
->iocb
.ki_filp
= file
;
494 cmd
->iocb
.ki_complete
= lo_rw_aio_complete
;
495 cmd
->iocb
.ki_flags
= IOCB_DIRECT
;
498 ret
= file
->f_op
->write_iter(&cmd
->iocb
, &iter
);
500 ret
= file
->f_op
->read_iter(&cmd
->iocb
, &iter
);
502 if (ret
!= -EIOCBQUEUED
)
503 cmd
->iocb
.ki_complete(&cmd
->iocb
, ret
, 0);
508 static inline int lo_rw_simple(struct loop_device
*lo
,
509 struct request
*rq
, loff_t pos
, bool rw
)
511 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
514 return lo_rw_aio(lo
, cmd
, pos
, rw
);
517 * lo_write_simple and lo_read_simple should have been covered
518 * by io submit style function like lo_rw_aio(), one blocker
519 * is that lo_read_simple() need to call flush_dcache_page after
520 * the page is written from kernel, and it isn't easy to handle
521 * this in io submit style function which submits all segments
522 * of the req at one time. And direct read IO doesn't need to
523 * run flush_dcache_page().
526 return lo_write_simple(lo
, rq
, pos
);
528 return lo_read_simple(lo
, rq
, pos
);
531 static int do_req_filebacked(struct loop_device
*lo
, struct request
*rq
)
536 pos
= ((loff_t
) blk_rq_pos(rq
) << 9) + lo
->lo_offset
;
538 if (rq
->cmd_flags
& REQ_WRITE
) {
539 if (rq
->cmd_flags
& REQ_FLUSH
)
540 ret
= lo_req_flush(lo
, rq
);
541 else if (rq
->cmd_flags
& REQ_DISCARD
)
542 ret
= lo_discard(lo
, rq
, pos
);
543 else if (lo
->transfer
)
544 ret
= lo_write_transfer(lo
, rq
, pos
);
546 ret
= lo_rw_simple(lo
, rq
, pos
, WRITE
);
550 ret
= lo_read_transfer(lo
, rq
, pos
);
552 ret
= lo_rw_simple(lo
, rq
, pos
, READ
);
558 struct switch_request
{
560 struct completion wait
;
563 static inline void loop_update_dio(struct loop_device
*lo
)
565 __loop_update_dio(lo
, io_is_direct(lo
->lo_backing_file
) |
570 * Do the actual switch; called from the BIO completion routine
572 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
574 struct file
*file
= p
->file
;
575 struct file
*old_file
= lo
->lo_backing_file
;
576 struct address_space
*mapping
;
578 /* if no new file, only flush of queued bios requested */
582 mapping
= file
->f_mapping
;
583 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
584 lo
->lo_backing_file
= file
;
585 lo
->lo_blocksize
= S_ISBLK(mapping
->host
->i_mode
) ?
586 mapping
->host
->i_bdev
->bd_block_size
: PAGE_SIZE
;
587 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
588 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
593 * loop_switch performs the hard work of switching a backing store.
594 * First it needs to flush existing IO, it does this by sending a magic
595 * BIO down the pipe. The completion of this BIO does the actual switch.
597 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
599 struct switch_request w
;
603 /* freeze queue and wait for completion of scheduled requests */
604 blk_mq_freeze_queue(lo
->lo_queue
);
606 /* do the switch action */
607 do_loop_switch(lo
, &w
);
610 blk_mq_unfreeze_queue(lo
->lo_queue
);
616 * Helper to flush the IOs in loop, but keeping loop thread running
618 static int loop_flush(struct loop_device
*lo
)
620 return loop_switch(lo
, NULL
);
623 static void loop_reread_partitions(struct loop_device
*lo
,
624 struct block_device
*bdev
)
629 * bd_mutex has been held already in release path, so don't
630 * acquire it if this function is called in such case.
632 * If the reread partition isn't from release path, lo_refcnt
633 * must be at least one and it can only become zero when the
634 * current holder is released.
636 if (!atomic_read(&lo
->lo_refcnt
))
637 rc
= __blkdev_reread_part(bdev
);
639 rc
= blkdev_reread_part(bdev
);
641 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
642 __func__
, lo
->lo_number
, lo
->lo_file_name
, rc
);
646 * loop_change_fd switched the backing store of a loopback device to
647 * a new file. This is useful for operating system installers to free up
648 * the original file and in High Availability environments to switch to
649 * an alternative location for the content in case of server meltdown.
650 * This can only work if the loop device is used read-only, and if the
651 * new backing store is the same size and type as the old backing store.
653 static int loop_change_fd(struct loop_device
*lo
, struct block_device
*bdev
,
656 struct file
*file
, *old_file
;
661 if (lo
->lo_state
!= Lo_bound
)
664 /* the loop device has to be read-only */
666 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
674 inode
= file
->f_mapping
->host
;
675 old_file
= lo
->lo_backing_file
;
679 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
682 /* size of the new backing store needs to be the same */
683 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
687 error
= loop_switch(lo
, file
);
692 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
693 loop_reread_partitions(lo
, bdev
);
702 static inline int is_loop_device(struct file
*file
)
704 struct inode
*i
= file
->f_mapping
->host
;
706 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
709 /* loop sysfs attributes */
711 static ssize_t
loop_attr_show(struct device
*dev
, char *page
,
712 ssize_t (*callback
)(struct loop_device
*, char *))
714 struct gendisk
*disk
= dev_to_disk(dev
);
715 struct loop_device
*lo
= disk
->private_data
;
717 return callback(lo
, page
);
720 #define LOOP_ATTR_RO(_name) \
721 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
722 static ssize_t loop_attr_do_show_##_name(struct device *d, \
723 struct device_attribute *attr, char *b) \
725 return loop_attr_show(d, b, loop_attr_##_name##_show); \
727 static struct device_attribute loop_attr_##_name = \
728 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
730 static ssize_t
loop_attr_backing_file_show(struct loop_device
*lo
, char *buf
)
735 spin_lock_irq(&lo
->lo_lock
);
736 if (lo
->lo_backing_file
)
737 p
= file_path(lo
->lo_backing_file
, buf
, PAGE_SIZE
- 1);
738 spin_unlock_irq(&lo
->lo_lock
);
740 if (IS_ERR_OR_NULL(p
))
744 memmove(buf
, p
, ret
);
752 static ssize_t
loop_attr_offset_show(struct loop_device
*lo
, char *buf
)
754 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_offset
);
757 static ssize_t
loop_attr_sizelimit_show(struct loop_device
*lo
, char *buf
)
759 return sprintf(buf
, "%llu\n", (unsigned long long)lo
->lo_sizelimit
);
762 static ssize_t
loop_attr_autoclear_show(struct loop_device
*lo
, char *buf
)
764 int autoclear
= (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
);
766 return sprintf(buf
, "%s\n", autoclear
? "1" : "0");
769 static ssize_t
loop_attr_partscan_show(struct loop_device
*lo
, char *buf
)
771 int partscan
= (lo
->lo_flags
& LO_FLAGS_PARTSCAN
);
773 return sprintf(buf
, "%s\n", partscan
? "1" : "0");
776 static ssize_t
loop_attr_dio_show(struct loop_device
*lo
, char *buf
)
778 int dio
= (lo
->lo_flags
& LO_FLAGS_DIRECT_IO
);
780 return sprintf(buf
, "%s\n", dio
? "1" : "0");
783 LOOP_ATTR_RO(backing_file
);
784 LOOP_ATTR_RO(offset
);
785 LOOP_ATTR_RO(sizelimit
);
786 LOOP_ATTR_RO(autoclear
);
787 LOOP_ATTR_RO(partscan
);
790 static struct attribute
*loop_attrs
[] = {
791 &loop_attr_backing_file
.attr
,
792 &loop_attr_offset
.attr
,
793 &loop_attr_sizelimit
.attr
,
794 &loop_attr_autoclear
.attr
,
795 &loop_attr_partscan
.attr
,
800 static struct attribute_group loop_attribute_group
= {
805 static int loop_sysfs_init(struct loop_device
*lo
)
807 return sysfs_create_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
808 &loop_attribute_group
);
811 static void loop_sysfs_exit(struct loop_device
*lo
)
813 sysfs_remove_group(&disk_to_dev(lo
->lo_disk
)->kobj
,
814 &loop_attribute_group
);
817 static void loop_config_discard(struct loop_device
*lo
)
819 struct file
*file
= lo
->lo_backing_file
;
820 struct inode
*inode
= file
->f_mapping
->host
;
821 struct request_queue
*q
= lo
->lo_queue
;
824 * We use punch hole to reclaim the free space used by the
825 * image a.k.a. discard. However we do not support discard if
826 * encryption is enabled, because it may give an attacker
827 * useful information.
829 if ((!file
->f_op
->fallocate
) ||
830 lo
->lo_encrypt_key_size
) {
831 q
->limits
.discard_granularity
= 0;
832 q
->limits
.discard_alignment
= 0;
833 blk_queue_max_discard_sectors(q
, 0);
834 q
->limits
.discard_zeroes_data
= 0;
835 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
839 q
->limits
.discard_granularity
= inode
->i_sb
->s_blocksize
;
840 q
->limits
.discard_alignment
= 0;
841 blk_queue_max_discard_sectors(q
, UINT_MAX
>> 9);
842 q
->limits
.discard_zeroes_data
= 1;
843 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
846 static void loop_unprepare_queue(struct loop_device
*lo
)
848 flush_kthread_worker(&lo
->worker
);
849 kthread_stop(lo
->worker_task
);
852 static int loop_prepare_queue(struct loop_device
*lo
)
854 init_kthread_worker(&lo
->worker
);
855 lo
->worker_task
= kthread_run(kthread_worker_fn
,
856 &lo
->worker
, "loop%d", lo
->lo_number
);
857 if (IS_ERR(lo
->worker_task
))
859 set_user_nice(lo
->worker_task
, MIN_NICE
);
863 static int loop_set_fd(struct loop_device
*lo
, fmode_t mode
,
864 struct block_device
*bdev
, unsigned int arg
)
866 struct file
*file
, *f
;
868 struct address_space
*mapping
;
869 unsigned lo_blocksize
;
874 /* This is safe, since we have a reference from open(). */
875 __module_get(THIS_MODULE
);
883 if (lo
->lo_state
!= Lo_unbound
)
886 /* Avoid recursion */
888 while (is_loop_device(f
)) {
889 struct loop_device
*l
;
891 if (f
->f_mapping
->host
->i_bdev
== bdev
)
894 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
895 if (l
->lo_state
== Lo_unbound
) {
899 f
= l
->lo_backing_file
;
902 mapping
= file
->f_mapping
;
903 inode
= mapping
->host
;
906 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
909 if (!(file
->f_mode
& FMODE_WRITE
) || !(mode
& FMODE_WRITE
) ||
910 !file
->f_op
->write_iter
)
911 lo_flags
|= LO_FLAGS_READ_ONLY
;
913 lo_blocksize
= S_ISBLK(inode
->i_mode
) ?
914 inode
->i_bdev
->bd_block_size
: PAGE_SIZE
;
917 size
= get_loop_size(lo
, file
);
918 if ((loff_t
)(sector_t
)size
!= size
)
920 error
= loop_prepare_queue(lo
);
926 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
929 lo
->lo_blocksize
= lo_blocksize
;
930 lo
->lo_device
= bdev
;
931 lo
->lo_flags
= lo_flags
;
932 lo
->lo_backing_file
= file
;
935 lo
->lo_sizelimit
= 0;
936 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
937 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
939 if (!(lo_flags
& LO_FLAGS_READ_ONLY
) && file
->f_op
->fsync
)
940 blk_queue_flush(lo
->lo_queue
, REQ_FLUSH
);
943 set_capacity(lo
->lo_disk
, size
);
944 bd_set_size(bdev
, size
<< 9);
946 /* let user-space know about the new size */
947 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
949 set_blocksize(bdev
, lo_blocksize
);
951 lo
->lo_state
= Lo_bound
;
953 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
954 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
)
955 loop_reread_partitions(lo
, bdev
);
957 /* Grab the block_device to prevent its destruction after we
958 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
966 /* This is safe: open() is still holding a reference. */
967 module_put(THIS_MODULE
);
972 loop_release_xfer(struct loop_device
*lo
)
975 struct loop_func_table
*xfer
= lo
->lo_encryption
;
979 err
= xfer
->release(lo
);
981 lo
->lo_encryption
= NULL
;
982 module_put(xfer
->owner
);
988 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
989 const struct loop_info64
*i
)
994 struct module
*owner
= xfer
->owner
;
996 if (!try_module_get(owner
))
999 err
= xfer
->init(lo
, i
);
1003 lo
->lo_encryption
= xfer
;
1008 static int loop_clr_fd(struct loop_device
*lo
)
1010 struct file
*filp
= lo
->lo_backing_file
;
1011 gfp_t gfp
= lo
->old_gfp_mask
;
1012 struct block_device
*bdev
= lo
->lo_device
;
1014 if (lo
->lo_state
!= Lo_bound
)
1018 * If we've explicitly asked to tear down the loop device,
1019 * and it has an elevated reference count, set it for auto-teardown when
1020 * the last reference goes away. This stops $!~#$@ udev from
1021 * preventing teardown because it decided that it needs to run blkid on
1022 * the loopback device whenever they appear. xfstests is notorious for
1023 * failing tests because blkid via udev races with a losetup
1024 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1025 * command to fail with EBUSY.
1027 if (atomic_read(&lo
->lo_refcnt
) > 1) {
1028 lo
->lo_flags
|= LO_FLAGS_AUTOCLEAR
;
1029 mutex_unlock(&lo
->lo_ctl_mutex
);
1036 /* freeze request queue during the transition */
1037 blk_mq_freeze_queue(lo
->lo_queue
);
1039 spin_lock_irq(&lo
->lo_lock
);
1040 lo
->lo_state
= Lo_rundown
;
1041 lo
->lo_backing_file
= NULL
;
1042 spin_unlock_irq(&lo
->lo_lock
);
1044 loop_release_xfer(lo
);
1045 lo
->transfer
= NULL
;
1047 lo
->lo_device
= NULL
;
1048 lo
->lo_encryption
= NULL
;
1050 lo
->lo_sizelimit
= 0;
1051 lo
->lo_encrypt_key_size
= 0;
1052 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
1053 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
1054 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
1057 invalidate_bdev(bdev
);
1059 set_capacity(lo
->lo_disk
, 0);
1060 loop_sysfs_exit(lo
);
1062 bd_set_size(bdev
, 0);
1063 /* let user-space know about this change */
1064 kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, KOBJ_CHANGE
);
1066 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
1067 lo
->lo_state
= Lo_unbound
;
1068 /* This is safe: open() is still holding a reference. */
1069 module_put(THIS_MODULE
);
1070 blk_mq_unfreeze_queue(lo
->lo_queue
);
1072 if (lo
->lo_flags
& LO_FLAGS_PARTSCAN
&& bdev
)
1073 loop_reread_partitions(lo
, bdev
);
1076 lo
->lo_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1077 loop_unprepare_queue(lo
);
1078 mutex_unlock(&lo
->lo_ctl_mutex
);
1080 * Need not hold lo_ctl_mutex to fput backing file.
1081 * Calling fput holding lo_ctl_mutex triggers a circular
1082 * lock dependency possibility warning as fput can take
1083 * bd_mutex which is usually taken before lo_ctl_mutex.
1090 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
1093 struct loop_func_table
*xfer
;
1094 kuid_t uid
= current_uid();
1096 if (lo
->lo_encrypt_key_size
&&
1097 !uid_eq(lo
->lo_key_owner
, uid
) &&
1098 !capable(CAP_SYS_ADMIN
))
1100 if (lo
->lo_state
!= Lo_bound
)
1102 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
1105 err
= loop_release_xfer(lo
);
1109 if (info
->lo_encrypt_type
) {
1110 unsigned int type
= info
->lo_encrypt_type
;
1112 if (type
>= MAX_LO_CRYPT
)
1114 xfer
= xfer_funcs
[type
];
1120 err
= loop_init_xfer(lo
, xfer
, info
);
1124 if (lo
->lo_offset
!= info
->lo_offset
||
1125 lo
->lo_sizelimit
!= info
->lo_sizelimit
)
1126 if (figure_loop_size(lo
, info
->lo_offset
, info
->lo_sizelimit
))
1129 loop_config_discard(lo
);
1131 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
1132 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
1133 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
1134 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
1138 lo
->transfer
= xfer
->transfer
;
1139 lo
->ioctl
= xfer
->ioctl
;
1141 if ((lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) !=
1142 (info
->lo_flags
& LO_FLAGS_AUTOCLEAR
))
1143 lo
->lo_flags
^= LO_FLAGS_AUTOCLEAR
;
1145 if ((info
->lo_flags
& LO_FLAGS_PARTSCAN
) &&
1146 !(lo
->lo_flags
& LO_FLAGS_PARTSCAN
)) {
1147 lo
->lo_flags
|= LO_FLAGS_PARTSCAN
;
1148 lo
->lo_disk
->flags
&= ~GENHD_FL_NO_PART_SCAN
;
1149 loop_reread_partitions(lo
, lo
->lo_device
);
1152 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1153 lo
->lo_init
[0] = info
->lo_init
[0];
1154 lo
->lo_init
[1] = info
->lo_init
[1];
1155 if (info
->lo_encrypt_key_size
) {
1156 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
1157 info
->lo_encrypt_key_size
);
1158 lo
->lo_key_owner
= uid
;
1161 /* update dio if lo_offset or transfer is changed */
1162 __loop_update_dio(lo
, lo
->use_dio
);
1168 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1170 struct file
*file
= lo
->lo_backing_file
;
1174 if (lo
->lo_state
!= Lo_bound
)
1176 error
= vfs_getattr(&file
->f_path
, &stat
);
1179 memset(info
, 0, sizeof(*info
));
1180 info
->lo_number
= lo
->lo_number
;
1181 info
->lo_device
= huge_encode_dev(stat
.dev
);
1182 info
->lo_inode
= stat
.ino
;
1183 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1184 info
->lo_offset
= lo
->lo_offset
;
1185 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1186 info
->lo_flags
= lo
->lo_flags
;
1187 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1188 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1189 info
->lo_encrypt_type
=
1190 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1191 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1192 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1193 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1194 lo
->lo_encrypt_key_size
);
1200 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1202 memset(info64
, 0, sizeof(*info64
));
1203 info64
->lo_number
= info
->lo_number
;
1204 info64
->lo_device
= info
->lo_device
;
1205 info64
->lo_inode
= info
->lo_inode
;
1206 info64
->lo_rdevice
= info
->lo_rdevice
;
1207 info64
->lo_offset
= info
->lo_offset
;
1208 info64
->lo_sizelimit
= 0;
1209 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1210 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1211 info64
->lo_flags
= info
->lo_flags
;
1212 info64
->lo_init
[0] = info
->lo_init
[0];
1213 info64
->lo_init
[1] = info
->lo_init
[1];
1214 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1215 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1217 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1218 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1222 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1224 memset(info
, 0, sizeof(*info
));
1225 info
->lo_number
= info64
->lo_number
;
1226 info
->lo_device
= info64
->lo_device
;
1227 info
->lo_inode
= info64
->lo_inode
;
1228 info
->lo_rdevice
= info64
->lo_rdevice
;
1229 info
->lo_offset
= info64
->lo_offset
;
1230 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1231 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1232 info
->lo_flags
= info64
->lo_flags
;
1233 info
->lo_init
[0] = info64
->lo_init
[0];
1234 info
->lo_init
[1] = info64
->lo_init
[1];
1235 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1236 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1238 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1239 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1241 /* error in case values were truncated */
1242 if (info
->lo_device
!= info64
->lo_device
||
1243 info
->lo_rdevice
!= info64
->lo_rdevice
||
1244 info
->lo_inode
!= info64
->lo_inode
||
1245 info
->lo_offset
!= info64
->lo_offset
)
1252 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1254 struct loop_info info
;
1255 struct loop_info64 info64
;
1257 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1259 loop_info64_from_old(&info
, &info64
);
1260 return loop_set_status(lo
, &info64
);
1264 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1266 struct loop_info64 info64
;
1268 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1270 return loop_set_status(lo
, &info64
);
1274 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1275 struct loop_info info
;
1276 struct loop_info64 info64
;
1282 err
= loop_get_status(lo
, &info64
);
1284 err
= loop_info64_to_old(&info64
, &info
);
1285 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1292 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1293 struct loop_info64 info64
;
1299 err
= loop_get_status(lo
, &info64
);
1300 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1306 static int loop_set_capacity(struct loop_device
*lo
, struct block_device
*bdev
)
1308 if (unlikely(lo
->lo_state
!= Lo_bound
))
1311 return figure_loop_size(lo
, lo
->lo_offset
, lo
->lo_sizelimit
);
1314 static int loop_set_dio(struct loop_device
*lo
, unsigned long arg
)
1317 if (lo
->lo_state
!= Lo_bound
)
1320 __loop_update_dio(lo
, !!arg
);
1321 if (lo
->use_dio
== !!arg
)
1328 static int lo_ioctl(struct block_device
*bdev
, fmode_t mode
,
1329 unsigned int cmd
, unsigned long arg
)
1331 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1334 mutex_lock_nested(&lo
->lo_ctl_mutex
, 1);
1337 err
= loop_set_fd(lo
, mode
, bdev
, arg
);
1339 case LOOP_CHANGE_FD
:
1340 err
= loop_change_fd(lo
, bdev
, arg
);
1343 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1344 err
= loop_clr_fd(lo
);
1348 case LOOP_SET_STATUS
:
1350 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1351 err
= loop_set_status_old(lo
,
1352 (struct loop_info __user
*)arg
);
1354 case LOOP_GET_STATUS
:
1355 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1357 case LOOP_SET_STATUS64
:
1359 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1360 err
= loop_set_status64(lo
,
1361 (struct loop_info64 __user
*) arg
);
1363 case LOOP_GET_STATUS64
:
1364 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1366 case LOOP_SET_CAPACITY
:
1368 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1369 err
= loop_set_capacity(lo
, bdev
);
1371 case LOOP_SET_DIRECT_IO
:
1373 if ((mode
& FMODE_WRITE
) || capable(CAP_SYS_ADMIN
))
1374 err
= loop_set_dio(lo
, arg
);
1377 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1379 mutex_unlock(&lo
->lo_ctl_mutex
);
1385 #ifdef CONFIG_COMPAT
1386 struct compat_loop_info
{
1387 compat_int_t lo_number
; /* ioctl r/o */
1388 compat_dev_t lo_device
; /* ioctl r/o */
1389 compat_ulong_t lo_inode
; /* ioctl r/o */
1390 compat_dev_t lo_rdevice
; /* ioctl r/o */
1391 compat_int_t lo_offset
;
1392 compat_int_t lo_encrypt_type
;
1393 compat_int_t lo_encrypt_key_size
; /* ioctl w/o */
1394 compat_int_t lo_flags
; /* ioctl r/o */
1395 char lo_name
[LO_NAME_SIZE
];
1396 unsigned char lo_encrypt_key
[LO_KEY_SIZE
]; /* ioctl w/o */
1397 compat_ulong_t lo_init
[2];
1402 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1403 * - noinlined to reduce stack space usage in main part of driver
1406 loop_info64_from_compat(const struct compat_loop_info __user
*arg
,
1407 struct loop_info64
*info64
)
1409 struct compat_loop_info info
;
1411 if (copy_from_user(&info
, arg
, sizeof(info
)))
1414 memset(info64
, 0, sizeof(*info64
));
1415 info64
->lo_number
= info
.lo_number
;
1416 info64
->lo_device
= info
.lo_device
;
1417 info64
->lo_inode
= info
.lo_inode
;
1418 info64
->lo_rdevice
= info
.lo_rdevice
;
1419 info64
->lo_offset
= info
.lo_offset
;
1420 info64
->lo_sizelimit
= 0;
1421 info64
->lo_encrypt_type
= info
.lo_encrypt_type
;
1422 info64
->lo_encrypt_key_size
= info
.lo_encrypt_key_size
;
1423 info64
->lo_flags
= info
.lo_flags
;
1424 info64
->lo_init
[0] = info
.lo_init
[0];
1425 info64
->lo_init
[1] = info
.lo_init
[1];
1426 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1427 memcpy(info64
->lo_crypt_name
, info
.lo_name
, LO_NAME_SIZE
);
1429 memcpy(info64
->lo_file_name
, info
.lo_name
, LO_NAME_SIZE
);
1430 memcpy(info64
->lo_encrypt_key
, info
.lo_encrypt_key
, LO_KEY_SIZE
);
1435 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1436 * - noinlined to reduce stack space usage in main part of driver
1439 loop_info64_to_compat(const struct loop_info64
*info64
,
1440 struct compat_loop_info __user
*arg
)
1442 struct compat_loop_info info
;
1444 memset(&info
, 0, sizeof(info
));
1445 info
.lo_number
= info64
->lo_number
;
1446 info
.lo_device
= info64
->lo_device
;
1447 info
.lo_inode
= info64
->lo_inode
;
1448 info
.lo_rdevice
= info64
->lo_rdevice
;
1449 info
.lo_offset
= info64
->lo_offset
;
1450 info
.lo_encrypt_type
= info64
->lo_encrypt_type
;
1451 info
.lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1452 info
.lo_flags
= info64
->lo_flags
;
1453 info
.lo_init
[0] = info64
->lo_init
[0];
1454 info
.lo_init
[1] = info64
->lo_init
[1];
1455 if (info
.lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1456 memcpy(info
.lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1458 memcpy(info
.lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1459 memcpy(info
.lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1461 /* error in case values were truncated */
1462 if (info
.lo_device
!= info64
->lo_device
||
1463 info
.lo_rdevice
!= info64
->lo_rdevice
||
1464 info
.lo_inode
!= info64
->lo_inode
||
1465 info
.lo_offset
!= info64
->lo_offset
||
1466 info
.lo_init
[0] != info64
->lo_init
[0] ||
1467 info
.lo_init
[1] != info64
->lo_init
[1])
1470 if (copy_to_user(arg
, &info
, sizeof(info
)))
1476 loop_set_status_compat(struct loop_device
*lo
,
1477 const struct compat_loop_info __user
*arg
)
1479 struct loop_info64 info64
;
1482 ret
= loop_info64_from_compat(arg
, &info64
);
1485 return loop_set_status(lo
, &info64
);
1489 loop_get_status_compat(struct loop_device
*lo
,
1490 struct compat_loop_info __user
*arg
)
1492 struct loop_info64 info64
;
1498 err
= loop_get_status(lo
, &info64
);
1500 err
= loop_info64_to_compat(&info64
, arg
);
1504 static int lo_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1505 unsigned int cmd
, unsigned long arg
)
1507 struct loop_device
*lo
= bdev
->bd_disk
->private_data
;
1511 case LOOP_SET_STATUS
:
1512 mutex_lock(&lo
->lo_ctl_mutex
);
1513 err
= loop_set_status_compat(
1514 lo
, (const struct compat_loop_info __user
*) arg
);
1515 mutex_unlock(&lo
->lo_ctl_mutex
);
1517 case LOOP_GET_STATUS
:
1518 mutex_lock(&lo
->lo_ctl_mutex
);
1519 err
= loop_get_status_compat(
1520 lo
, (struct compat_loop_info __user
*) arg
);
1521 mutex_unlock(&lo
->lo_ctl_mutex
);
1523 case LOOP_SET_CAPACITY
:
1525 case LOOP_GET_STATUS64
:
1526 case LOOP_SET_STATUS64
:
1527 arg
= (unsigned long) compat_ptr(arg
);
1529 case LOOP_CHANGE_FD
:
1530 err
= lo_ioctl(bdev
, mode
, cmd
, arg
);
1540 static int lo_open(struct block_device
*bdev
, fmode_t mode
)
1542 struct loop_device
*lo
;
1545 mutex_lock(&loop_index_mutex
);
1546 lo
= bdev
->bd_disk
->private_data
;
1552 atomic_inc(&lo
->lo_refcnt
);
1554 mutex_unlock(&loop_index_mutex
);
1558 static void lo_release(struct gendisk
*disk
, fmode_t mode
)
1560 struct loop_device
*lo
= disk
->private_data
;
1563 if (atomic_dec_return(&lo
->lo_refcnt
))
1566 mutex_lock(&lo
->lo_ctl_mutex
);
1567 if (lo
->lo_flags
& LO_FLAGS_AUTOCLEAR
) {
1569 * In autoclear mode, stop the loop thread
1570 * and remove configuration after last close.
1572 err
= loop_clr_fd(lo
);
1577 * Otherwise keep thread (if running) and config,
1578 * but flush possible ongoing bios in thread.
1583 mutex_unlock(&lo
->lo_ctl_mutex
);
1586 static const struct block_device_operations lo_fops
= {
1587 .owner
= THIS_MODULE
,
1589 .release
= lo_release
,
1591 #ifdef CONFIG_COMPAT
1592 .compat_ioctl
= lo_compat_ioctl
,
1597 * And now the modules code and kernel interface.
1599 static int max_loop
;
1600 module_param(max_loop
, int, S_IRUGO
);
1601 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices");
1602 module_param(max_part
, int, S_IRUGO
);
1603 MODULE_PARM_DESC(max_part
, "Maximum number of partitions per loop device");
1604 MODULE_LICENSE("GPL");
1605 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1607 int loop_register_transfer(struct loop_func_table
*funcs
)
1609 unsigned int n
= funcs
->number
;
1611 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1613 xfer_funcs
[n
] = funcs
;
1617 static int unregister_transfer_cb(int id
, void *ptr
, void *data
)
1619 struct loop_device
*lo
= ptr
;
1620 struct loop_func_table
*xfer
= data
;
1622 mutex_lock(&lo
->lo_ctl_mutex
);
1623 if (lo
->lo_encryption
== xfer
)
1624 loop_release_xfer(lo
);
1625 mutex_unlock(&lo
->lo_ctl_mutex
);
1629 int loop_unregister_transfer(int number
)
1631 unsigned int n
= number
;
1632 struct loop_func_table
*xfer
;
1634 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1637 xfer_funcs
[n
] = NULL
;
1638 idr_for_each(&loop_index_idr
, &unregister_transfer_cb
, xfer
);
1642 EXPORT_SYMBOL(loop_register_transfer
);
1643 EXPORT_SYMBOL(loop_unregister_transfer
);
1645 static int loop_queue_rq(struct blk_mq_hw_ctx
*hctx
,
1646 const struct blk_mq_queue_data
*bd
)
1648 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(bd
->rq
);
1649 struct loop_device
*lo
= cmd
->rq
->q
->queuedata
;
1651 blk_mq_start_request(bd
->rq
);
1653 if (lo
->lo_state
!= Lo_bound
)
1656 if (lo
->use_dio
&& !(cmd
->rq
->cmd_flags
& (REQ_FLUSH
|
1658 cmd
->use_aio
= true;
1660 cmd
->use_aio
= false;
1662 queue_kthread_work(&lo
->worker
, &cmd
->work
);
1664 return BLK_MQ_RQ_QUEUE_OK
;
1667 static void loop_handle_cmd(struct loop_cmd
*cmd
)
1669 const bool write
= cmd
->rq
->cmd_flags
& REQ_WRITE
;
1670 struct loop_device
*lo
= cmd
->rq
->q
->queuedata
;
1673 if (write
&& (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)) {
1678 ret
= do_req_filebacked(lo
, cmd
->rq
);
1680 /* complete non-aio request */
1681 if (!cmd
->use_aio
|| ret
)
1682 blk_mq_complete_request(cmd
->rq
, ret
? -EIO
: 0);
1685 static void loop_queue_work(struct kthread_work
*work
)
1687 struct loop_cmd
*cmd
=
1688 container_of(work
, struct loop_cmd
, work
);
1690 loop_handle_cmd(cmd
);
1693 static int loop_init_request(void *data
, struct request
*rq
,
1694 unsigned int hctx_idx
, unsigned int request_idx
,
1695 unsigned int numa_node
)
1697 struct loop_cmd
*cmd
= blk_mq_rq_to_pdu(rq
);
1700 init_kthread_work(&cmd
->work
, loop_queue_work
);
1705 static struct blk_mq_ops loop_mq_ops
= {
1706 .queue_rq
= loop_queue_rq
,
1707 .map_queue
= blk_mq_map_queue
,
1708 .init_request
= loop_init_request
,
1711 static int loop_add(struct loop_device
**l
, int i
)
1713 struct loop_device
*lo
;
1714 struct gendisk
*disk
;
1718 lo
= kzalloc(sizeof(*lo
), GFP_KERNEL
);
1722 lo
->lo_state
= Lo_unbound
;
1724 /* allocate id, if @id >= 0, we're requesting that specific id */
1726 err
= idr_alloc(&loop_index_idr
, lo
, i
, i
+ 1, GFP_KERNEL
);
1730 err
= idr_alloc(&loop_index_idr
, lo
, 0, 0, GFP_KERNEL
);
1737 lo
->tag_set
.ops
= &loop_mq_ops
;
1738 lo
->tag_set
.nr_hw_queues
= 1;
1739 lo
->tag_set
.queue_depth
= 128;
1740 lo
->tag_set
.numa_node
= NUMA_NO_NODE
;
1741 lo
->tag_set
.cmd_size
= sizeof(struct loop_cmd
);
1742 lo
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_SG_MERGE
;
1743 lo
->tag_set
.driver_data
= lo
;
1745 err
= blk_mq_alloc_tag_set(&lo
->tag_set
);
1749 lo
->lo_queue
= blk_mq_init_queue(&lo
->tag_set
);
1750 if (IS_ERR_OR_NULL(lo
->lo_queue
)) {
1751 err
= PTR_ERR(lo
->lo_queue
);
1752 goto out_cleanup_tags
;
1754 lo
->lo_queue
->queuedata
= lo
;
1757 * It doesn't make sense to enable merge because the I/O
1758 * submitted to backing file is handled page by page.
1760 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES
, lo
->lo_queue
);
1762 disk
= lo
->lo_disk
= alloc_disk(1 << part_shift
);
1764 goto out_free_queue
;
1767 * Disable partition scanning by default. The in-kernel partition
1768 * scanning can be requested individually per-device during its
1769 * setup. Userspace can always add and remove partitions from all
1770 * devices. The needed partition minors are allocated from the
1771 * extended minor space, the main loop device numbers will continue
1772 * to match the loop minors, regardless of the number of partitions
1775 * If max_part is given, partition scanning is globally enabled for
1776 * all loop devices. The minors for the main loop devices will be
1777 * multiples of max_part.
1779 * Note: Global-for-all-devices, set-only-at-init, read-only module
1780 * parameteters like 'max_loop' and 'max_part' make things needlessly
1781 * complicated, are too static, inflexible and may surprise
1782 * userspace tools. Parameters like this in general should be avoided.
1785 disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1786 disk
->flags
|= GENHD_FL_EXT_DEVT
;
1787 mutex_init(&lo
->lo_ctl_mutex
);
1788 atomic_set(&lo
->lo_refcnt
, 0);
1790 spin_lock_init(&lo
->lo_lock
);
1791 disk
->major
= LOOP_MAJOR
;
1792 disk
->first_minor
= i
<< part_shift
;
1793 disk
->fops
= &lo_fops
;
1794 disk
->private_data
= lo
;
1795 disk
->queue
= lo
->lo_queue
;
1796 sprintf(disk
->disk_name
, "loop%d", i
);
1799 return lo
->lo_number
;
1802 blk_cleanup_queue(lo
->lo_queue
);
1804 blk_mq_free_tag_set(&lo
->tag_set
);
1806 idr_remove(&loop_index_idr
, i
);
1813 static void loop_remove(struct loop_device
*lo
)
1815 blk_cleanup_queue(lo
->lo_queue
);
1816 del_gendisk(lo
->lo_disk
);
1817 blk_mq_free_tag_set(&lo
->tag_set
);
1818 put_disk(lo
->lo_disk
);
1822 static int find_free_cb(int id
, void *ptr
, void *data
)
1824 struct loop_device
*lo
= ptr
;
1825 struct loop_device
**l
= data
;
1827 if (lo
->lo_state
== Lo_unbound
) {
1834 static int loop_lookup(struct loop_device
**l
, int i
)
1836 struct loop_device
*lo
;
1842 err
= idr_for_each(&loop_index_idr
, &find_free_cb
, &lo
);
1845 ret
= lo
->lo_number
;
1850 /* lookup and return a specific i */
1851 lo
= idr_find(&loop_index_idr
, i
);
1854 ret
= lo
->lo_number
;
1860 static struct kobject
*loop_probe(dev_t dev
, int *part
, void *data
)
1862 struct loop_device
*lo
;
1863 struct kobject
*kobj
;
1866 mutex_lock(&loop_index_mutex
);
1867 err
= loop_lookup(&lo
, MINOR(dev
) >> part_shift
);
1869 err
= loop_add(&lo
, MINOR(dev
) >> part_shift
);
1873 kobj
= get_disk(lo
->lo_disk
);
1874 mutex_unlock(&loop_index_mutex
);
1880 static long loop_control_ioctl(struct file
*file
, unsigned int cmd
,
1883 struct loop_device
*lo
;
1886 mutex_lock(&loop_index_mutex
);
1889 ret
= loop_lookup(&lo
, parm
);
1894 ret
= loop_add(&lo
, parm
);
1896 case LOOP_CTL_REMOVE
:
1897 ret
= loop_lookup(&lo
, parm
);
1900 mutex_lock(&lo
->lo_ctl_mutex
);
1901 if (lo
->lo_state
!= Lo_unbound
) {
1903 mutex_unlock(&lo
->lo_ctl_mutex
);
1906 if (atomic_read(&lo
->lo_refcnt
) > 0) {
1908 mutex_unlock(&lo
->lo_ctl_mutex
);
1911 lo
->lo_disk
->private_data
= NULL
;
1912 mutex_unlock(&lo
->lo_ctl_mutex
);
1913 idr_remove(&loop_index_idr
, lo
->lo_number
);
1916 case LOOP_CTL_GET_FREE
:
1917 ret
= loop_lookup(&lo
, -1);
1920 ret
= loop_add(&lo
, -1);
1922 mutex_unlock(&loop_index_mutex
);
1927 static const struct file_operations loop_ctl_fops
= {
1928 .open
= nonseekable_open
,
1929 .unlocked_ioctl
= loop_control_ioctl
,
1930 .compat_ioctl
= loop_control_ioctl
,
1931 .owner
= THIS_MODULE
,
1932 .llseek
= noop_llseek
,
1935 static struct miscdevice loop_misc
= {
1936 .minor
= LOOP_CTRL_MINOR
,
1937 .name
= "loop-control",
1938 .fops
= &loop_ctl_fops
,
1941 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR
);
1942 MODULE_ALIAS("devname:loop-control");
1944 static int __init
loop_init(void)
1947 unsigned long range
;
1948 struct loop_device
*lo
;
1951 err
= misc_register(&loop_misc
);
1957 part_shift
= fls(max_part
);
1960 * Adjust max_part according to part_shift as it is exported
1961 * to user space so that user can decide correct minor number
1962 * if [s]he want to create more devices.
1964 * Note that -1 is required because partition 0 is reserved
1965 * for the whole disk.
1967 max_part
= (1UL << part_shift
) - 1;
1970 if ((1UL << part_shift
) > DISK_MAX_PARTS
) {
1975 if (max_loop
> 1UL << (MINORBITS
- part_shift
)) {
1981 * If max_loop is specified, create that many devices upfront.
1982 * This also becomes a hard limit. If max_loop is not specified,
1983 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1984 * init time. Loop devices can be requested on-demand with the
1985 * /dev/loop-control interface, or be instantiated by accessing
1986 * a 'dead' device node.
1990 range
= max_loop
<< part_shift
;
1992 nr
= CONFIG_BLK_DEV_LOOP_MIN_COUNT
;
1993 range
= 1UL << MINORBITS
;
1996 if (register_blkdev(LOOP_MAJOR
, "loop")) {
2001 blk_register_region(MKDEV(LOOP_MAJOR
, 0), range
,
2002 THIS_MODULE
, loop_probe
, NULL
, NULL
);
2004 /* pre-create number of devices given by config or max_loop */
2005 mutex_lock(&loop_index_mutex
);
2006 for (i
= 0; i
< nr
; i
++)
2008 mutex_unlock(&loop_index_mutex
);
2010 printk(KERN_INFO
"loop: module loaded\n");
2014 misc_deregister(&loop_misc
);
2018 static int loop_exit_cb(int id
, void *ptr
, void *data
)
2020 struct loop_device
*lo
= ptr
;
2026 static void __exit
loop_exit(void)
2028 unsigned long range
;
2030 range
= max_loop
? max_loop
<< part_shift
: 1UL << MINORBITS
;
2032 idr_for_each(&loop_index_idr
, &loop_exit_cb
, NULL
);
2033 idr_destroy(&loop_index_idr
);
2035 blk_unregister_region(MKDEV(LOOP_MAJOR
, 0), range
);
2036 unregister_blkdev(LOOP_MAJOR
, "loop");
2038 misc_deregister(&loop_misc
);
2041 module_init(loop_init
);
2042 module_exit(loop_exit
);
2045 static int __init
max_loop_setup(char *str
)
2047 max_loop
= simple_strtol(str
, NULL
, 0);
2051 __setup("max_loop=", max_loop_setup
);