2 * i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
4 * Copyright (C) 2011 Weinmann Medical GmbH
5 * Author: Nikolaus Voss <n.voss@weinmann.de>
7 * Evolved from original work by:
8 * Copyright (C) 2004 Rick Bronson
9 * Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
11 * Borrowed heavily from original work by:
12 * Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
28 #include <linux/module.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
37 #define DEFAULT_TWI_CLK_HZ 100000 /* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT msecs_to_jiffies(100) /* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD 8 /* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT 2000
42 /* AT91 TWI register definitions */
43 #define AT91_TWI_CR 0x0000 /* Control Register */
44 #define AT91_TWI_START BIT(0) /* Send a Start Condition */
45 #define AT91_TWI_STOP BIT(1) /* Send a Stop Condition */
46 #define AT91_TWI_MSEN BIT(2) /* Master Transfer Enable */
47 #define AT91_TWI_MSDIS BIT(3) /* Master Transfer Disable */
48 #define AT91_TWI_SVEN BIT(4) /* Slave Transfer Enable */
49 #define AT91_TWI_SVDIS BIT(5) /* Slave Transfer Disable */
50 #define AT91_TWI_QUICK BIT(6) /* SMBus quick command */
51 #define AT91_TWI_SWRST BIT(7) /* Software Reset */
52 #define AT91_TWI_ACMEN BIT(16) /* Alternative Command Mode Enable */
53 #define AT91_TWI_ACMDIS BIT(17) /* Alternative Command Mode Disable */
54 #define AT91_TWI_THRCLR BIT(24) /* Transmit Holding Register Clear */
55 #define AT91_TWI_RHRCLR BIT(25) /* Receive Holding Register Clear */
56 #define AT91_TWI_LOCKCLR BIT(26) /* Lock Clear */
57 #define AT91_TWI_FIFOEN BIT(28) /* FIFO Enable */
58 #define AT91_TWI_FIFODIS BIT(29) /* FIFO Disable */
60 #define AT91_TWI_MMR 0x0004 /* Master Mode Register */
61 #define AT91_TWI_IADRSZ_1 0x0100 /* Internal Device Address Size */
62 #define AT91_TWI_MREAD BIT(12) /* Master Read Direction */
64 #define AT91_TWI_IADR 0x000c /* Internal Address Register */
66 #define AT91_TWI_CWGR 0x0010 /* Clock Waveform Generator Reg */
68 #define AT91_TWI_SR 0x0020 /* Status Register */
69 #define AT91_TWI_TXCOMP BIT(0) /* Transmission Complete */
70 #define AT91_TWI_RXRDY BIT(1) /* Receive Holding Register Ready */
71 #define AT91_TWI_TXRDY BIT(2) /* Transmit Holding Register Ready */
72 #define AT91_TWI_OVRE BIT(6) /* Overrun Error */
73 #define AT91_TWI_UNRE BIT(7) /* Underrun Error */
74 #define AT91_TWI_NACK BIT(8) /* Not Acknowledged */
75 #define AT91_TWI_LOCK BIT(23) /* TWI Lock due to Frame Errors */
77 #define AT91_TWI_INT_MASK \
78 (AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
80 #define AT91_TWI_IER 0x0024 /* Interrupt Enable Register */
81 #define AT91_TWI_IDR 0x0028 /* Interrupt Disable Register */
82 #define AT91_TWI_IMR 0x002c /* Interrupt Mask Register */
83 #define AT91_TWI_RHR 0x0030 /* Receive Holding Register */
84 #define AT91_TWI_THR 0x0034 /* Transmit Holding Register */
86 #define AT91_TWI_ACR 0x0040 /* Alternative Command Register */
87 #define AT91_TWI_ACR_DATAL(len) ((len) & 0xff)
88 #define AT91_TWI_ACR_DIR BIT(8)
90 #define AT91_TWI_FMR 0x0050 /* FIFO Mode Register */
91 #define AT91_TWI_FMR_TXRDYM(mode) (((mode) & 0x3) << 0)
92 #define AT91_TWI_FMR_TXRDYM_MASK (0x3 << 0)
93 #define AT91_TWI_FMR_RXRDYM(mode) (((mode) & 0x3) << 4)
94 #define AT91_TWI_FMR_RXRDYM_MASK (0x3 << 4)
95 #define AT91_TWI_ONE_DATA 0x0
96 #define AT91_TWI_TWO_DATA 0x1
97 #define AT91_TWI_FOUR_DATA 0x2
99 #define AT91_TWI_FLR 0x0054 /* FIFO Level Register */
101 #define AT91_TWI_FSR 0x0060 /* FIFO Status Register */
102 #define AT91_TWI_FIER 0x0064 /* FIFO Interrupt Enable Register */
103 #define AT91_TWI_FIDR 0x0068 /* FIFO Interrupt Disable Register */
104 #define AT91_TWI_FIMR 0x006c /* FIFO Interrupt Mask Register */
106 #define AT91_TWI_VER 0x00fc /* Version Register */
108 struct at91_twi_pdata
{
109 unsigned clk_max_div
;
113 struct at_dma_slave dma_slave
;
116 struct at91_twi_dma
{
117 struct dma_chan
*chan_rx
;
118 struct dma_chan
*chan_tx
;
119 struct scatterlist sg
[2];
120 struct dma_async_tx_descriptor
*data_desc
;
121 enum dma_data_direction direction
;
123 bool xfer_in_progress
;
126 struct at91_twi_dev
{
129 struct completion cmd_complete
;
136 unsigned transfer_status
;
137 struct i2c_adapter adapter
;
138 unsigned twi_cwgr_reg
;
139 struct at91_twi_pdata
*pdata
;
143 struct at91_twi_dma dma
;
146 static unsigned at91_twi_read(struct at91_twi_dev
*dev
, unsigned reg
)
148 return readl_relaxed(dev
->base
+ reg
);
151 static void at91_twi_write(struct at91_twi_dev
*dev
, unsigned reg
, unsigned val
)
153 writel_relaxed(val
, dev
->base
+ reg
);
156 static void at91_disable_twi_interrupts(struct at91_twi_dev
*dev
)
158 at91_twi_write(dev
, AT91_TWI_IDR
, AT91_TWI_INT_MASK
);
161 static void at91_twi_irq_save(struct at91_twi_dev
*dev
)
163 dev
->imr
= at91_twi_read(dev
, AT91_TWI_IMR
) & AT91_TWI_INT_MASK
;
164 at91_disable_twi_interrupts(dev
);
167 static void at91_twi_irq_restore(struct at91_twi_dev
*dev
)
169 at91_twi_write(dev
, AT91_TWI_IER
, dev
->imr
);
172 static void at91_init_twi_bus(struct at91_twi_dev
*dev
)
174 at91_disable_twi_interrupts(dev
);
175 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SWRST
);
176 /* FIFO should be enabled immediately after the software reset */
178 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_FIFOEN
);
179 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_MSEN
);
180 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_SVDIS
);
181 at91_twi_write(dev
, AT91_TWI_CWGR
, dev
->twi_cwgr_reg
);
185 * Calculate symmetric clock as stated in datasheet:
186 * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
188 static void at91_calc_twi_clock(struct at91_twi_dev
*dev
, int twi_clk
)
190 int ckdiv
, cdiv
, div
;
191 struct at91_twi_pdata
*pdata
= dev
->pdata
;
192 int offset
= pdata
->clk_offset
;
193 int max_ckdiv
= pdata
->clk_max_div
;
195 div
= max(0, (int)DIV_ROUND_UP(clk_get_rate(dev
->clk
),
196 2 * twi_clk
) - offset
);
197 ckdiv
= fls(div
>> 8);
200 if (ckdiv
> max_ckdiv
) {
201 dev_warn(dev
->dev
, "%d exceeds ckdiv max value which is %d.\n",
207 dev
->twi_cwgr_reg
= (ckdiv
<< 16) | (cdiv
<< 8) | cdiv
;
208 dev_dbg(dev
->dev
, "cdiv %d ckdiv %d\n", cdiv
, ckdiv
);
211 static void at91_twi_dma_cleanup(struct at91_twi_dev
*dev
)
213 struct at91_twi_dma
*dma
= &dev
->dma
;
215 at91_twi_irq_save(dev
);
217 if (dma
->xfer_in_progress
) {
218 if (dma
->direction
== DMA_FROM_DEVICE
)
219 dmaengine_terminate_all(dma
->chan_rx
);
221 dmaengine_terminate_all(dma
->chan_tx
);
222 dma
->xfer_in_progress
= false;
224 if (dma
->buf_mapped
) {
225 dma_unmap_single(dev
->dev
, sg_dma_address(&dma
->sg
[0]),
226 dev
->buf_len
, dma
->direction
);
227 dma
->buf_mapped
= false;
230 at91_twi_irq_restore(dev
);
233 static void at91_twi_write_next_byte(struct at91_twi_dev
*dev
)
238 /* 8bit write works with and without FIFO */
239 writeb_relaxed(*dev
->buf
, dev
->base
+ AT91_TWI_THR
);
241 /* send stop when last byte has been written */
242 if (--dev
->buf_len
== 0)
243 if (!dev
->pdata
->has_alt_cmd
)
244 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
246 dev_dbg(dev
->dev
, "wrote 0x%x, to go %d\n", *dev
->buf
, dev
->buf_len
);
251 static void at91_twi_write_data_dma_callback(void *data
)
253 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
255 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
[0]),
256 dev
->buf_len
, DMA_TO_DEVICE
);
259 * When this callback is called, THR/TX FIFO is likely not to be empty
260 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
261 * Status Register to be sure that the STOP bit has been sent and the
262 * transfer is completed. The NACK interrupt has already been enabled,
263 * we just have to enable TXCOMP one.
265 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
266 if (!dev
->pdata
->has_alt_cmd
)
267 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
270 static void at91_twi_write_data_dma(struct at91_twi_dev
*dev
)
273 struct dma_async_tx_descriptor
*txdesc
;
274 struct at91_twi_dma
*dma
= &dev
->dma
;
275 struct dma_chan
*chan_tx
= dma
->chan_tx
;
276 unsigned int sg_len
= 1;
281 dma
->direction
= DMA_TO_DEVICE
;
283 at91_twi_irq_save(dev
);
284 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, dev
->buf_len
,
286 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
287 dev_err(dev
->dev
, "dma map failed\n");
290 dma
->buf_mapped
= true;
291 at91_twi_irq_restore(dev
);
293 if (dev
->fifo_size
) {
294 size_t part1_len
, part2_len
;
295 struct scatterlist
*sg
;
300 part1_len
= dev
->buf_len
& ~0x3;
302 sg
= &dma
->sg
[sg_len
++];
303 sg_dma_len(sg
) = part1_len
;
304 sg_dma_address(sg
) = dma_addr
;
307 part2_len
= dev
->buf_len
& 0x3;
309 sg
= &dma
->sg
[sg_len
++];
310 sg_dma_len(sg
) = part2_len
;
311 sg_dma_address(sg
) = dma_addr
+ part1_len
;
315 * DMA controller is triggered when at least 4 data can be
316 * written into the TX FIFO
318 fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
319 fifo_mr
&= ~AT91_TWI_FMR_TXRDYM_MASK
;
320 fifo_mr
|= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA
);
321 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
323 sg_dma_len(&dma
->sg
[0]) = dev
->buf_len
;
324 sg_dma_address(&dma
->sg
[0]) = dma_addr
;
327 txdesc
= dmaengine_prep_slave_sg(chan_tx
, dma
->sg
, sg_len
,
329 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
331 dev_err(dev
->dev
, "dma prep slave sg failed\n");
335 txdesc
->callback
= at91_twi_write_data_dma_callback
;
336 txdesc
->callback_param
= dev
;
338 dma
->xfer_in_progress
= true;
339 dmaengine_submit(txdesc
);
340 dma_async_issue_pending(chan_tx
);
345 at91_twi_dma_cleanup(dev
);
348 static void at91_twi_read_next_byte(struct at91_twi_dev
*dev
)
351 * If we are in this case, it means there is garbage data in RHR, so
355 at91_twi_read(dev
, AT91_TWI_RHR
);
359 /* 8bit read works with and without FIFO */
360 *dev
->buf
= readb_relaxed(dev
->base
+ AT91_TWI_RHR
);
363 /* return if aborting, we only needed to read RHR to clear RXRDY*/
364 if (dev
->recv_len_abort
)
367 /* handle I2C_SMBUS_BLOCK_DATA */
368 if (unlikely(dev
->msg
->flags
& I2C_M_RECV_LEN
)) {
369 /* ensure length byte is a valid value */
370 if (*dev
->buf
<= I2C_SMBUS_BLOCK_MAX
&& *dev
->buf
> 0) {
371 dev
->msg
->flags
&= ~I2C_M_RECV_LEN
;
372 dev
->buf_len
+= *dev
->buf
;
373 dev
->msg
->len
= dev
->buf_len
+ 1;
374 dev_dbg(dev
->dev
, "received block length %d\n",
377 /* abort and send the stop by reading one more byte */
378 dev
->recv_len_abort
= true;
383 /* send stop if second but last byte has been read */
384 if (!dev
->pdata
->has_alt_cmd
&& dev
->buf_len
== 1)
385 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_STOP
);
387 dev_dbg(dev
->dev
, "read 0x%x, to go %d\n", *dev
->buf
, dev
->buf_len
);
392 static void at91_twi_read_data_dma_callback(void *data
)
394 struct at91_twi_dev
*dev
= (struct at91_twi_dev
*)data
;
395 unsigned ier
= AT91_TWI_TXCOMP
;
397 dma_unmap_single(dev
->dev
, sg_dma_address(&dev
->dma
.sg
[0]),
398 dev
->buf_len
, DMA_FROM_DEVICE
);
400 if (!dev
->pdata
->has_alt_cmd
) {
401 /* The last two bytes have to be read without using dma */
402 dev
->buf
+= dev
->buf_len
- 2;
404 ier
|= AT91_TWI_RXRDY
;
406 at91_twi_write(dev
, AT91_TWI_IER
, ier
);
409 static void at91_twi_read_data_dma(struct at91_twi_dev
*dev
)
412 struct dma_async_tx_descriptor
*rxdesc
;
413 struct at91_twi_dma
*dma
= &dev
->dma
;
414 struct dma_chan
*chan_rx
= dma
->chan_rx
;
417 buf_len
= (dev
->pdata
->has_alt_cmd
) ? dev
->buf_len
: dev
->buf_len
- 2;
418 dma
->direction
= DMA_FROM_DEVICE
;
420 /* Keep in mind that we won't use dma to read the last two bytes */
421 at91_twi_irq_save(dev
);
422 dma_addr
= dma_map_single(dev
->dev
, dev
->buf
, buf_len
, DMA_FROM_DEVICE
);
423 if (dma_mapping_error(dev
->dev
, dma_addr
)) {
424 dev_err(dev
->dev
, "dma map failed\n");
427 dma
->buf_mapped
= true;
428 at91_twi_irq_restore(dev
);
430 if (dev
->fifo_size
&& IS_ALIGNED(buf_len
, 4)) {
434 * DMA controller is triggered when at least 4 data can be
435 * read from the RX FIFO
437 fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
438 fifo_mr
&= ~AT91_TWI_FMR_RXRDYM_MASK
;
439 fifo_mr
|= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA
);
440 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
443 sg_dma_len(&dma
->sg
[0]) = buf_len
;
444 sg_dma_address(&dma
->sg
[0]) = dma_addr
;
446 rxdesc
= dmaengine_prep_slave_sg(chan_rx
, dma
->sg
, 1, DMA_DEV_TO_MEM
,
447 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
449 dev_err(dev
->dev
, "dma prep slave sg failed\n");
453 rxdesc
->callback
= at91_twi_read_data_dma_callback
;
454 rxdesc
->callback_param
= dev
;
456 dma
->xfer_in_progress
= true;
457 dmaengine_submit(rxdesc
);
458 dma_async_issue_pending(dma
->chan_rx
);
463 at91_twi_dma_cleanup(dev
);
466 static irqreturn_t
atmel_twi_interrupt(int irq
, void *dev_id
)
468 struct at91_twi_dev
*dev
= dev_id
;
469 const unsigned status
= at91_twi_read(dev
, AT91_TWI_SR
);
470 const unsigned irqstatus
= status
& at91_twi_read(dev
, AT91_TWI_IMR
);
475 * In reception, the behavior of the twi device (before sama5d2) is
476 * weird. There is some magic about RXRDY flag! When a data has been
477 * almost received, the reception of a new one is anticipated if there
478 * is no stop command to send. That is the reason why ask for sending
479 * the stop command not on the last data but on the second last one.
481 * Unfortunately, we could still have the RXRDY flag set even if the
482 * transfer is done and we have read the last data. It might happen
483 * when the i2c slave device sends too quickly data after receiving the
484 * ack from the master. The data has been almost received before having
485 * the order to send stop. In this case, sending the stop command could
486 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
487 * the RXRDY interrupt first in order to not keep garbage data in the
488 * Receive Holding Register for the next transfer.
490 if (irqstatus
& AT91_TWI_RXRDY
)
491 at91_twi_read_next_byte(dev
);
494 * When a NACK condition is detected, the I2C controller sets the NACK,
495 * TXCOMP and TXRDY bits all together in the Status Register (SR).
497 * 1 - Handling NACK errors with CPU write transfer.
499 * In such case, we should not write the next byte into the Transmit
500 * Holding Register (THR) otherwise the I2C controller would start a new
501 * transfer and the I2C slave is likely to reply by another NACK.
503 * 2 - Handling NACK errors with DMA write transfer.
505 * By setting the TXRDY bit in the SR, the I2C controller also triggers
506 * the DMA controller to write the next data into the THR. Then the
507 * result depends on the hardware version of the I2C controller.
509 * 2a - Without support of the Alternative Command mode.
511 * This is the worst case: the DMA controller is triggered to write the
512 * next data into the THR, hence starting a new transfer: the I2C slave
513 * is likely to reply by another NACK.
514 * Concurrently, this interrupt handler is likely to be called to manage
515 * the first NACK before the I2C controller detects the second NACK and
516 * sets once again the NACK bit into the SR.
517 * When handling the first NACK, this interrupt handler disables the I2C
518 * controller interruptions, especially the NACK interrupt.
519 * Hence, the NACK bit is pending into the SR. This is why we should
520 * read the SR to clear all pending interrupts at the beginning of
521 * at91_do_twi_transfer() before actually starting a new transfer.
523 * 2b - With support of the Alternative Command mode.
525 * When a NACK condition is detected, the I2C controller also locks the
526 * THR (and sets the LOCK bit in the SR): even though the DMA controller
527 * is triggered by the TXRDY bit to write the next data into the THR,
528 * this data actually won't go on the I2C bus hence a second NACK is not
531 if (irqstatus
& (AT91_TWI_TXCOMP
| AT91_TWI_NACK
)) {
532 at91_disable_twi_interrupts(dev
);
533 complete(&dev
->cmd_complete
);
534 } else if (irqstatus
& AT91_TWI_TXRDY
) {
535 at91_twi_write_next_byte(dev
);
538 /* catch error flags */
539 dev
->transfer_status
|= status
;
544 static int at91_do_twi_transfer(struct at91_twi_dev
*dev
)
547 unsigned long time_left
;
548 bool has_unre_flag
= dev
->pdata
->has_unre_flag
;
549 bool has_alt_cmd
= dev
->pdata
->has_alt_cmd
;
552 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
553 * read flag but shows the state of the transmission at the time the
554 * Status Register is read. According to the programmer datasheet,
555 * TXCOMP is set when both holding register and internal shifter are
556 * empty and STOP condition has been sent.
557 * Consequently, we should enable NACK interrupt rather than TXCOMP to
558 * detect transmission failure.
559 * Indeed let's take the case of an i2c write command using DMA.
560 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
561 * TXCOMP bits are set together into the Status Register.
562 * LOCK is a clear on write bit, which is set to prevent the DMA
563 * controller from sending new data on the i2c bus after a NACK
564 * condition has happened. Once locked, this i2c peripheral stops
565 * triggering the DMA controller for new data but it is more than
566 * likely that a new DMA transaction is already in progress, writing
567 * into the Transmit Holding Register. Since the peripheral is locked,
568 * these new data won't be sent to the i2c bus but they will remain
569 * into the Transmit Holding Register, so TXCOMP bit is cleared.
570 * Then when the interrupt handler is called, the Status Register is
571 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
572 * manage the error properly, without waiting for timeout.
573 * This case can be reproduced easyly when writing into an at24 eeprom.
575 * Besides, the TXCOMP bit is already set before the i2c transaction
576 * has been started. For read transactions, this bit is cleared when
577 * writing the START bit into the Control Register. So the
578 * corresponding interrupt can safely be enabled just after.
579 * However for write transactions managed by the CPU, we first write
580 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
581 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
582 * the interrupt handler would be called immediately and the i2c command
583 * would be reported as completed.
584 * Also when a write transaction is managed by the DMA controller,
585 * enabling the TXCOMP interrupt in this function may lead to a race
586 * condition since we don't know whether the TXCOMP interrupt is enabled
587 * before or after the DMA has started to write into THR. So the TXCOMP
588 * interrupt is enabled later by at91_twi_write_data_dma_callback().
589 * Immediately after in that DMA callback, if the alternative command
590 * mode is not used, we still need to send the STOP condition manually
591 * writing the corresponding bit into the Control Register.
594 dev_dbg(dev
->dev
, "transfer: %s %d bytes.\n",
595 (dev
->msg
->flags
& I2C_M_RD
) ? "read" : "write", dev
->buf_len
);
597 reinit_completion(&dev
->cmd_complete
);
598 dev
->transfer_status
= 0;
600 /* Clear pending interrupts, such as NACK. */
601 at91_twi_read(dev
, AT91_TWI_SR
);
603 if (dev
->fifo_size
) {
604 unsigned fifo_mr
= at91_twi_read(dev
, AT91_TWI_FMR
);
606 /* Reset FIFO mode register */
607 fifo_mr
&= ~(AT91_TWI_FMR_TXRDYM_MASK
|
608 AT91_TWI_FMR_RXRDYM_MASK
);
609 fifo_mr
|= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA
);
610 fifo_mr
|= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA
);
611 at91_twi_write(dev
, AT91_TWI_FMR
, fifo_mr
);
614 at91_twi_write(dev
, AT91_TWI_CR
,
615 AT91_TWI_THRCLR
| AT91_TWI_RHRCLR
);
619 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_QUICK
);
620 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_TXCOMP
);
621 } else if (dev
->msg
->flags
& I2C_M_RD
) {
622 unsigned start_flags
= AT91_TWI_START
;
624 /* if only one byte is to be read, immediately stop transfer */
625 if (!has_alt_cmd
&& dev
->buf_len
<= 1 &&
626 !(dev
->msg
->flags
& I2C_M_RECV_LEN
))
627 start_flags
|= AT91_TWI_STOP
;
628 at91_twi_write(dev
, AT91_TWI_CR
, start_flags
);
630 * When using dma without alternative command mode, the last
631 * byte has to be read manually in order to not send the stop
632 * command too late and then to receive extra data.
633 * In practice, there are some issues if you use the dma to
634 * read n-1 bytes because of latency.
635 * Reading n-2 bytes with dma and the two last ones manually
636 * seems to be the best solution.
638 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
639 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
640 at91_twi_read_data_dma(dev
);
642 at91_twi_write(dev
, AT91_TWI_IER
,
648 if (dev
->use_dma
&& (dev
->buf_len
> AT91_I2C_DMA_THRESHOLD
)) {
649 at91_twi_write(dev
, AT91_TWI_IER
, AT91_TWI_NACK
);
650 at91_twi_write_data_dma(dev
);
652 at91_twi_write_next_byte(dev
);
653 at91_twi_write(dev
, AT91_TWI_IER
,
660 time_left
= wait_for_completion_timeout(&dev
->cmd_complete
,
661 dev
->adapter
.timeout
);
662 if (time_left
== 0) {
663 dev
->transfer_status
|= at91_twi_read(dev
, AT91_TWI_SR
);
664 dev_err(dev
->dev
, "controller timed out\n");
665 at91_init_twi_bus(dev
);
669 if (dev
->transfer_status
& AT91_TWI_NACK
) {
670 dev_dbg(dev
->dev
, "received nack\n");
674 if (dev
->transfer_status
& AT91_TWI_OVRE
) {
675 dev_err(dev
->dev
, "overrun while reading\n");
679 if (has_unre_flag
&& dev
->transfer_status
& AT91_TWI_UNRE
) {
680 dev_err(dev
->dev
, "underrun while writing\n");
684 if ((has_alt_cmd
|| dev
->fifo_size
) &&
685 (dev
->transfer_status
& AT91_TWI_LOCK
)) {
686 dev_err(dev
->dev
, "tx locked\n");
690 if (dev
->recv_len_abort
) {
691 dev_err(dev
->dev
, "invalid smbus block length recvd\n");
696 dev_dbg(dev
->dev
, "transfer complete\n");
701 /* first stop DMA transfer if still in progress */
702 at91_twi_dma_cleanup(dev
);
703 /* then flush THR/FIFO and unlock TX if locked */
704 if ((has_alt_cmd
|| dev
->fifo_size
) &&
705 (dev
->transfer_status
& AT91_TWI_LOCK
)) {
706 dev_dbg(dev
->dev
, "unlock tx\n");
707 at91_twi_write(dev
, AT91_TWI_CR
,
708 AT91_TWI_THRCLR
| AT91_TWI_LOCKCLR
);
713 static int at91_twi_xfer(struct i2c_adapter
*adap
, struct i2c_msg
*msg
, int num
)
715 struct at91_twi_dev
*dev
= i2c_get_adapdata(adap
);
717 unsigned int_addr_flag
= 0;
718 struct i2c_msg
*m_start
= msg
;
719 bool is_read
, use_alt_cmd
= false;
721 dev_dbg(&adap
->dev
, "at91_xfer: processing %d messages:\n", num
);
723 ret
= pm_runtime_get_sync(dev
->dev
);
728 int internal_address
= 0;
731 /* 1st msg is put into the internal address, start with 2nd */
733 for (i
= 0; i
< msg
->len
; ++i
) {
734 const unsigned addr
= msg
->buf
[msg
->len
- 1 - i
];
736 internal_address
|= addr
<< (8 * i
);
737 int_addr_flag
+= AT91_TWI_IADRSZ_1
;
739 at91_twi_write(dev
, AT91_TWI_IADR
, internal_address
);
742 is_read
= (m_start
->flags
& I2C_M_RD
);
743 if (dev
->pdata
->has_alt_cmd
) {
744 if (m_start
->len
> 0) {
745 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_ACMEN
);
746 at91_twi_write(dev
, AT91_TWI_ACR
,
747 AT91_TWI_ACR_DATAL(m_start
->len
) |
748 ((is_read
) ? AT91_TWI_ACR_DIR
: 0));
751 at91_twi_write(dev
, AT91_TWI_CR
, AT91_TWI_ACMDIS
);
755 at91_twi_write(dev
, AT91_TWI_MMR
,
756 (m_start
->addr
<< 16) |
758 ((!use_alt_cmd
&& is_read
) ? AT91_TWI_MREAD
: 0));
760 dev
->buf_len
= m_start
->len
;
761 dev
->buf
= m_start
->buf
;
763 dev
->recv_len_abort
= false;
765 ret
= at91_do_twi_transfer(dev
);
767 ret
= (ret
< 0) ? ret
: num
;
769 pm_runtime_mark_last_busy(dev
->dev
);
770 pm_runtime_put_autosuspend(dev
->dev
);
776 * The hardware can handle at most two messages concatenated by a
777 * repeated start via it's internal address feature.
779 static struct i2c_adapter_quirks at91_twi_quirks
= {
780 .flags
= I2C_AQ_COMB
| I2C_AQ_COMB_WRITE_FIRST
| I2C_AQ_COMB_SAME_ADDR
,
781 .max_comb_1st_msg_len
= 3,
784 static u32
at91_twi_func(struct i2c_adapter
*adapter
)
786 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
787 | I2C_FUNC_SMBUS_READ_BLOCK_DATA
;
790 static struct i2c_algorithm at91_twi_algorithm
= {
791 .master_xfer
= at91_twi_xfer
,
792 .functionality
= at91_twi_func
,
795 static struct at91_twi_pdata at91rm9200_config
= {
798 .has_unre_flag
= true,
799 .has_alt_cmd
= false,
802 static struct at91_twi_pdata at91sam9261_config
= {
805 .has_unre_flag
= false,
806 .has_alt_cmd
= false,
809 static struct at91_twi_pdata at91sam9260_config
= {
812 .has_unre_flag
= false,
813 .has_alt_cmd
= false,
816 static struct at91_twi_pdata at91sam9g20_config
= {
819 .has_unre_flag
= false,
820 .has_alt_cmd
= false,
823 static struct at91_twi_pdata at91sam9g10_config
= {
826 .has_unre_flag
= false,
827 .has_alt_cmd
= false,
830 static const struct platform_device_id at91_twi_devtypes
[] = {
832 .name
= "i2c-at91rm9200",
833 .driver_data
= (unsigned long) &at91rm9200_config
,
835 .name
= "i2c-at91sam9261",
836 .driver_data
= (unsigned long) &at91sam9261_config
,
838 .name
= "i2c-at91sam9260",
839 .driver_data
= (unsigned long) &at91sam9260_config
,
841 .name
= "i2c-at91sam9g20",
842 .driver_data
= (unsigned long) &at91sam9g20_config
,
844 .name
= "i2c-at91sam9g10",
845 .driver_data
= (unsigned long) &at91sam9g10_config
,
851 #if defined(CONFIG_OF)
852 static struct at91_twi_pdata at91sam9x5_config
= {
855 .has_unre_flag
= false,
856 .has_alt_cmd
= false,
859 static struct at91_twi_pdata sama5d2_config
= {
862 .has_unre_flag
= true,
866 static const struct of_device_id atmel_twi_dt_ids
[] = {
868 .compatible
= "atmel,at91rm9200-i2c",
869 .data
= &at91rm9200_config
,
871 .compatible
= "atmel,at91sam9260-i2c",
872 .data
= &at91sam9260_config
,
874 .compatible
= "atmel,at91sam9261-i2c",
875 .data
= &at91sam9261_config
,
877 .compatible
= "atmel,at91sam9g20-i2c",
878 .data
= &at91sam9g20_config
,
880 .compatible
= "atmel,at91sam9g10-i2c",
881 .data
= &at91sam9g10_config
,
883 .compatible
= "atmel,at91sam9x5-i2c",
884 .data
= &at91sam9x5_config
,
886 .compatible
= "atmel,sama5d2-i2c",
887 .data
= &sama5d2_config
,
892 MODULE_DEVICE_TABLE(of
, atmel_twi_dt_ids
);
895 static int at91_twi_configure_dma(struct at91_twi_dev
*dev
, u32 phy_addr
)
898 struct dma_slave_config slave_config
;
899 struct at91_twi_dma
*dma
= &dev
->dma
;
900 enum dma_slave_buswidth addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
903 * The actual width of the access will be chosen in
904 * dmaengine_prep_slave_sg():
905 * for each buffer in the scatter-gather list, if its size is aligned
906 * to addr_width then addr_width accesses will be performed to transfer
907 * the buffer. On the other hand, if the buffer size is not aligned to
908 * addr_width then the buffer is transferred using single byte accesses.
909 * Please refer to the Atmel eXtended DMA controller driver.
910 * When FIFOs are used, the TXRDYM threshold can always be set to
911 * trigger the XDMAC when at least 4 data can be written into the TX
912 * FIFO, even if single byte accesses are performed.
913 * However the RXRDYM threshold must be set to fit the access width,
914 * deduced from buffer length, so the XDMAC is triggered properly to
915 * read data from the RX FIFO.
918 addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
920 memset(&slave_config
, 0, sizeof(slave_config
));
921 slave_config
.src_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_RHR
;
922 slave_config
.src_addr_width
= addr_width
;
923 slave_config
.src_maxburst
= 1;
924 slave_config
.dst_addr
= (dma_addr_t
)phy_addr
+ AT91_TWI_THR
;
925 slave_config
.dst_addr_width
= addr_width
;
926 slave_config
.dst_maxburst
= 1;
927 slave_config
.device_fc
= false;
929 dma
->chan_tx
= dma_request_slave_channel_reason(dev
->dev
, "tx");
930 if (IS_ERR(dma
->chan_tx
)) {
931 ret
= PTR_ERR(dma
->chan_tx
);
936 dma
->chan_rx
= dma_request_slave_channel_reason(dev
->dev
, "rx");
937 if (IS_ERR(dma
->chan_rx
)) {
938 ret
= PTR_ERR(dma
->chan_rx
);
943 slave_config
.direction
= DMA_MEM_TO_DEV
;
944 if (dmaengine_slave_config(dma
->chan_tx
, &slave_config
)) {
945 dev_err(dev
->dev
, "failed to configure tx channel\n");
950 slave_config
.direction
= DMA_DEV_TO_MEM
;
951 if (dmaengine_slave_config(dma
->chan_rx
, &slave_config
)) {
952 dev_err(dev
->dev
, "failed to configure rx channel\n");
957 sg_init_table(dma
->sg
, 2);
958 dma
->buf_mapped
= false;
959 dma
->xfer_in_progress
= false;
962 dev_info(dev
->dev
, "using %s (tx) and %s (rx) for DMA transfers\n",
963 dma_chan_name(dma
->chan_tx
), dma_chan_name(dma
->chan_rx
));
968 if (ret
!= -EPROBE_DEFER
)
969 dev_info(dev
->dev
, "can't use DMA, error %d\n", ret
);
971 dma_release_channel(dma
->chan_rx
);
973 dma_release_channel(dma
->chan_tx
);
977 static struct at91_twi_pdata
*at91_twi_get_driver_data(
978 struct platform_device
*pdev
)
980 if (pdev
->dev
.of_node
) {
981 const struct of_device_id
*match
;
982 match
= of_match_node(atmel_twi_dt_ids
, pdev
->dev
.of_node
);
985 return (struct at91_twi_pdata
*)match
->data
;
987 return (struct at91_twi_pdata
*) platform_get_device_id(pdev
)->driver_data
;
990 static int at91_twi_probe(struct platform_device
*pdev
)
992 struct at91_twi_dev
*dev
;
993 struct resource
*mem
;
998 dev
= devm_kzalloc(&pdev
->dev
, sizeof(*dev
), GFP_KERNEL
);
1001 init_completion(&dev
->cmd_complete
);
1002 dev
->dev
= &pdev
->dev
;
1004 mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1007 phy_addr
= mem
->start
;
1009 dev
->pdata
= at91_twi_get_driver_data(pdev
);
1013 dev
->base
= devm_ioremap_resource(&pdev
->dev
, mem
);
1014 if (IS_ERR(dev
->base
))
1015 return PTR_ERR(dev
->base
);
1017 dev
->irq
= platform_get_irq(pdev
, 0);
1021 rc
= devm_request_irq(&pdev
->dev
, dev
->irq
, atmel_twi_interrupt
, 0,
1022 dev_name(dev
->dev
), dev
);
1024 dev_err(dev
->dev
, "Cannot get irq %d: %d\n", dev
->irq
, rc
);
1028 platform_set_drvdata(pdev
, dev
);
1030 dev
->clk
= devm_clk_get(dev
->dev
, NULL
);
1031 if (IS_ERR(dev
->clk
)) {
1032 dev_err(dev
->dev
, "no clock defined\n");
1035 clk_prepare_enable(dev
->clk
);
1037 if (dev
->dev
->of_node
) {
1038 rc
= at91_twi_configure_dma(dev
, phy_addr
);
1039 if (rc
== -EPROBE_DEFER
)
1043 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1045 dev_info(dev
->dev
, "Using FIFO (%u data)\n", dev
->fifo_size
);
1048 rc
= of_property_read_u32(dev
->dev
->of_node
, "clock-frequency",
1051 bus_clk_rate
= DEFAULT_TWI_CLK_HZ
;
1053 at91_calc_twi_clock(dev
, bus_clk_rate
);
1054 at91_init_twi_bus(dev
);
1056 snprintf(dev
->adapter
.name
, sizeof(dev
->adapter
.name
), "AT91");
1057 i2c_set_adapdata(&dev
->adapter
, dev
);
1058 dev
->adapter
.owner
= THIS_MODULE
;
1059 dev
->adapter
.class = I2C_CLASS_DEPRECATED
;
1060 dev
->adapter
.algo
= &at91_twi_algorithm
;
1061 dev
->adapter
.quirks
= &at91_twi_quirks
;
1062 dev
->adapter
.dev
.parent
= dev
->dev
;
1063 dev
->adapter
.nr
= pdev
->id
;
1064 dev
->adapter
.timeout
= AT91_I2C_TIMEOUT
;
1065 dev
->adapter
.dev
.of_node
= pdev
->dev
.of_node
;
1067 pm_runtime_set_autosuspend_delay(dev
->dev
, AUTOSUSPEND_TIMEOUT
);
1068 pm_runtime_use_autosuspend(dev
->dev
);
1069 pm_runtime_set_active(dev
->dev
);
1070 pm_runtime_enable(dev
->dev
);
1072 rc
= i2c_add_numbered_adapter(&dev
->adapter
);
1074 dev_err(dev
->dev
, "Adapter %s registration failed\n",
1076 clk_disable_unprepare(dev
->clk
);
1078 pm_runtime_disable(dev
->dev
);
1079 pm_runtime_set_suspended(dev
->dev
);
1084 dev_info(dev
->dev
, "AT91 i2c bus driver (hw version: %#x).\n",
1085 at91_twi_read(dev
, AT91_TWI_VER
));
1089 static int at91_twi_remove(struct platform_device
*pdev
)
1091 struct at91_twi_dev
*dev
= platform_get_drvdata(pdev
);
1093 i2c_del_adapter(&dev
->adapter
);
1094 clk_disable_unprepare(dev
->clk
);
1096 pm_runtime_disable(dev
->dev
);
1097 pm_runtime_set_suspended(dev
->dev
);
1104 static int at91_twi_runtime_suspend(struct device
*dev
)
1106 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
1108 clk_disable_unprepare(twi_dev
->clk
);
1110 pinctrl_pm_select_sleep_state(dev
);
1115 static int at91_twi_runtime_resume(struct device
*dev
)
1117 struct at91_twi_dev
*twi_dev
= dev_get_drvdata(dev
);
1119 pinctrl_pm_select_default_state(dev
);
1121 return clk_prepare_enable(twi_dev
->clk
);
1124 static int at91_twi_suspend_noirq(struct device
*dev
)
1126 if (!pm_runtime_status_suspended(dev
))
1127 at91_twi_runtime_suspend(dev
);
1132 static int at91_twi_resume_noirq(struct device
*dev
)
1136 if (!pm_runtime_status_suspended(dev
)) {
1137 ret
= at91_twi_runtime_resume(dev
);
1142 pm_runtime_mark_last_busy(dev
);
1143 pm_request_autosuspend(dev
);
1148 static const struct dev_pm_ops at91_twi_pm
= {
1149 .suspend_noirq
= at91_twi_suspend_noirq
,
1150 .resume_noirq
= at91_twi_resume_noirq
,
1151 .runtime_suspend
= at91_twi_runtime_suspend
,
1152 .runtime_resume
= at91_twi_runtime_resume
,
1155 #define at91_twi_pm_ops (&at91_twi_pm)
1157 #define at91_twi_pm_ops NULL
1160 static struct platform_driver at91_twi_driver
= {
1161 .probe
= at91_twi_probe
,
1162 .remove
= at91_twi_remove
,
1163 .id_table
= at91_twi_devtypes
,
1166 .of_match_table
= of_match_ptr(atmel_twi_dt_ids
),
1167 .pm
= at91_twi_pm_ops
,
1171 static int __init
at91_twi_init(void)
1173 return platform_driver_register(&at91_twi_driver
);
1176 static void __exit
at91_twi_exit(void)
1178 platform_driver_unregister(&at91_twi_driver
);
1181 subsys_initcall(at91_twi_init
);
1182 module_exit(at91_twi_exit
);
1184 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1185 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1186 MODULE_LICENSE("GPL");
1187 MODULE_ALIAS("platform:at91_i2c");