2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/irqdomain.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/io_apic.h>
41 #include <asm/hw_irq.h>
42 #include <asm/msidef.h>
43 #include <asm/proto.h>
44 #include <asm/iommu.h>
48 #include "amd_iommu_proto.h"
49 #include "amd_iommu_types.h"
50 #include "irq_remapping.h"
52 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
54 #define LOOP_TIMEOUT 100000
57 * This bitmap is used to advertise the page sizes our hardware support
58 * to the IOMMU core, which will then use this information to split
59 * physically contiguous memory regions it is mapping into page sizes
62 * 512GB Pages are not supported due to a hardware bug
64 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
66 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
68 /* List of all available dev_data structures */
69 static LIST_HEAD(dev_data_list
);
70 static DEFINE_SPINLOCK(dev_data_list_lock
);
72 LIST_HEAD(ioapic_map
);
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
79 static const struct iommu_ops amd_iommu_ops
;
81 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
82 int amd_iommu_max_glx_val
= -1;
84 static struct dma_map_ops amd_iommu_dma_ops
;
87 * This struct contains device specific data for the IOMMU
89 struct iommu_dev_data
{
90 struct list_head list
; /* For domain->dev_list */
91 struct list_head dev_data_list
; /* For global dev_data_list */
92 struct protection_domain
*domain
; /* Domain the device is bound to */
93 u16 devid
; /* PCI Device ID */
94 bool iommu_v2
; /* Device can make use of IOMMUv2 */
95 bool passthrough
; /* Device is identity mapped */
99 } ats
; /* ATS state */
100 bool pri_tlp
; /* PASID TLB required for
102 u32 errata
; /* Bitmap for errata to apply */
106 * general struct to manage commands send to an IOMMU
112 struct kmem_cache
*amd_iommu_irq_cache
;
114 static void update_domain(struct protection_domain
*domain
);
115 static int protection_domain_init(struct protection_domain
*domain
);
117 /****************************************************************************
121 ****************************************************************************/
123 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
125 return container_of(dom
, struct protection_domain
, domain
);
128 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
130 struct iommu_dev_data
*dev_data
;
133 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
137 dev_data
->devid
= devid
;
139 spin_lock_irqsave(&dev_data_list_lock
, flags
);
140 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
141 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
146 static struct iommu_dev_data
*search_dev_data(u16 devid
)
148 struct iommu_dev_data
*dev_data
;
151 spin_lock_irqsave(&dev_data_list_lock
, flags
);
152 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
153 if (dev_data
->devid
== devid
)
160 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
165 static struct iommu_dev_data
*find_dev_data(u16 devid
)
167 struct iommu_dev_data
*dev_data
;
169 dev_data
= search_dev_data(devid
);
171 if (dev_data
== NULL
)
172 dev_data
= alloc_dev_data(devid
);
177 static inline u16
get_device_id(struct device
*dev
)
179 struct pci_dev
*pdev
= to_pci_dev(dev
);
181 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
184 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
186 return dev
->archdata
.iommu
;
189 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
191 static const int caps
[] = {
194 PCI_EXT_CAP_ID_PASID
,
198 for (i
= 0; i
< 3; ++i
) {
199 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
207 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
209 struct iommu_dev_data
*dev_data
;
211 dev_data
= get_dev_data(&pdev
->dev
);
213 return dev_data
->errata
& (1 << erratum
) ? true : false;
217 * This function actually applies the mapping to the page table of the
220 static void alloc_unity_mapping(struct dma_ops_domain
*dma_dom
,
221 struct unity_map_entry
*e
)
225 for (addr
= e
->address_start
; addr
< e
->address_end
;
227 if (addr
< dma_dom
->aperture_size
)
228 __set_bit(addr
>> PAGE_SHIFT
,
229 dma_dom
->aperture
[0]->bitmap
);
234 * Inits the unity mappings required for a specific device
236 static void init_unity_mappings_for_device(struct device
*dev
,
237 struct dma_ops_domain
*dma_dom
)
239 struct unity_map_entry
*e
;
242 devid
= get_device_id(dev
);
244 list_for_each_entry(e
, &amd_iommu_unity_map
, list
) {
245 if (!(devid
>= e
->devid_start
&& devid
<= e
->devid_end
))
247 alloc_unity_mapping(dma_dom
, e
);
252 * This function checks if the driver got a valid device from the caller to
253 * avoid dereferencing invalid pointers.
255 static bool check_device(struct device
*dev
)
259 if (!dev
|| !dev
->dma_mask
)
263 if (!dev_is_pci(dev
))
266 devid
= get_device_id(dev
);
268 /* Out of our scope? */
269 if (devid
> amd_iommu_last_bdf
)
272 if (amd_iommu_rlookup_table
[devid
] == NULL
)
278 static void init_iommu_group(struct device
*dev
)
280 struct dma_ops_domain
*dma_domain
;
281 struct iommu_domain
*domain
;
282 struct iommu_group
*group
;
284 group
= iommu_group_get_for_dev(dev
);
288 domain
= iommu_group_default_domain(group
);
292 dma_domain
= to_pdomain(domain
)->priv
;
294 init_unity_mappings_for_device(dev
, dma_domain
);
296 iommu_group_put(group
);
299 static int iommu_init_device(struct device
*dev
)
301 struct pci_dev
*pdev
= to_pci_dev(dev
);
302 struct iommu_dev_data
*dev_data
;
304 if (dev
->archdata
.iommu
)
307 dev_data
= find_dev_data(get_device_id(dev
));
311 if (pci_iommuv2_capable(pdev
)) {
312 struct amd_iommu
*iommu
;
314 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
315 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
318 dev
->archdata
.iommu
= dev_data
;
320 iommu_device_link(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
326 static void iommu_ignore_device(struct device
*dev
)
330 devid
= get_device_id(dev
);
331 alias
= amd_iommu_alias_table
[devid
];
333 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
334 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
336 amd_iommu_rlookup_table
[devid
] = NULL
;
337 amd_iommu_rlookup_table
[alias
] = NULL
;
340 static void iommu_uninit_device(struct device
*dev
)
342 struct iommu_dev_data
*dev_data
= search_dev_data(get_device_id(dev
));
347 iommu_device_unlink(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
350 iommu_group_remove_device(dev
);
353 dev
->archdata
.dma_ops
= NULL
;
356 * We keep dev_data around for unplugged devices and reuse it when the
357 * device is re-plugged - not doing so would introduce a ton of races.
361 #ifdef CONFIG_AMD_IOMMU_STATS
364 * Initialization code for statistics collection
367 DECLARE_STATS_COUNTER(compl_wait
);
368 DECLARE_STATS_COUNTER(cnt_map_single
);
369 DECLARE_STATS_COUNTER(cnt_unmap_single
);
370 DECLARE_STATS_COUNTER(cnt_map_sg
);
371 DECLARE_STATS_COUNTER(cnt_unmap_sg
);
372 DECLARE_STATS_COUNTER(cnt_alloc_coherent
);
373 DECLARE_STATS_COUNTER(cnt_free_coherent
);
374 DECLARE_STATS_COUNTER(cross_page
);
375 DECLARE_STATS_COUNTER(domain_flush_single
);
376 DECLARE_STATS_COUNTER(domain_flush_all
);
377 DECLARE_STATS_COUNTER(alloced_io_mem
);
378 DECLARE_STATS_COUNTER(total_map_requests
);
379 DECLARE_STATS_COUNTER(complete_ppr
);
380 DECLARE_STATS_COUNTER(invalidate_iotlb
);
381 DECLARE_STATS_COUNTER(invalidate_iotlb_all
);
382 DECLARE_STATS_COUNTER(pri_requests
);
384 static struct dentry
*stats_dir
;
385 static struct dentry
*de_fflush
;
387 static void amd_iommu_stats_add(struct __iommu_counter
*cnt
)
389 if (stats_dir
== NULL
)
392 cnt
->dent
= debugfs_create_u64(cnt
->name
, 0444, stats_dir
,
396 static void amd_iommu_stats_init(void)
398 stats_dir
= debugfs_create_dir("amd-iommu", NULL
);
399 if (stats_dir
== NULL
)
402 de_fflush
= debugfs_create_bool("fullflush", 0444, stats_dir
,
403 &amd_iommu_unmap_flush
);
405 amd_iommu_stats_add(&compl_wait
);
406 amd_iommu_stats_add(&cnt_map_single
);
407 amd_iommu_stats_add(&cnt_unmap_single
);
408 amd_iommu_stats_add(&cnt_map_sg
);
409 amd_iommu_stats_add(&cnt_unmap_sg
);
410 amd_iommu_stats_add(&cnt_alloc_coherent
);
411 amd_iommu_stats_add(&cnt_free_coherent
);
412 amd_iommu_stats_add(&cross_page
);
413 amd_iommu_stats_add(&domain_flush_single
);
414 amd_iommu_stats_add(&domain_flush_all
);
415 amd_iommu_stats_add(&alloced_io_mem
);
416 amd_iommu_stats_add(&total_map_requests
);
417 amd_iommu_stats_add(&complete_ppr
);
418 amd_iommu_stats_add(&invalidate_iotlb
);
419 amd_iommu_stats_add(&invalidate_iotlb_all
);
420 amd_iommu_stats_add(&pri_requests
);
425 /****************************************************************************
427 * Interrupt handling functions
429 ****************************************************************************/
431 static void dump_dte_entry(u16 devid
)
435 for (i
= 0; i
< 4; ++i
)
436 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
437 amd_iommu_dev_table
[devid
].data
[i
]);
440 static void dump_command(unsigned long phys_addr
)
442 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
445 for (i
= 0; i
< 4; ++i
)
446 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
449 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
451 int type
, devid
, domid
, flags
;
452 volatile u32
*event
= __evt
;
457 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
458 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
459 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
460 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
461 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
464 /* Did we hit the erratum? */
465 if (++count
== LOOP_TIMEOUT
) {
466 pr_err("AMD-Vi: No event written to event log\n");
473 printk(KERN_ERR
"AMD-Vi: Event logged [");
476 case EVENT_TYPE_ILL_DEV
:
477 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
478 "address=0x%016llx flags=0x%04x]\n",
479 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
481 dump_dte_entry(devid
);
483 case EVENT_TYPE_IO_FAULT
:
484 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
485 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
486 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
487 domid
, address
, flags
);
489 case EVENT_TYPE_DEV_TAB_ERR
:
490 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
491 "address=0x%016llx flags=0x%04x]\n",
492 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
495 case EVENT_TYPE_PAGE_TAB_ERR
:
496 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
497 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
498 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
499 domid
, address
, flags
);
501 case EVENT_TYPE_ILL_CMD
:
502 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
503 dump_command(address
);
505 case EVENT_TYPE_CMD_HARD_ERR
:
506 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
507 "flags=0x%04x]\n", address
, flags
);
509 case EVENT_TYPE_IOTLB_INV_TO
:
510 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
511 "address=0x%016llx]\n",
512 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
515 case EVENT_TYPE_INV_DEV_REQ
:
516 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
517 "address=0x%016llx flags=0x%04x]\n",
518 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
522 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
525 memset(__evt
, 0, 4 * sizeof(u32
));
528 static void iommu_poll_events(struct amd_iommu
*iommu
)
532 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
533 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
535 while (head
!= tail
) {
536 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
537 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
540 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
543 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
545 struct amd_iommu_fault fault
;
547 INC_STATS_COUNTER(pri_requests
);
549 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
550 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
554 fault
.address
= raw
[1];
555 fault
.pasid
= PPR_PASID(raw
[0]);
556 fault
.device_id
= PPR_DEVID(raw
[0]);
557 fault
.tag
= PPR_TAG(raw
[0]);
558 fault
.flags
= PPR_FLAGS(raw
[0]);
560 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
563 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
567 if (iommu
->ppr_log
== NULL
)
570 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
571 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
573 while (head
!= tail
) {
578 raw
= (u64
*)(iommu
->ppr_log
+ head
);
581 * Hardware bug: Interrupt may arrive before the entry is
582 * written to memory. If this happens we need to wait for the
585 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
586 if (PPR_REQ_TYPE(raw
[0]) != 0)
591 /* Avoid memcpy function-call overhead */
596 * To detect the hardware bug we need to clear the entry
599 raw
[0] = raw
[1] = 0UL;
601 /* Update head pointer of hardware ring-buffer */
602 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
603 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
605 /* Handle PPR entry */
606 iommu_handle_ppr_entry(iommu
, entry
);
608 /* Refresh ring-buffer information */
609 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
610 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
614 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
616 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
617 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
619 while (status
& (MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
)) {
620 /* Enable EVT and PPR interrupts again */
621 writel((MMIO_STATUS_EVT_INT_MASK
| MMIO_STATUS_PPR_INT_MASK
),
622 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
624 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
625 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
626 iommu_poll_events(iommu
);
629 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
630 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
631 iommu_poll_ppr_log(iommu
);
635 * Hardware bug: ERBT1312
636 * When re-enabling interrupt (by writing 1
637 * to clear the bit), the hardware might also try to set
638 * the interrupt bit in the event status register.
639 * In this scenario, the bit will be set, and disable
640 * subsequent interrupts.
642 * Workaround: The IOMMU driver should read back the
643 * status register and check if the interrupt bits are cleared.
644 * If not, driver will need to go through the interrupt handler
645 * again and re-clear the bits
647 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
652 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
654 return IRQ_WAKE_THREAD
;
657 /****************************************************************************
659 * IOMMU command queuing functions
661 ****************************************************************************/
663 static int wait_on_sem(volatile u64
*sem
)
667 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
672 if (i
== LOOP_TIMEOUT
) {
673 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
680 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
681 struct iommu_cmd
*cmd
,
686 target
= iommu
->cmd_buf
+ tail
;
687 tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
689 /* Copy command to buffer */
690 memcpy(target
, cmd
, sizeof(*cmd
));
692 /* Tell the IOMMU about it */
693 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
696 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
698 WARN_ON(address
& 0x7ULL
);
700 memset(cmd
, 0, sizeof(*cmd
));
701 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
702 cmd
->data
[1] = upper_32_bits(__pa(address
));
704 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
707 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
709 memset(cmd
, 0, sizeof(*cmd
));
710 cmd
->data
[0] = devid
;
711 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
714 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
715 size_t size
, u16 domid
, int pde
)
720 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
725 * If we have to flush more than one page, flush all
726 * TLB entries for this domain
728 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
732 address
&= PAGE_MASK
;
734 memset(cmd
, 0, sizeof(*cmd
));
735 cmd
->data
[1] |= domid
;
736 cmd
->data
[2] = lower_32_bits(address
);
737 cmd
->data
[3] = upper_32_bits(address
);
738 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
739 if (s
) /* size bit - we flush more than one 4kb page */
740 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
741 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
742 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
745 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
746 u64 address
, size_t size
)
751 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
756 * If we have to flush more than one page, flush all
757 * TLB entries for this domain
759 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
763 address
&= PAGE_MASK
;
765 memset(cmd
, 0, sizeof(*cmd
));
766 cmd
->data
[0] = devid
;
767 cmd
->data
[0] |= (qdep
& 0xff) << 24;
768 cmd
->data
[1] = devid
;
769 cmd
->data
[2] = lower_32_bits(address
);
770 cmd
->data
[3] = upper_32_bits(address
);
771 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
773 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
776 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
777 u64 address
, bool size
)
779 memset(cmd
, 0, sizeof(*cmd
));
781 address
&= ~(0xfffULL
);
783 cmd
->data
[0] = pasid
;
784 cmd
->data
[1] = domid
;
785 cmd
->data
[2] = lower_32_bits(address
);
786 cmd
->data
[3] = upper_32_bits(address
);
787 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
788 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
790 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
791 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
794 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
795 int qdep
, u64 address
, bool size
)
797 memset(cmd
, 0, sizeof(*cmd
));
799 address
&= ~(0xfffULL
);
801 cmd
->data
[0] = devid
;
802 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
803 cmd
->data
[0] |= (qdep
& 0xff) << 24;
804 cmd
->data
[1] = devid
;
805 cmd
->data
[1] |= (pasid
& 0xff) << 16;
806 cmd
->data
[2] = lower_32_bits(address
);
807 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
808 cmd
->data
[3] = upper_32_bits(address
);
810 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
811 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
814 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
815 int status
, int tag
, bool gn
)
817 memset(cmd
, 0, sizeof(*cmd
));
819 cmd
->data
[0] = devid
;
821 cmd
->data
[1] = pasid
;
822 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
824 cmd
->data
[3] = tag
& 0x1ff;
825 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
827 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
830 static void build_inv_all(struct iommu_cmd
*cmd
)
832 memset(cmd
, 0, sizeof(*cmd
));
833 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
836 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
838 memset(cmd
, 0, sizeof(*cmd
));
839 cmd
->data
[0] = devid
;
840 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
844 * Writes the command to the IOMMUs command buffer and informs the
845 * hardware about the new command.
847 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
848 struct iommu_cmd
*cmd
,
851 u32 left
, tail
, head
, next_tail
;
855 spin_lock_irqsave(&iommu
->lock
, flags
);
857 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
858 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
859 next_tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
860 left
= (head
- next_tail
) % CMD_BUFFER_SIZE
;
863 struct iommu_cmd sync_cmd
;
864 volatile u64 sem
= 0;
867 build_completion_wait(&sync_cmd
, (u64
)&sem
);
868 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
870 spin_unlock_irqrestore(&iommu
->lock
, flags
);
872 if ((ret
= wait_on_sem(&sem
)) != 0)
878 copy_cmd_to_buffer(iommu
, cmd
, tail
);
880 /* We need to sync now to make sure all commands are processed */
881 iommu
->need_sync
= sync
;
883 spin_unlock_irqrestore(&iommu
->lock
, flags
);
888 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
890 return iommu_queue_command_sync(iommu
, cmd
, true);
894 * This function queues a completion wait command into the command
897 static int iommu_completion_wait(struct amd_iommu
*iommu
)
899 struct iommu_cmd cmd
;
900 volatile u64 sem
= 0;
903 if (!iommu
->need_sync
)
906 build_completion_wait(&cmd
, (u64
)&sem
);
908 ret
= iommu_queue_command_sync(iommu
, &cmd
, false);
912 return wait_on_sem(&sem
);
915 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
917 struct iommu_cmd cmd
;
919 build_inv_dte(&cmd
, devid
);
921 return iommu_queue_command(iommu
, &cmd
);
924 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
928 for (devid
= 0; devid
<= 0xffff; ++devid
)
929 iommu_flush_dte(iommu
, devid
);
931 iommu_completion_wait(iommu
);
935 * This function uses heavy locking and may disable irqs for some time. But
936 * this is no issue because it is only called during resume.
938 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
942 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
943 struct iommu_cmd cmd
;
944 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
946 iommu_queue_command(iommu
, &cmd
);
949 iommu_completion_wait(iommu
);
952 static void iommu_flush_all(struct amd_iommu
*iommu
)
954 struct iommu_cmd cmd
;
958 iommu_queue_command(iommu
, &cmd
);
959 iommu_completion_wait(iommu
);
962 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
964 struct iommu_cmd cmd
;
966 build_inv_irt(&cmd
, devid
);
968 iommu_queue_command(iommu
, &cmd
);
971 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
975 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
976 iommu_flush_irt(iommu
, devid
);
978 iommu_completion_wait(iommu
);
981 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
983 if (iommu_feature(iommu
, FEATURE_IA
)) {
984 iommu_flush_all(iommu
);
986 iommu_flush_dte_all(iommu
);
987 iommu_flush_irt_all(iommu
);
988 iommu_flush_tlb_all(iommu
);
993 * Command send function for flushing on-device TLB
995 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
996 u64 address
, size_t size
)
998 struct amd_iommu
*iommu
;
999 struct iommu_cmd cmd
;
1002 qdep
= dev_data
->ats
.qdep
;
1003 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1005 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1007 return iommu_queue_command(iommu
, &cmd
);
1011 * Command send function for invalidating a device table entry
1013 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1015 struct amd_iommu
*iommu
;
1019 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1020 alias
= amd_iommu_alias_table
[dev_data
->devid
];
1022 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1023 if (!ret
&& alias
!= dev_data
->devid
)
1024 ret
= iommu_flush_dte(iommu
, alias
);
1028 if (dev_data
->ats
.enabled
)
1029 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1035 * TLB invalidation function which is called from the mapping functions.
1036 * It invalidates a single PTE if the range to flush is within a single
1037 * page. Otherwise it flushes the whole TLB of the IOMMU.
1039 static void __domain_flush_pages(struct protection_domain
*domain
,
1040 u64 address
, size_t size
, int pde
)
1042 struct iommu_dev_data
*dev_data
;
1043 struct iommu_cmd cmd
;
1046 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1048 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1049 if (!domain
->dev_iommu
[i
])
1053 * Devices of this domain are behind this IOMMU
1054 * We need a TLB flush
1056 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1059 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1061 if (!dev_data
->ats
.enabled
)
1064 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1070 static void domain_flush_pages(struct protection_domain
*domain
,
1071 u64 address
, size_t size
)
1073 __domain_flush_pages(domain
, address
, size
, 0);
1076 /* Flush the whole IO/TLB for a given protection domain */
1077 static void domain_flush_tlb(struct protection_domain
*domain
)
1079 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1082 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1083 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1085 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1088 static void domain_flush_complete(struct protection_domain
*domain
)
1092 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1093 if (!domain
->dev_iommu
[i
])
1097 * Devices of this domain are behind this IOMMU
1098 * We need to wait for completion of all commands.
1100 iommu_completion_wait(amd_iommus
[i
]);
1106 * This function flushes the DTEs for all devices in domain
1108 static void domain_flush_devices(struct protection_domain
*domain
)
1110 struct iommu_dev_data
*dev_data
;
1112 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1113 device_flush_dte(dev_data
);
1116 /****************************************************************************
1118 * The functions below are used the create the page table mappings for
1119 * unity mapped regions.
1121 ****************************************************************************/
1124 * This function is used to add another level to an IO page table. Adding
1125 * another level increases the size of the address space by 9 bits to a size up
1128 static bool increase_address_space(struct protection_domain
*domain
,
1133 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1134 /* address space already 64 bit large */
1137 pte
= (void *)get_zeroed_page(gfp
);
1141 *pte
= PM_LEVEL_PDE(domain
->mode
,
1142 virt_to_phys(domain
->pt_root
));
1143 domain
->pt_root
= pte
;
1145 domain
->updated
= true;
1150 static u64
*alloc_pte(struct protection_domain
*domain
,
1151 unsigned long address
,
1152 unsigned long page_size
,
1159 BUG_ON(!is_power_of_2(page_size
));
1161 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1162 increase_address_space(domain
, gfp
);
1164 level
= domain
->mode
- 1;
1165 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1166 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1167 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1169 while (level
> end_lvl
) {
1170 if (!IOMMU_PTE_PRESENT(*pte
)) {
1171 page
= (u64
*)get_zeroed_page(gfp
);
1174 *pte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
1177 /* No level skipping support yet */
1178 if (PM_PTE_LEVEL(*pte
) != level
)
1183 pte
= IOMMU_PTE_PAGE(*pte
);
1185 if (pte_page
&& level
== end_lvl
)
1188 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1195 * This function checks if there is a PTE for a given dma address. If
1196 * there is one, it returns the pointer to it.
1198 static u64
*fetch_pte(struct protection_domain
*domain
,
1199 unsigned long address
,
1200 unsigned long *page_size
)
1205 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1208 level
= domain
->mode
- 1;
1209 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1210 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1215 if (!IOMMU_PTE_PRESENT(*pte
))
1219 if (PM_PTE_LEVEL(*pte
) == 7 ||
1220 PM_PTE_LEVEL(*pte
) == 0)
1223 /* No level skipping support yet */
1224 if (PM_PTE_LEVEL(*pte
) != level
)
1229 /* Walk to the next level */
1230 pte
= IOMMU_PTE_PAGE(*pte
);
1231 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1232 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1235 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1236 unsigned long pte_mask
;
1239 * If we have a series of large PTEs, make
1240 * sure to return a pointer to the first one.
1242 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1243 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1244 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1251 * Generic mapping functions. It maps a physical address into a DMA
1252 * address space. It allocates the page table pages if necessary.
1253 * In the future it can be extended to a generic mapping function
1254 * supporting all features of AMD IOMMU page tables like level skipping
1255 * and full 64 bit address spaces.
1257 static int iommu_map_page(struct protection_domain
*dom
,
1258 unsigned long bus_addr
,
1259 unsigned long phys_addr
,
1261 unsigned long page_size
)
1266 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1267 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1269 if (!(prot
& IOMMU_PROT_MASK
))
1272 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1273 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, GFP_KERNEL
);
1278 for (i
= 0; i
< count
; ++i
)
1279 if (IOMMU_PTE_PRESENT(pte
[i
]))
1283 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
1284 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1286 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1288 if (prot
& IOMMU_PROT_IR
)
1289 __pte
|= IOMMU_PTE_IR
;
1290 if (prot
& IOMMU_PROT_IW
)
1291 __pte
|= IOMMU_PTE_IW
;
1293 for (i
= 0; i
< count
; ++i
)
1301 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1302 unsigned long bus_addr
,
1303 unsigned long page_size
)
1305 unsigned long long unmapped
;
1306 unsigned long unmap_size
;
1309 BUG_ON(!is_power_of_2(page_size
));
1313 while (unmapped
< page_size
) {
1315 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1320 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1321 for (i
= 0; i
< count
; i
++)
1325 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1326 unmapped
+= unmap_size
;
1329 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1334 /****************************************************************************
1336 * The next functions belong to the address allocator for the dma_ops
1337 * interface functions. They work like the allocators in the other IOMMU
1338 * drivers. Its basically a bitmap which marks the allocated pages in
1339 * the aperture. Maybe it could be enhanced in the future to a more
1340 * efficient allocator.
1342 ****************************************************************************/
1345 * The address allocator core functions.
1347 * called with domain->lock held
1351 * Used to reserve address ranges in the aperture (e.g. for exclusion
1354 static void dma_ops_reserve_addresses(struct dma_ops_domain
*dom
,
1355 unsigned long start_page
,
1358 unsigned int i
, last_page
= dom
->aperture_size
>> PAGE_SHIFT
;
1360 if (start_page
+ pages
> last_page
)
1361 pages
= last_page
- start_page
;
1363 for (i
= start_page
; i
< start_page
+ pages
; ++i
) {
1364 int index
= i
/ APERTURE_RANGE_PAGES
;
1365 int page
= i
% APERTURE_RANGE_PAGES
;
1366 __set_bit(page
, dom
->aperture
[index
]->bitmap
);
1371 * This function is used to add a new aperture range to an existing
1372 * aperture in case of dma_ops domain allocation or address allocation
1375 static int alloc_new_range(struct dma_ops_domain
*dma_dom
,
1376 bool populate
, gfp_t gfp
)
1378 int index
= dma_dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1379 struct amd_iommu
*iommu
;
1380 unsigned long i
, old_size
, pte_pgsize
;
1382 #ifdef CONFIG_IOMMU_STRESS
1386 if (index
>= APERTURE_MAX_RANGES
)
1389 dma_dom
->aperture
[index
] = kzalloc(sizeof(struct aperture_range
), gfp
);
1390 if (!dma_dom
->aperture
[index
])
1393 dma_dom
->aperture
[index
]->bitmap
= (void *)get_zeroed_page(gfp
);
1394 if (!dma_dom
->aperture
[index
]->bitmap
)
1397 dma_dom
->aperture
[index
]->offset
= dma_dom
->aperture_size
;
1400 unsigned long address
= dma_dom
->aperture_size
;
1401 int i
, num_ptes
= APERTURE_RANGE_PAGES
/ 512;
1402 u64
*pte
, *pte_page
;
1404 for (i
= 0; i
< num_ptes
; ++i
) {
1405 pte
= alloc_pte(&dma_dom
->domain
, address
, PAGE_SIZE
,
1410 dma_dom
->aperture
[index
]->pte_pages
[i
] = pte_page
;
1412 address
+= APERTURE_RANGE_SIZE
/ 64;
1416 old_size
= dma_dom
->aperture_size
;
1417 dma_dom
->aperture_size
+= APERTURE_RANGE_SIZE
;
1419 /* Reserve address range used for MSI messages */
1420 if (old_size
< MSI_ADDR_BASE_LO
&&
1421 dma_dom
->aperture_size
> MSI_ADDR_BASE_LO
) {
1422 unsigned long spage
;
1425 pages
= iommu_num_pages(MSI_ADDR_BASE_LO
, 0x10000, PAGE_SIZE
);
1426 spage
= MSI_ADDR_BASE_LO
>> PAGE_SHIFT
;
1428 dma_ops_reserve_addresses(dma_dom
, spage
, pages
);
1431 /* Initialize the exclusion range if necessary */
1432 for_each_iommu(iommu
) {
1433 if (iommu
->exclusion_start
&&
1434 iommu
->exclusion_start
>= dma_dom
->aperture
[index
]->offset
1435 && iommu
->exclusion_start
< dma_dom
->aperture_size
) {
1436 unsigned long startpage
;
1437 int pages
= iommu_num_pages(iommu
->exclusion_start
,
1438 iommu
->exclusion_length
,
1440 startpage
= iommu
->exclusion_start
>> PAGE_SHIFT
;
1441 dma_ops_reserve_addresses(dma_dom
, startpage
, pages
);
1446 * Check for areas already mapped as present in the new aperture
1447 * range and mark those pages as reserved in the allocator. Such
1448 * mappings may already exist as a result of requested unity
1449 * mappings for devices.
1451 for (i
= dma_dom
->aperture
[index
]->offset
;
1452 i
< dma_dom
->aperture_size
;
1454 u64
*pte
= fetch_pte(&dma_dom
->domain
, i
, &pte_pgsize
);
1455 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
1458 dma_ops_reserve_addresses(dma_dom
, i
>> PAGE_SHIFT
,
1462 update_domain(&dma_dom
->domain
);
1467 update_domain(&dma_dom
->domain
);
1469 free_page((unsigned long)dma_dom
->aperture
[index
]->bitmap
);
1471 kfree(dma_dom
->aperture
[index
]);
1472 dma_dom
->aperture
[index
] = NULL
;
1477 static unsigned long dma_ops_area_alloc(struct device
*dev
,
1478 struct dma_ops_domain
*dom
,
1480 unsigned long align_mask
,
1482 unsigned long start
)
1484 unsigned long next_bit
= dom
->next_address
% APERTURE_RANGE_SIZE
;
1485 int max_index
= dom
->aperture_size
>> APERTURE_RANGE_SHIFT
;
1486 int i
= start
>> APERTURE_RANGE_SHIFT
;
1487 unsigned long boundary_size
, mask
;
1488 unsigned long address
= -1;
1489 unsigned long limit
;
1491 next_bit
>>= PAGE_SHIFT
;
1493 mask
= dma_get_seg_boundary(dev
);
1495 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
1496 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
1498 for (;i
< max_index
; ++i
) {
1499 unsigned long offset
= dom
->aperture
[i
]->offset
>> PAGE_SHIFT
;
1501 if (dom
->aperture
[i
]->offset
>= dma_mask
)
1504 limit
= iommu_device_max_index(APERTURE_RANGE_PAGES
, offset
,
1505 dma_mask
>> PAGE_SHIFT
);
1507 address
= iommu_area_alloc(dom
->aperture
[i
]->bitmap
,
1508 limit
, next_bit
, pages
, 0,
1509 boundary_size
, align_mask
);
1510 if (address
!= -1) {
1511 address
= dom
->aperture
[i
]->offset
+
1512 (address
<< PAGE_SHIFT
);
1513 dom
->next_address
= address
+ (pages
<< PAGE_SHIFT
);
1523 static unsigned long dma_ops_alloc_addresses(struct device
*dev
,
1524 struct dma_ops_domain
*dom
,
1526 unsigned long align_mask
,
1529 unsigned long address
;
1531 #ifdef CONFIG_IOMMU_STRESS
1532 dom
->next_address
= 0;
1533 dom
->need_flush
= true;
1536 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1537 dma_mask
, dom
->next_address
);
1539 if (address
== -1) {
1540 dom
->next_address
= 0;
1541 address
= dma_ops_area_alloc(dev
, dom
, pages
, align_mask
,
1543 dom
->need_flush
= true;
1546 if (unlikely(address
== -1))
1547 address
= DMA_ERROR_CODE
;
1549 WARN_ON((address
+ (PAGE_SIZE
*pages
)) > dom
->aperture_size
);
1555 * The address free function.
1557 * called with domain->lock held
1559 static void dma_ops_free_addresses(struct dma_ops_domain
*dom
,
1560 unsigned long address
,
1563 unsigned i
= address
>> APERTURE_RANGE_SHIFT
;
1564 struct aperture_range
*range
= dom
->aperture
[i
];
1566 BUG_ON(i
>= APERTURE_MAX_RANGES
|| range
== NULL
);
1568 #ifdef CONFIG_IOMMU_STRESS
1573 if (address
>= dom
->next_address
)
1574 dom
->need_flush
= true;
1576 address
= (address
% APERTURE_RANGE_SIZE
) >> PAGE_SHIFT
;
1578 bitmap_clear(range
->bitmap
, address
, pages
);
1582 /****************************************************************************
1584 * The next functions belong to the domain allocation. A domain is
1585 * allocated for every IOMMU as the default domain. If device isolation
1586 * is enabled, every device get its own domain. The most important thing
1587 * about domains is the page table mapping the DMA address space they
1590 ****************************************************************************/
1593 * This function adds a protection domain to the global protection domain list
1595 static void add_domain_to_list(struct protection_domain
*domain
)
1597 unsigned long flags
;
1599 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1600 list_add(&domain
->list
, &amd_iommu_pd_list
);
1601 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1605 * This function removes a protection domain to the global
1606 * protection domain list
1608 static void del_domain_from_list(struct protection_domain
*domain
)
1610 unsigned long flags
;
1612 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1613 list_del(&domain
->list
);
1614 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1617 static u16
domain_id_alloc(void)
1619 unsigned long flags
;
1622 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1623 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1625 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1626 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1629 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1634 static void domain_id_free(int id
)
1636 unsigned long flags
;
1638 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1639 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1640 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1641 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1644 #define DEFINE_FREE_PT_FN(LVL, FN) \
1645 static void free_pt_##LVL (unsigned long __pt) \
1653 for (i = 0; i < 512; ++i) { \
1654 /* PTE present? */ \
1655 if (!IOMMU_PTE_PRESENT(pt[i])) \
1659 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1660 PM_PTE_LEVEL(pt[i]) == 7) \
1663 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1666 free_page((unsigned long)pt); \
1669 DEFINE_FREE_PT_FN(l2
, free_page
)
1670 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1671 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1672 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1673 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1675 static void free_pagetable(struct protection_domain
*domain
)
1677 unsigned long root
= (unsigned long)domain
->pt_root
;
1679 switch (domain
->mode
) {
1680 case PAGE_MODE_NONE
:
1682 case PAGE_MODE_1_LEVEL
:
1685 case PAGE_MODE_2_LEVEL
:
1688 case PAGE_MODE_3_LEVEL
:
1691 case PAGE_MODE_4_LEVEL
:
1694 case PAGE_MODE_5_LEVEL
:
1697 case PAGE_MODE_6_LEVEL
:
1705 static void free_gcr3_tbl_level1(u64
*tbl
)
1710 for (i
= 0; i
< 512; ++i
) {
1711 if (!(tbl
[i
] & GCR3_VALID
))
1714 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1716 free_page((unsigned long)ptr
);
1720 static void free_gcr3_tbl_level2(u64
*tbl
)
1725 for (i
= 0; i
< 512; ++i
) {
1726 if (!(tbl
[i
] & GCR3_VALID
))
1729 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1731 free_gcr3_tbl_level1(ptr
);
1735 static void free_gcr3_table(struct protection_domain
*domain
)
1737 if (domain
->glx
== 2)
1738 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1739 else if (domain
->glx
== 1)
1740 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1742 BUG_ON(domain
->glx
!= 0);
1744 free_page((unsigned long)domain
->gcr3_tbl
);
1748 * Free a domain, only used if something went wrong in the
1749 * allocation path and we need to free an already allocated page table
1751 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1758 del_domain_from_list(&dom
->domain
);
1760 free_pagetable(&dom
->domain
);
1762 for (i
= 0; i
< APERTURE_MAX_RANGES
; ++i
) {
1763 if (!dom
->aperture
[i
])
1765 free_page((unsigned long)dom
->aperture
[i
]->bitmap
);
1766 kfree(dom
->aperture
[i
]);
1773 * Allocates a new protection domain usable for the dma_ops functions.
1774 * It also initializes the page table and the address allocator data
1775 * structures required for the dma_ops interface
1777 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1779 struct dma_ops_domain
*dma_dom
;
1781 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1785 if (protection_domain_init(&dma_dom
->domain
))
1788 dma_dom
->domain
.mode
= PAGE_MODE_2_LEVEL
;
1789 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1790 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1791 dma_dom
->domain
.priv
= dma_dom
;
1792 if (!dma_dom
->domain
.pt_root
)
1795 dma_dom
->need_flush
= false;
1797 add_domain_to_list(&dma_dom
->domain
);
1799 if (alloc_new_range(dma_dom
, true, GFP_KERNEL
))
1803 * mark the first page as allocated so we never return 0 as
1804 * a valid dma-address. So we can use 0 as error value
1806 dma_dom
->aperture
[0]->bitmap
[0] = 1;
1807 dma_dom
->next_address
= 0;
1813 dma_ops_domain_free(dma_dom
);
1819 * little helper function to check whether a given protection domain is a
1822 static bool dma_ops_domain(struct protection_domain
*domain
)
1824 return domain
->flags
& PD_DMA_OPS_MASK
;
1827 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
1832 if (domain
->mode
!= PAGE_MODE_NONE
)
1833 pte_root
= virt_to_phys(domain
->pt_root
);
1835 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1836 << DEV_ENTRY_MODE_SHIFT
;
1837 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
1839 flags
= amd_iommu_dev_table
[devid
].data
[1];
1842 flags
|= DTE_FLAG_IOTLB
;
1844 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1845 u64 gcr3
= __pa(domain
->gcr3_tbl
);
1846 u64 glx
= domain
->glx
;
1849 pte_root
|= DTE_FLAG_GV
;
1850 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1852 /* First mask out possible old values for GCR3 table */
1853 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1856 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1859 /* Encode GCR3 table into DTE */
1860 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1863 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1866 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1870 flags
&= ~(0xffffUL
);
1871 flags
|= domain
->id
;
1873 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1874 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1877 static void clear_dte_entry(u16 devid
)
1879 /* remove entry from the device table seen by the hardware */
1880 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
1881 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1883 amd_iommu_apply_erratum_63(devid
);
1886 static void do_attach(struct iommu_dev_data
*dev_data
,
1887 struct protection_domain
*domain
)
1889 struct amd_iommu
*iommu
;
1893 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1894 alias
= amd_iommu_alias_table
[dev_data
->devid
];
1895 ats
= dev_data
->ats
.enabled
;
1897 /* Update data structures */
1898 dev_data
->domain
= domain
;
1899 list_add(&dev_data
->list
, &domain
->dev_list
);
1901 /* Do reference counting */
1902 domain
->dev_iommu
[iommu
->index
] += 1;
1903 domain
->dev_cnt
+= 1;
1905 /* Update device table */
1906 set_dte_entry(dev_data
->devid
, domain
, ats
);
1907 if (alias
!= dev_data
->devid
)
1908 set_dte_entry(dev_data
->devid
, domain
, ats
);
1910 device_flush_dte(dev_data
);
1913 static void do_detach(struct iommu_dev_data
*dev_data
)
1915 struct amd_iommu
*iommu
;
1919 * First check if the device is still attached. It might already
1920 * be detached from its domain because the generic
1921 * iommu_detach_group code detached it and we try again here in
1922 * our alias handling.
1924 if (!dev_data
->domain
)
1927 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1928 alias
= amd_iommu_alias_table
[dev_data
->devid
];
1930 /* decrease reference counters */
1931 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
1932 dev_data
->domain
->dev_cnt
-= 1;
1934 /* Update data structures */
1935 dev_data
->domain
= NULL
;
1936 list_del(&dev_data
->list
);
1937 clear_dte_entry(dev_data
->devid
);
1938 if (alias
!= dev_data
->devid
)
1939 clear_dte_entry(alias
);
1941 /* Flush the DTE entry */
1942 device_flush_dte(dev_data
);
1946 * If a device is not yet associated with a domain, this function does
1947 * assigns it visible for the hardware
1949 static int __attach_device(struct iommu_dev_data
*dev_data
,
1950 struct protection_domain
*domain
)
1955 * Must be called with IRQs disabled. Warn here to detect early
1958 WARN_ON(!irqs_disabled());
1961 spin_lock(&domain
->lock
);
1964 if (dev_data
->domain
!= NULL
)
1967 /* Attach alias group root */
1968 do_attach(dev_data
, domain
);
1975 spin_unlock(&domain
->lock
);
1981 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
1983 pci_disable_ats(pdev
);
1984 pci_disable_pri(pdev
);
1985 pci_disable_pasid(pdev
);
1988 /* FIXME: Change generic reset-function to do the same */
1989 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
1994 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
1998 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
1999 control
|= PCI_PRI_CTRL_RESET
;
2000 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
2005 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
2010 /* FIXME: Hardcode number of outstanding requests for now */
2012 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
2014 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
2016 /* Only allow access to user-accessible pages */
2017 ret
= pci_enable_pasid(pdev
, 0);
2021 /* First reset the PRI state of the device */
2022 ret
= pci_reset_pri(pdev
);
2027 ret
= pci_enable_pri(pdev
, reqs
);
2032 ret
= pri_reset_while_enabled(pdev
);
2037 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2044 pci_disable_pri(pdev
);
2045 pci_disable_pasid(pdev
);
2050 /* FIXME: Move this to PCI code */
2051 #define PCI_PRI_TLP_OFF (1 << 15)
2053 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2058 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2062 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2064 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2068 * If a device is not yet associated with a domain, this function
2069 * assigns it visible for the hardware
2071 static int attach_device(struct device
*dev
,
2072 struct protection_domain
*domain
)
2074 struct pci_dev
*pdev
= to_pci_dev(dev
);
2075 struct iommu_dev_data
*dev_data
;
2076 unsigned long flags
;
2079 dev_data
= get_dev_data(dev
);
2081 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2082 if (!dev_data
->passthrough
)
2085 if (dev_data
->iommu_v2
) {
2086 if (pdev_iommuv2_enable(pdev
) != 0)
2089 dev_data
->ats
.enabled
= true;
2090 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2091 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2093 } else if (amd_iommu_iotlb_sup
&&
2094 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2095 dev_data
->ats
.enabled
= true;
2096 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2099 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2100 ret
= __attach_device(dev_data
, domain
);
2101 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2104 * We might boot into a crash-kernel here. The crashed kernel
2105 * left the caches in the IOMMU dirty. So we have to flush
2106 * here to evict all dirty stuff.
2108 domain_flush_tlb_pde(domain
);
2114 * Removes a device from a protection domain (unlocked)
2116 static void __detach_device(struct iommu_dev_data
*dev_data
)
2118 struct protection_domain
*domain
;
2121 * Must be called with IRQs disabled. Warn here to detect early
2124 WARN_ON(!irqs_disabled());
2126 if (WARN_ON(!dev_data
->domain
))
2129 domain
= dev_data
->domain
;
2131 spin_lock(&domain
->lock
);
2133 do_detach(dev_data
);
2135 spin_unlock(&domain
->lock
);
2139 * Removes a device from a protection domain (with devtable_lock held)
2141 static void detach_device(struct device
*dev
)
2143 struct protection_domain
*domain
;
2144 struct iommu_dev_data
*dev_data
;
2145 unsigned long flags
;
2147 dev_data
= get_dev_data(dev
);
2148 domain
= dev_data
->domain
;
2150 /* lock device table */
2151 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2152 __detach_device(dev_data
);
2153 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2155 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2156 pdev_iommuv2_disable(to_pci_dev(dev
));
2157 else if (dev_data
->ats
.enabled
)
2158 pci_disable_ats(to_pci_dev(dev
));
2160 dev_data
->ats
.enabled
= false;
2163 static int amd_iommu_add_device(struct device
*dev
)
2165 struct iommu_dev_data
*dev_data
;
2166 struct iommu_domain
*domain
;
2167 struct amd_iommu
*iommu
;
2171 if (!check_device(dev
) || get_dev_data(dev
))
2174 devid
= get_device_id(dev
);
2175 iommu
= amd_iommu_rlookup_table
[devid
];
2177 ret
= iommu_init_device(dev
);
2179 if (ret
!= -ENOTSUPP
)
2180 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2183 iommu_ignore_device(dev
);
2184 dev
->archdata
.dma_ops
= &nommu_dma_ops
;
2187 init_iommu_group(dev
);
2189 dev_data
= get_dev_data(dev
);
2193 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2194 iommu_request_dm_for_dev(dev
);
2196 /* Domains are initialized for this device - have a look what we ended up with */
2197 domain
= iommu_get_domain_for_dev(dev
);
2198 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2199 dev_data
->passthrough
= true;
2201 dev
->archdata
.dma_ops
= &amd_iommu_dma_ops
;
2204 iommu_completion_wait(iommu
);
2209 static void amd_iommu_remove_device(struct device
*dev
)
2211 struct amd_iommu
*iommu
;
2214 if (!check_device(dev
))
2217 devid
= get_device_id(dev
);
2218 iommu
= amd_iommu_rlookup_table
[devid
];
2220 iommu_uninit_device(dev
);
2221 iommu_completion_wait(iommu
);
2224 /*****************************************************************************
2226 * The next functions belong to the dma_ops mapping/unmapping code.
2228 *****************************************************************************/
2231 * In the dma_ops path we only have the struct device. This function
2232 * finds the corresponding IOMMU, the protection domain and the
2233 * requestor id for a given device.
2234 * If the device is not yet associated with a domain this is also done
2237 static struct protection_domain
*get_domain(struct device
*dev
)
2239 struct protection_domain
*domain
;
2240 struct iommu_domain
*io_domain
;
2242 if (!check_device(dev
))
2243 return ERR_PTR(-EINVAL
);
2245 io_domain
= iommu_get_domain_for_dev(dev
);
2249 domain
= to_pdomain(io_domain
);
2250 if (!dma_ops_domain(domain
))
2251 return ERR_PTR(-EBUSY
);
2256 static void update_device_table(struct protection_domain
*domain
)
2258 struct iommu_dev_data
*dev_data
;
2260 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
2261 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2264 static void update_domain(struct protection_domain
*domain
)
2266 if (!domain
->updated
)
2269 update_device_table(domain
);
2271 domain_flush_devices(domain
);
2272 domain_flush_tlb_pde(domain
);
2274 domain
->updated
= false;
2278 * This function fetches the PTE for a given address in the aperture
2280 static u64
* dma_ops_get_pte(struct dma_ops_domain
*dom
,
2281 unsigned long address
)
2283 struct aperture_range
*aperture
;
2284 u64
*pte
, *pte_page
;
2286 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2290 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2292 pte
= alloc_pte(&dom
->domain
, address
, PAGE_SIZE
, &pte_page
,
2294 aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)] = pte_page
;
2296 pte
+= PM_LEVEL_INDEX(0, address
);
2298 update_domain(&dom
->domain
);
2304 * This is the generic map function. It maps one 4kb page at paddr to
2305 * the given address in the DMA address space for the domain.
2307 static dma_addr_t
dma_ops_domain_map(struct dma_ops_domain
*dom
,
2308 unsigned long address
,
2314 WARN_ON(address
> dom
->aperture_size
);
2318 pte
= dma_ops_get_pte(dom
, address
);
2320 return DMA_ERROR_CODE
;
2322 __pte
= paddr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
2324 if (direction
== DMA_TO_DEVICE
)
2325 __pte
|= IOMMU_PTE_IR
;
2326 else if (direction
== DMA_FROM_DEVICE
)
2327 __pte
|= IOMMU_PTE_IW
;
2328 else if (direction
== DMA_BIDIRECTIONAL
)
2329 __pte
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
;
2335 return (dma_addr_t
)address
;
2339 * The generic unmapping function for on page in the DMA address space.
2341 static void dma_ops_domain_unmap(struct dma_ops_domain
*dom
,
2342 unsigned long address
)
2344 struct aperture_range
*aperture
;
2347 if (address
>= dom
->aperture_size
)
2350 aperture
= dom
->aperture
[APERTURE_RANGE_INDEX(address
)];
2354 pte
= aperture
->pte_pages
[APERTURE_PAGE_INDEX(address
)];
2358 pte
+= PM_LEVEL_INDEX(0, address
);
2366 * This function contains common code for mapping of a physically
2367 * contiguous memory region into DMA address space. It is used by all
2368 * mapping functions provided with this IOMMU driver.
2369 * Must be called with the domain lock held.
2371 static dma_addr_t
__map_single(struct device
*dev
,
2372 struct dma_ops_domain
*dma_dom
,
2379 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2380 dma_addr_t address
, start
, ret
;
2382 unsigned long align_mask
= 0;
2385 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2388 INC_STATS_COUNTER(total_map_requests
);
2391 INC_STATS_COUNTER(cross_page
);
2394 align_mask
= (1UL << get_order(size
)) - 1;
2397 address
= dma_ops_alloc_addresses(dev
, dma_dom
, pages
, align_mask
,
2399 if (unlikely(address
== DMA_ERROR_CODE
)) {
2401 * setting next_address here will let the address
2402 * allocator only scan the new allocated range in the
2403 * first run. This is a small optimization.
2405 dma_dom
->next_address
= dma_dom
->aperture_size
;
2407 if (alloc_new_range(dma_dom
, false, GFP_ATOMIC
))
2411 * aperture was successfully enlarged by 128 MB, try
2418 for (i
= 0; i
< pages
; ++i
) {
2419 ret
= dma_ops_domain_map(dma_dom
, start
, paddr
, dir
);
2420 if (ret
== DMA_ERROR_CODE
)
2428 ADD_STATS_COUNTER(alloced_io_mem
, size
);
2430 if (unlikely(dma_dom
->need_flush
&& !amd_iommu_unmap_flush
)) {
2431 domain_flush_tlb(&dma_dom
->domain
);
2432 dma_dom
->need_flush
= false;
2433 } else if (unlikely(amd_iommu_np_cache
))
2434 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2441 for (--i
; i
>= 0; --i
) {
2443 dma_ops_domain_unmap(dma_dom
, start
);
2446 dma_ops_free_addresses(dma_dom
, address
, pages
);
2448 return DMA_ERROR_CODE
;
2452 * Does the reverse of the __map_single function. Must be called with
2453 * the domain lock held too
2455 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2456 dma_addr_t dma_addr
,
2460 dma_addr_t flush_addr
;
2461 dma_addr_t i
, start
;
2464 if ((dma_addr
== DMA_ERROR_CODE
) ||
2465 (dma_addr
+ size
> dma_dom
->aperture_size
))
2468 flush_addr
= dma_addr
;
2469 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2470 dma_addr
&= PAGE_MASK
;
2473 for (i
= 0; i
< pages
; ++i
) {
2474 dma_ops_domain_unmap(dma_dom
, start
);
2478 SUB_STATS_COUNTER(alloced_io_mem
, size
);
2480 dma_ops_free_addresses(dma_dom
, dma_addr
, pages
);
2482 if (amd_iommu_unmap_flush
|| dma_dom
->need_flush
) {
2483 domain_flush_pages(&dma_dom
->domain
, flush_addr
, size
);
2484 dma_dom
->need_flush
= false;
2489 * The exported map_single function for dma_ops.
2491 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2492 unsigned long offset
, size_t size
,
2493 enum dma_data_direction dir
,
2494 struct dma_attrs
*attrs
)
2496 unsigned long flags
;
2497 struct protection_domain
*domain
;
2500 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2502 INC_STATS_COUNTER(cnt_map_single
);
2504 domain
= get_domain(dev
);
2505 if (PTR_ERR(domain
) == -EINVAL
)
2506 return (dma_addr_t
)paddr
;
2507 else if (IS_ERR(domain
))
2508 return DMA_ERROR_CODE
;
2510 dma_mask
= *dev
->dma_mask
;
2512 spin_lock_irqsave(&domain
->lock
, flags
);
2514 addr
= __map_single(dev
, domain
->priv
, paddr
, size
, dir
, false,
2516 if (addr
== DMA_ERROR_CODE
)
2519 domain_flush_complete(domain
);
2522 spin_unlock_irqrestore(&domain
->lock
, flags
);
2528 * The exported unmap_single function for dma_ops.
2530 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2531 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2533 unsigned long flags
;
2534 struct protection_domain
*domain
;
2536 INC_STATS_COUNTER(cnt_unmap_single
);
2538 domain
= get_domain(dev
);
2542 spin_lock_irqsave(&domain
->lock
, flags
);
2544 __unmap_single(domain
->priv
, dma_addr
, size
, dir
);
2546 domain_flush_complete(domain
);
2548 spin_unlock_irqrestore(&domain
->lock
, flags
);
2552 * The exported map_sg function for dma_ops (handles scatter-gather
2555 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2556 int nelems
, enum dma_data_direction dir
,
2557 struct dma_attrs
*attrs
)
2559 unsigned long flags
;
2560 struct protection_domain
*domain
;
2562 struct scatterlist
*s
;
2564 int mapped_elems
= 0;
2567 INC_STATS_COUNTER(cnt_map_sg
);
2569 domain
= get_domain(dev
);
2573 dma_mask
= *dev
->dma_mask
;
2575 spin_lock_irqsave(&domain
->lock
, flags
);
2577 for_each_sg(sglist
, s
, nelems
, i
) {
2580 s
->dma_address
= __map_single(dev
, domain
->priv
,
2581 paddr
, s
->length
, dir
, false,
2584 if (s
->dma_address
) {
2585 s
->dma_length
= s
->length
;
2591 domain_flush_complete(domain
);
2594 spin_unlock_irqrestore(&domain
->lock
, flags
);
2596 return mapped_elems
;
2598 for_each_sg(sglist
, s
, mapped_elems
, i
) {
2600 __unmap_single(domain
->priv
, s
->dma_address
,
2601 s
->dma_length
, dir
);
2602 s
->dma_address
= s
->dma_length
= 0;
2611 * The exported map_sg function for dma_ops (handles scatter-gather
2614 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2615 int nelems
, enum dma_data_direction dir
,
2616 struct dma_attrs
*attrs
)
2618 unsigned long flags
;
2619 struct protection_domain
*domain
;
2620 struct scatterlist
*s
;
2623 INC_STATS_COUNTER(cnt_unmap_sg
);
2625 domain
= get_domain(dev
);
2629 spin_lock_irqsave(&domain
->lock
, flags
);
2631 for_each_sg(sglist
, s
, nelems
, i
) {
2632 __unmap_single(domain
->priv
, s
->dma_address
,
2633 s
->dma_length
, dir
);
2634 s
->dma_address
= s
->dma_length
= 0;
2637 domain_flush_complete(domain
);
2639 spin_unlock_irqrestore(&domain
->lock
, flags
);
2643 * The exported alloc_coherent function for dma_ops.
2645 static void *alloc_coherent(struct device
*dev
, size_t size
,
2646 dma_addr_t
*dma_addr
, gfp_t flag
,
2647 struct dma_attrs
*attrs
)
2649 u64 dma_mask
= dev
->coherent_dma_mask
;
2650 struct protection_domain
*domain
;
2651 unsigned long flags
;
2654 INC_STATS_COUNTER(cnt_alloc_coherent
);
2656 domain
= get_domain(dev
);
2657 if (PTR_ERR(domain
) == -EINVAL
) {
2658 page
= alloc_pages(flag
, get_order(size
));
2659 *dma_addr
= page_to_phys(page
);
2660 return page_address(page
);
2661 } else if (IS_ERR(domain
))
2664 size
= PAGE_ALIGN(size
);
2665 dma_mask
= dev
->coherent_dma_mask
;
2666 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2669 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2671 if (!gfpflags_allow_blocking(flag
))
2674 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2681 dma_mask
= *dev
->dma_mask
;
2683 spin_lock_irqsave(&domain
->lock
, flags
);
2685 *dma_addr
= __map_single(dev
, domain
->priv
, page_to_phys(page
),
2686 size
, DMA_BIDIRECTIONAL
, true, dma_mask
);
2688 if (*dma_addr
== DMA_ERROR_CODE
) {
2689 spin_unlock_irqrestore(&domain
->lock
, flags
);
2693 domain_flush_complete(domain
);
2695 spin_unlock_irqrestore(&domain
->lock
, flags
);
2697 return page_address(page
);
2701 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2702 __free_pages(page
, get_order(size
));
2708 * The exported free_coherent function for dma_ops.
2710 static void free_coherent(struct device
*dev
, size_t size
,
2711 void *virt_addr
, dma_addr_t dma_addr
,
2712 struct dma_attrs
*attrs
)
2714 struct protection_domain
*domain
;
2715 unsigned long flags
;
2718 INC_STATS_COUNTER(cnt_free_coherent
);
2720 page
= virt_to_page(virt_addr
);
2721 size
= PAGE_ALIGN(size
);
2723 domain
= get_domain(dev
);
2727 spin_lock_irqsave(&domain
->lock
, flags
);
2729 __unmap_single(domain
->priv
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2731 domain_flush_complete(domain
);
2733 spin_unlock_irqrestore(&domain
->lock
, flags
);
2736 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2737 __free_pages(page
, get_order(size
));
2741 * This function is called by the DMA layer to find out if we can handle a
2742 * particular device. It is part of the dma_ops.
2744 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2746 return check_device(dev
);
2749 static struct dma_map_ops amd_iommu_dma_ops
= {
2750 .alloc
= alloc_coherent
,
2751 .free
= free_coherent
,
2752 .map_page
= map_page
,
2753 .unmap_page
= unmap_page
,
2755 .unmap_sg
= unmap_sg
,
2756 .dma_supported
= amd_iommu_dma_supported
,
2759 int __init
amd_iommu_init_api(void)
2761 return bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2764 int __init
amd_iommu_init_dma_ops(void)
2766 swiotlb
= iommu_pass_through
? 1 : 0;
2770 * In case we don't initialize SWIOTLB (actually the common case
2771 * when AMD IOMMU is enabled), make sure there are global
2772 * dma_ops set as a fall-back for devices not handled by this
2773 * driver (for example non-PCI devices).
2776 dma_ops
= &nommu_dma_ops
;
2778 amd_iommu_stats_init();
2780 if (amd_iommu_unmap_flush
)
2781 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2783 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2788 /*****************************************************************************
2790 * The following functions belong to the exported interface of AMD IOMMU
2792 * This interface allows access to lower level functions of the IOMMU
2793 * like protection domain handling and assignement of devices to domains
2794 * which is not possible with the dma_ops interface.
2796 *****************************************************************************/
2798 static void cleanup_domain(struct protection_domain
*domain
)
2800 struct iommu_dev_data
*entry
;
2801 unsigned long flags
;
2803 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2805 while (!list_empty(&domain
->dev_list
)) {
2806 entry
= list_first_entry(&domain
->dev_list
,
2807 struct iommu_dev_data
, list
);
2808 __detach_device(entry
);
2811 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2814 static void protection_domain_free(struct protection_domain
*domain
)
2819 del_domain_from_list(domain
);
2822 domain_id_free(domain
->id
);
2827 static int protection_domain_init(struct protection_domain
*domain
)
2829 spin_lock_init(&domain
->lock
);
2830 mutex_init(&domain
->api_lock
);
2831 domain
->id
= domain_id_alloc();
2834 INIT_LIST_HEAD(&domain
->dev_list
);
2839 static struct protection_domain
*protection_domain_alloc(void)
2841 struct protection_domain
*domain
;
2843 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2847 if (protection_domain_init(domain
))
2850 add_domain_to_list(domain
);
2860 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2862 struct protection_domain
*pdomain
;
2863 struct dma_ops_domain
*dma_domain
;
2866 case IOMMU_DOMAIN_UNMANAGED
:
2867 pdomain
= protection_domain_alloc();
2871 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2872 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2873 if (!pdomain
->pt_root
) {
2874 protection_domain_free(pdomain
);
2878 pdomain
->domain
.geometry
.aperture_start
= 0;
2879 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2880 pdomain
->domain
.geometry
.force_aperture
= true;
2883 case IOMMU_DOMAIN_DMA
:
2884 dma_domain
= dma_ops_domain_alloc();
2886 pr_err("AMD-Vi: Failed to allocate\n");
2889 pdomain
= &dma_domain
->domain
;
2891 case IOMMU_DOMAIN_IDENTITY
:
2892 pdomain
= protection_domain_alloc();
2896 pdomain
->mode
= PAGE_MODE_NONE
;
2902 return &pdomain
->domain
;
2905 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2907 struct protection_domain
*domain
;
2912 domain
= to_pdomain(dom
);
2914 if (domain
->dev_cnt
> 0)
2915 cleanup_domain(domain
);
2917 BUG_ON(domain
->dev_cnt
!= 0);
2919 if (domain
->mode
!= PAGE_MODE_NONE
)
2920 free_pagetable(domain
);
2922 if (domain
->flags
& PD_IOMMUV2_MASK
)
2923 free_gcr3_table(domain
);
2925 protection_domain_free(domain
);
2928 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
2931 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
2932 struct amd_iommu
*iommu
;
2935 if (!check_device(dev
))
2938 devid
= get_device_id(dev
);
2940 if (dev_data
->domain
!= NULL
)
2943 iommu
= amd_iommu_rlookup_table
[devid
];
2947 iommu_completion_wait(iommu
);
2950 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
2953 struct protection_domain
*domain
= to_pdomain(dom
);
2954 struct iommu_dev_data
*dev_data
;
2955 struct amd_iommu
*iommu
;
2958 if (!check_device(dev
))
2961 dev_data
= dev
->archdata
.iommu
;
2963 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
2967 if (dev_data
->domain
)
2970 ret
= attach_device(dev
, domain
);
2972 iommu_completion_wait(iommu
);
2977 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
2978 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
2980 struct protection_domain
*domain
= to_pdomain(dom
);
2984 if (domain
->mode
== PAGE_MODE_NONE
)
2987 if (iommu_prot
& IOMMU_READ
)
2988 prot
|= IOMMU_PROT_IR
;
2989 if (iommu_prot
& IOMMU_WRITE
)
2990 prot
|= IOMMU_PROT_IW
;
2992 mutex_lock(&domain
->api_lock
);
2993 ret
= iommu_map_page(domain
, iova
, paddr
, prot
, page_size
);
2994 mutex_unlock(&domain
->api_lock
);
2999 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3002 struct protection_domain
*domain
= to_pdomain(dom
);
3005 if (domain
->mode
== PAGE_MODE_NONE
)
3008 mutex_lock(&domain
->api_lock
);
3009 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3010 mutex_unlock(&domain
->api_lock
);
3012 domain_flush_tlb_pde(domain
);
3017 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3020 struct protection_domain
*domain
= to_pdomain(dom
);
3021 unsigned long offset_mask
, pte_pgsize
;
3024 if (domain
->mode
== PAGE_MODE_NONE
)
3027 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3029 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3032 offset_mask
= pte_pgsize
- 1;
3033 __pte
= *pte
& PM_ADDR_MASK
;
3035 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3038 static bool amd_iommu_capable(enum iommu_cap cap
)
3041 case IOMMU_CAP_CACHE_COHERENCY
:
3043 case IOMMU_CAP_INTR_REMAP
:
3044 return (irq_remapping_enabled
== 1);
3045 case IOMMU_CAP_NOEXEC
:
3052 static void amd_iommu_get_dm_regions(struct device
*dev
,
3053 struct list_head
*head
)
3055 struct unity_map_entry
*entry
;
3058 devid
= get_device_id(dev
);
3060 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3061 struct iommu_dm_region
*region
;
3063 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3066 region
= kzalloc(sizeof(*region
), GFP_KERNEL
);
3068 pr_err("Out of memory allocating dm-regions for %s\n",
3073 region
->start
= entry
->address_start
;
3074 region
->length
= entry
->address_end
- entry
->address_start
;
3075 if (entry
->prot
& IOMMU_PROT_IR
)
3076 region
->prot
|= IOMMU_READ
;
3077 if (entry
->prot
& IOMMU_PROT_IW
)
3078 region
->prot
|= IOMMU_WRITE
;
3080 list_add_tail(®ion
->list
, head
);
3084 static void amd_iommu_put_dm_regions(struct device
*dev
,
3085 struct list_head
*head
)
3087 struct iommu_dm_region
*entry
, *next
;
3089 list_for_each_entry_safe(entry
, next
, head
, list
)
3093 static const struct iommu_ops amd_iommu_ops
= {
3094 .capable
= amd_iommu_capable
,
3095 .domain_alloc
= amd_iommu_domain_alloc
,
3096 .domain_free
= amd_iommu_domain_free
,
3097 .attach_dev
= amd_iommu_attach_device
,
3098 .detach_dev
= amd_iommu_detach_device
,
3099 .map
= amd_iommu_map
,
3100 .unmap
= amd_iommu_unmap
,
3101 .map_sg
= default_iommu_map_sg
,
3102 .iova_to_phys
= amd_iommu_iova_to_phys
,
3103 .add_device
= amd_iommu_add_device
,
3104 .remove_device
= amd_iommu_remove_device
,
3105 .device_group
= pci_device_group
,
3106 .get_dm_regions
= amd_iommu_get_dm_regions
,
3107 .put_dm_regions
= amd_iommu_put_dm_regions
,
3108 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3111 /*****************************************************************************
3113 * The next functions do a basic initialization of IOMMU for pass through
3116 * In passthrough mode the IOMMU is initialized and enabled but not used for
3117 * DMA-API translation.
3119 *****************************************************************************/
3121 /* IOMMUv2 specific functions */
3122 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3124 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3126 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3128 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3130 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3132 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3134 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3136 struct protection_domain
*domain
= to_pdomain(dom
);
3137 unsigned long flags
;
3139 spin_lock_irqsave(&domain
->lock
, flags
);
3141 /* Update data structure */
3142 domain
->mode
= PAGE_MODE_NONE
;
3143 domain
->updated
= true;
3145 /* Make changes visible to IOMMUs */
3146 update_domain(domain
);
3148 /* Page-table is not visible to IOMMU anymore, so free it */
3149 free_pagetable(domain
);
3151 spin_unlock_irqrestore(&domain
->lock
, flags
);
3153 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3155 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3157 struct protection_domain
*domain
= to_pdomain(dom
);
3158 unsigned long flags
;
3161 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3164 /* Number of GCR3 table levels required */
3165 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3168 if (levels
> amd_iommu_max_glx_val
)
3171 spin_lock_irqsave(&domain
->lock
, flags
);
3174 * Save us all sanity checks whether devices already in the
3175 * domain support IOMMUv2. Just force that the domain has no
3176 * devices attached when it is switched into IOMMUv2 mode.
3179 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3183 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3184 if (domain
->gcr3_tbl
== NULL
)
3187 domain
->glx
= levels
;
3188 domain
->flags
|= PD_IOMMUV2_MASK
;
3189 domain
->updated
= true;
3191 update_domain(domain
);
3196 spin_unlock_irqrestore(&domain
->lock
, flags
);
3200 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3202 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3203 u64 address
, bool size
)
3205 struct iommu_dev_data
*dev_data
;
3206 struct iommu_cmd cmd
;
3209 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3212 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3215 * IOMMU TLB needs to be flushed before Device TLB to
3216 * prevent device TLB refill from IOMMU TLB
3218 for (i
= 0; i
< amd_iommus_present
; ++i
) {
3219 if (domain
->dev_iommu
[i
] == 0)
3222 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3227 /* Wait until IOMMU TLB flushes are complete */
3228 domain_flush_complete(domain
);
3230 /* Now flush device TLBs */
3231 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3232 struct amd_iommu
*iommu
;
3236 There might be non-IOMMUv2 capable devices in an IOMMUv2
3239 if (!dev_data
->ats
.enabled
)
3242 qdep
= dev_data
->ats
.qdep
;
3243 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3245 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3246 qdep
, address
, size
);
3248 ret
= iommu_queue_command(iommu
, &cmd
);
3253 /* Wait until all device TLBs are flushed */
3254 domain_flush_complete(domain
);
3263 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3266 INC_STATS_COUNTER(invalidate_iotlb
);
3268 return __flush_pasid(domain
, pasid
, address
, false);
3271 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3274 struct protection_domain
*domain
= to_pdomain(dom
);
3275 unsigned long flags
;
3278 spin_lock_irqsave(&domain
->lock
, flags
);
3279 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3280 spin_unlock_irqrestore(&domain
->lock
, flags
);
3284 EXPORT_SYMBOL(amd_iommu_flush_page
);
3286 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3288 INC_STATS_COUNTER(invalidate_iotlb_all
);
3290 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3294 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3296 struct protection_domain
*domain
= to_pdomain(dom
);
3297 unsigned long flags
;
3300 spin_lock_irqsave(&domain
->lock
, flags
);
3301 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3302 spin_unlock_irqrestore(&domain
->lock
, flags
);
3306 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3308 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3315 index
= (pasid
>> (9 * level
)) & 0x1ff;
3321 if (!(*pte
& GCR3_VALID
)) {
3325 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3329 *pte
= __pa(root
) | GCR3_VALID
;
3332 root
= __va(*pte
& PAGE_MASK
);
3340 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3345 if (domain
->mode
!= PAGE_MODE_NONE
)
3348 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3352 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3354 return __amd_iommu_flush_tlb(domain
, pasid
);
3357 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3361 if (domain
->mode
!= PAGE_MODE_NONE
)
3364 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3370 return __amd_iommu_flush_tlb(domain
, pasid
);
3373 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3376 struct protection_domain
*domain
= to_pdomain(dom
);
3377 unsigned long flags
;
3380 spin_lock_irqsave(&domain
->lock
, flags
);
3381 ret
= __set_gcr3(domain
, pasid
, cr3
);
3382 spin_unlock_irqrestore(&domain
->lock
, flags
);
3386 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3388 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3390 struct protection_domain
*domain
= to_pdomain(dom
);
3391 unsigned long flags
;
3394 spin_lock_irqsave(&domain
->lock
, flags
);
3395 ret
= __clear_gcr3(domain
, pasid
);
3396 spin_unlock_irqrestore(&domain
->lock
, flags
);
3400 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3402 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3403 int status
, int tag
)
3405 struct iommu_dev_data
*dev_data
;
3406 struct amd_iommu
*iommu
;
3407 struct iommu_cmd cmd
;
3409 INC_STATS_COUNTER(complete_ppr
);
3411 dev_data
= get_dev_data(&pdev
->dev
);
3412 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3414 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3415 tag
, dev_data
->pri_tlp
);
3417 return iommu_queue_command(iommu
, &cmd
);
3419 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3421 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3423 struct protection_domain
*pdomain
;
3425 pdomain
= get_domain(&pdev
->dev
);
3426 if (IS_ERR(pdomain
))
3429 /* Only return IOMMUv2 domains */
3430 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3433 return &pdomain
->domain
;
3435 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3437 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3439 struct iommu_dev_data
*dev_data
;
3441 if (!amd_iommu_v2_supported())
3444 dev_data
= get_dev_data(&pdev
->dev
);
3445 dev_data
->errata
|= (1 << erratum
);
3447 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3449 int amd_iommu_device_info(struct pci_dev
*pdev
,
3450 struct amd_iommu_device_info
*info
)
3455 if (pdev
== NULL
|| info
== NULL
)
3458 if (!amd_iommu_v2_supported())
3461 memset(info
, 0, sizeof(*info
));
3463 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3465 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3467 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3469 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3471 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3475 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3476 max_pasids
= min(max_pasids
, (1 << 20));
3478 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3479 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3481 features
= pci_pasid_features(pdev
);
3482 if (features
& PCI_PASID_CAP_EXEC
)
3483 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3484 if (features
& PCI_PASID_CAP_PRIV
)
3485 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3490 EXPORT_SYMBOL(amd_iommu_device_info
);
3492 #ifdef CONFIG_IRQ_REMAP
3494 /*****************************************************************************
3496 * Interrupt Remapping Implementation
3498 *****************************************************************************/
3516 u16 devid
; /* Device ID for IRTE table */
3517 u16 index
; /* Index into IRTE table*/
3520 struct amd_ir_data
{
3521 struct irq_2_irte irq_2_irte
;
3522 union irte irte_entry
;
3524 struct msi_msg msi_entry
;
3528 static struct irq_chip amd_ir_chip
;
3530 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3531 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3532 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3533 #define DTE_IRQ_REMAP_ENABLE 1ULL
3535 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3539 dte
= amd_iommu_dev_table
[devid
].data
[2];
3540 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3541 dte
|= virt_to_phys(table
->table
);
3542 dte
|= DTE_IRQ_REMAP_INTCTL
;
3543 dte
|= DTE_IRQ_TABLE_LEN
;
3544 dte
|= DTE_IRQ_REMAP_ENABLE
;
3546 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3549 #define IRTE_ALLOCATED (~1U)
3551 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3553 struct irq_remap_table
*table
= NULL
;
3554 struct amd_iommu
*iommu
;
3555 unsigned long flags
;
3558 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3560 iommu
= amd_iommu_rlookup_table
[devid
];
3564 table
= irq_lookup_table
[devid
];
3568 alias
= amd_iommu_alias_table
[devid
];
3569 table
= irq_lookup_table
[alias
];
3571 irq_lookup_table
[devid
] = table
;
3572 set_dte_irq_entry(devid
, table
);
3573 iommu_flush_dte(iommu
, devid
);
3577 /* Nothing there yet, allocate new irq remapping table */
3578 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3582 /* Initialize table spin-lock */
3583 spin_lock_init(&table
->lock
);
3586 /* Keep the first 32 indexes free for IOAPIC interrupts */
3587 table
->min_index
= 32;
3589 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3590 if (!table
->table
) {
3596 memset(table
->table
, 0, MAX_IRQS_PER_TABLE
* sizeof(u32
));
3601 for (i
= 0; i
< 32; ++i
)
3602 table
->table
[i
] = IRTE_ALLOCATED
;
3605 irq_lookup_table
[devid
] = table
;
3606 set_dte_irq_entry(devid
, table
);
3607 iommu_flush_dte(iommu
, devid
);
3608 if (devid
!= alias
) {
3609 irq_lookup_table
[alias
] = table
;
3610 set_dte_irq_entry(alias
, table
);
3611 iommu_flush_dte(iommu
, alias
);
3615 iommu_completion_wait(iommu
);
3618 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3623 static int alloc_irq_index(u16 devid
, int count
)
3625 struct irq_remap_table
*table
;
3626 unsigned long flags
;
3629 table
= get_irq_table(devid
, false);
3633 spin_lock_irqsave(&table
->lock
, flags
);
3635 /* Scan table for free entries */
3636 for (c
= 0, index
= table
->min_index
;
3637 index
< MAX_IRQS_PER_TABLE
;
3639 if (table
->table
[index
] == 0)
3646 table
->table
[index
- c
+ 1] = IRTE_ALLOCATED
;
3656 spin_unlock_irqrestore(&table
->lock
, flags
);
3661 static int modify_irte(u16 devid
, int index
, union irte irte
)
3663 struct irq_remap_table
*table
;
3664 struct amd_iommu
*iommu
;
3665 unsigned long flags
;
3667 iommu
= amd_iommu_rlookup_table
[devid
];
3671 table
= get_irq_table(devid
, false);
3675 spin_lock_irqsave(&table
->lock
, flags
);
3676 table
->table
[index
] = irte
.val
;
3677 spin_unlock_irqrestore(&table
->lock
, flags
);
3679 iommu_flush_irt(iommu
, devid
);
3680 iommu_completion_wait(iommu
);
3685 static void free_irte(u16 devid
, int index
)
3687 struct irq_remap_table
*table
;
3688 struct amd_iommu
*iommu
;
3689 unsigned long flags
;
3691 iommu
= amd_iommu_rlookup_table
[devid
];
3695 table
= get_irq_table(devid
, false);
3699 spin_lock_irqsave(&table
->lock
, flags
);
3700 table
->table
[index
] = 0;
3701 spin_unlock_irqrestore(&table
->lock
, flags
);
3703 iommu_flush_irt(iommu
, devid
);
3704 iommu_completion_wait(iommu
);
3707 static int get_devid(struct irq_alloc_info
*info
)
3711 switch (info
->type
) {
3712 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3713 devid
= get_ioapic_devid(info
->ioapic_id
);
3715 case X86_IRQ_ALLOC_TYPE_HPET
:
3716 devid
= get_hpet_devid(info
->hpet_id
);
3718 case X86_IRQ_ALLOC_TYPE_MSI
:
3719 case X86_IRQ_ALLOC_TYPE_MSIX
:
3720 devid
= get_device_id(&info
->msi_dev
->dev
);
3730 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
3732 struct amd_iommu
*iommu
;
3738 devid
= get_devid(info
);
3740 iommu
= amd_iommu_rlookup_table
[devid
];
3742 return iommu
->ir_domain
;
3748 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
3750 struct amd_iommu
*iommu
;
3756 switch (info
->type
) {
3757 case X86_IRQ_ALLOC_TYPE_MSI
:
3758 case X86_IRQ_ALLOC_TYPE_MSIX
:
3759 devid
= get_device_id(&info
->msi_dev
->dev
);
3761 iommu
= amd_iommu_rlookup_table
[devid
];
3763 return iommu
->msi_domain
;
3773 struct irq_remap_ops amd_iommu_irq_ops
= {
3774 .prepare
= amd_iommu_prepare
,
3775 .enable
= amd_iommu_enable
,
3776 .disable
= amd_iommu_disable
,
3777 .reenable
= amd_iommu_reenable
,
3778 .enable_faulting
= amd_iommu_enable_faulting
,
3779 .get_ir_irq_domain
= get_ir_irq_domain
,
3780 .get_irq_domain
= get_irq_domain
,
3783 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
3784 struct irq_cfg
*irq_cfg
,
3785 struct irq_alloc_info
*info
,
3786 int devid
, int index
, int sub_handle
)
3788 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3789 struct msi_msg
*msg
= &data
->msi_entry
;
3790 union irte
*irte
= &data
->irte_entry
;
3791 struct IO_APIC_route_entry
*entry
;
3793 data
->irq_2_irte
.devid
= devid
;
3794 data
->irq_2_irte
.index
= index
+ sub_handle
;
3796 /* Setup IRTE for IOMMU */
3798 irte
->fields
.vector
= irq_cfg
->vector
;
3799 irte
->fields
.int_type
= apic
->irq_delivery_mode
;
3800 irte
->fields
.destination
= irq_cfg
->dest_apicid
;
3801 irte
->fields
.dm
= apic
->irq_dest_mode
;
3802 irte
->fields
.valid
= 1;
3804 switch (info
->type
) {
3805 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3806 /* Setup IOAPIC entry */
3807 entry
= info
->ioapic_entry
;
3808 info
->ioapic_entry
= NULL
;
3809 memset(entry
, 0, sizeof(*entry
));
3810 entry
->vector
= index
;
3812 entry
->trigger
= info
->ioapic_trigger
;
3813 entry
->polarity
= info
->ioapic_polarity
;
3814 /* Mask level triggered irqs. */
3815 if (info
->ioapic_trigger
)
3819 case X86_IRQ_ALLOC_TYPE_HPET
:
3820 case X86_IRQ_ALLOC_TYPE_MSI
:
3821 case X86_IRQ_ALLOC_TYPE_MSIX
:
3822 msg
->address_hi
= MSI_ADDR_BASE_HI
;
3823 msg
->address_lo
= MSI_ADDR_BASE_LO
;
3824 msg
->data
= irte_info
->index
;
3833 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
3834 unsigned int nr_irqs
, void *arg
)
3836 struct irq_alloc_info
*info
= arg
;
3837 struct irq_data
*irq_data
;
3838 struct amd_ir_data
*data
;
3839 struct irq_cfg
*cfg
;
3845 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
3846 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
3850 * With IRQ remapping enabled, don't need contiguous CPU vectors
3851 * to support multiple MSI interrupts.
3853 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
3854 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
3856 devid
= get_devid(info
);
3860 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
3864 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
3865 if (get_irq_table(devid
, true))
3866 index
= info
->ioapic_pin
;
3870 index
= alloc_irq_index(devid
, nr_irqs
);
3873 pr_warn("Failed to allocate IRTE\n");
3874 goto out_free_parent
;
3877 for (i
= 0; i
< nr_irqs
; i
++) {
3878 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3879 cfg
= irqd_cfg(irq_data
);
3880 if (!irq_data
|| !cfg
) {
3886 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
3890 irq_data
->hwirq
= (devid
<< 16) + i
;
3891 irq_data
->chip_data
= data
;
3892 irq_data
->chip
= &amd_ir_chip
;
3893 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
3894 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
3900 for (i
--; i
>= 0; i
--) {
3901 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3903 kfree(irq_data
->chip_data
);
3905 for (i
= 0; i
< nr_irqs
; i
++)
3906 free_irte(devid
, index
+ i
);
3908 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
3912 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
3913 unsigned int nr_irqs
)
3915 struct irq_2_irte
*irte_info
;
3916 struct irq_data
*irq_data
;
3917 struct amd_ir_data
*data
;
3920 for (i
= 0; i
< nr_irqs
; i
++) {
3921 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
3922 if (irq_data
&& irq_data
->chip_data
) {
3923 data
= irq_data
->chip_data
;
3924 irte_info
= &data
->irq_2_irte
;
3925 free_irte(irte_info
->devid
, irte_info
->index
);
3929 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
3932 static void irq_remapping_activate(struct irq_domain
*domain
,
3933 struct irq_data
*irq_data
)
3935 struct amd_ir_data
*data
= irq_data
->chip_data
;
3936 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3938 modify_irte(irte_info
->devid
, irte_info
->index
, data
->irte_entry
);
3941 static void irq_remapping_deactivate(struct irq_domain
*domain
,
3942 struct irq_data
*irq_data
)
3944 struct amd_ir_data
*data
= irq_data
->chip_data
;
3945 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
3949 modify_irte(irte_info
->devid
, irte_info
->index
, data
->irte_entry
);
3952 static struct irq_domain_ops amd_ir_domain_ops
= {
3953 .alloc
= irq_remapping_alloc
,
3954 .free
= irq_remapping_free
,
3955 .activate
= irq_remapping_activate
,
3956 .deactivate
= irq_remapping_deactivate
,
3959 static int amd_ir_set_affinity(struct irq_data
*data
,
3960 const struct cpumask
*mask
, bool force
)
3962 struct amd_ir_data
*ir_data
= data
->chip_data
;
3963 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
3964 struct irq_cfg
*cfg
= irqd_cfg(data
);
3965 struct irq_data
*parent
= data
->parent_data
;
3968 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
3969 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
3973 * Atomically updates the IRTE with the new destination, vector
3974 * and flushes the interrupt entry cache.
3976 ir_data
->irte_entry
.fields
.vector
= cfg
->vector
;
3977 ir_data
->irte_entry
.fields
.destination
= cfg
->dest_apicid
;
3978 modify_irte(irte_info
->devid
, irte_info
->index
, ir_data
->irte_entry
);
3981 * After this point, all the interrupts will start arriving
3982 * at the new destination. So, time to cleanup the previous
3983 * vector allocation.
3985 send_cleanup_vector(cfg
);
3987 return IRQ_SET_MASK_OK_DONE
;
3990 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
3992 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
3994 *msg
= ir_data
->msi_entry
;
3997 static struct irq_chip amd_ir_chip
= {
3998 .irq_ack
= ir_ack_apic_edge
,
3999 .irq_set_affinity
= amd_ir_set_affinity
,
4000 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4003 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4005 iommu
->ir_domain
= irq_domain_add_tree(NULL
, &amd_ir_domain_ops
, iommu
);
4006 if (!iommu
->ir_domain
)
4009 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4010 iommu
->msi_domain
= arch_create_msi_irq_domain(iommu
->ir_domain
);