3 * device driver for Conexant 2388x based TV cards
6 * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
8 * (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
10 * - video_ioctl2 conversion
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/kmod.h>
34 #include <linux/sound.h>
35 #include <linux/interrupt.h>
36 #include <linux/pci.h>
37 #include <linux/delay.h>
38 #include <linux/videodev2.h>
39 #include <linux/mutex.h>
42 #include <media/v4l2-common.h>
43 #include <media/v4l2-ioctl.h>
45 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
46 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
47 MODULE_LICENSE("GPL");
49 /* ------------------------------------------------------------------ */
51 unsigned int cx88_core_debug
;
52 module_param_named(core_debug
, cx88_core_debug
, int, 0644);
53 MODULE_PARM_DESC(core_debug
, "enable debug messages [core]");
55 static unsigned int nicam
;
56 module_param(nicam
,int,0644);
57 MODULE_PARM_DESC(nicam
,"tv audio is nicam");
59 static unsigned int nocomb
;
60 module_param(nocomb
,int,0644);
61 MODULE_PARM_DESC(nocomb
,"disable comb filter");
63 #define dprintk(level,fmt, arg...) do { \
64 if (cx88_core_debug >= level) \
65 printk(KERN_DEBUG "%s: " fmt, core->name , ## arg); \
68 static unsigned int cx88_devcount
;
69 static LIST_HEAD(cx88_devlist
);
70 static DEFINE_MUTEX(devlist
);
72 #define NO_SYNC_LINE (-1U)
74 /* @lpi: lines per IRQ, or 0 to not generate irqs. Note: IRQ to be
75 generated _after_ lpi lines are transferred. */
76 static __le32
* cx88_risc_field(__le32
*rp
, struct scatterlist
*sglist
,
77 unsigned int offset
, u32 sync_line
,
78 unsigned int bpl
, unsigned int padding
,
79 unsigned int lines
, unsigned int lpi
, bool jump
)
81 struct scatterlist
*sg
;
82 unsigned int line
,todo
,sol
;
85 (*rp
++) = cpu_to_le32(RISC_JUMP
);
89 /* sync instruction */
90 if (sync_line
!= NO_SYNC_LINE
)
91 *(rp
++) = cpu_to_le32(RISC_RESYNC
| sync_line
);
95 for (line
= 0; line
< lines
; line
++) {
96 while (offset
&& offset
>= sg_dma_len(sg
)) {
97 offset
-= sg_dma_len(sg
);
100 if (lpi
&& line
>0 && !(line
% lpi
))
101 sol
= RISC_SOL
| RISC_IRQ1
| RISC_CNT_INC
;
104 if (bpl
<= sg_dma_len(sg
)-offset
) {
105 /* fits into current chunk */
106 *(rp
++)=cpu_to_le32(RISC_WRITE
|sol
|RISC_EOL
|bpl
);
107 *(rp
++)=cpu_to_le32(sg_dma_address(sg
)+offset
);
110 /* scanline needs to be split */
112 *(rp
++)=cpu_to_le32(RISC_WRITE
|sol
|
113 (sg_dma_len(sg
)-offset
));
114 *(rp
++)=cpu_to_le32(sg_dma_address(sg
)+offset
);
115 todo
-= (sg_dma_len(sg
)-offset
);
118 while (todo
> sg_dma_len(sg
)) {
119 *(rp
++)=cpu_to_le32(RISC_WRITE
|
121 *(rp
++)=cpu_to_le32(sg_dma_address(sg
));
122 todo
-= sg_dma_len(sg
);
125 *(rp
++)=cpu_to_le32(RISC_WRITE
|RISC_EOL
|todo
);
126 *(rp
++)=cpu_to_le32(sg_dma_address(sg
));
135 int cx88_risc_buffer(struct pci_dev
*pci
, struct cx88_riscmem
*risc
,
136 struct scatterlist
*sglist
,
137 unsigned int top_offset
, unsigned int bottom_offset
,
138 unsigned int bpl
, unsigned int padding
, unsigned int lines
)
140 u32 instructions
,fields
;
144 if (UNSET
!= top_offset
)
146 if (UNSET
!= bottom_offset
)
149 /* estimate risc mem: worst case is one write per page border +
150 one write per scan line + syncs + jump (all 2 dwords). Padding
151 can cause next bpl to start close to a page border. First DMA
152 region may be smaller than PAGE_SIZE */
153 instructions
= fields
* (1 + ((bpl
+ padding
) * lines
) / PAGE_SIZE
+ lines
);
155 risc
->size
= instructions
* 8;
157 risc
->cpu
= pci_zalloc_consistent(pci
, risc
->size
, &risc
->dma
);
158 if (NULL
== risc
->cpu
)
161 /* write risc instructions */
163 if (UNSET
!= top_offset
)
164 rp
= cx88_risc_field(rp
, sglist
, top_offset
, 0,
165 bpl
, padding
, lines
, 0, true);
166 if (UNSET
!= bottom_offset
)
167 rp
= cx88_risc_field(rp
, sglist
, bottom_offset
, 0x200,
168 bpl
, padding
, lines
, 0, top_offset
== UNSET
);
170 /* save pointer to jmp instruction address */
172 BUG_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof (*risc
->cpu
) > risc
->size
);
176 int cx88_risc_databuffer(struct pci_dev
*pci
, struct cx88_riscmem
*risc
,
177 struct scatterlist
*sglist
, unsigned int bpl
,
178 unsigned int lines
, unsigned int lpi
)
183 /* estimate risc mem: worst case is one write per page border +
184 one write per scan line + syncs + jump (all 2 dwords). Here
185 there is no padding and no sync. First DMA region may be smaller
187 instructions
= 1 + (bpl
* lines
) / PAGE_SIZE
+ lines
;
189 risc
->size
= instructions
* 8;
191 risc
->cpu
= pci_zalloc_consistent(pci
, risc
->size
, &risc
->dma
);
192 if (NULL
== risc
->cpu
)
195 /* write risc instructions */
197 rp
= cx88_risc_field(rp
, sglist
, 0, NO_SYNC_LINE
, bpl
, 0, lines
, lpi
, !lpi
);
199 /* save pointer to jmp instruction address */
201 BUG_ON((risc
->jmp
- risc
->cpu
+ 2) * sizeof (*risc
->cpu
) > risc
->size
);
205 /* ------------------------------------------------------------------ */
206 /* our SRAM memory layout */
208 /* we are going to put all thr risc programs into host memory, so we
209 * can use the whole SDRAM for the DMA fifos. To simplify things, we
210 * use a static memory layout. That surely will waste memory in case
211 * we don't use all DMA channels at the same time (which will be the
212 * case most of the time). But that still gives us enough FIFO space
213 * to be able to deal with insane long pci latencies ...
215 * FIFO space allocations:
216 * channel 21 (y video) - 10.0k
217 * channel 22 (u video) - 2.0k
218 * channel 23 (v video) - 2.0k
219 * channel 24 (vbi) - 4.0k
220 * channels 25+26 (audio) - 4.0k
221 * channel 28 (mpeg) - 4.0k
222 * channel 27 (audio rds)- 3.0k
225 * Every channel has 160 bytes control data (64 bytes instruction
226 * queue and 6 CDT entries), which is close to 2k total.
229 * 0x0000 - 0x03ff CMDs / reserved
230 * 0x0400 - 0x0bff instruction queues + CDs
234 const struct sram_channel cx88_sram_channels
[] = {
236 .name
= "video y / packed",
237 .cmds_start
= 0x180040,
238 .ctrl_start
= 0x180400,
239 .cdt
= 0x180400 + 64,
240 .fifo_start
= 0x180c00,
241 .fifo_size
= 0x002800,
242 .ptr1_reg
= MO_DMA21_PTR1
,
243 .ptr2_reg
= MO_DMA21_PTR2
,
244 .cnt1_reg
= MO_DMA21_CNT1
,
245 .cnt2_reg
= MO_DMA21_CNT2
,
249 .cmds_start
= 0x180080,
250 .ctrl_start
= 0x1804a0,
251 .cdt
= 0x1804a0 + 64,
252 .fifo_start
= 0x183400,
253 .fifo_size
= 0x000800,
254 .ptr1_reg
= MO_DMA22_PTR1
,
255 .ptr2_reg
= MO_DMA22_PTR2
,
256 .cnt1_reg
= MO_DMA22_CNT1
,
257 .cnt2_reg
= MO_DMA22_CNT2
,
261 .cmds_start
= 0x1800c0,
262 .ctrl_start
= 0x180540,
263 .cdt
= 0x180540 + 64,
264 .fifo_start
= 0x183c00,
265 .fifo_size
= 0x000800,
266 .ptr1_reg
= MO_DMA23_PTR1
,
267 .ptr2_reg
= MO_DMA23_PTR2
,
268 .cnt1_reg
= MO_DMA23_CNT1
,
269 .cnt2_reg
= MO_DMA23_CNT2
,
273 .cmds_start
= 0x180100,
274 .ctrl_start
= 0x1805e0,
275 .cdt
= 0x1805e0 + 64,
276 .fifo_start
= 0x184400,
277 .fifo_size
= 0x001000,
278 .ptr1_reg
= MO_DMA24_PTR1
,
279 .ptr2_reg
= MO_DMA24_PTR2
,
280 .cnt1_reg
= MO_DMA24_CNT1
,
281 .cnt2_reg
= MO_DMA24_CNT2
,
284 .name
= "audio from",
285 .cmds_start
= 0x180140,
286 .ctrl_start
= 0x180680,
287 .cdt
= 0x180680 + 64,
288 .fifo_start
= 0x185400,
289 .fifo_size
= 0x001000,
290 .ptr1_reg
= MO_DMA25_PTR1
,
291 .ptr2_reg
= MO_DMA25_PTR2
,
292 .cnt1_reg
= MO_DMA25_CNT1
,
293 .cnt2_reg
= MO_DMA25_CNT2
,
297 .cmds_start
= 0x180180,
298 .ctrl_start
= 0x180720,
299 .cdt
= 0x180680 + 64, /* same as audio IN */
300 .fifo_start
= 0x185400, /* same as audio IN */
301 .fifo_size
= 0x001000, /* same as audio IN */
302 .ptr1_reg
= MO_DMA26_PTR1
,
303 .ptr2_reg
= MO_DMA26_PTR2
,
304 .cnt1_reg
= MO_DMA26_CNT1
,
305 .cnt2_reg
= MO_DMA26_CNT2
,
309 .cmds_start
= 0x180200,
310 .ctrl_start
= 0x1807C0,
311 .cdt
= 0x1807C0 + 64,
312 .fifo_start
= 0x186400,
313 .fifo_size
= 0x001000,
314 .ptr1_reg
= MO_DMA28_PTR1
,
315 .ptr2_reg
= MO_DMA28_PTR2
,
316 .cnt1_reg
= MO_DMA28_CNT1
,
317 .cnt2_reg
= MO_DMA28_CNT2
,
321 .cmds_start
= 0x1801C0,
322 .ctrl_start
= 0x180860,
323 .cdt
= 0x180860 + 64,
324 .fifo_start
= 0x187400,
325 .fifo_size
= 0x000C00,
326 .ptr1_reg
= MO_DMA27_PTR1
,
327 .ptr2_reg
= MO_DMA27_PTR2
,
328 .cnt1_reg
= MO_DMA27_CNT1
,
329 .cnt2_reg
= MO_DMA27_CNT2
,
333 int cx88_sram_channel_setup(struct cx88_core
*core
,
334 const struct sram_channel
*ch
,
335 unsigned int bpl
, u32 risc
)
337 unsigned int i
,lines
;
340 bpl
= (bpl
+ 7) & ~7; /* alignment */
342 lines
= ch
->fifo_size
/ bpl
;
348 for (i
= 0; i
< lines
; i
++)
349 cx_write(cdt
+ 16*i
, ch
->fifo_start
+ bpl
*i
);
352 cx_write(ch
->cmds_start
+ 0, risc
);
353 cx_write(ch
->cmds_start
+ 4, cdt
);
354 cx_write(ch
->cmds_start
+ 8, (lines
*16) >> 3);
355 cx_write(ch
->cmds_start
+ 12, ch
->ctrl_start
);
356 cx_write(ch
->cmds_start
+ 16, 64 >> 2);
357 for (i
= 20; i
< 64; i
+= 4)
358 cx_write(ch
->cmds_start
+ i
, 0);
361 cx_write(ch
->ptr1_reg
, ch
->fifo_start
);
362 cx_write(ch
->ptr2_reg
, cdt
);
363 cx_write(ch
->cnt1_reg
, (bpl
>> 3) -1);
364 cx_write(ch
->cnt2_reg
, (lines
*16) >> 3);
366 dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch
->name
, bpl
, lines
);
370 /* ------------------------------------------------------------------ */
371 /* debug helper code */
373 static int cx88_risc_decode(u32 risc
)
375 static const char * const instr
[16] = {
376 [ RISC_SYNC
>> 28 ] = "sync",
377 [ RISC_WRITE
>> 28 ] = "write",
378 [ RISC_WRITEC
>> 28 ] = "writec",
379 [ RISC_READ
>> 28 ] = "read",
380 [ RISC_READC
>> 28 ] = "readc",
381 [ RISC_JUMP
>> 28 ] = "jump",
382 [ RISC_SKIP
>> 28 ] = "skip",
383 [ RISC_WRITERM
>> 28 ] = "writerm",
384 [ RISC_WRITECM
>> 28 ] = "writecm",
385 [ RISC_WRITECR
>> 28 ] = "writecr",
387 static int const incr
[16] = {
388 [ RISC_WRITE
>> 28 ] = 2,
389 [ RISC_JUMP
>> 28 ] = 2,
390 [ RISC_WRITERM
>> 28 ] = 3,
391 [ RISC_WRITECM
>> 28 ] = 3,
392 [ RISC_WRITECR
>> 28 ] = 4,
394 static const char * const bits
[] = {
395 "12", "13", "14", "resync",
396 "cnt0", "cnt1", "18", "19",
397 "20", "21", "22", "23",
398 "irq1", "irq2", "eol", "sol",
402 printk("0x%08x [ %s", risc
,
403 instr
[risc
>> 28] ? instr
[risc
>> 28] : "INVALID");
404 for (i
= ARRAY_SIZE(bits
)-1; i
>= 0; i
--)
405 if (risc
& (1 << (i
+ 12)))
406 printk(" %s",bits
[i
]);
407 printk(" count=%d ]\n", risc
& 0xfff);
408 return incr
[risc
>> 28] ? incr
[risc
>> 28] : 1;
412 void cx88_sram_channel_dump(struct cx88_core
*core
,
413 const struct sram_channel
*ch
)
415 static const char * const name
[] = {
431 printk("%s: %s - dma channel status dump\n",
432 core
->name
,ch
->name
);
433 for (i
= 0; i
< ARRAY_SIZE(name
); i
++)
434 printk("%s: cmds: %-12s: 0x%08x\n",
436 cx_read(ch
->cmds_start
+ 4*i
));
437 for (n
= 1, i
= 0; i
< 4; i
++) {
438 risc
= cx_read(ch
->cmds_start
+ 4 * (i
+11));
439 printk("%s: risc%d: ", core
->name
, i
);
441 printk("0x%08x [ arg #%d ]\n", risc
, n
);
443 n
= cx88_risc_decode(risc
);
445 for (i
= 0; i
< 16; i
+= n
) {
446 risc
= cx_read(ch
->ctrl_start
+ 4 * i
);
447 printk("%s: iq %x: ", core
->name
, i
);
448 n
= cx88_risc_decode(risc
);
449 for (j
= 1; j
< n
; j
++) {
450 risc
= cx_read(ch
->ctrl_start
+ 4 * (i
+j
));
451 printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
452 core
->name
, i
+j
, risc
, j
);
456 printk("%s: fifo: 0x%08x -> 0x%x\n",
457 core
->name
, ch
->fifo_start
, ch
->fifo_start
+ch
->fifo_size
);
458 printk("%s: ctrl: 0x%08x -> 0x%x\n",
459 core
->name
, ch
->ctrl_start
, ch
->ctrl_start
+6*16);
460 printk("%s: ptr1_reg: 0x%08x\n",
461 core
->name
,cx_read(ch
->ptr1_reg
));
462 printk("%s: ptr2_reg: 0x%08x\n",
463 core
->name
,cx_read(ch
->ptr2_reg
));
464 printk("%s: cnt1_reg: 0x%08x\n",
465 core
->name
,cx_read(ch
->cnt1_reg
));
466 printk("%s: cnt2_reg: 0x%08x\n",
467 core
->name
,cx_read(ch
->cnt2_reg
));
470 static const char *cx88_pci_irqs
[32] = {
471 "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
472 "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
473 "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
474 "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
477 void cx88_print_irqbits(const char *name
, const char *tag
, const char *strings
[],
478 int len
, u32 bits
, u32 mask
)
482 printk(KERN_DEBUG
"%s: %s [0x%x]", name
, tag
, bits
);
483 for (i
= 0; i
< len
; i
++) {
484 if (!(bits
& (1 << i
)))
487 printk(" %s", strings
[i
]);
490 if (!(mask
& (1 << i
)))
497 /* ------------------------------------------------------------------ */
499 int cx88_core_irq(struct cx88_core
*core
, u32 status
)
503 if (status
& PCI_INT_IR_SMPINT
) {
508 cx88_print_irqbits(core
->name
, "irq pci",
509 cx88_pci_irqs
, ARRAY_SIZE(cx88_pci_irqs
),
510 status
, core
->pci_irqmask
);
514 void cx88_wakeup(struct cx88_core
*core
,
515 struct cx88_dmaqueue
*q
, u32 count
)
517 struct cx88_buffer
*buf
;
519 buf
= list_entry(q
->active
.next
,
520 struct cx88_buffer
, list
);
521 v4l2_get_timestamp(&buf
->vb
.timestamp
);
522 buf
->vb
.field
= core
->field
;
523 buf
->vb
.sequence
= q
->count
++;
524 list_del(&buf
->list
);
525 vb2_buffer_done(&buf
->vb
.vb2_buf
, VB2_BUF_STATE_DONE
);
528 void cx88_shutdown(struct cx88_core
*core
)
530 /* disable RISC controller + IRQs */
531 cx_write(MO_DEV_CNTRL2
, 0);
533 /* stop dma transfers */
534 cx_write(MO_VID_DMACNTRL
, 0x0);
535 cx_write(MO_AUD_DMACNTRL
, 0x0);
536 cx_write(MO_TS_DMACNTRL
, 0x0);
537 cx_write(MO_VIP_DMACNTRL
, 0x0);
538 cx_write(MO_GPHST_DMACNTRL
, 0x0);
540 /* stop interrupts */
541 cx_write(MO_PCI_INTMSK
, 0x0);
542 cx_write(MO_VID_INTMSK
, 0x0);
543 cx_write(MO_AUD_INTMSK
, 0x0);
544 cx_write(MO_TS_INTMSK
, 0x0);
545 cx_write(MO_VIP_INTMSK
, 0x0);
546 cx_write(MO_GPHST_INTMSK
, 0x0);
549 cx_write(VID_CAPTURE_CONTROL
, 0);
552 int cx88_reset(struct cx88_core
*core
)
554 dprintk(1,"%s\n",__func__
);
557 /* clear irq status */
558 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
559 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
560 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
566 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH21
], 720*4, 0);
567 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH22
], 128, 0);
568 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH23
], 128, 0);
569 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH24
], 128, 0);
570 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], 128, 0);
571 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], 128, 0);
572 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH28
], 188*4, 0);
573 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH27
], 128, 0);
576 cx_write(MO_INPUT_FORMAT
, ((1 << 13) | // agc enable
577 (1 << 12) | // agc gain
578 (1 << 11) | // adaptibe agc
579 (0 << 10) | // chroma agc
580 (0 << 9) | // ckillen
583 /* setup image format */
584 cx_andor(MO_COLOR_CTRL
, 0x4000, 0x4000);
586 /* setup FIFO Thresholds */
587 cx_write(MO_PDMA_STHRSH
, 0x0807);
588 cx_write(MO_PDMA_DTHRSH
, 0x0807);
590 /* fixes flashing of image */
591 cx_write(MO_AGC_SYNC_TIP1
, 0x0380000F);
592 cx_write(MO_AGC_BACK_VBI
, 0x00E00555);
594 cx_write(MO_VID_INTSTAT
, 0xFFFFFFFF); // Clear PIV int
595 cx_write(MO_PCI_INTSTAT
, 0xFFFFFFFF); // Clear PCI int
596 cx_write(MO_INT1_STAT
, 0xFFFFFFFF); // Clear RISC int
598 /* Reset on-board parts */
599 cx_write(MO_SRST_IO
, 0);
601 cx_write(MO_SRST_IO
, 1);
606 /* ------------------------------------------------------------------ */
608 static inline unsigned int norm_swidth(v4l2_std_id norm
)
610 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 754 : 922;
613 static inline unsigned int norm_hdelay(v4l2_std_id norm
)
615 return (norm
& (V4L2_STD_MN
& ~V4L2_STD_PAL_Nc
)) ? 135 : 186;
618 static inline unsigned int norm_vdelay(v4l2_std_id norm
)
620 return (norm
& V4L2_STD_625_50
) ? 0x24 : 0x18;
623 static inline unsigned int norm_fsc8(v4l2_std_id norm
)
625 if (norm
& V4L2_STD_PAL_M
)
626 return 28604892; // 3.575611 MHz
628 if (norm
& (V4L2_STD_PAL_Nc
))
629 return 28656448; // 3.582056 MHz
631 if (norm
& V4L2_STD_NTSC
) // All NTSC/M and variants
632 return 28636360; // 3.57954545 MHz +/- 10 Hz
634 /* SECAM have also different sub carrier for chroma,
635 but step_db and step_dr, at cx88_set_tvnorm already handles that.
637 The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
640 return 35468950; // 4.43361875 MHz +/- 5 Hz
643 static inline unsigned int norm_htotal(v4l2_std_id norm
)
646 unsigned int fsc4
=norm_fsc8(norm
)/2;
648 /* returns 4*FSC / vtotal / frames per seconds */
649 return (norm
& V4L2_STD_625_50
) ?
650 ((fsc4
+312)/625+12)/25 :
651 ((fsc4
+262)/525*1001+15000)/30000;
654 static inline unsigned int norm_vbipack(v4l2_std_id norm
)
656 return (norm
& V4L2_STD_625_50
) ? 511 : 400;
659 int cx88_set_scale(struct cx88_core
*core
, unsigned int width
, unsigned int height
,
660 enum v4l2_field field
)
662 unsigned int swidth
= norm_swidth(core
->tvnorm
);
663 unsigned int sheight
= norm_maxh(core
->tvnorm
);
666 dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width
, height
,
667 V4L2_FIELD_HAS_TOP(field
) ? "T" : "",
668 V4L2_FIELD_HAS_BOTTOM(field
) ? "B" : "",
669 v4l2_norm_to_name(core
->tvnorm
));
670 if (!V4L2_FIELD_HAS_BOTH(field
))
673 // recalc H delay and scale registers
674 value
= (width
* norm_hdelay(core
->tvnorm
)) / swidth
;
676 cx_write(MO_HDELAY_EVEN
, value
);
677 cx_write(MO_HDELAY_ODD
, value
);
678 dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value
,swidth
);
680 value
= (swidth
* 4096 / width
) - 4096;
681 cx_write(MO_HSCALE_EVEN
, value
);
682 cx_write(MO_HSCALE_ODD
, value
);
683 dprintk(1,"set_scale: hscale 0x%04x\n", value
);
685 cx_write(MO_HACTIVE_EVEN
, width
);
686 cx_write(MO_HACTIVE_ODD
, width
);
687 dprintk(1,"set_scale: hactive 0x%04x\n", width
);
689 // recalc V scale Register (delay is constant)
690 cx_write(MO_VDELAY_EVEN
, norm_vdelay(core
->tvnorm
));
691 cx_write(MO_VDELAY_ODD
, norm_vdelay(core
->tvnorm
));
692 dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core
->tvnorm
));
694 value
= (0x10000 - (sheight
* 512 / height
- 512)) & 0x1fff;
695 cx_write(MO_VSCALE_EVEN
, value
);
696 cx_write(MO_VSCALE_ODD
, value
);
697 dprintk(1,"set_scale: vscale 0x%04x\n", value
);
699 cx_write(MO_VACTIVE_EVEN
, sheight
);
700 cx_write(MO_VACTIVE_ODD
, sheight
);
701 dprintk(1,"set_scale: vactive 0x%04x\n", sheight
);
705 value
|= (1 << 19); // CFILT (default)
706 if (core
->tvnorm
& V4L2_STD_SECAM
) {
710 if (INPUT(core
->input
).type
== CX88_VMUX_SVIDEO
)
711 value
|= (1 << 13) | (1 << 5);
712 if (V4L2_FIELD_INTERLACED
== field
)
713 value
|= (1 << 3); // VINT (interlaced vertical scaling)
715 value
|= (1 << 0); // 3-tap interpolation
717 value
|= (1 << 1); // 5-tap interpolation
719 value
|= (3 << 5); // disable comb filter
721 cx_andor(MO_FILTER_EVEN
, 0x7ffc7f, value
); /* preserve PEAKEN, PSEL */
722 cx_andor(MO_FILTER_ODD
, 0x7ffc7f, value
);
723 dprintk(1,"set_scale: filter 0x%04x\n", value
);
728 static const u32 xtal
= 28636363;
730 static int set_pll(struct cx88_core
*core
, int prescale
, u32 ofreq
)
732 static const u32 pre
[] = { 0, 0, 0, 3, 2, 1 };
742 pll
= ofreq
* 8 * prescale
* (u64
)(1 << 20);
744 reg
= (pll
& 0x3ffffff) | (pre
[prescale
] << 26);
745 if (((reg
>> 20) & 0x3f) < 14) {
746 printk("%s/0: pll out of range\n",core
->name
);
750 dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
751 reg
, cx_read(MO_PLL_REG
), ofreq
);
752 cx_write(MO_PLL_REG
, reg
);
753 for (i
= 0; i
< 100; i
++) {
754 reg
= cx_read(MO_DEVICE_STATUS
);
756 dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
760 dprintk(1,"pll not locked yet, waiting ...\n");
763 dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale
,ofreq
);
767 int cx88_start_audio_dma(struct cx88_core
*core
)
769 /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
770 int bpl
= cx88_sram_channels
[SRAM_CH25
].fifo_size
/4;
772 int rds_bpl
= cx88_sram_channels
[SRAM_CH27
].fifo_size
/AUD_RDS_LINES
;
774 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
775 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
778 /* setup fifo + format */
779 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH25
], bpl
, 0);
780 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH26
], bpl
, 0);
781 cx88_sram_channel_setup(core
, &cx88_sram_channels
[SRAM_CH27
],
784 cx_write(MO_AUDD_LNGTH
, bpl
); /* fifo bpl size */
785 cx_write(MO_AUDR_LNGTH
, rds_bpl
); /* fifo bpl size */
787 /* enable Up, Down and Audio RDS fifo */
788 cx_write(MO_AUD_DMACNTRL
, 0x0007);
793 int cx88_stop_audio_dma(struct cx88_core
*core
)
795 /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
796 if (cx_read(MO_AUD_DMACNTRL
) & 0x10)
800 cx_write(MO_AUD_DMACNTRL
, 0x0000);
805 static int set_tvaudio(struct cx88_core
*core
)
807 v4l2_std_id norm
= core
->tvnorm
;
809 if (CX88_VMUX_TELEVISION
!= INPUT(core
->input
).type
&&
810 CX88_VMUX_CABLE
!= INPUT(core
->input
).type
)
813 if (V4L2_STD_PAL_BG
& norm
) {
814 core
->tvaudio
= WW_BG
;
816 } else if (V4L2_STD_PAL_DK
& norm
) {
817 core
->tvaudio
= WW_DK
;
819 } else if (V4L2_STD_PAL_I
& norm
) {
820 core
->tvaudio
= WW_I
;
822 } else if (V4L2_STD_SECAM_L
& norm
) {
823 core
->tvaudio
= WW_L
;
825 } else if ((V4L2_STD_SECAM_B
| V4L2_STD_SECAM_G
| V4L2_STD_SECAM_H
) & norm
) {
826 core
->tvaudio
= WW_BG
;
828 } else if (V4L2_STD_SECAM_DK
& norm
) {
829 core
->tvaudio
= WW_DK
;
831 } else if ((V4L2_STD_NTSC_M
& norm
) ||
832 (V4L2_STD_PAL_M
& norm
)) {
833 core
->tvaudio
= WW_BTSC
;
835 } else if (V4L2_STD_NTSC_M_JP
& norm
) {
836 core
->tvaudio
= WW_EIAJ
;
839 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
840 core
->name
, v4l2_norm_to_name(core
->tvnorm
));
841 core
->tvaudio
= WW_NONE
;
845 cx_andor(MO_AFECFG_IO
, 0x1f, 0x0);
846 cx88_set_tvaudio(core
);
847 /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
850 This should be needed only on cx88-alsa. It seems that some cx88 chips have
851 bugs and does require DMA enabled for it to work.
853 cx88_start_audio_dma(core
);
859 int cx88_set_tvnorm(struct cx88_core
*core
, v4l2_std_id norm
)
866 u32 bdelay
,agcdelay
,htotal
;
867 u32 cxiformat
, cxoformat
;
869 if (norm
== core
->tvnorm
)
871 if (core
->v4ldev
&& (vb2_is_busy(&core
->v4ldev
->vb2_vidq
) ||
872 vb2_is_busy(&core
->v4ldev
->vb2_vbiq
)))
874 if (core
->dvbdev
&& vb2_is_busy(&core
->dvbdev
->vb2_mpegq
))
877 fsc8
= norm_fsc8(norm
);
883 if (norm
& V4L2_STD_NTSC_M_JP
) {
884 cxiformat
= VideoFormatNTSCJapan
;
885 cxoformat
= 0x181f0008;
886 } else if (norm
& V4L2_STD_NTSC_443
) {
887 cxiformat
= VideoFormatNTSC443
;
888 cxoformat
= 0x181f0008;
889 } else if (norm
& V4L2_STD_PAL_M
) {
890 cxiformat
= VideoFormatPALM
;
891 cxoformat
= 0x1c1f0008;
892 } else if (norm
& V4L2_STD_PAL_N
) {
893 cxiformat
= VideoFormatPALN
;
894 cxoformat
= 0x1c1f0008;
895 } else if (norm
& V4L2_STD_PAL_Nc
) {
896 cxiformat
= VideoFormatPALNC
;
897 cxoformat
= 0x1c1f0008;
898 } else if (norm
& V4L2_STD_PAL_60
) {
899 cxiformat
= VideoFormatPAL60
;
900 cxoformat
= 0x181f0008;
901 } else if (norm
& V4L2_STD_NTSC
) {
902 cxiformat
= VideoFormatNTSC
;
903 cxoformat
= 0x181f0008;
904 } else if (norm
& V4L2_STD_SECAM
) {
905 step_db
= 4250000 * 8;
906 step_dr
= 4406250 * 8;
908 cxiformat
= VideoFormatSECAM
;
909 cxoformat
= 0x181f0008;
911 cxiformat
= VideoFormatPAL
;
912 cxoformat
= 0x181f0008;
915 dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
916 v4l2_norm_to_name(core
->tvnorm
), fsc8
, adc_clock
, vdec_clock
,
918 set_pll(core
,2,vdec_clock
);
920 dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
921 cxiformat
, cx_read(MO_INPUT_FORMAT
) & 0x0f);
922 /* Chroma AGC must be disabled if SECAM is used, we enable it
923 by default on PAL and NTSC */
924 cx_andor(MO_INPUT_FORMAT
, 0x40f,
925 norm
& V4L2_STD_SECAM
? cxiformat
: cxiformat
| 0x400);
927 // FIXME: as-is from DScaler
928 dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
929 cxoformat
, cx_read(MO_OUTPUT_FORMAT
));
930 cx_write(MO_OUTPUT_FORMAT
, cxoformat
);
932 // MO_SCONV_REG = adc clock / video dec clock * 2^17
933 tmp64
= adc_clock
* (u64
)(1 << 17);
934 do_div(tmp64
, vdec_clock
);
935 dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
936 (u32
)tmp64
, cx_read(MO_SCONV_REG
));
937 cx_write(MO_SCONV_REG
, (u32
)tmp64
);
939 // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
940 tmp64
= step_db
* (u64
)(1 << 22);
941 do_div(tmp64
, vdec_clock
);
942 dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
943 (u32
)tmp64
, cx_read(MO_SUB_STEP
));
944 cx_write(MO_SUB_STEP
, (u32
)tmp64
);
946 // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
947 tmp64
= step_dr
* (u64
)(1 << 22);
948 do_div(tmp64
, vdec_clock
);
949 dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
950 (u32
)tmp64
, cx_read(MO_SUB_STEP_DR
));
951 cx_write(MO_SUB_STEP_DR
, (u32
)tmp64
);
954 bdelay
= vdec_clock
* 65 / 20000000 + 21;
955 agcdelay
= vdec_clock
* 68 / 20000000 + 15;
956 dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
957 (bdelay
<< 8) | agcdelay
, cx_read(MO_AGC_BURST
), bdelay
, agcdelay
);
958 cx_write(MO_AGC_BURST
, (bdelay
<< 8) | agcdelay
);
961 tmp64
= norm_htotal(norm
) * (u64
)vdec_clock
;
964 dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
965 htotal
, cx_read(MO_HTOTAL
), (u32
)tmp64
);
966 cx_andor(MO_HTOTAL
, 0x07ff, htotal
);
968 // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
969 // the effective vbi offset ~244 samples, the same as the Bt8x8
970 cx_write(MO_VBI_PACKET
, (10<<11) | norm_vbipack(norm
));
972 // this is needed as well to set all tvnorm parameter
973 cx88_set_scale(core
, 320, 240, V4L2_FIELD_INTERLACED
);
979 call_all(core
, video
, s_std
, norm
);
981 /* The chroma_agc control should be inaccessible if the video format is SECAM */
982 v4l2_ctrl_grab(core
->chroma_agc
, cxiformat
== VideoFormatSECAM
);
988 /* ------------------------------------------------------------------ */
990 void cx88_vdev_init(struct cx88_core
*core
,
992 struct video_device
*vfd
,
993 const struct video_device
*template_
,
999 * The dev pointer of v4l2_device is NULL, instead we set the
1000 * video_device dev_parent pointer to the correct PCI bus device.
1001 * This driver is a rare example where there is one v4l2_device,
1002 * but the video nodes have different parent (PCI) devices.
1004 vfd
->v4l2_dev
= &core
->v4l2_dev
;
1005 vfd
->dev_parent
= &pci
->dev
;
1006 vfd
->release
= video_device_release_empty
;
1007 vfd
->lock
= &core
->lock
;
1008 snprintf(vfd
->name
, sizeof(vfd
->name
), "%s %s (%s)",
1009 core
->name
, type
, core
->board
.name
);
1012 struct cx88_core
* cx88_core_get(struct pci_dev
*pci
)
1014 struct cx88_core
*core
;
1016 mutex_lock(&devlist
);
1017 list_for_each_entry(core
, &cx88_devlist
, devlist
) {
1018 if (pci
->bus
->number
!= core
->pci_bus
)
1020 if (PCI_SLOT(pci
->devfn
) != core
->pci_slot
)
1023 if (0 != cx88_get_resources(core
, pci
)) {
1024 mutex_unlock(&devlist
);
1027 atomic_inc(&core
->refcount
);
1028 mutex_unlock(&devlist
);
1032 core
= cx88_core_create(pci
, cx88_devcount
);
1035 list_add_tail(&core
->devlist
, &cx88_devlist
);
1038 mutex_unlock(&devlist
);
1042 void cx88_core_put(struct cx88_core
*core
, struct pci_dev
*pci
)
1044 release_mem_region(pci_resource_start(pci
,0),
1045 pci_resource_len(pci
,0));
1047 if (!atomic_dec_and_test(&core
->refcount
))
1050 mutex_lock(&devlist
);
1052 if (0 == core
->i2c_rc
) {
1054 i2c_unregister_device(core
->i2c_rtc
);
1055 i2c_del_adapter(&core
->i2c_adap
);
1057 list_del(&core
->devlist
);
1058 iounmap(core
->lmmio
);
1060 mutex_unlock(&devlist
);
1061 v4l2_ctrl_handler_free(&core
->video_hdl
);
1062 v4l2_ctrl_handler_free(&core
->audio_hdl
);
1063 v4l2_device_unregister(&core
->v4l2_dev
);
1067 /* ------------------------------------------------------------------ */
1069 EXPORT_SYMBOL(cx88_print_irqbits
);
1071 EXPORT_SYMBOL(cx88_core_irq
);
1072 EXPORT_SYMBOL(cx88_wakeup
);
1073 EXPORT_SYMBOL(cx88_reset
);
1074 EXPORT_SYMBOL(cx88_shutdown
);
1076 EXPORT_SYMBOL(cx88_risc_buffer
);
1077 EXPORT_SYMBOL(cx88_risc_databuffer
);
1079 EXPORT_SYMBOL(cx88_sram_channels
);
1080 EXPORT_SYMBOL(cx88_sram_channel_setup
);
1081 EXPORT_SYMBOL(cx88_sram_channel_dump
);
1083 EXPORT_SYMBOL(cx88_set_tvnorm
);
1084 EXPORT_SYMBOL(cx88_set_scale
);
1086 EXPORT_SYMBOL(cx88_vdev_init
);
1087 EXPORT_SYMBOL(cx88_core_get
);
1088 EXPORT_SYMBOL(cx88_core_put
);
1090 EXPORT_SYMBOL(cx88_ir_start
);
1091 EXPORT_SYMBOL(cx88_ir_stop
);