1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2009 Red Hat, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
38 #include <asm/pgalloc.h>
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly
=
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
60 static struct shrinker deferred_split_shrinker
;
62 static atomic_t huge_zero_refcount
;
63 struct page
*huge_zero_page __read_mostly
;
65 bool transparent_hugepage_enabled(struct vm_area_struct
*vma
)
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr
= (vma
->vm_end
& HPAGE_PMD_MASK
) - HPAGE_PMD_SIZE
;
70 if (!transhuge_vma_suitable(vma
, addr
))
72 if (vma_is_anonymous(vma
))
73 return __transparent_hugepage_enabled(vma
);
74 if (vma_is_shmem(vma
))
75 return shmem_huge_enabled(vma
);
80 static struct page
*get_huge_zero_page(void)
82 struct page
*zero_page
;
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
85 return READ_ONCE(huge_zero_page
);
87 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
93 count_vm_event(THP_ZERO_PAGE_ALLOC
);
95 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
97 __free_pages(zero_page
, compound_order(zero_page
));
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount
, 2);
104 return READ_ONCE(huge_zero_page
);
107 static void put_huge_zero_page(void)
110 * Counter should never go to zero here. Only shrinker can put
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
116 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
118 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
119 return READ_ONCE(huge_zero_page
);
121 if (!get_huge_zero_page())
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
125 put_huge_zero_page();
127 return READ_ONCE(huge_zero_page
);
130 void mm_put_huge_zero_page(struct mm_struct
*mm
)
132 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
133 put_huge_zero_page();
136 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
137 struct shrink_control
*sc
)
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
144 struct shrink_control
*sc
)
146 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
147 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
148 BUG_ON(zero_page
== NULL
);
149 __free_pages(zero_page
, compound_order(zero_page
));
156 static struct shrinker huge_zero_page_shrinker
= {
157 .count_objects
= shrink_huge_zero_page_count
,
158 .scan_objects
= shrink_huge_zero_page_scan
,
159 .seeks
= DEFAULT_SEEKS
,
163 static ssize_t
enabled_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
, char *buf
)
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
167 return sprintf(buf
, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
169 return sprintf(buf
, "always [madvise] never\n");
171 return sprintf(buf
, "always madvise [never]\n");
174 static ssize_t
enabled_store(struct kobject
*kobj
,
175 struct kobj_attribute
*attr
,
176 const char *buf
, size_t count
)
180 if (sysfs_streq(buf
, "always")) {
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
183 } else if (sysfs_streq(buf
, "madvise")) {
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
186 } else if (sysfs_streq(buf
, "never")) {
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
193 int err
= start_stop_khugepaged();
199 static struct kobj_attribute enabled_attr
=
200 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
202 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
203 struct kobj_attribute
*attr
, char *buf
,
204 enum transparent_hugepage_flag flag
)
206 return sprintf(buf
, "%d\n",
207 !!test_bit(flag
, &transparent_hugepage_flags
));
210 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
211 struct kobj_attribute
*attr
,
212 const char *buf
, size_t count
,
213 enum transparent_hugepage_flag flag
)
218 ret
= kstrtoul(buf
, 10, &value
);
225 set_bit(flag
, &transparent_hugepage_flags
);
227 clear_bit(flag
, &transparent_hugepage_flags
);
232 static ssize_t
defrag_show(struct kobject
*kobj
,
233 struct kobj_attribute
*attr
, char *buf
)
235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
236 return sprintf(buf
, "[always] defer defer+madvise madvise never\n");
237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
238 return sprintf(buf
, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
240 return sprintf(buf
, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
242 return sprintf(buf
, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf
, "always defer defer+madvise madvise [never]\n");
246 static ssize_t
defrag_store(struct kobject
*kobj
,
247 struct kobj_attribute
*attr
,
248 const char *buf
, size_t count
)
250 if (sysfs_streq(buf
, "always")) {
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
255 } else if (sysfs_streq(buf
, "defer+madvise")) {
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
260 } else if (sysfs_streq(buf
, "defer")) {
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
265 } else if (sysfs_streq(buf
, "madvise")) {
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
270 } else if (sysfs_streq(buf
, "never")) {
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
);
280 static struct kobj_attribute defrag_attr
=
281 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
283 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
284 struct kobj_attribute
*attr
, char *buf
)
286 return single_hugepage_flag_show(kobj
, attr
, buf
,
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
289 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
290 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
292 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
295 static struct kobj_attribute use_zero_page_attr
=
296 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
298 static ssize_t
hpage_pmd_size_show(struct kobject
*kobj
,
299 struct kobj_attribute
*attr
, char *buf
)
301 return sprintf(buf
, "%lu\n", HPAGE_PMD_SIZE
);
303 static struct kobj_attribute hpage_pmd_size_attr
=
304 __ATTR_RO(hpage_pmd_size
);
306 #ifdef CONFIG_DEBUG_VM
307 static ssize_t
debug_cow_show(struct kobject
*kobj
,
308 struct kobj_attribute
*attr
, char *buf
)
310 return single_hugepage_flag_show(kobj
, attr
, buf
,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
313 static ssize_t
debug_cow_store(struct kobject
*kobj
,
314 struct kobj_attribute
*attr
,
315 const char *buf
, size_t count
)
317 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
320 static struct kobj_attribute debug_cow_attr
=
321 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
322 #endif /* CONFIG_DEBUG_VM */
324 static struct attribute
*hugepage_attr
[] = {
327 &use_zero_page_attr
.attr
,
328 &hpage_pmd_size_attr
.attr
,
329 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
330 &shmem_enabled_attr
.attr
,
332 #ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr
.attr
,
338 static const struct attribute_group hugepage_attr_group
= {
339 .attrs
= hugepage_attr
,
342 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
346 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
347 if (unlikely(!*hugepage_kobj
)) {
348 pr_err("failed to create transparent hugepage kobject\n");
352 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
354 pr_err("failed to register transparent hugepage group\n");
358 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
360 pr_err("failed to register transparent hugepage group\n");
361 goto remove_hp_group
;
367 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
369 kobject_put(*hugepage_kobj
);
373 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
375 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
376 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
377 kobject_put(hugepage_kobj
);
380 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
385 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
388 #endif /* CONFIG_SYSFS */
390 static int __init
hugepage_init(void)
393 struct kobject
*hugepage_kobj
;
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags
= 0;
401 * hugepages can't be allocated by the buddy allocator
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
410 err
= hugepage_init_sysfs(&hugepage_kobj
);
414 err
= khugepaged_init();
418 err
= register_shrinker(&huge_zero_page_shrinker
);
420 goto err_hzp_shrinker
;
421 err
= register_shrinker(&deferred_split_shrinker
);
423 goto err_split_shrinker
;
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT
))) {
431 transparent_hugepage_flags
= 0;
435 err
= start_stop_khugepaged();
441 unregister_shrinker(&deferred_split_shrinker
);
443 unregister_shrinker(&huge_zero_page_shrinker
);
445 khugepaged_destroy();
447 hugepage_exit_sysfs(hugepage_kobj
);
451 subsys_initcall(hugepage_init
);
453 static int __init
setup_transparent_hugepage(char *str
)
458 if (!strcmp(str
, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
460 &transparent_hugepage_flags
);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
462 &transparent_hugepage_flags
);
464 } else if (!strcmp(str
, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
466 &transparent_hugepage_flags
);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
468 &transparent_hugepage_flags
);
470 } else if (!strcmp(str
, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
472 &transparent_hugepage_flags
);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
474 &transparent_hugepage_flags
);
479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
482 __setup("transparent_hugepage=", setup_transparent_hugepage
);
484 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
486 if (likely(vma
->vm_flags
& VM_WRITE
))
487 pmd
= pmd_mkwrite(pmd
);
492 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
494 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
495 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
498 return &memcg
->deferred_split_queue
;
500 return &pgdat
->deferred_split_queue
;
503 static inline struct deferred_split
*get_deferred_split_queue(struct page
*page
)
505 struct pglist_data
*pgdat
= NODE_DATA(page_to_nid(page
));
507 return &pgdat
->deferred_split_queue
;
511 void prep_transhuge_page(struct page
*page
)
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
518 INIT_LIST_HEAD(page_deferred_list(page
));
519 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
522 static unsigned long __thp_get_unmapped_area(struct file
*filp
,
523 unsigned long addr
, unsigned long len
,
524 loff_t off
, unsigned long flags
, unsigned long size
)
526 loff_t off_end
= off
+ len
;
527 loff_t off_align
= round_up(off
, size
);
528 unsigned long len_pad
, ret
;
530 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
533 len_pad
= len
+ size
;
534 if (len_pad
< len
|| (off
+ len_pad
) < off
)
537 ret
= current
->mm
->get_unmapped_area(filp
, addr
, len_pad
,
538 off
>> PAGE_SHIFT
, flags
);
541 * The failure might be due to length padding. The caller will retry
542 * without the padding.
544 if (IS_ERR_VALUE(ret
))
548 * Do not try to align to THP boundary if allocation at the address
554 ret
+= (off
- ret
) & (size
- 1);
558 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
559 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
562 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
564 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
567 ret
= __thp_get_unmapped_area(filp
, addr
, len
, off
, flags
, PMD_SIZE
);
571 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
573 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
575 static vm_fault_t
__do_huge_pmd_anonymous_page(struct vm_fault
*vmf
,
576 struct page
*page
, gfp_t gfp
)
578 struct vm_area_struct
*vma
= vmf
->vma
;
579 struct mem_cgroup
*memcg
;
581 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
584 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
586 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
588 count_vm_event(THP_FAULT_FALLBACK
);
589 return VM_FAULT_FALLBACK
;
592 pgtable
= pte_alloc_one(vma
->vm_mm
);
593 if (unlikely(!pgtable
)) {
598 clear_huge_page(page
, vmf
->address
, HPAGE_PMD_NR
);
600 * The memory barrier inside __SetPageUptodate makes sure that
601 * clear_huge_page writes become visible before the set_pmd_at()
604 __SetPageUptodate(page
);
606 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
607 if (unlikely(!pmd_none(*vmf
->pmd
))) {
612 ret
= check_stable_address_space(vma
->vm_mm
);
616 /* Deliver the page fault to userland */
617 if (userfaultfd_missing(vma
)) {
620 spin_unlock(vmf
->ptl
);
621 mem_cgroup_cancel_charge(page
, memcg
, true);
623 pte_free(vma
->vm_mm
, pgtable
);
624 ret2
= handle_userfault(vmf
, VM_UFFD_MISSING
);
625 VM_BUG_ON(ret2
& VM_FAULT_FALLBACK
);
629 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
630 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
631 page_add_new_anon_rmap(page
, vma
, haddr
, true);
632 mem_cgroup_commit_charge(page
, memcg
, false, true);
633 lru_cache_add_active_or_unevictable(page
, vma
);
634 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, pgtable
);
635 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
636 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
637 mm_inc_nr_ptes(vma
->vm_mm
);
638 spin_unlock(vmf
->ptl
);
639 count_vm_event(THP_FAULT_ALLOC
);
640 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
645 spin_unlock(vmf
->ptl
);
648 pte_free(vma
->vm_mm
, pgtable
);
649 mem_cgroup_cancel_charge(page
, memcg
, true);
656 * always: directly stall for all thp allocations
657 * defer: wake kswapd and fail if not immediately available
658 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
659 * fail if not immediately available
660 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
662 * never: never stall for any thp allocation
664 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
666 const bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
668 /* Always do synchronous compaction */
669 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
670 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
672 /* Kick kcompactd and fail quickly */
673 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
674 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
676 /* Synchronous compaction if madvised, otherwise kick kcompactd */
677 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG
, &transparent_hugepage_flags
))
678 return GFP_TRANSHUGE_LIGHT
|
679 (vma_madvised
? __GFP_DIRECT_RECLAIM
:
680 __GFP_KSWAPD_RECLAIM
);
682 /* Only do synchronous compaction if madvised */
683 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
684 return GFP_TRANSHUGE_LIGHT
|
685 (vma_madvised
? __GFP_DIRECT_RECLAIM
: 0);
687 return GFP_TRANSHUGE_LIGHT
;
690 /* Caller must hold page table lock. */
691 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
692 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
693 struct page
*zero_page
)
698 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
699 entry
= pmd_mkhuge(entry
);
701 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
702 set_pmd_at(mm
, haddr
, pmd
, entry
);
707 vm_fault_t
do_huge_pmd_anonymous_page(struct vm_fault
*vmf
)
709 struct vm_area_struct
*vma
= vmf
->vma
;
712 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
714 if (!transhuge_vma_suitable(vma
, haddr
))
715 return VM_FAULT_FALLBACK
;
716 if (unlikely(anon_vma_prepare(vma
)))
718 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
720 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
721 !mm_forbids_zeropage(vma
->vm_mm
) &&
722 transparent_hugepage_use_zero_page()) {
724 struct page
*zero_page
;
727 pgtable
= pte_alloc_one(vma
->vm_mm
);
728 if (unlikely(!pgtable
))
730 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
731 if (unlikely(!zero_page
)) {
732 pte_free(vma
->vm_mm
, pgtable
);
733 count_vm_event(THP_FAULT_FALLBACK
);
734 return VM_FAULT_FALLBACK
;
736 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
739 if (pmd_none(*vmf
->pmd
)) {
740 ret
= check_stable_address_space(vma
->vm_mm
);
742 spin_unlock(vmf
->ptl
);
743 } else if (userfaultfd_missing(vma
)) {
744 spin_unlock(vmf
->ptl
);
745 ret
= handle_userfault(vmf
, VM_UFFD_MISSING
);
746 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
748 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
749 haddr
, vmf
->pmd
, zero_page
);
750 spin_unlock(vmf
->ptl
);
754 spin_unlock(vmf
->ptl
);
756 pte_free(vma
->vm_mm
, pgtable
);
759 gfp
= alloc_hugepage_direct_gfpmask(vma
);
760 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
761 if (unlikely(!page
)) {
762 count_vm_event(THP_FAULT_FALLBACK
);
763 return VM_FAULT_FALLBACK
;
765 prep_transhuge_page(page
);
766 return __do_huge_pmd_anonymous_page(vmf
, page
, gfp
);
769 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
770 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
,
773 struct mm_struct
*mm
= vma
->vm_mm
;
777 ptl
= pmd_lock(mm
, pmd
);
778 if (!pmd_none(*pmd
)) {
780 if (pmd_pfn(*pmd
) != pfn_t_to_pfn(pfn
)) {
781 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd
));
784 entry
= pmd_mkyoung(*pmd
);
785 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
786 if (pmdp_set_access_flags(vma
, addr
, pmd
, entry
, 1))
787 update_mmu_cache_pmd(vma
, addr
, pmd
);
793 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
794 if (pfn_t_devmap(pfn
))
795 entry
= pmd_mkdevmap(entry
);
797 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
798 entry
= maybe_pmd_mkwrite(entry
, vma
);
802 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
807 set_pmd_at(mm
, addr
, pmd
, entry
);
808 update_mmu_cache_pmd(vma
, addr
, pmd
);
813 pte_free(mm
, pgtable
);
816 vm_fault_t
vmf_insert_pfn_pmd(struct vm_fault
*vmf
, pfn_t pfn
, bool write
)
818 unsigned long addr
= vmf
->address
& PMD_MASK
;
819 struct vm_area_struct
*vma
= vmf
->vma
;
820 pgprot_t pgprot
= vma
->vm_page_prot
;
821 pgtable_t pgtable
= NULL
;
824 * If we had pmd_special, we could avoid all these restrictions,
825 * but we need to be consistent with PTEs and architectures that
826 * can't support a 'special' bit.
828 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
830 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
831 (VM_PFNMAP
|VM_MIXEDMAP
));
832 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
834 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
835 return VM_FAULT_SIGBUS
;
837 if (arch_needs_pgtable_deposit()) {
838 pgtable
= pte_alloc_one(vma
->vm_mm
);
843 track_pfn_insert(vma
, &pgprot
, pfn
);
845 insert_pfn_pmd(vma
, addr
, vmf
->pmd
, pfn
, pgprot
, write
, pgtable
);
846 return VM_FAULT_NOPAGE
;
848 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
850 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
851 static pud_t
maybe_pud_mkwrite(pud_t pud
, struct vm_area_struct
*vma
)
853 if (likely(vma
->vm_flags
& VM_WRITE
))
854 pud
= pud_mkwrite(pud
);
858 static void insert_pfn_pud(struct vm_area_struct
*vma
, unsigned long addr
,
859 pud_t
*pud
, pfn_t pfn
, pgprot_t prot
, bool write
)
861 struct mm_struct
*mm
= vma
->vm_mm
;
865 ptl
= pud_lock(mm
, pud
);
866 if (!pud_none(*pud
)) {
868 if (pud_pfn(*pud
) != pfn_t_to_pfn(pfn
)) {
869 WARN_ON_ONCE(!is_huge_zero_pud(*pud
));
872 entry
= pud_mkyoung(*pud
);
873 entry
= maybe_pud_mkwrite(pud_mkdirty(entry
), vma
);
874 if (pudp_set_access_flags(vma
, addr
, pud
, entry
, 1))
875 update_mmu_cache_pud(vma
, addr
, pud
);
880 entry
= pud_mkhuge(pfn_t_pud(pfn
, prot
));
881 if (pfn_t_devmap(pfn
))
882 entry
= pud_mkdevmap(entry
);
884 entry
= pud_mkyoung(pud_mkdirty(entry
));
885 entry
= maybe_pud_mkwrite(entry
, vma
);
887 set_pud_at(mm
, addr
, pud
, entry
);
888 update_mmu_cache_pud(vma
, addr
, pud
);
894 vm_fault_t
vmf_insert_pfn_pud(struct vm_fault
*vmf
, pfn_t pfn
, bool write
)
896 unsigned long addr
= vmf
->address
& PUD_MASK
;
897 struct vm_area_struct
*vma
= vmf
->vma
;
898 pgprot_t pgprot
= vma
->vm_page_prot
;
901 * If we had pud_special, we could avoid all these restrictions,
902 * but we need to be consistent with PTEs and architectures that
903 * can't support a 'special' bit.
905 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) &&
907 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
908 (VM_PFNMAP
|VM_MIXEDMAP
));
909 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
911 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
912 return VM_FAULT_SIGBUS
;
914 track_pfn_insert(vma
, &pgprot
, pfn
);
916 insert_pfn_pud(vma
, addr
, vmf
->pud
, pfn
, pgprot
, write
);
917 return VM_FAULT_NOPAGE
;
919 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud
);
920 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
922 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
923 pmd_t
*pmd
, int flags
)
927 _pmd
= pmd_mkyoung(*pmd
);
928 if (flags
& FOLL_WRITE
)
929 _pmd
= pmd_mkdirty(_pmd
);
930 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
931 pmd
, _pmd
, flags
& FOLL_WRITE
))
932 update_mmu_cache_pmd(vma
, addr
, pmd
);
935 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
936 pmd_t
*pmd
, int flags
, struct dev_pagemap
**pgmap
)
938 unsigned long pfn
= pmd_pfn(*pmd
);
939 struct mm_struct
*mm
= vma
->vm_mm
;
942 assert_spin_locked(pmd_lockptr(mm
, pmd
));
945 * When we COW a devmap PMD entry, we split it into PTEs, so we should
946 * not be in this function with `flags & FOLL_COW` set.
948 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
950 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
953 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
958 if (flags
& FOLL_TOUCH
)
959 touch_pmd(vma
, addr
, pmd
, flags
);
962 * device mapped pages can only be returned if the
963 * caller will manage the page reference count.
965 if (!(flags
& FOLL_GET
))
966 return ERR_PTR(-EEXIST
);
968 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
969 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
971 return ERR_PTR(-EFAULT
);
972 page
= pfn_to_page(pfn
);
978 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
979 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
980 struct vm_area_struct
*vma
)
982 spinlock_t
*dst_ptl
, *src_ptl
;
983 struct page
*src_page
;
985 pgtable_t pgtable
= NULL
;
988 /* Skip if can be re-fill on fault */
989 if (!vma_is_anonymous(vma
))
992 pgtable
= pte_alloc_one(dst_mm
);
993 if (unlikely(!pgtable
))
996 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
997 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
998 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1003 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1004 if (unlikely(is_swap_pmd(pmd
))) {
1005 swp_entry_t entry
= pmd_to_swp_entry(pmd
);
1007 VM_BUG_ON(!is_pmd_migration_entry(pmd
));
1008 if (is_write_migration_entry(entry
)) {
1009 make_migration_entry_read(&entry
);
1010 pmd
= swp_entry_to_pmd(entry
);
1011 if (pmd_swp_soft_dirty(*src_pmd
))
1012 pmd
= pmd_swp_mksoft_dirty(pmd
);
1013 set_pmd_at(src_mm
, addr
, src_pmd
, pmd
);
1015 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1016 mm_inc_nr_ptes(dst_mm
);
1017 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1018 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1024 if (unlikely(!pmd_trans_huge(pmd
))) {
1025 pte_free(dst_mm
, pgtable
);
1029 * When page table lock is held, the huge zero pmd should not be
1030 * under splitting since we don't split the page itself, only pmd to
1033 if (is_huge_zero_pmd(pmd
)) {
1034 struct page
*zero_page
;
1036 * get_huge_zero_page() will never allocate a new page here,
1037 * since we already have a zero page to copy. It just takes a
1040 zero_page
= mm_get_huge_zero_page(dst_mm
);
1041 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
1047 src_page
= pmd_page(pmd
);
1048 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
1050 page_dup_rmap(src_page
, true);
1051 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1052 mm_inc_nr_ptes(dst_mm
);
1053 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
1055 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
1056 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
1057 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
1061 spin_unlock(src_ptl
);
1062 spin_unlock(dst_ptl
);
1067 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1068 static void touch_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1069 pud_t
*pud
, int flags
)
1073 _pud
= pud_mkyoung(*pud
);
1074 if (flags
& FOLL_WRITE
)
1075 _pud
= pud_mkdirty(_pud
);
1076 if (pudp_set_access_flags(vma
, addr
& HPAGE_PUD_MASK
,
1077 pud
, _pud
, flags
& FOLL_WRITE
))
1078 update_mmu_cache_pud(vma
, addr
, pud
);
1081 struct page
*follow_devmap_pud(struct vm_area_struct
*vma
, unsigned long addr
,
1082 pud_t
*pud
, int flags
, struct dev_pagemap
**pgmap
)
1084 unsigned long pfn
= pud_pfn(*pud
);
1085 struct mm_struct
*mm
= vma
->vm_mm
;
1088 assert_spin_locked(pud_lockptr(mm
, pud
));
1090 if (flags
& FOLL_WRITE
&& !pud_write(*pud
))
1093 if (pud_present(*pud
) && pud_devmap(*pud
))
1098 if (flags
& FOLL_TOUCH
)
1099 touch_pud(vma
, addr
, pud
, flags
);
1102 * device mapped pages can only be returned if the
1103 * caller will manage the page reference count.
1105 if (!(flags
& FOLL_GET
))
1106 return ERR_PTR(-EEXIST
);
1108 pfn
+= (addr
& ~PUD_MASK
) >> PAGE_SHIFT
;
1109 *pgmap
= get_dev_pagemap(pfn
, *pgmap
);
1111 return ERR_PTR(-EFAULT
);
1112 page
= pfn_to_page(pfn
);
1118 int copy_huge_pud(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1119 pud_t
*dst_pud
, pud_t
*src_pud
, unsigned long addr
,
1120 struct vm_area_struct
*vma
)
1122 spinlock_t
*dst_ptl
, *src_ptl
;
1126 dst_ptl
= pud_lock(dst_mm
, dst_pud
);
1127 src_ptl
= pud_lockptr(src_mm
, src_pud
);
1128 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1132 if (unlikely(!pud_trans_huge(pud
) && !pud_devmap(pud
)))
1136 * When page table lock is held, the huge zero pud should not be
1137 * under splitting since we don't split the page itself, only pud to
1140 if (is_huge_zero_pud(pud
)) {
1141 /* No huge zero pud yet */
1144 pudp_set_wrprotect(src_mm
, addr
, src_pud
);
1145 pud
= pud_mkold(pud_wrprotect(pud
));
1146 set_pud_at(dst_mm
, addr
, dst_pud
, pud
);
1150 spin_unlock(src_ptl
);
1151 spin_unlock(dst_ptl
);
1155 void huge_pud_set_accessed(struct vm_fault
*vmf
, pud_t orig_pud
)
1158 unsigned long haddr
;
1159 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1161 vmf
->ptl
= pud_lock(vmf
->vma
->vm_mm
, vmf
->pud
);
1162 if (unlikely(!pud_same(*vmf
->pud
, orig_pud
)))
1165 entry
= pud_mkyoung(orig_pud
);
1167 entry
= pud_mkdirty(entry
);
1168 haddr
= vmf
->address
& HPAGE_PUD_MASK
;
1169 if (pudp_set_access_flags(vmf
->vma
, haddr
, vmf
->pud
, entry
, write
))
1170 update_mmu_cache_pud(vmf
->vma
, vmf
->address
, vmf
->pud
);
1173 spin_unlock(vmf
->ptl
);
1175 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1177 void huge_pmd_set_accessed(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1180 unsigned long haddr
;
1181 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
1183 vmf
->ptl
= pmd_lock(vmf
->vma
->vm_mm
, vmf
->pmd
);
1184 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1187 entry
= pmd_mkyoung(orig_pmd
);
1189 entry
= pmd_mkdirty(entry
);
1190 haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1191 if (pmdp_set_access_flags(vmf
->vma
, haddr
, vmf
->pmd
, entry
, write
))
1192 update_mmu_cache_pmd(vmf
->vma
, vmf
->address
, vmf
->pmd
);
1195 spin_unlock(vmf
->ptl
);
1198 static vm_fault_t
do_huge_pmd_wp_page_fallback(struct vm_fault
*vmf
,
1199 pmd_t orig_pmd
, struct page
*page
)
1201 struct vm_area_struct
*vma
= vmf
->vma
;
1202 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1203 struct mem_cgroup
*memcg
;
1208 struct page
**pages
;
1209 struct mmu_notifier_range range
;
1211 pages
= kmalloc_array(HPAGE_PMD_NR
, sizeof(struct page
*),
1213 if (unlikely(!pages
)) {
1214 ret
|= VM_FAULT_OOM
;
1218 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1219 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
, vma
,
1220 vmf
->address
, page_to_nid(page
));
1221 if (unlikely(!pages
[i
] ||
1222 mem_cgroup_try_charge_delay(pages
[i
], vma
->vm_mm
,
1223 GFP_KERNEL
, &memcg
, false))) {
1227 memcg
= (void *)page_private(pages
[i
]);
1228 set_page_private(pages
[i
], 0);
1229 mem_cgroup_cancel_charge(pages
[i
], memcg
,
1234 ret
|= VM_FAULT_OOM
;
1237 set_page_private(pages
[i
], (unsigned long)memcg
);
1240 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1241 copy_user_highpage(pages
[i
], page
+ i
,
1242 haddr
+ PAGE_SIZE
* i
, vma
);
1243 __SetPageUptodate(pages
[i
]);
1247 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1248 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1249 mmu_notifier_invalidate_range_start(&range
);
1251 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1252 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1253 goto out_free_pages
;
1254 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1257 * Leave pmd empty until pte is filled note we must notify here as
1258 * concurrent CPU thread might write to new page before the call to
1259 * mmu_notifier_invalidate_range_end() happens which can lead to a
1260 * device seeing memory write in different order than CPU.
1262 * See Documentation/vm/mmu_notifier.rst
1264 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1266 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, vmf
->pmd
);
1267 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
1269 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1271 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1272 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1273 memcg
= (void *)page_private(pages
[i
]);
1274 set_page_private(pages
[i
], 0);
1275 page_add_new_anon_rmap(pages
[i
], vmf
->vma
, haddr
, false);
1276 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
1277 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1278 vmf
->pte
= pte_offset_map(&_pmd
, haddr
);
1279 VM_BUG_ON(!pte_none(*vmf
->pte
));
1280 set_pte_at(vma
->vm_mm
, haddr
, vmf
->pte
, entry
);
1281 pte_unmap(vmf
->pte
);
1285 smp_wmb(); /* make pte visible before pmd */
1286 pmd_populate(vma
->vm_mm
, vmf
->pmd
, pgtable
);
1287 page_remove_rmap(page
, true);
1288 spin_unlock(vmf
->ptl
);
1291 * No need to double call mmu_notifier->invalidate_range() callback as
1292 * the above pmdp_huge_clear_flush_notify() did already call it.
1294 mmu_notifier_invalidate_range_only_end(&range
);
1296 ret
|= VM_FAULT_WRITE
;
1303 spin_unlock(vmf
->ptl
);
1304 mmu_notifier_invalidate_range_end(&range
);
1305 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1306 memcg
= (void *)page_private(pages
[i
]);
1307 set_page_private(pages
[i
], 0);
1308 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1315 vm_fault_t
do_huge_pmd_wp_page(struct vm_fault
*vmf
, pmd_t orig_pmd
)
1317 struct vm_area_struct
*vma
= vmf
->vma
;
1318 struct page
*page
= NULL
, *new_page
;
1319 struct mem_cgroup
*memcg
;
1320 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1321 struct mmu_notifier_range range
;
1322 gfp_t huge_gfp
; /* for allocation and charge */
1325 vmf
->ptl
= pmd_lockptr(vma
->vm_mm
, vmf
->pmd
);
1326 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1327 if (is_huge_zero_pmd(orig_pmd
))
1329 spin_lock(vmf
->ptl
);
1330 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
)))
1333 page
= pmd_page(orig_pmd
);
1334 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1336 * We can only reuse the page if nobody else maps the huge page or it's
1339 if (!trylock_page(page
)) {
1341 spin_unlock(vmf
->ptl
);
1343 spin_lock(vmf
->ptl
);
1344 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1351 if (reuse_swap_page(page
, NULL
)) {
1353 entry
= pmd_mkyoung(orig_pmd
);
1354 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1355 if (pmdp_set_access_flags(vma
, haddr
, vmf
->pmd
, entry
, 1))
1356 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1357 ret
|= VM_FAULT_WRITE
;
1363 spin_unlock(vmf
->ptl
);
1365 if (__transparent_hugepage_enabled(vma
) &&
1366 !transparent_hugepage_debug_cow()) {
1367 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1368 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1372 if (likely(new_page
)) {
1373 prep_transhuge_page(new_page
);
1376 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1377 ret
|= VM_FAULT_FALLBACK
;
1379 ret
= do_huge_pmd_wp_page_fallback(vmf
, orig_pmd
, page
);
1380 if (ret
& VM_FAULT_OOM
) {
1381 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1382 ret
|= VM_FAULT_FALLBACK
;
1386 count_vm_event(THP_FAULT_FALLBACK
);
1390 if (unlikely(mem_cgroup_try_charge_delay(new_page
, vma
->vm_mm
,
1391 huge_gfp
, &memcg
, true))) {
1393 split_huge_pmd(vma
, vmf
->pmd
, vmf
->address
);
1396 ret
|= VM_FAULT_FALLBACK
;
1397 count_vm_event(THP_FAULT_FALLBACK
);
1401 count_vm_event(THP_FAULT_ALLOC
);
1402 count_memcg_events(memcg
, THP_FAULT_ALLOC
, 1);
1405 clear_huge_page(new_page
, vmf
->address
, HPAGE_PMD_NR
);
1407 copy_user_huge_page(new_page
, page
, vmf
->address
,
1409 __SetPageUptodate(new_page
);
1411 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
1412 haddr
, haddr
+ HPAGE_PMD_SIZE
);
1413 mmu_notifier_invalidate_range_start(&range
);
1415 spin_lock(vmf
->ptl
);
1418 if (unlikely(!pmd_same(*vmf
->pmd
, orig_pmd
))) {
1419 spin_unlock(vmf
->ptl
);
1420 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1425 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1426 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1427 pmdp_huge_clear_flush_notify(vma
, haddr
, vmf
->pmd
);
1428 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1429 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1430 lru_cache_add_active_or_unevictable(new_page
, vma
);
1431 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
1432 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1434 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1436 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1437 page_remove_rmap(page
, true);
1440 ret
|= VM_FAULT_WRITE
;
1442 spin_unlock(vmf
->ptl
);
1445 * No need to double call mmu_notifier->invalidate_range() callback as
1446 * the above pmdp_huge_clear_flush_notify() did already call it.
1448 mmu_notifier_invalidate_range_only_end(&range
);
1452 spin_unlock(vmf
->ptl
);
1457 * FOLL_FORCE can write to even unwritable pmd's, but only
1458 * after we've gone through a COW cycle and they are dirty.
1460 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1462 return pmd_write(pmd
) ||
1463 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1466 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1471 struct mm_struct
*mm
= vma
->vm_mm
;
1472 struct page
*page
= NULL
;
1474 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1476 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1479 /* Avoid dumping huge zero page */
1480 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1481 return ERR_PTR(-EFAULT
);
1483 /* Full NUMA hinting faults to serialise migration in fault paths */
1484 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1487 page
= pmd_page(*pmd
);
1488 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1489 if (flags
& FOLL_TOUCH
)
1490 touch_pmd(vma
, addr
, pmd
, flags
);
1491 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1493 * We don't mlock() pte-mapped THPs. This way we can avoid
1494 * leaking mlocked pages into non-VM_LOCKED VMAs.
1498 * In most cases the pmd is the only mapping of the page as we
1499 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1500 * writable private mappings in populate_vma_page_range().
1502 * The only scenario when we have the page shared here is if we
1503 * mlocking read-only mapping shared over fork(). We skip
1504 * mlocking such pages.
1508 * We can expect PageDoubleMap() to be stable under page lock:
1509 * for file pages we set it in page_add_file_rmap(), which
1510 * requires page to be locked.
1513 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1515 if (PageDoubleMap(page
) || !page
->mapping
)
1517 if (!trylock_page(page
))
1520 if (page
->mapping
&& !PageDoubleMap(page
))
1521 mlock_vma_page(page
);
1525 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1526 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1527 if (flags
& FOLL_GET
)
1534 /* NUMA hinting page fault entry point for trans huge pmds */
1535 vm_fault_t
do_huge_pmd_numa_page(struct vm_fault
*vmf
, pmd_t pmd
)
1537 struct vm_area_struct
*vma
= vmf
->vma
;
1538 struct anon_vma
*anon_vma
= NULL
;
1540 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
1541 int page_nid
= NUMA_NO_NODE
, this_nid
= numa_node_id();
1542 int target_nid
, last_cpupid
= -1;
1544 bool migrated
= false;
1548 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
1549 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
)))
1553 * If there are potential migrations, wait for completion and retry
1554 * without disrupting NUMA hinting information. Do not relock and
1555 * check_same as the page may no longer be mapped.
1557 if (unlikely(pmd_trans_migrating(*vmf
->pmd
))) {
1558 page
= pmd_page(*vmf
->pmd
);
1559 if (!get_page_unless_zero(page
))
1561 spin_unlock(vmf
->ptl
);
1562 put_and_wait_on_page_locked(page
);
1566 page
= pmd_page(pmd
);
1567 BUG_ON(is_huge_zero_page(page
));
1568 page_nid
= page_to_nid(page
);
1569 last_cpupid
= page_cpupid_last(page
);
1570 count_vm_numa_event(NUMA_HINT_FAULTS
);
1571 if (page_nid
== this_nid
) {
1572 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1573 flags
|= TNF_FAULT_LOCAL
;
1576 /* See similar comment in do_numa_page for explanation */
1577 if (!pmd_savedwrite(pmd
))
1578 flags
|= TNF_NO_GROUP
;
1581 * Acquire the page lock to serialise THP migrations but avoid dropping
1582 * page_table_lock if at all possible
1584 page_locked
= trylock_page(page
);
1585 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1586 if (target_nid
== NUMA_NO_NODE
) {
1587 /* If the page was locked, there are no parallel migrations */
1592 /* Migration could have started since the pmd_trans_migrating check */
1594 page_nid
= NUMA_NO_NODE
;
1595 if (!get_page_unless_zero(page
))
1597 spin_unlock(vmf
->ptl
);
1598 put_and_wait_on_page_locked(page
);
1603 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1604 * to serialises splits
1607 spin_unlock(vmf
->ptl
);
1608 anon_vma
= page_lock_anon_vma_read(page
);
1610 /* Confirm the PMD did not change while page_table_lock was released */
1611 spin_lock(vmf
->ptl
);
1612 if (unlikely(!pmd_same(pmd
, *vmf
->pmd
))) {
1615 page_nid
= NUMA_NO_NODE
;
1619 /* Bail if we fail to protect against THP splits for any reason */
1620 if (unlikely(!anon_vma
)) {
1622 page_nid
= NUMA_NO_NODE
;
1627 * Since we took the NUMA fault, we must have observed the !accessible
1628 * bit. Make sure all other CPUs agree with that, to avoid them
1629 * modifying the page we're about to migrate.
1631 * Must be done under PTL such that we'll observe the relevant
1632 * inc_tlb_flush_pending().
1634 * We are not sure a pending tlb flush here is for a huge page
1635 * mapping or not. Hence use the tlb range variant
1637 if (mm_tlb_flush_pending(vma
->vm_mm
)) {
1638 flush_tlb_range(vma
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1640 * change_huge_pmd() released the pmd lock before
1641 * invalidating the secondary MMUs sharing the primary
1642 * MMU pagetables (with ->invalidate_range()). The
1643 * mmu_notifier_invalidate_range_end() (which
1644 * internally calls ->invalidate_range()) in
1645 * change_pmd_range() will run after us, so we can't
1646 * rely on it here and we need an explicit invalidate.
1648 mmu_notifier_invalidate_range(vma
->vm_mm
, haddr
,
1649 haddr
+ HPAGE_PMD_SIZE
);
1653 * Migrate the THP to the requested node, returns with page unlocked
1654 * and access rights restored.
1656 spin_unlock(vmf
->ptl
);
1658 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1659 vmf
->pmd
, pmd
, vmf
->address
, page
, target_nid
);
1661 flags
|= TNF_MIGRATED
;
1662 page_nid
= target_nid
;
1664 flags
|= TNF_MIGRATE_FAIL
;
1668 BUG_ON(!PageLocked(page
));
1669 was_writable
= pmd_savedwrite(pmd
);
1670 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1671 pmd
= pmd_mkyoung(pmd
);
1673 pmd
= pmd_mkwrite(pmd
);
1674 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, pmd
);
1675 update_mmu_cache_pmd(vma
, vmf
->address
, vmf
->pmd
);
1678 spin_unlock(vmf
->ptl
);
1682 page_unlock_anon_vma_read(anon_vma
);
1684 if (page_nid
!= NUMA_NO_NODE
)
1685 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
,
1692 * Return true if we do MADV_FREE successfully on entire pmd page.
1693 * Otherwise, return false.
1695 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1696 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1701 struct mm_struct
*mm
= tlb
->mm
;
1704 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1706 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1711 if (is_huge_zero_pmd(orig_pmd
))
1714 if (unlikely(!pmd_present(orig_pmd
))) {
1715 VM_BUG_ON(thp_migration_supported() &&
1716 !is_pmd_migration_entry(orig_pmd
));
1720 page
= pmd_page(orig_pmd
);
1722 * If other processes are mapping this page, we couldn't discard
1723 * the page unless they all do MADV_FREE so let's skip the page.
1725 if (page_mapcount(page
) != 1)
1728 if (!trylock_page(page
))
1732 * If user want to discard part-pages of THP, split it so MADV_FREE
1733 * will deactivate only them.
1735 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1738 split_huge_page(page
);
1744 if (PageDirty(page
))
1745 ClearPageDirty(page
);
1748 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1749 pmdp_invalidate(vma
, addr
, pmd
);
1750 orig_pmd
= pmd_mkold(orig_pmd
);
1751 orig_pmd
= pmd_mkclean(orig_pmd
);
1753 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1754 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1757 mark_page_lazyfree(page
);
1765 static inline void zap_deposited_table(struct mm_struct
*mm
, pmd_t
*pmd
)
1769 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1770 pte_free(mm
, pgtable
);
1774 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1775 pmd_t
*pmd
, unsigned long addr
)
1780 tlb_change_page_size(tlb
, HPAGE_PMD_SIZE
);
1782 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1786 * For architectures like ppc64 we look at deposited pgtable
1787 * when calling pmdp_huge_get_and_clear. So do the
1788 * pgtable_trans_huge_withdraw after finishing pmdp related
1791 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1793 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1794 if (vma_is_dax(vma
)) {
1795 if (arch_needs_pgtable_deposit())
1796 zap_deposited_table(tlb
->mm
, pmd
);
1798 if (is_huge_zero_pmd(orig_pmd
))
1799 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1800 } else if (is_huge_zero_pmd(orig_pmd
)) {
1801 zap_deposited_table(tlb
->mm
, pmd
);
1803 tlb_remove_page_size(tlb
, pmd_page(orig_pmd
), HPAGE_PMD_SIZE
);
1805 struct page
*page
= NULL
;
1806 int flush_needed
= 1;
1808 if (pmd_present(orig_pmd
)) {
1809 page
= pmd_page(orig_pmd
);
1810 page_remove_rmap(page
, true);
1811 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1812 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1813 } else if (thp_migration_supported()) {
1816 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd
));
1817 entry
= pmd_to_swp_entry(orig_pmd
);
1818 page
= pfn_to_page(swp_offset(entry
));
1821 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1823 if (PageAnon(page
)) {
1824 zap_deposited_table(tlb
->mm
, pmd
);
1825 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1827 if (arch_needs_pgtable_deposit())
1828 zap_deposited_table(tlb
->mm
, pmd
);
1829 add_mm_counter(tlb
->mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
1834 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1839 #ifndef pmd_move_must_withdraw
1840 static inline int pmd_move_must_withdraw(spinlock_t
*new_pmd_ptl
,
1841 spinlock_t
*old_pmd_ptl
,
1842 struct vm_area_struct
*vma
)
1845 * With split pmd lock we also need to move preallocated
1846 * PTE page table if new_pmd is on different PMD page table.
1848 * We also don't deposit and withdraw tables for file pages.
1850 return (new_pmd_ptl
!= old_pmd_ptl
) && vma_is_anonymous(vma
);
1854 static pmd_t
move_soft_dirty_pmd(pmd_t pmd
)
1856 #ifdef CONFIG_MEM_SOFT_DIRTY
1857 if (unlikely(is_pmd_migration_entry(pmd
)))
1858 pmd
= pmd_swp_mksoft_dirty(pmd
);
1859 else if (pmd_present(pmd
))
1860 pmd
= pmd_mksoft_dirty(pmd
);
1865 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1866 unsigned long new_addr
, unsigned long old_end
,
1867 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1869 spinlock_t
*old_ptl
, *new_ptl
;
1871 struct mm_struct
*mm
= vma
->vm_mm
;
1872 bool force_flush
= false;
1874 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1875 (new_addr
& ~HPAGE_PMD_MASK
) ||
1876 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1880 * The destination pmd shouldn't be established, free_pgtables()
1881 * should have release it.
1883 if (WARN_ON(!pmd_none(*new_pmd
))) {
1884 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1889 * We don't have to worry about the ordering of src and dst
1890 * ptlocks because exclusive mmap_sem prevents deadlock.
1892 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1894 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1895 if (new_ptl
!= old_ptl
)
1896 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1897 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1898 if (pmd_present(pmd
))
1900 VM_BUG_ON(!pmd_none(*new_pmd
));
1902 if (pmd_move_must_withdraw(new_ptl
, old_ptl
, vma
)) {
1904 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1905 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1907 pmd
= move_soft_dirty_pmd(pmd
);
1908 set_pmd_at(mm
, new_addr
, new_pmd
, pmd
);
1910 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1911 if (new_ptl
!= old_ptl
)
1912 spin_unlock(new_ptl
);
1913 spin_unlock(old_ptl
);
1921 * - 0 if PMD could not be locked
1922 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1923 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1925 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1926 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1928 struct mm_struct
*mm
= vma
->vm_mm
;
1931 bool preserve_write
;
1934 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1938 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1941 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1942 if (is_swap_pmd(*pmd
)) {
1943 swp_entry_t entry
= pmd_to_swp_entry(*pmd
);
1945 VM_BUG_ON(!is_pmd_migration_entry(*pmd
));
1946 if (is_write_migration_entry(entry
)) {
1949 * A protection check is difficult so
1950 * just be safe and disable write
1952 make_migration_entry_read(&entry
);
1953 newpmd
= swp_entry_to_pmd(entry
);
1954 if (pmd_swp_soft_dirty(*pmd
))
1955 newpmd
= pmd_swp_mksoft_dirty(newpmd
);
1956 set_pmd_at(mm
, addr
, pmd
, newpmd
);
1963 * Avoid trapping faults against the zero page. The read-only
1964 * data is likely to be read-cached on the local CPU and
1965 * local/remote hits to the zero page are not interesting.
1967 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1970 if (prot_numa
&& pmd_protnone(*pmd
))
1974 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1975 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1976 * which is also under down_read(mmap_sem):
1979 * change_huge_pmd(prot_numa=1)
1980 * pmdp_huge_get_and_clear_notify()
1981 * madvise_dontneed()
1983 * pmd_trans_huge(*pmd) == 0 (without ptl)
1986 * // pmd is re-established
1988 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1989 * which may break userspace.
1991 * pmdp_invalidate() is required to make sure we don't miss
1992 * dirty/young flags set by hardware.
1994 entry
= pmdp_invalidate(vma
, addr
, pmd
);
1996 entry
= pmd_modify(entry
, newprot
);
1998 entry
= pmd_mk_savedwrite(entry
);
2000 set_pmd_at(mm
, addr
, pmd
, entry
);
2001 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
2008 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2010 * Note that if it returns page table lock pointer, this routine returns without
2011 * unlocking page table lock. So callers must unlock it.
2013 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
2016 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2017 if (likely(is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) ||
2025 * Returns true if a given pud maps a thp, false otherwise.
2027 * Note that if it returns true, this routine returns without unlocking page
2028 * table lock. So callers must unlock it.
2030 spinlock_t
*__pud_trans_huge_lock(pud_t
*pud
, struct vm_area_struct
*vma
)
2034 ptl
= pud_lock(vma
->vm_mm
, pud
);
2035 if (likely(pud_trans_huge(*pud
) || pud_devmap(*pud
)))
2041 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2042 int zap_huge_pud(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2043 pud_t
*pud
, unsigned long addr
)
2047 ptl
= __pud_trans_huge_lock(pud
, vma
);
2051 * For architectures like ppc64 we look at deposited pgtable
2052 * when calling pudp_huge_get_and_clear. So do the
2053 * pgtable_trans_huge_withdraw after finishing pudp related
2056 pudp_huge_get_and_clear_full(tlb
->mm
, addr
, pud
, tlb
->fullmm
);
2057 tlb_remove_pud_tlb_entry(tlb
, pud
, addr
);
2058 if (vma_is_dax(vma
)) {
2060 /* No zero page support yet */
2062 /* No support for anonymous PUD pages yet */
2068 static void __split_huge_pud_locked(struct vm_area_struct
*vma
, pud_t
*pud
,
2069 unsigned long haddr
)
2071 VM_BUG_ON(haddr
& ~HPAGE_PUD_MASK
);
2072 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2073 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PUD_SIZE
, vma
);
2074 VM_BUG_ON(!pud_trans_huge(*pud
) && !pud_devmap(*pud
));
2076 count_vm_event(THP_SPLIT_PUD
);
2078 pudp_huge_clear_flush_notify(vma
, haddr
, pud
);
2081 void __split_huge_pud(struct vm_area_struct
*vma
, pud_t
*pud
,
2082 unsigned long address
)
2085 struct mmu_notifier_range range
;
2087 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2088 address
& HPAGE_PUD_MASK
,
2089 (address
& HPAGE_PUD_MASK
) + HPAGE_PUD_SIZE
);
2090 mmu_notifier_invalidate_range_start(&range
);
2091 ptl
= pud_lock(vma
->vm_mm
, pud
);
2092 if (unlikely(!pud_trans_huge(*pud
) && !pud_devmap(*pud
)))
2094 __split_huge_pud_locked(vma
, pud
, range
.start
);
2099 * No need to double call mmu_notifier->invalidate_range() callback as
2100 * the above pudp_huge_clear_flush_notify() did already call it.
2102 mmu_notifier_invalidate_range_only_end(&range
);
2104 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2106 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2107 unsigned long haddr
, pmd_t
*pmd
)
2109 struct mm_struct
*mm
= vma
->vm_mm
;
2115 * Leave pmd empty until pte is filled note that it is fine to delay
2116 * notification until mmu_notifier_invalidate_range_end() as we are
2117 * replacing a zero pmd write protected page with a zero pte write
2120 * See Documentation/vm/mmu_notifier.rst
2122 pmdp_huge_clear_flush(vma
, haddr
, pmd
);
2124 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2125 pmd_populate(mm
, &_pmd
, pgtable
);
2127 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2129 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2130 entry
= pte_mkspecial(entry
);
2131 pte
= pte_offset_map(&_pmd
, haddr
);
2132 VM_BUG_ON(!pte_none(*pte
));
2133 set_pte_at(mm
, haddr
, pte
, entry
);
2136 smp_wmb(); /* make pte visible before pmd */
2137 pmd_populate(mm
, pmd
, pgtable
);
2140 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2141 unsigned long haddr
, bool freeze
)
2143 struct mm_struct
*mm
= vma
->vm_mm
;
2146 pmd_t old_pmd
, _pmd
;
2147 bool young
, write
, soft_dirty
, pmd_migration
= false;
2151 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
2152 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
2153 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
2154 VM_BUG_ON(!is_pmd_migration_entry(*pmd
) && !pmd_trans_huge(*pmd
)
2155 && !pmd_devmap(*pmd
));
2157 count_vm_event(THP_SPLIT_PMD
);
2159 if (!vma_is_anonymous(vma
)) {
2160 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2162 * We are going to unmap this huge page. So
2163 * just go ahead and zap it
2165 if (arch_needs_pgtable_deposit())
2166 zap_deposited_table(mm
, pmd
);
2167 if (vma_is_dax(vma
))
2169 page
= pmd_page(_pmd
);
2170 if (!PageDirty(page
) && pmd_dirty(_pmd
))
2171 set_page_dirty(page
);
2172 if (!PageReferenced(page
) && pmd_young(_pmd
))
2173 SetPageReferenced(page
);
2174 page_remove_rmap(page
, true);
2176 add_mm_counter(mm
, mm_counter_file(page
), -HPAGE_PMD_NR
);
2178 } else if (is_huge_zero_pmd(*pmd
)) {
2180 * FIXME: Do we want to invalidate secondary mmu by calling
2181 * mmu_notifier_invalidate_range() see comments below inside
2182 * __split_huge_pmd() ?
2184 * We are going from a zero huge page write protected to zero
2185 * small page also write protected so it does not seems useful
2186 * to invalidate secondary mmu at this time.
2188 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2192 * Up to this point the pmd is present and huge and userland has the
2193 * whole access to the hugepage during the split (which happens in
2194 * place). If we overwrite the pmd with the not-huge version pointing
2195 * to the pte here (which of course we could if all CPUs were bug
2196 * free), userland could trigger a small page size TLB miss on the
2197 * small sized TLB while the hugepage TLB entry is still established in
2198 * the huge TLB. Some CPU doesn't like that.
2199 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2200 * 383 on page 93. Intel should be safe but is also warns that it's
2201 * only safe if the permission and cache attributes of the two entries
2202 * loaded in the two TLB is identical (which should be the case here).
2203 * But it is generally safer to never allow small and huge TLB entries
2204 * for the same virtual address to be loaded simultaneously. So instead
2205 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2206 * current pmd notpresent (atomically because here the pmd_trans_huge
2207 * must remain set at all times on the pmd until the split is complete
2208 * for this pmd), then we flush the SMP TLB and finally we write the
2209 * non-huge version of the pmd entry with pmd_populate.
2211 old_pmd
= pmdp_invalidate(vma
, haddr
, pmd
);
2213 pmd_migration
= is_pmd_migration_entry(old_pmd
);
2214 if (unlikely(pmd_migration
)) {
2217 entry
= pmd_to_swp_entry(old_pmd
);
2218 page
= pfn_to_page(swp_offset(entry
));
2219 write
= is_write_migration_entry(entry
);
2221 soft_dirty
= pmd_swp_soft_dirty(old_pmd
);
2223 page
= pmd_page(old_pmd
);
2224 if (pmd_dirty(old_pmd
))
2226 write
= pmd_write(old_pmd
);
2227 young
= pmd_young(old_pmd
);
2228 soft_dirty
= pmd_soft_dirty(old_pmd
);
2230 VM_BUG_ON_PAGE(!page_count(page
), page
);
2231 page_ref_add(page
, HPAGE_PMD_NR
- 1);
2234 * Withdraw the table only after we mark the pmd entry invalid.
2235 * This's critical for some architectures (Power).
2237 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2238 pmd_populate(mm
, &_pmd
, pgtable
);
2240 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
2243 * Note that NUMA hinting access restrictions are not
2244 * transferred to avoid any possibility of altering
2245 * permissions across VMAs.
2247 if (freeze
|| pmd_migration
) {
2248 swp_entry_t swp_entry
;
2249 swp_entry
= make_migration_entry(page
+ i
, write
);
2250 entry
= swp_entry_to_pte(swp_entry
);
2252 entry
= pte_swp_mksoft_dirty(entry
);
2254 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
2255 entry
= maybe_mkwrite(entry
, vma
);
2257 entry
= pte_wrprotect(entry
);
2259 entry
= pte_mkold(entry
);
2261 entry
= pte_mksoft_dirty(entry
);
2263 pte
= pte_offset_map(&_pmd
, addr
);
2264 BUG_ON(!pte_none(*pte
));
2265 set_pte_at(mm
, addr
, pte
, entry
);
2266 atomic_inc(&page
[i
]._mapcount
);
2271 * Set PG_double_map before dropping compound_mapcount to avoid
2272 * false-negative page_mapped().
2274 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
2275 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2276 atomic_inc(&page
[i
]._mapcount
);
2279 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
2280 /* Last compound_mapcount is gone. */
2281 __dec_node_page_state(page
, NR_ANON_THPS
);
2282 if (TestClearPageDoubleMap(page
)) {
2283 /* No need in mapcount reference anymore */
2284 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2285 atomic_dec(&page
[i
]._mapcount
);
2289 smp_wmb(); /* make pte visible before pmd */
2290 pmd_populate(mm
, pmd
, pgtable
);
2293 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2294 page_remove_rmap(page
+ i
, false);
2300 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2301 unsigned long address
, bool freeze
, struct page
*page
)
2304 struct mmu_notifier_range range
;
2306 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, vma
->vm_mm
,
2307 address
& HPAGE_PMD_MASK
,
2308 (address
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
);
2309 mmu_notifier_invalidate_range_start(&range
);
2310 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
2313 * If caller asks to setup a migration entries, we need a page to check
2314 * pmd against. Otherwise we can end up replacing wrong page.
2316 VM_BUG_ON(freeze
&& !page
);
2317 if (page
&& page
!= pmd_page(*pmd
))
2320 if (pmd_trans_huge(*pmd
)) {
2321 page
= pmd_page(*pmd
);
2322 if (PageMlocked(page
))
2323 clear_page_mlock(page
);
2324 } else if (!(pmd_devmap(*pmd
) || is_pmd_migration_entry(*pmd
)))
2326 __split_huge_pmd_locked(vma
, pmd
, range
.start
, freeze
);
2330 * No need to double call mmu_notifier->invalidate_range() callback.
2331 * They are 3 cases to consider inside __split_huge_pmd_locked():
2332 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2333 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2334 * fault will trigger a flush_notify before pointing to a new page
2335 * (it is fine if the secondary mmu keeps pointing to the old zero
2336 * page in the meantime)
2337 * 3) Split a huge pmd into pte pointing to the same page. No need
2338 * to invalidate secondary tlb entry they are all still valid.
2339 * any further changes to individual pte will notify. So no need
2340 * to call mmu_notifier->invalidate_range()
2342 mmu_notifier_invalidate_range_only_end(&range
);
2345 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
2346 bool freeze
, struct page
*page
)
2353 pgd
= pgd_offset(vma
->vm_mm
, address
);
2354 if (!pgd_present(*pgd
))
2357 p4d
= p4d_offset(pgd
, address
);
2358 if (!p4d_present(*p4d
))
2361 pud
= pud_offset(p4d
, address
);
2362 if (!pud_present(*pud
))
2365 pmd
= pmd_offset(pud
, address
);
2367 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
2370 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2371 unsigned long start
,
2376 * If the new start address isn't hpage aligned and it could
2377 * previously contain an hugepage: check if we need to split
2380 if (start
& ~HPAGE_PMD_MASK
&&
2381 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2382 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2383 split_huge_pmd_address(vma
, start
, false, NULL
);
2386 * If the new end address isn't hpage aligned and it could
2387 * previously contain an hugepage: check if we need to split
2390 if (end
& ~HPAGE_PMD_MASK
&&
2391 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2392 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2393 split_huge_pmd_address(vma
, end
, false, NULL
);
2396 * If we're also updating the vma->vm_next->vm_start, if the new
2397 * vm_next->vm_start isn't page aligned and it could previously
2398 * contain an hugepage: check if we need to split an huge pmd.
2400 if (adjust_next
> 0) {
2401 struct vm_area_struct
*next
= vma
->vm_next
;
2402 unsigned long nstart
= next
->vm_start
;
2403 nstart
+= adjust_next
<< PAGE_SHIFT
;
2404 if (nstart
& ~HPAGE_PMD_MASK
&&
2405 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2406 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2407 split_huge_pmd_address(next
, nstart
, false, NULL
);
2411 static void unmap_page(struct page
*page
)
2413 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
2414 TTU_RMAP_LOCKED
| TTU_SPLIT_HUGE_PMD
;
2417 VM_BUG_ON_PAGE(!PageHead(page
), page
);
2420 ttu_flags
|= TTU_SPLIT_FREEZE
;
2422 unmap_success
= try_to_unmap(page
, ttu_flags
);
2423 VM_BUG_ON_PAGE(!unmap_success
, page
);
2426 static void remap_page(struct page
*page
)
2429 if (PageTransHuge(page
)) {
2430 remove_migration_ptes(page
, page
, true);
2432 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2433 remove_migration_ptes(page
+ i
, page
+ i
, true);
2437 static void __split_huge_page_tail(struct page
*head
, int tail
,
2438 struct lruvec
*lruvec
, struct list_head
*list
)
2440 struct page
*page_tail
= head
+ tail
;
2442 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
2445 * Clone page flags before unfreezing refcount.
2447 * After successful get_page_unless_zero() might follow flags change,
2448 * for exmaple lock_page() which set PG_waiters.
2450 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
2451 page_tail
->flags
|= (head
->flags
&
2452 ((1L << PG_referenced
) |
2453 (1L << PG_swapbacked
) |
2454 (1L << PG_swapcache
) |
2455 (1L << PG_mlocked
) |
2456 (1L << PG_uptodate
) |
2458 (1L << PG_workingset
) |
2460 (1L << PG_unevictable
) |
2463 /* ->mapping in first tail page is compound_mapcount */
2464 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
2466 page_tail
->mapping
= head
->mapping
;
2467 page_tail
->index
= head
->index
+ tail
;
2469 /* Page flags must be visible before we make the page non-compound. */
2473 * Clear PageTail before unfreezing page refcount.
2475 * After successful get_page_unless_zero() might follow put_page()
2476 * which needs correct compound_head().
2478 clear_compound_head(page_tail
);
2480 /* Finally unfreeze refcount. Additional reference from page cache. */
2481 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
2482 PageSwapCache(head
)));
2484 if (page_is_young(head
))
2485 set_page_young(page_tail
);
2486 if (page_is_idle(head
))
2487 set_page_idle(page_tail
);
2489 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
2492 * always add to the tail because some iterators expect new
2493 * pages to show after the currently processed elements - e.g.
2496 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
2499 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
2500 pgoff_t end
, unsigned long flags
)
2502 struct page
*head
= compound_head(page
);
2503 pg_data_t
*pgdat
= page_pgdat(head
);
2504 struct lruvec
*lruvec
;
2505 struct address_space
*swap_cache
= NULL
;
2506 unsigned long offset
= 0;
2509 lruvec
= mem_cgroup_page_lruvec(head
, pgdat
);
2511 /* complete memcg works before add pages to LRU */
2512 mem_cgroup_split_huge_fixup(head
);
2514 if (PageAnon(head
) && PageSwapCache(head
)) {
2515 swp_entry_t entry
= { .val
= page_private(head
) };
2517 offset
= swp_offset(entry
);
2518 swap_cache
= swap_address_space(entry
);
2519 xa_lock(&swap_cache
->i_pages
);
2522 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
2523 __split_huge_page_tail(head
, i
, lruvec
, list
);
2524 /* Some pages can be beyond i_size: drop them from page cache */
2525 if (head
[i
].index
>= end
) {
2526 ClearPageDirty(head
+ i
);
2527 __delete_from_page_cache(head
+ i
, NULL
);
2528 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
2529 shmem_uncharge(head
->mapping
->host
, 1);
2531 } else if (!PageAnon(page
)) {
2532 __xa_store(&head
->mapping
->i_pages
, head
[i
].index
,
2534 } else if (swap_cache
) {
2535 __xa_store(&swap_cache
->i_pages
, offset
+ i
,
2540 ClearPageCompound(head
);
2542 split_page_owner(head
, HPAGE_PMD_ORDER
);
2544 /* See comment in __split_huge_page_tail() */
2545 if (PageAnon(head
)) {
2546 /* Additional pin to swap cache */
2547 if (PageSwapCache(head
)) {
2548 page_ref_add(head
, 2);
2549 xa_unlock(&swap_cache
->i_pages
);
2554 /* Additional pin to page cache */
2555 page_ref_add(head
, 2);
2556 xa_unlock(&head
->mapping
->i_pages
);
2559 spin_unlock_irqrestore(&pgdat
->lru_lock
, flags
);
2563 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2564 struct page
*subpage
= head
+ i
;
2565 if (subpage
== page
)
2567 unlock_page(subpage
);
2570 * Subpages may be freed if there wasn't any mapping
2571 * like if add_to_swap() is running on a lru page that
2572 * had its mapping zapped. And freeing these pages
2573 * requires taking the lru_lock so we do the put_page
2574 * of the tail pages after the split is complete.
2580 int total_mapcount(struct page
*page
)
2582 int i
, compound
, ret
;
2584 VM_BUG_ON_PAGE(PageTail(page
), page
);
2586 if (likely(!PageCompound(page
)))
2587 return atomic_read(&page
->_mapcount
) + 1;
2589 compound
= compound_mapcount(page
);
2593 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2594 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
2595 /* File pages has compound_mapcount included in _mapcount */
2596 if (!PageAnon(page
))
2597 return ret
- compound
* HPAGE_PMD_NR
;
2598 if (PageDoubleMap(page
))
2599 ret
-= HPAGE_PMD_NR
;
2604 * This calculates accurately how many mappings a transparent hugepage
2605 * has (unlike page_mapcount() which isn't fully accurate). This full
2606 * accuracy is primarily needed to know if copy-on-write faults can
2607 * reuse the page and change the mapping to read-write instead of
2608 * copying them. At the same time this returns the total_mapcount too.
2610 * The function returns the highest mapcount any one of the subpages
2611 * has. If the return value is one, even if different processes are
2612 * mapping different subpages of the transparent hugepage, they can
2613 * all reuse it, because each process is reusing a different subpage.
2615 * The total_mapcount is instead counting all virtual mappings of the
2616 * subpages. If the total_mapcount is equal to "one", it tells the
2617 * caller all mappings belong to the same "mm" and in turn the
2618 * anon_vma of the transparent hugepage can become the vma->anon_vma
2619 * local one as no other process may be mapping any of the subpages.
2621 * It would be more accurate to replace page_mapcount() with
2622 * page_trans_huge_mapcount(), however we only use
2623 * page_trans_huge_mapcount() in the copy-on-write faults where we
2624 * need full accuracy to avoid breaking page pinning, because
2625 * page_trans_huge_mapcount() is slower than page_mapcount().
2627 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2629 int i
, ret
, _total_mapcount
, mapcount
;
2631 /* hugetlbfs shouldn't call it */
2632 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2634 if (likely(!PageTransCompound(page
))) {
2635 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2637 *total_mapcount
= mapcount
;
2641 page
= compound_head(page
);
2643 _total_mapcount
= ret
= 0;
2644 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2645 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2646 ret
= max(ret
, mapcount
);
2647 _total_mapcount
+= mapcount
;
2649 if (PageDoubleMap(page
)) {
2651 _total_mapcount
-= HPAGE_PMD_NR
;
2653 mapcount
= compound_mapcount(page
);
2655 _total_mapcount
+= mapcount
;
2657 *total_mapcount
= _total_mapcount
;
2661 /* Racy check whether the huge page can be split */
2662 bool can_split_huge_page(struct page
*page
, int *pextra_pins
)
2666 /* Additional pins from page cache */
2668 extra_pins
= PageSwapCache(page
) ? HPAGE_PMD_NR
: 0;
2670 extra_pins
= HPAGE_PMD_NR
;
2672 *pextra_pins
= extra_pins
;
2673 return total_mapcount(page
) == page_count(page
) - extra_pins
- 1;
2677 * This function splits huge page into normal pages. @page can point to any
2678 * subpage of huge page to split. Split doesn't change the position of @page.
2680 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2681 * The huge page must be locked.
2683 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2685 * Both head page and tail pages will inherit mapping, flags, and so on from
2688 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2689 * they are not mapped.
2691 * Returns 0 if the hugepage is split successfully.
2692 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2695 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2697 struct page
*head
= compound_head(page
);
2698 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2699 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2700 struct anon_vma
*anon_vma
= NULL
;
2701 struct address_space
*mapping
= NULL
;
2702 int count
, mapcount
, extra_pins
, ret
;
2704 unsigned long flags
;
2707 VM_BUG_ON_PAGE(is_huge_zero_page(head
), head
);
2708 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2709 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
2711 if (PageWriteback(page
))
2714 if (PageAnon(head
)) {
2716 * The caller does not necessarily hold an mmap_sem that would
2717 * prevent the anon_vma disappearing so we first we take a
2718 * reference to it and then lock the anon_vma for write. This
2719 * is similar to page_lock_anon_vma_read except the write lock
2720 * is taken to serialise against parallel split or collapse
2723 anon_vma
= page_get_anon_vma(head
);
2730 anon_vma_lock_write(anon_vma
);
2732 mapping
= head
->mapping
;
2741 i_mmap_lock_read(mapping
);
2744 *__split_huge_page() may need to trim off pages beyond EOF:
2745 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2746 * which cannot be nested inside the page tree lock. So note
2747 * end now: i_size itself may be changed at any moment, but
2748 * head page lock is good enough to serialize the trimming.
2750 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2754 * Racy check if we can split the page, before unmap_page() will
2757 if (!can_split_huge_page(head
, &extra_pins
)) {
2762 mlocked
= PageMlocked(page
);
2764 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2766 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2770 /* prevent PageLRU to go away from under us, and freeze lru stats */
2771 spin_lock_irqsave(&pgdata
->lru_lock
, flags
);
2774 XA_STATE(xas
, &mapping
->i_pages
, page_index(head
));
2777 * Check if the head page is present in page cache.
2778 * We assume all tail are present too, if head is there.
2780 xa_lock(&mapping
->i_pages
);
2781 if (xas_load(&xas
) != head
)
2785 /* Prevent deferred_split_scan() touching ->_refcount */
2786 spin_lock(&ds_queue
->split_queue_lock
);
2787 count
= page_count(head
);
2788 mapcount
= total_mapcount(head
);
2789 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2790 if (!list_empty(page_deferred_list(head
))) {
2791 ds_queue
->split_queue_len
--;
2792 list_del(page_deferred_list(head
));
2795 if (PageSwapBacked(page
))
2796 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2798 __dec_node_page_state(page
, NR_FILE_THPS
);
2801 spin_unlock(&ds_queue
->split_queue_lock
);
2802 __split_huge_page(page
, list
, end
, flags
);
2803 if (PageSwapCache(head
)) {
2804 swp_entry_t entry
= { .val
= page_private(head
) };
2806 ret
= split_swap_cluster(entry
);
2810 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2811 pr_alert("total_mapcount: %u, page_count(): %u\n",
2814 dump_page(head
, NULL
);
2815 dump_page(page
, "total_mapcount(head) > 0");
2818 spin_unlock(&ds_queue
->split_queue_lock
);
2820 xa_unlock(&mapping
->i_pages
);
2821 spin_unlock_irqrestore(&pgdata
->lru_lock
, flags
);
2828 anon_vma_unlock_write(anon_vma
);
2829 put_anon_vma(anon_vma
);
2832 i_mmap_unlock_read(mapping
);
2834 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2838 void free_transhuge_page(struct page
*page
)
2840 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2841 unsigned long flags
;
2843 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2844 if (!list_empty(page_deferred_list(page
))) {
2845 ds_queue
->split_queue_len
--;
2846 list_del(page_deferred_list(page
));
2848 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2849 free_compound_page(page
);
2852 void deferred_split_huge_page(struct page
*page
)
2854 struct deferred_split
*ds_queue
= get_deferred_split_queue(page
);
2856 struct mem_cgroup
*memcg
= compound_head(page
)->mem_cgroup
;
2858 unsigned long flags
;
2860 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2863 * The try_to_unmap() in page reclaim path might reach here too,
2864 * this may cause a race condition to corrupt deferred split queue.
2865 * And, if page reclaim is already handling the same page, it is
2866 * unnecessary to handle it again in shrinker.
2868 * Check PageSwapCache to determine if the page is being
2869 * handled by page reclaim since THP swap would add the page into
2870 * swap cache before calling try_to_unmap().
2872 if (PageSwapCache(page
))
2875 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2876 if (list_empty(page_deferred_list(page
))) {
2877 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2878 list_add_tail(page_deferred_list(page
), &ds_queue
->split_queue
);
2879 ds_queue
->split_queue_len
++;
2882 memcg_set_shrinker_bit(memcg
, page_to_nid(page
),
2883 deferred_split_shrinker
.id
);
2886 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2889 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2890 struct shrink_control
*sc
)
2892 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2893 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2897 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2899 return READ_ONCE(ds_queue
->split_queue_len
);
2902 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2903 struct shrink_control
*sc
)
2905 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2906 struct deferred_split
*ds_queue
= &pgdata
->deferred_split_queue
;
2907 unsigned long flags
;
2908 LIST_HEAD(list
), *pos
, *next
;
2914 ds_queue
= &sc
->memcg
->deferred_split_queue
;
2917 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2918 /* Take pin on all head pages to avoid freeing them under us */
2919 list_for_each_safe(pos
, next
, &ds_queue
->split_queue
) {
2920 page
= list_entry((void *)pos
, struct page
, mapping
);
2921 page
= compound_head(page
);
2922 if (get_page_unless_zero(page
)) {
2923 list_move(page_deferred_list(page
), &list
);
2925 /* We lost race with put_compound_page() */
2926 list_del_init(page_deferred_list(page
));
2927 ds_queue
->split_queue_len
--;
2929 if (!--sc
->nr_to_scan
)
2932 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2934 list_for_each_safe(pos
, next
, &list
) {
2935 page
= list_entry((void *)pos
, struct page
, mapping
);
2936 if (!trylock_page(page
))
2938 /* split_huge_page() removes page from list on success */
2939 if (!split_huge_page(page
))
2946 spin_lock_irqsave(&ds_queue
->split_queue_lock
, flags
);
2947 list_splice_tail(&list
, &ds_queue
->split_queue
);
2948 spin_unlock_irqrestore(&ds_queue
->split_queue_lock
, flags
);
2951 * Stop shrinker if we didn't split any page, but the queue is empty.
2952 * This can happen if pages were freed under us.
2954 if (!split
&& list_empty(&ds_queue
->split_queue
))
2959 static struct shrinker deferred_split_shrinker
= {
2960 .count_objects
= deferred_split_count
,
2961 .scan_objects
= deferred_split_scan
,
2962 .seeks
= DEFAULT_SEEKS
,
2963 .flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
|
2967 #ifdef CONFIG_DEBUG_FS
2968 static int split_huge_pages_set(void *data
, u64 val
)
2972 unsigned long pfn
, max_zone_pfn
;
2973 unsigned long total
= 0, split
= 0;
2978 for_each_populated_zone(zone
) {
2979 max_zone_pfn
= zone_end_pfn(zone
);
2980 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2981 if (!pfn_valid(pfn
))
2984 page
= pfn_to_page(pfn
);
2985 if (!get_page_unless_zero(page
))
2988 if (zone
!= page_zone(page
))
2991 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2996 if (!split_huge_page(page
))
3004 pr_info("%lu of %lu THP split\n", split
, total
);
3008 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
3011 static int __init
split_huge_pages_debugfs(void)
3013 debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
3014 &split_huge_pages_fops
);
3017 late_initcall(split_huge_pages_debugfs
);
3020 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3021 void set_pmd_migration_entry(struct page_vma_mapped_walk
*pvmw
,
3024 struct vm_area_struct
*vma
= pvmw
->vma
;
3025 struct mm_struct
*mm
= vma
->vm_mm
;
3026 unsigned long address
= pvmw
->address
;
3031 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3034 flush_cache_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
3035 pmdval
= pmdp_invalidate(vma
, address
, pvmw
->pmd
);
3036 if (pmd_dirty(pmdval
))
3037 set_page_dirty(page
);
3038 entry
= make_migration_entry(page
, pmd_write(pmdval
));
3039 pmdswp
= swp_entry_to_pmd(entry
);
3040 if (pmd_soft_dirty(pmdval
))
3041 pmdswp
= pmd_swp_mksoft_dirty(pmdswp
);
3042 set_pmd_at(mm
, address
, pvmw
->pmd
, pmdswp
);
3043 page_remove_rmap(page
, true);
3047 void remove_migration_pmd(struct page_vma_mapped_walk
*pvmw
, struct page
*new)
3049 struct vm_area_struct
*vma
= pvmw
->vma
;
3050 struct mm_struct
*mm
= vma
->vm_mm
;
3051 unsigned long address
= pvmw
->address
;
3052 unsigned long mmun_start
= address
& HPAGE_PMD_MASK
;
3056 if (!(pvmw
->pmd
&& !pvmw
->pte
))
3059 entry
= pmd_to_swp_entry(*pvmw
->pmd
);
3061 pmde
= pmd_mkold(mk_huge_pmd(new, vma
->vm_page_prot
));
3062 if (pmd_swp_soft_dirty(*pvmw
->pmd
))
3063 pmde
= pmd_mksoft_dirty(pmde
);
3064 if (is_write_migration_entry(entry
))
3065 pmde
= maybe_pmd_mkwrite(pmde
, vma
);
3067 flush_cache_range(vma
, mmun_start
, mmun_start
+ HPAGE_PMD_SIZE
);
3069 page_add_anon_rmap(new, vma
, mmun_start
, true);
3071 page_add_file_rmap(new, true);
3072 set_pmd_at(mm
, mmun_start
, pvmw
->pmd
, pmde
);
3073 if ((vma
->vm_flags
& VM_LOCKED
) && !PageDoubleMap(new))
3074 mlock_vma_page(new);
3075 update_mmu_cache_pmd(vma
, address
, pvmw
->pmd
);