4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
65 * ->i_mmap_mutex (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
71 * ->i_mmap_mutex (truncate->unmap_mapping_range)
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
89 * ->anon_vma.lock (vma_adjust)
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 static void page_cache_tree_delete(struct address_space
*mapping
,
113 struct page
*page
, void *shadow
)
115 struct radix_tree_node
*node
;
121 VM_BUG_ON(!PageLocked(page
));
123 __radix_tree_lookup(&mapping
->page_tree
, page
->index
, &node
, &slot
);
126 mapping
->nrshadows
++;
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
138 /* Clear direct pointer tags in root node */
139 mapping
->page_tree
.gfp_mask
&= __GFP_BITS_MASK
;
140 radix_tree_replace_slot(slot
, shadow
);
144 /* Clear tree tags for the removed page */
146 offset
= index
& RADIX_TREE_MAP_MASK
;
147 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
148 if (test_bit(offset
, node
->tags
[tag
]))
149 radix_tree_tag_clear(&mapping
->page_tree
, index
, tag
);
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot
, shadow
);
154 workingset_node_pages_dec(node
);
156 workingset_node_shadows_inc(node
);
158 if (__radix_tree_delete_node(&mapping
->page_tree
, node
))
162 * Track node that only contains shadow entries.
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
168 if (!workingset_node_pages(node
) &&
169 list_empty(&node
->private_list
)) {
170 node
->private_data
= mapping
;
171 list_lru_add(&workingset_shadow_nodes
, &node
->private_list
);
176 * Delete a page from the page cache and free it. Caller has to make
177 * sure the page is locked and that nobody else uses it - or that usage
178 * is safe. The caller must hold the mapping's tree_lock.
180 void __delete_from_page_cache(struct page
*page
, void *shadow
)
182 struct address_space
*mapping
= page
->mapping
;
184 trace_mm_filemap_delete_from_page_cache(page
);
186 * if we're uptodate, flush out into the cleancache, otherwise
187 * invalidate any existing cleancache entries. We can't leave
188 * stale data around in the cleancache once our page is gone
190 if (PageUptodate(page
) && PageMappedToDisk(page
))
191 cleancache_put_page(page
);
193 cleancache_invalidate_page(mapping
, page
);
195 page_cache_tree_delete(mapping
, page
, shadow
);
197 page
->mapping
= NULL
;
198 /* Leave page->index set: truncation lookup relies upon it */
200 __dec_zone_page_state(page
, NR_FILE_PAGES
);
201 if (PageSwapBacked(page
))
202 __dec_zone_page_state(page
, NR_SHMEM
);
203 BUG_ON(page_mapped(page
));
206 * Some filesystems seem to re-dirty the page even after
207 * the VM has canceled the dirty bit (eg ext3 journaling).
209 * Fix it up by doing a final dirty accounting check after
210 * having removed the page entirely.
212 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
213 dec_zone_page_state(page
, NR_FILE_DIRTY
);
214 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
219 * delete_from_page_cache - delete page from page cache
220 * @page: the page which the kernel is trying to remove from page cache
222 * This must be called only on pages that have been verified to be in the page
223 * cache and locked. It will never put the page into the free list, the caller
224 * has a reference on the page.
226 void delete_from_page_cache(struct page
*page
)
228 struct address_space
*mapping
= page
->mapping
;
229 void (*freepage
)(struct page
*);
231 BUG_ON(!PageLocked(page
));
233 freepage
= mapping
->a_ops
->freepage
;
234 spin_lock_irq(&mapping
->tree_lock
);
235 __delete_from_page_cache(page
, NULL
);
236 spin_unlock_irq(&mapping
->tree_lock
);
240 page_cache_release(page
);
242 EXPORT_SYMBOL(delete_from_page_cache
);
244 static int filemap_check_errors(struct address_space
*mapping
)
247 /* Check for outstanding write errors */
248 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
249 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
251 if (test_bit(AS_EIO
, &mapping
->flags
) &&
252 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
261 * @end: offset in bytes where the range ends (inclusive)
262 * @sync_mode: enable synchronous operation
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268 * opposed to a regular memory cleansing writeback. The difference between
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
272 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
273 loff_t end
, int sync_mode
)
276 struct writeback_control wbc
= {
277 .sync_mode
= sync_mode
,
278 .nr_to_write
= LONG_MAX
,
279 .range_start
= start
,
283 if (!mapping_cap_writeback_dirty(mapping
))
286 ret
= do_writepages(mapping
, &wbc
);
290 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
293 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
296 int filemap_fdatawrite(struct address_space
*mapping
)
298 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
300 EXPORT_SYMBOL(filemap_fdatawrite
);
302 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
305 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
307 EXPORT_SYMBOL(filemap_fdatawrite_range
);
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
316 int filemap_flush(struct address_space
*mapping
)
318 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
320 EXPORT_SYMBOL(filemap_flush
);
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
331 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
334 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
335 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
340 if (end_byte
< start_byte
)
343 pagevec_init(&pvec
, 0);
344 while ((index
<= end
) &&
345 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
346 PAGECACHE_TAG_WRITEBACK
,
347 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
350 for (i
= 0; i
< nr_pages
; i
++) {
351 struct page
*page
= pvec
.pages
[i
];
353 /* until radix tree lookup accepts end_index */
354 if (page
->index
> end
)
357 wait_on_page_writeback(page
);
358 if (TestClearPageError(page
))
361 pagevec_release(&pvec
);
365 ret2
= filemap_check_errors(mapping
);
371 EXPORT_SYMBOL(filemap_fdatawait_range
);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space
*mapping
)
382 loff_t i_size
= i_size_read(mapping
->host
);
387 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
389 EXPORT_SYMBOL(filemap_fdatawait
);
391 int filemap_write_and_wait(struct address_space
*mapping
)
395 if (mapping
->nrpages
) {
396 err
= filemap_fdatawrite(mapping
);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
404 int err2
= filemap_fdatawait(mapping
);
409 err
= filemap_check_errors(mapping
);
413 EXPORT_SYMBOL(filemap_write_and_wait
);
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
421 * Write out and wait upon file offsets lstart->lend, inclusive.
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
426 int filemap_write_and_wait_range(struct address_space
*mapping
,
427 loff_t lstart
, loff_t lend
)
431 if (mapping
->nrpages
) {
432 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
434 /* See comment of filemap_write_and_wait() */
436 int err2
= filemap_fdatawait_range(mapping
,
442 err
= filemap_check_errors(mapping
);
446 EXPORT_SYMBOL(filemap_write_and_wait_range
);
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
463 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
467 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping
, new);
471 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
473 struct address_space
*mapping
= old
->mapping
;
474 void (*freepage
)(struct page
*);
476 pgoff_t offset
= old
->index
;
477 freepage
= mapping
->a_ops
->freepage
;
480 new->mapping
= mapping
;
483 spin_lock_irq(&mapping
->tree_lock
);
484 __delete_from_page_cache(old
, NULL
);
485 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
488 __inc_zone_page_state(new, NR_FILE_PAGES
);
489 if (PageSwapBacked(new))
490 __inc_zone_page_state(new, NR_SHMEM
);
491 spin_unlock_irq(&mapping
->tree_lock
);
492 mem_cgroup_migrate(old
, new, true);
493 radix_tree_preload_end();
496 page_cache_release(old
);
501 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
503 static int page_cache_tree_insert(struct address_space
*mapping
,
504 struct page
*page
, void **shadowp
)
506 struct radix_tree_node
*node
;
510 error
= __radix_tree_create(&mapping
->page_tree
, page
->index
,
517 p
= radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
518 if (!radix_tree_exceptional_entry(p
))
522 mapping
->nrshadows
--;
524 workingset_node_shadows_dec(node
);
526 radix_tree_replace_slot(slot
, page
);
529 workingset_node_pages_inc(node
);
531 * Don't track node that contains actual pages.
533 * Avoid acquiring the list_lru lock if already
534 * untracked. The list_empty() test is safe as
535 * node->private_list is protected by
536 * mapping->tree_lock.
538 if (!list_empty(&node
->private_list
))
539 list_lru_del(&workingset_shadow_nodes
,
540 &node
->private_list
);
545 static int __add_to_page_cache_locked(struct page
*page
,
546 struct address_space
*mapping
,
547 pgoff_t offset
, gfp_t gfp_mask
,
550 int huge
= PageHuge(page
);
551 struct mem_cgroup
*memcg
;
554 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
555 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
558 error
= mem_cgroup_try_charge(page
, current
->mm
,
564 error
= radix_tree_maybe_preload(gfp_mask
& ~__GFP_HIGHMEM
);
567 mem_cgroup_cancel_charge(page
, memcg
);
571 page_cache_get(page
);
572 page
->mapping
= mapping
;
573 page
->index
= offset
;
575 spin_lock_irq(&mapping
->tree_lock
);
576 error
= page_cache_tree_insert(mapping
, page
, shadowp
);
577 radix_tree_preload_end();
580 __inc_zone_page_state(page
, NR_FILE_PAGES
);
581 spin_unlock_irq(&mapping
->tree_lock
);
583 mem_cgroup_commit_charge(page
, memcg
, false);
584 trace_mm_filemap_add_to_page_cache(page
);
587 page
->mapping
= NULL
;
588 /* Leave page->index set: truncation relies upon it */
589 spin_unlock_irq(&mapping
->tree_lock
);
591 mem_cgroup_cancel_charge(page
, memcg
);
592 page_cache_release(page
);
597 * add_to_page_cache_locked - add a locked page to the pagecache
599 * @mapping: the page's address_space
600 * @offset: page index
601 * @gfp_mask: page allocation mode
603 * This function is used to add a page to the pagecache. It must be locked.
604 * This function does not add the page to the LRU. The caller must do that.
606 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
607 pgoff_t offset
, gfp_t gfp_mask
)
609 return __add_to_page_cache_locked(page
, mapping
, offset
,
612 EXPORT_SYMBOL(add_to_page_cache_locked
);
614 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
615 pgoff_t offset
, gfp_t gfp_mask
)
620 __set_page_locked(page
);
621 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
624 __clear_page_locked(page
);
627 * The page might have been evicted from cache only
628 * recently, in which case it should be activated like
629 * any other repeatedly accessed page.
631 if (shadow
&& workingset_refault(shadow
)) {
633 workingset_activation(page
);
635 ClearPageActive(page
);
640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
643 struct page
*__page_cache_alloc(gfp_t gfp
)
648 if (cpuset_do_page_mem_spread()) {
649 unsigned int cpuset_mems_cookie
;
651 cpuset_mems_cookie
= read_mems_allowed_begin();
652 n
= cpuset_mem_spread_node();
653 page
= alloc_pages_exact_node(n
, gfp
, 0);
654 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
658 return alloc_pages(gfp
, 0);
660 EXPORT_SYMBOL(__page_cache_alloc
);
664 * In order to wait for pages to become available there must be
665 * waitqueues associated with pages. By using a hash table of
666 * waitqueues where the bucket discipline is to maintain all
667 * waiters on the same queue and wake all when any of the pages
668 * become available, and for the woken contexts to check to be
669 * sure the appropriate page became available, this saves space
670 * at a cost of "thundering herd" phenomena during rare hash
673 wait_queue_head_t
*page_waitqueue(struct page
*page
)
675 const struct zone
*zone
= page_zone(page
);
677 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
679 EXPORT_SYMBOL(page_waitqueue
);
681 void wait_on_page_bit(struct page
*page
, int bit_nr
)
683 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
685 if (test_bit(bit_nr
, &page
->flags
))
686 __wait_on_bit(page_waitqueue(page
), &wait
, bit_wait_io
,
687 TASK_UNINTERRUPTIBLE
);
689 EXPORT_SYMBOL(wait_on_page_bit
);
691 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
693 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
695 if (!test_bit(bit_nr
, &page
->flags
))
698 return __wait_on_bit(page_waitqueue(page
), &wait
,
699 bit_wait_io
, TASK_KILLABLE
);
702 int wait_on_page_bit_killable_timeout(struct page
*page
,
703 int bit_nr
, unsigned long timeout
)
705 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
707 wait
.key
.timeout
= jiffies
+ timeout
;
708 if (!test_bit(bit_nr
, &page
->flags
))
710 return __wait_on_bit(page_waitqueue(page
), &wait
,
711 bit_wait_io_timeout
, TASK_KILLABLE
);
713 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout
);
716 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
717 * @page: Page defining the wait queue of interest
718 * @waiter: Waiter to add to the queue
720 * Add an arbitrary @waiter to the wait queue for the nominated @page.
722 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
724 wait_queue_head_t
*q
= page_waitqueue(page
);
727 spin_lock_irqsave(&q
->lock
, flags
);
728 __add_wait_queue(q
, waiter
);
729 spin_unlock_irqrestore(&q
->lock
, flags
);
731 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
734 * unlock_page - unlock a locked page
737 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
738 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
739 * mechanism between PageLocked pages and PageWriteback pages is shared.
740 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
742 * The mb is necessary to enforce ordering between the clear_bit and the read
743 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
745 void unlock_page(struct page
*page
)
747 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
748 clear_bit_unlock(PG_locked
, &page
->flags
);
749 smp_mb__after_atomic();
750 wake_up_page(page
, PG_locked
);
752 EXPORT_SYMBOL(unlock_page
);
755 * end_page_writeback - end writeback against a page
758 void end_page_writeback(struct page
*page
)
761 * TestClearPageReclaim could be used here but it is an atomic
762 * operation and overkill in this particular case. Failing to
763 * shuffle a page marked for immediate reclaim is too mild to
764 * justify taking an atomic operation penalty at the end of
765 * ever page writeback.
767 if (PageReclaim(page
)) {
768 ClearPageReclaim(page
);
769 rotate_reclaimable_page(page
);
772 if (!test_clear_page_writeback(page
))
775 smp_mb__after_atomic();
776 wake_up_page(page
, PG_writeback
);
778 EXPORT_SYMBOL(end_page_writeback
);
781 * After completing I/O on a page, call this routine to update the page
782 * flags appropriately
784 void page_endio(struct page
*page
, int rw
, int err
)
788 SetPageUptodate(page
);
790 ClearPageUptodate(page
);
794 } else { /* rw == WRITE */
798 mapping_set_error(page
->mapping
, err
);
800 end_page_writeback(page
);
803 EXPORT_SYMBOL_GPL(page_endio
);
806 * __lock_page - get a lock on the page, assuming we need to sleep to get it
807 * @page: the page to lock
809 void __lock_page(struct page
*page
)
811 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
813 __wait_on_bit_lock(page_waitqueue(page
), &wait
, bit_wait_io
,
814 TASK_UNINTERRUPTIBLE
);
816 EXPORT_SYMBOL(__lock_page
);
818 int __lock_page_killable(struct page
*page
)
820 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
822 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
823 bit_wait_io
, TASK_KILLABLE
);
825 EXPORT_SYMBOL_GPL(__lock_page_killable
);
829 * 1 - page is locked; mmap_sem is still held.
830 * 0 - page is not locked.
831 * mmap_sem has been released (up_read()), unless flags had both
832 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
833 * which case mmap_sem is still held.
835 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
836 * with the page locked and the mmap_sem unperturbed.
838 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
841 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
843 * CAUTION! In this case, mmap_sem is not released
844 * even though return 0.
846 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
849 up_read(&mm
->mmap_sem
);
850 if (flags
& FAULT_FLAG_KILLABLE
)
851 wait_on_page_locked_killable(page
);
853 wait_on_page_locked(page
);
856 if (flags
& FAULT_FLAG_KILLABLE
) {
859 ret
= __lock_page_killable(page
);
861 up_read(&mm
->mmap_sem
);
871 * page_cache_next_hole - find the next hole (not-present entry)
874 * @max_scan: maximum range to search
876 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
877 * lowest indexed hole.
879 * Returns: the index of the hole if found, otherwise returns an index
880 * outside of the set specified (in which case 'return - index >=
881 * max_scan' will be true). In rare cases of index wrap-around, 0 will
884 * page_cache_next_hole may be called under rcu_read_lock. However,
885 * like radix_tree_gang_lookup, this will not atomically search a
886 * snapshot of the tree at a single point in time. For example, if a
887 * hole is created at index 5, then subsequently a hole is created at
888 * index 10, page_cache_next_hole covering both indexes may return 10
889 * if called under rcu_read_lock.
891 pgoff_t
page_cache_next_hole(struct address_space
*mapping
,
892 pgoff_t index
, unsigned long max_scan
)
896 for (i
= 0; i
< max_scan
; i
++) {
899 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
900 if (!page
|| radix_tree_exceptional_entry(page
))
909 EXPORT_SYMBOL(page_cache_next_hole
);
912 * page_cache_prev_hole - find the prev hole (not-present entry)
915 * @max_scan: maximum range to search
917 * Search backwards in the range [max(index-max_scan+1, 0), index] for
920 * Returns: the index of the hole if found, otherwise returns an index
921 * outside of the set specified (in which case 'index - return >=
922 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
925 * page_cache_prev_hole may be called under rcu_read_lock. However,
926 * like radix_tree_gang_lookup, this will not atomically search a
927 * snapshot of the tree at a single point in time. For example, if a
928 * hole is created at index 10, then subsequently a hole is created at
929 * index 5, page_cache_prev_hole covering both indexes may return 5 if
930 * called under rcu_read_lock.
932 pgoff_t
page_cache_prev_hole(struct address_space
*mapping
,
933 pgoff_t index
, unsigned long max_scan
)
937 for (i
= 0; i
< max_scan
; i
++) {
940 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
941 if (!page
|| radix_tree_exceptional_entry(page
))
944 if (index
== ULONG_MAX
)
950 EXPORT_SYMBOL(page_cache_prev_hole
);
953 * find_get_entry - find and get a page cache entry
954 * @mapping: the address_space to search
955 * @offset: the page cache index
957 * Looks up the page cache slot at @mapping & @offset. If there is a
958 * page cache page, it is returned with an increased refcount.
960 * If the slot holds a shadow entry of a previously evicted page, or a
961 * swap entry from shmem/tmpfs, it is returned.
963 * Otherwise, %NULL is returned.
965 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
973 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
975 page
= radix_tree_deref_slot(pagep
);
978 if (radix_tree_exception(page
)) {
979 if (radix_tree_deref_retry(page
))
982 * A shadow entry of a recently evicted page,
983 * or a swap entry from shmem/tmpfs. Return
984 * it without attempting to raise page count.
988 if (!page_cache_get_speculative(page
))
992 * Has the page moved?
993 * This is part of the lockless pagecache protocol. See
994 * include/linux/pagemap.h for details.
996 if (unlikely(page
!= *pagep
)) {
997 page_cache_release(page
);
1006 EXPORT_SYMBOL(find_get_entry
);
1009 * find_lock_entry - locate, pin and lock a page cache entry
1010 * @mapping: the address_space to search
1011 * @offset: the page cache index
1013 * Looks up the page cache slot at @mapping & @offset. If there is a
1014 * page cache page, it is returned locked and with an increased
1017 * If the slot holds a shadow entry of a previously evicted page, or a
1018 * swap entry from shmem/tmpfs, it is returned.
1020 * Otherwise, %NULL is returned.
1022 * find_lock_entry() may sleep.
1024 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1029 page
= find_get_entry(mapping
, offset
);
1030 if (page
&& !radix_tree_exception(page
)) {
1032 /* Has the page been truncated? */
1033 if (unlikely(page
->mapping
!= mapping
)) {
1035 page_cache_release(page
);
1038 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1042 EXPORT_SYMBOL(find_lock_entry
);
1045 * pagecache_get_page - find and get a page reference
1046 * @mapping: the address_space to search
1047 * @offset: the page index
1048 * @fgp_flags: PCG flags
1049 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1050 * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1052 * Looks up the page cache slot at @mapping & @offset.
1054 * PCG flags modify how the page is returned.
1056 * FGP_ACCESSED: the page will be marked accessed
1057 * FGP_LOCK: Page is return locked
1058 * FGP_CREAT: If page is not present then a new page is allocated using
1059 * @cache_gfp_mask and added to the page cache and the VM's LRU
1060 * list. If radix tree nodes are allocated during page cache
1061 * insertion then @radix_gfp_mask is used. The page is returned
1062 * locked and with an increased refcount. Otherwise, %NULL is
1065 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1066 * if the GFP flags specified for FGP_CREAT are atomic.
1068 * If there is a page cache page, it is returned with an increased refcount.
1070 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1071 int fgp_flags
, gfp_t cache_gfp_mask
, gfp_t radix_gfp_mask
)
1076 page
= find_get_entry(mapping
, offset
);
1077 if (radix_tree_exceptional_entry(page
))
1082 if (fgp_flags
& FGP_LOCK
) {
1083 if (fgp_flags
& FGP_NOWAIT
) {
1084 if (!trylock_page(page
)) {
1085 page_cache_release(page
);
1092 /* Has the page been truncated? */
1093 if (unlikely(page
->mapping
!= mapping
)) {
1095 page_cache_release(page
);
1098 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1101 if (page
&& (fgp_flags
& FGP_ACCESSED
))
1102 mark_page_accessed(page
);
1105 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1107 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1108 cache_gfp_mask
|= __GFP_WRITE
;
1109 if (fgp_flags
& FGP_NOFS
) {
1110 cache_gfp_mask
&= ~__GFP_FS
;
1111 radix_gfp_mask
&= ~__GFP_FS
;
1114 page
= __page_cache_alloc(cache_gfp_mask
);
1118 if (WARN_ON_ONCE(!(fgp_flags
& FGP_LOCK
)))
1119 fgp_flags
|= FGP_LOCK
;
1121 /* Init accessed so avoid atomic mark_page_accessed later */
1122 if (fgp_flags
& FGP_ACCESSED
)
1123 __SetPageReferenced(page
);
1125 err
= add_to_page_cache_lru(page
, mapping
, offset
, radix_gfp_mask
);
1126 if (unlikely(err
)) {
1127 page_cache_release(page
);
1136 EXPORT_SYMBOL(pagecache_get_page
);
1139 * find_get_entries - gang pagecache lookup
1140 * @mapping: The address_space to search
1141 * @start: The starting page cache index
1142 * @nr_entries: The maximum number of entries
1143 * @entries: Where the resulting entries are placed
1144 * @indices: The cache indices corresponding to the entries in @entries
1146 * find_get_entries() will search for and return a group of up to
1147 * @nr_entries entries in the mapping. The entries are placed at
1148 * @entries. find_get_entries() takes a reference against any actual
1151 * The search returns a group of mapping-contiguous page cache entries
1152 * with ascending indexes. There may be holes in the indices due to
1153 * not-present pages.
1155 * Any shadow entries of evicted pages, or swap entries from
1156 * shmem/tmpfs, are included in the returned array.
1158 * find_get_entries() returns the number of pages and shadow entries
1161 unsigned find_get_entries(struct address_space
*mapping
,
1162 pgoff_t start
, unsigned int nr_entries
,
1163 struct page
**entries
, pgoff_t
*indices
)
1166 unsigned int ret
= 0;
1167 struct radix_tree_iter iter
;
1174 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1177 page
= radix_tree_deref_slot(slot
);
1178 if (unlikely(!page
))
1180 if (radix_tree_exception(page
)) {
1181 if (radix_tree_deref_retry(page
))
1184 * A shadow entry of a recently evicted page,
1185 * or a swap entry from shmem/tmpfs. Return
1186 * it without attempting to raise page count.
1190 if (!page_cache_get_speculative(page
))
1193 /* Has the page moved? */
1194 if (unlikely(page
!= *slot
)) {
1195 page_cache_release(page
);
1199 indices
[ret
] = iter
.index
;
1200 entries
[ret
] = page
;
1201 if (++ret
== nr_entries
)
1209 * find_get_pages - gang pagecache lookup
1210 * @mapping: The address_space to search
1211 * @start: The starting page index
1212 * @nr_pages: The maximum number of pages
1213 * @pages: Where the resulting pages are placed
1215 * find_get_pages() will search for and return a group of up to
1216 * @nr_pages pages in the mapping. The pages are placed at @pages.
1217 * find_get_pages() takes a reference against the returned pages.
1219 * The search returns a group of mapping-contiguous pages with ascending
1220 * indexes. There may be holes in the indices due to not-present pages.
1222 * find_get_pages() returns the number of pages which were found.
1224 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
1225 unsigned int nr_pages
, struct page
**pages
)
1227 struct radix_tree_iter iter
;
1231 if (unlikely(!nr_pages
))
1236 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1239 page
= radix_tree_deref_slot(slot
);
1240 if (unlikely(!page
))
1243 if (radix_tree_exception(page
)) {
1244 if (radix_tree_deref_retry(page
)) {
1246 * Transient condition which can only trigger
1247 * when entry at index 0 moves out of or back
1248 * to root: none yet gotten, safe to restart.
1250 WARN_ON(iter
.index
);
1254 * A shadow entry of a recently evicted page,
1255 * or a swap entry from shmem/tmpfs. Skip
1261 if (!page_cache_get_speculative(page
))
1264 /* Has the page moved? */
1265 if (unlikely(page
!= *slot
)) {
1266 page_cache_release(page
);
1271 if (++ret
== nr_pages
)
1280 * find_get_pages_contig - gang contiguous pagecache lookup
1281 * @mapping: The address_space to search
1282 * @index: The starting page index
1283 * @nr_pages: The maximum number of pages
1284 * @pages: Where the resulting pages are placed
1286 * find_get_pages_contig() works exactly like find_get_pages(), except
1287 * that the returned number of pages are guaranteed to be contiguous.
1289 * find_get_pages_contig() returns the number of pages which were found.
1291 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1292 unsigned int nr_pages
, struct page
**pages
)
1294 struct radix_tree_iter iter
;
1296 unsigned int ret
= 0;
1298 if (unlikely(!nr_pages
))
1303 radix_tree_for_each_contig(slot
, &mapping
->page_tree
, &iter
, index
) {
1306 page
= radix_tree_deref_slot(slot
);
1307 /* The hole, there no reason to continue */
1308 if (unlikely(!page
))
1311 if (radix_tree_exception(page
)) {
1312 if (radix_tree_deref_retry(page
)) {
1314 * Transient condition which can only trigger
1315 * when entry at index 0 moves out of or back
1316 * to root: none yet gotten, safe to restart.
1321 * A shadow entry of a recently evicted page,
1322 * or a swap entry from shmem/tmpfs. Stop
1323 * looking for contiguous pages.
1328 if (!page_cache_get_speculative(page
))
1331 /* Has the page moved? */
1332 if (unlikely(page
!= *slot
)) {
1333 page_cache_release(page
);
1338 * must check mapping and index after taking the ref.
1339 * otherwise we can get both false positives and false
1340 * negatives, which is just confusing to the caller.
1342 if (page
->mapping
== NULL
|| page
->index
!= iter
.index
) {
1343 page_cache_release(page
);
1348 if (++ret
== nr_pages
)
1354 EXPORT_SYMBOL(find_get_pages_contig
);
1357 * find_get_pages_tag - find and return pages that match @tag
1358 * @mapping: the address_space to search
1359 * @index: the starting page index
1360 * @tag: the tag index
1361 * @nr_pages: the maximum number of pages
1362 * @pages: where the resulting pages are placed
1364 * Like find_get_pages, except we only return pages which are tagged with
1365 * @tag. We update @index to index the next page for the traversal.
1367 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
1368 int tag
, unsigned int nr_pages
, struct page
**pages
)
1370 struct radix_tree_iter iter
;
1374 if (unlikely(!nr_pages
))
1379 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1380 &iter
, *index
, tag
) {
1383 page
= radix_tree_deref_slot(slot
);
1384 if (unlikely(!page
))
1387 if (radix_tree_exception(page
)) {
1388 if (radix_tree_deref_retry(page
)) {
1390 * Transient condition which can only trigger
1391 * when entry at index 0 moves out of or back
1392 * to root: none yet gotten, safe to restart.
1397 * A shadow entry of a recently evicted page.
1399 * Those entries should never be tagged, but
1400 * this tree walk is lockless and the tags are
1401 * looked up in bulk, one radix tree node at a
1402 * time, so there is a sizable window for page
1403 * reclaim to evict a page we saw tagged.
1410 if (!page_cache_get_speculative(page
))
1413 /* Has the page moved? */
1414 if (unlikely(page
!= *slot
)) {
1415 page_cache_release(page
);
1420 if (++ret
== nr_pages
)
1427 *index
= pages
[ret
- 1]->index
+ 1;
1431 EXPORT_SYMBOL(find_get_pages_tag
);
1434 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1435 * a _large_ part of the i/o request. Imagine the worst scenario:
1437 * ---R__________________________________________B__________
1438 * ^ reading here ^ bad block(assume 4k)
1440 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1441 * => failing the whole request => read(R) => read(R+1) =>
1442 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1443 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1444 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1446 * It is going insane. Fix it by quickly scaling down the readahead size.
1448 static void shrink_readahead_size_eio(struct file
*filp
,
1449 struct file_ra_state
*ra
)
1455 * do_generic_file_read - generic file read routine
1456 * @filp: the file to read
1457 * @ppos: current file position
1458 * @iter: data destination
1459 * @written: already copied
1461 * This is a generic file read routine, and uses the
1462 * mapping->a_ops->readpage() function for the actual low-level stuff.
1464 * This is really ugly. But the goto's actually try to clarify some
1465 * of the logic when it comes to error handling etc.
1467 static ssize_t
do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1468 struct iov_iter
*iter
, ssize_t written
)
1470 struct address_space
*mapping
= filp
->f_mapping
;
1471 struct inode
*inode
= mapping
->host
;
1472 struct file_ra_state
*ra
= &filp
->f_ra
;
1476 unsigned long offset
; /* offset into pagecache page */
1477 unsigned int prev_offset
;
1480 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1481 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1482 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1483 last_index
= (*ppos
+ iter
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1484 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1490 unsigned long nr
, ret
;
1494 page
= find_get_page(mapping
, index
);
1496 page_cache_sync_readahead(mapping
,
1498 index
, last_index
- index
);
1499 page
= find_get_page(mapping
, index
);
1500 if (unlikely(page
== NULL
))
1501 goto no_cached_page
;
1503 if (PageReadahead(page
)) {
1504 page_cache_async_readahead(mapping
,
1506 index
, last_index
- index
);
1508 if (!PageUptodate(page
)) {
1509 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1510 !mapping
->a_ops
->is_partially_uptodate
)
1511 goto page_not_up_to_date
;
1512 if (!trylock_page(page
))
1513 goto page_not_up_to_date
;
1514 /* Did it get truncated before we got the lock? */
1516 goto page_not_up_to_date_locked
;
1517 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1518 offset
, iter
->count
))
1519 goto page_not_up_to_date_locked
;
1524 * i_size must be checked after we know the page is Uptodate.
1526 * Checking i_size after the check allows us to calculate
1527 * the correct value for "nr", which means the zero-filled
1528 * part of the page is not copied back to userspace (unless
1529 * another truncate extends the file - this is desired though).
1532 isize
= i_size_read(inode
);
1533 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1534 if (unlikely(!isize
|| index
> end_index
)) {
1535 page_cache_release(page
);
1539 /* nr is the maximum number of bytes to copy from this page */
1540 nr
= PAGE_CACHE_SIZE
;
1541 if (index
== end_index
) {
1542 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1544 page_cache_release(page
);
1550 /* If users can be writing to this page using arbitrary
1551 * virtual addresses, take care about potential aliasing
1552 * before reading the page on the kernel side.
1554 if (mapping_writably_mapped(mapping
))
1555 flush_dcache_page(page
);
1558 * When a sequential read accesses a page several times,
1559 * only mark it as accessed the first time.
1561 if (prev_index
!= index
|| offset
!= prev_offset
)
1562 mark_page_accessed(page
);
1566 * Ok, we have the page, and it's up-to-date, so
1567 * now we can copy it to user space...
1570 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
1572 index
+= offset
>> PAGE_CACHE_SHIFT
;
1573 offset
&= ~PAGE_CACHE_MASK
;
1574 prev_offset
= offset
;
1576 page_cache_release(page
);
1578 if (!iov_iter_count(iter
))
1586 page_not_up_to_date
:
1587 /* Get exclusive access to the page ... */
1588 error
= lock_page_killable(page
);
1589 if (unlikely(error
))
1590 goto readpage_error
;
1592 page_not_up_to_date_locked
:
1593 /* Did it get truncated before we got the lock? */
1594 if (!page
->mapping
) {
1596 page_cache_release(page
);
1600 /* Did somebody else fill it already? */
1601 if (PageUptodate(page
)) {
1608 * A previous I/O error may have been due to temporary
1609 * failures, eg. multipath errors.
1610 * PG_error will be set again if readpage fails.
1612 ClearPageError(page
);
1613 /* Start the actual read. The read will unlock the page. */
1614 error
= mapping
->a_ops
->readpage(filp
, page
);
1616 if (unlikely(error
)) {
1617 if (error
== AOP_TRUNCATED_PAGE
) {
1618 page_cache_release(page
);
1622 goto readpage_error
;
1625 if (!PageUptodate(page
)) {
1626 error
= lock_page_killable(page
);
1627 if (unlikely(error
))
1628 goto readpage_error
;
1629 if (!PageUptodate(page
)) {
1630 if (page
->mapping
== NULL
) {
1632 * invalidate_mapping_pages got it
1635 page_cache_release(page
);
1639 shrink_readahead_size_eio(filp
, ra
);
1641 goto readpage_error
;
1649 /* UHHUH! A synchronous read error occurred. Report it */
1650 page_cache_release(page
);
1655 * Ok, it wasn't cached, so we need to create a new
1658 page
= page_cache_alloc_cold(mapping
);
1663 error
= add_to_page_cache_lru(page
, mapping
,
1666 page_cache_release(page
);
1667 if (error
== -EEXIST
) {
1677 ra
->prev_pos
= prev_index
;
1678 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1679 ra
->prev_pos
|= prev_offset
;
1681 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1682 file_accessed(filp
);
1683 return written
? written
: error
;
1687 * generic_file_read_iter - generic filesystem read routine
1688 * @iocb: kernel I/O control block
1689 * @iter: destination for the data read
1691 * This is the "read_iter()" routine for all filesystems
1692 * that can use the page cache directly.
1695 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
1697 struct file
*file
= iocb
->ki_filp
;
1699 loff_t
*ppos
= &iocb
->ki_pos
;
1702 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1703 if (file
->f_flags
& O_DIRECT
) {
1704 struct address_space
*mapping
= file
->f_mapping
;
1705 struct inode
*inode
= mapping
->host
;
1706 size_t count
= iov_iter_count(iter
);
1710 goto out
; /* skip atime */
1711 size
= i_size_read(inode
);
1712 retval
= filemap_write_and_wait_range(mapping
, pos
,
1715 struct iov_iter data
= *iter
;
1716 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
, &data
, pos
);
1720 *ppos
= pos
+ retval
;
1721 iov_iter_advance(iter
, retval
);
1725 * Btrfs can have a short DIO read if we encounter
1726 * compressed extents, so if there was an error, or if
1727 * we've already read everything we wanted to, or if
1728 * there was a short read because we hit EOF, go ahead
1729 * and return. Otherwise fallthrough to buffered io for
1730 * the rest of the read.
1732 if (retval
< 0 || !iov_iter_count(iter
) || *ppos
>= size
) {
1733 file_accessed(file
);
1738 retval
= do_generic_file_read(file
, ppos
, iter
, retval
);
1742 EXPORT_SYMBOL(generic_file_read_iter
);
1746 * page_cache_read - adds requested page to the page cache if not already there
1747 * @file: file to read
1748 * @offset: page index
1750 * This adds the requested page to the page cache if it isn't already there,
1751 * and schedules an I/O to read in its contents from disk.
1753 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1755 struct address_space
*mapping
= file
->f_mapping
;
1760 page
= page_cache_alloc_cold(mapping
);
1764 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1766 ret
= mapping
->a_ops
->readpage(file
, page
);
1767 else if (ret
== -EEXIST
)
1768 ret
= 0; /* losing race to add is OK */
1770 page_cache_release(page
);
1772 } while (ret
== AOP_TRUNCATED_PAGE
);
1777 #define MMAP_LOTSAMISS (100)
1780 * Synchronous readahead happens when we don't even find
1781 * a page in the page cache at all.
1783 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1784 struct file_ra_state
*ra
,
1788 unsigned long ra_pages
;
1789 struct address_space
*mapping
= file
->f_mapping
;
1791 /* If we don't want any read-ahead, don't bother */
1792 if (vma
->vm_flags
& VM_RAND_READ
)
1797 if (vma
->vm_flags
& VM_SEQ_READ
) {
1798 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1803 /* Avoid banging the cache line if not needed */
1804 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1808 * Do we miss much more than hit in this file? If so,
1809 * stop bothering with read-ahead. It will only hurt.
1811 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1817 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1818 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1819 ra
->size
= ra_pages
;
1820 ra
->async_size
= ra_pages
/ 4;
1821 ra_submit(ra
, mapping
, file
);
1825 * Asynchronous readahead happens when we find the page and PG_readahead,
1826 * so we want to possibly extend the readahead further..
1828 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1829 struct file_ra_state
*ra
,
1834 struct address_space
*mapping
= file
->f_mapping
;
1836 /* If we don't want any read-ahead, don't bother */
1837 if (vma
->vm_flags
& VM_RAND_READ
)
1839 if (ra
->mmap_miss
> 0)
1841 if (PageReadahead(page
))
1842 page_cache_async_readahead(mapping
, ra
, file
,
1843 page
, offset
, ra
->ra_pages
);
1847 * filemap_fault - read in file data for page fault handling
1848 * @vma: vma in which the fault was taken
1849 * @vmf: struct vm_fault containing details of the fault
1851 * filemap_fault() is invoked via the vma operations vector for a
1852 * mapped memory region to read in file data during a page fault.
1854 * The goto's are kind of ugly, but this streamlines the normal case of having
1855 * it in the page cache, and handles the special cases reasonably without
1856 * having a lot of duplicated code.
1858 * vma->vm_mm->mmap_sem must be held on entry.
1860 * If our return value has VM_FAULT_RETRY set, it's because
1861 * lock_page_or_retry() returned 0.
1862 * The mmap_sem has usually been released in this case.
1863 * See __lock_page_or_retry() for the exception.
1865 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1866 * has not been released.
1868 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1870 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1873 struct file
*file
= vma
->vm_file
;
1874 struct address_space
*mapping
= file
->f_mapping
;
1875 struct file_ra_state
*ra
= &file
->f_ra
;
1876 struct inode
*inode
= mapping
->host
;
1877 pgoff_t offset
= vmf
->pgoff
;
1882 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
1883 if (offset
>= size
>> PAGE_CACHE_SHIFT
)
1884 return VM_FAULT_SIGBUS
;
1887 * Do we have something in the page cache already?
1889 page
= find_get_page(mapping
, offset
);
1890 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
1892 * We found the page, so try async readahead before
1893 * waiting for the lock.
1895 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1897 /* No page in the page cache at all */
1898 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1899 count_vm_event(PGMAJFAULT
);
1900 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1901 ret
= VM_FAULT_MAJOR
;
1903 page
= find_get_page(mapping
, offset
);
1905 goto no_cached_page
;
1908 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1909 page_cache_release(page
);
1910 return ret
| VM_FAULT_RETRY
;
1913 /* Did it get truncated? */
1914 if (unlikely(page
->mapping
!= mapping
)) {
1919 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1922 * We have a locked page in the page cache, now we need to check
1923 * that it's up-to-date. If not, it is going to be due to an error.
1925 if (unlikely(!PageUptodate(page
)))
1926 goto page_not_uptodate
;
1929 * Found the page and have a reference on it.
1930 * We must recheck i_size under page lock.
1932 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
1933 if (unlikely(offset
>= size
>> PAGE_CACHE_SHIFT
)) {
1935 page_cache_release(page
);
1936 return VM_FAULT_SIGBUS
;
1940 return ret
| VM_FAULT_LOCKED
;
1944 * We're only likely to ever get here if MADV_RANDOM is in
1947 error
= page_cache_read(file
, offset
);
1950 * The page we want has now been added to the page cache.
1951 * In the unlikely event that someone removed it in the
1952 * meantime, we'll just come back here and read it again.
1958 * An error return from page_cache_read can result if the
1959 * system is low on memory, or a problem occurs while trying
1962 if (error
== -ENOMEM
)
1963 return VM_FAULT_OOM
;
1964 return VM_FAULT_SIGBUS
;
1968 * Umm, take care of errors if the page isn't up-to-date.
1969 * Try to re-read it _once_. We do this synchronously,
1970 * because there really aren't any performance issues here
1971 * and we need to check for errors.
1973 ClearPageError(page
);
1974 error
= mapping
->a_ops
->readpage(file
, page
);
1976 wait_on_page_locked(page
);
1977 if (!PageUptodate(page
))
1980 page_cache_release(page
);
1982 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1985 /* Things didn't work out. Return zero to tell the mm layer so. */
1986 shrink_readahead_size_eio(file
, ra
);
1987 return VM_FAULT_SIGBUS
;
1989 EXPORT_SYMBOL(filemap_fault
);
1991 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1993 struct radix_tree_iter iter
;
1995 struct file
*file
= vma
->vm_file
;
1996 struct address_space
*mapping
= file
->f_mapping
;
1999 unsigned long address
= (unsigned long) vmf
->virtual_address
;
2004 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, vmf
->pgoff
) {
2005 if (iter
.index
> vmf
->max_pgoff
)
2008 page
= radix_tree_deref_slot(slot
);
2009 if (unlikely(!page
))
2011 if (radix_tree_exception(page
)) {
2012 if (radix_tree_deref_retry(page
))
2018 if (!page_cache_get_speculative(page
))
2021 /* Has the page moved? */
2022 if (unlikely(page
!= *slot
)) {
2023 page_cache_release(page
);
2027 if (!PageUptodate(page
) ||
2028 PageReadahead(page
) ||
2031 if (!trylock_page(page
))
2034 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2037 size
= round_up(i_size_read(mapping
->host
), PAGE_CACHE_SIZE
);
2038 if (page
->index
>= size
>> PAGE_CACHE_SHIFT
)
2041 pte
= vmf
->pte
+ page
->index
- vmf
->pgoff
;
2042 if (!pte_none(*pte
))
2045 if (file
->f_ra
.mmap_miss
> 0)
2046 file
->f_ra
.mmap_miss
--;
2047 addr
= address
+ (page
->index
- vmf
->pgoff
) * PAGE_SIZE
;
2048 do_set_pte(vma
, addr
, page
, pte
, false, false);
2054 page_cache_release(page
);
2056 if (iter
.index
== vmf
->max_pgoff
)
2061 EXPORT_SYMBOL(filemap_map_pages
);
2063 int filemap_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2065 struct page
*page
= vmf
->page
;
2066 struct inode
*inode
= file_inode(vma
->vm_file
);
2067 int ret
= VM_FAULT_LOCKED
;
2069 sb_start_pagefault(inode
->i_sb
);
2070 file_update_time(vma
->vm_file
);
2072 if (page
->mapping
!= inode
->i_mapping
) {
2074 ret
= VM_FAULT_NOPAGE
;
2078 * We mark the page dirty already here so that when freeze is in
2079 * progress, we are guaranteed that writeback during freezing will
2080 * see the dirty page and writeprotect it again.
2082 set_page_dirty(page
);
2083 wait_for_stable_page(page
);
2085 sb_end_pagefault(inode
->i_sb
);
2088 EXPORT_SYMBOL(filemap_page_mkwrite
);
2090 const struct vm_operations_struct generic_file_vm_ops
= {
2091 .fault
= filemap_fault
,
2092 .map_pages
= filemap_map_pages
,
2093 .page_mkwrite
= filemap_page_mkwrite
,
2094 .remap_pages
= generic_file_remap_pages
,
2097 /* This is used for a general mmap of a disk file */
2099 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2101 struct address_space
*mapping
= file
->f_mapping
;
2103 if (!mapping
->a_ops
->readpage
)
2105 file_accessed(file
);
2106 vma
->vm_ops
= &generic_file_vm_ops
;
2111 * This is for filesystems which do not implement ->writepage.
2113 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2115 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2117 return generic_file_mmap(file
, vma
);
2120 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2124 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2128 #endif /* CONFIG_MMU */
2130 EXPORT_SYMBOL(generic_file_mmap
);
2131 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2133 static struct page
*wait_on_page_read(struct page
*page
)
2135 if (!IS_ERR(page
)) {
2136 wait_on_page_locked(page
);
2137 if (!PageUptodate(page
)) {
2138 page_cache_release(page
);
2139 page
= ERR_PTR(-EIO
);
2145 static struct page
*__read_cache_page(struct address_space
*mapping
,
2147 int (*filler
)(void *, struct page
*),
2154 page
= find_get_page(mapping
, index
);
2156 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
2158 return ERR_PTR(-ENOMEM
);
2159 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2160 if (unlikely(err
)) {
2161 page_cache_release(page
);
2164 /* Presumably ENOMEM for radix tree node */
2165 return ERR_PTR(err
);
2167 err
= filler(data
, page
);
2169 page_cache_release(page
);
2170 page
= ERR_PTR(err
);
2172 page
= wait_on_page_read(page
);
2178 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2180 int (*filler
)(void *, struct page
*),
2189 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
2192 if (PageUptodate(page
))
2196 if (!page
->mapping
) {
2198 page_cache_release(page
);
2201 if (PageUptodate(page
)) {
2205 err
= filler(data
, page
);
2207 page_cache_release(page
);
2208 return ERR_PTR(err
);
2210 page
= wait_on_page_read(page
);
2215 mark_page_accessed(page
);
2220 * read_cache_page - read into page cache, fill it if needed
2221 * @mapping: the page's address_space
2222 * @index: the page index
2223 * @filler: function to perform the read
2224 * @data: first arg to filler(data, page) function, often left as NULL
2226 * Read into the page cache. If a page already exists, and PageUptodate() is
2227 * not set, try to fill the page and wait for it to become unlocked.
2229 * If the page does not get brought uptodate, return -EIO.
2231 struct page
*read_cache_page(struct address_space
*mapping
,
2233 int (*filler
)(void *, struct page
*),
2236 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
2238 EXPORT_SYMBOL(read_cache_page
);
2241 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2242 * @mapping: the page's address_space
2243 * @index: the page index
2244 * @gfp: the page allocator flags to use if allocating
2246 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2247 * any new page allocations done using the specified allocation flags.
2249 * If the page does not get brought uptodate, return -EIO.
2251 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2255 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
2257 return do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
);
2259 EXPORT_SYMBOL(read_cache_page_gfp
);
2262 * Performs necessary checks before doing a write
2264 * Can adjust writing position or amount of bytes to write.
2265 * Returns appropriate error code that caller should return or
2266 * zero in case that write should be allowed.
2268 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2270 struct inode
*inode
= file
->f_mapping
->host
;
2271 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2273 if (unlikely(*pos
< 0))
2277 /* FIXME: this is for backwards compatibility with 2.4 */
2278 if (file
->f_flags
& O_APPEND
)
2279 *pos
= i_size_read(inode
);
2281 if (limit
!= RLIM_INFINITY
) {
2282 if (*pos
>= limit
) {
2283 send_sig(SIGXFSZ
, current
, 0);
2286 if (*count
> limit
- (typeof(limit
))*pos
) {
2287 *count
= limit
- (typeof(limit
))*pos
;
2295 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2296 !(file
->f_flags
& O_LARGEFILE
))) {
2297 if (*pos
>= MAX_NON_LFS
) {
2300 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2301 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2306 * Are we about to exceed the fs block limit ?
2308 * If we have written data it becomes a short write. If we have
2309 * exceeded without writing data we send a signal and return EFBIG.
2310 * Linus frestrict idea will clean these up nicely..
2312 if (likely(!isblk
)) {
2313 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2314 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2317 /* zero-length writes at ->s_maxbytes are OK */
2320 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2321 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2325 if (bdev_read_only(I_BDEV(inode
)))
2327 isize
= i_size_read(inode
);
2328 if (*pos
>= isize
) {
2329 if (*count
|| *pos
> isize
)
2333 if (*pos
+ *count
> isize
)
2334 *count
= isize
- *pos
;
2341 EXPORT_SYMBOL(generic_write_checks
);
2343 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2344 loff_t pos
, unsigned len
, unsigned flags
,
2345 struct page
**pagep
, void **fsdata
)
2347 const struct address_space_operations
*aops
= mapping
->a_ops
;
2349 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2352 EXPORT_SYMBOL(pagecache_write_begin
);
2354 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2355 loff_t pos
, unsigned len
, unsigned copied
,
2356 struct page
*page
, void *fsdata
)
2358 const struct address_space_operations
*aops
= mapping
->a_ops
;
2360 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2362 EXPORT_SYMBOL(pagecache_write_end
);
2365 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
, loff_t pos
)
2367 struct file
*file
= iocb
->ki_filp
;
2368 struct address_space
*mapping
= file
->f_mapping
;
2369 struct inode
*inode
= mapping
->host
;
2373 struct iov_iter data
;
2375 write_len
= iov_iter_count(from
);
2376 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2378 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2383 * After a write we want buffered reads to be sure to go to disk to get
2384 * the new data. We invalidate clean cached page from the region we're
2385 * about to write. We do this *before* the write so that we can return
2386 * without clobbering -EIOCBQUEUED from ->direct_IO().
2388 if (mapping
->nrpages
) {
2389 written
= invalidate_inode_pages2_range(mapping
,
2390 pos
>> PAGE_CACHE_SHIFT
, end
);
2392 * If a page can not be invalidated, return 0 to fall back
2393 * to buffered write.
2396 if (written
== -EBUSY
)
2403 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, &data
, pos
);
2406 * Finally, try again to invalidate clean pages which might have been
2407 * cached by non-direct readahead, or faulted in by get_user_pages()
2408 * if the source of the write was an mmap'ed region of the file
2409 * we're writing. Either one is a pretty crazy thing to do,
2410 * so we don't support it 100%. If this invalidation
2411 * fails, tough, the write still worked...
2413 if (mapping
->nrpages
) {
2414 invalidate_inode_pages2_range(mapping
,
2415 pos
>> PAGE_CACHE_SHIFT
, end
);
2420 iov_iter_advance(from
, written
);
2421 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2422 i_size_write(inode
, pos
);
2423 mark_inode_dirty(inode
);
2430 EXPORT_SYMBOL(generic_file_direct_write
);
2433 * Find or create a page at the given pagecache position. Return the locked
2434 * page. This function is specifically for buffered writes.
2436 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2437 pgoff_t index
, unsigned flags
)
2440 int fgp_flags
= FGP_LOCK
|FGP_ACCESSED
|FGP_WRITE
|FGP_CREAT
;
2442 if (flags
& AOP_FLAG_NOFS
)
2443 fgp_flags
|= FGP_NOFS
;
2445 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
2446 mapping_gfp_mask(mapping
),
2449 wait_for_stable_page(page
);
2453 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2455 ssize_t
generic_perform_write(struct file
*file
,
2456 struct iov_iter
*i
, loff_t pos
)
2458 struct address_space
*mapping
= file
->f_mapping
;
2459 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2461 ssize_t written
= 0;
2462 unsigned int flags
= 0;
2465 * Copies from kernel address space cannot fail (NFSD is a big user).
2467 if (segment_eq(get_fs(), KERNEL_DS
))
2468 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2472 unsigned long offset
; /* Offset into pagecache page */
2473 unsigned long bytes
; /* Bytes to write to page */
2474 size_t copied
; /* Bytes copied from user */
2477 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2478 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2483 * Bring in the user page that we will copy from _first_.
2484 * Otherwise there's a nasty deadlock on copying from the
2485 * same page as we're writing to, without it being marked
2488 * Not only is this an optimisation, but it is also required
2489 * to check that the address is actually valid, when atomic
2490 * usercopies are used, below.
2492 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2497 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2499 if (unlikely(status
< 0))
2502 if (mapping_writably_mapped(mapping
))
2503 flush_dcache_page(page
);
2505 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2506 flush_dcache_page(page
);
2508 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2510 if (unlikely(status
< 0))
2516 iov_iter_advance(i
, copied
);
2517 if (unlikely(copied
== 0)) {
2519 * If we were unable to copy any data at all, we must
2520 * fall back to a single segment length write.
2522 * If we didn't fallback here, we could livelock
2523 * because not all segments in the iov can be copied at
2524 * once without a pagefault.
2526 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2527 iov_iter_single_seg_count(i
));
2533 balance_dirty_pages_ratelimited(mapping
);
2534 if (fatal_signal_pending(current
)) {
2538 } while (iov_iter_count(i
));
2540 return written
? written
: status
;
2542 EXPORT_SYMBOL(generic_perform_write
);
2545 * __generic_file_write_iter - write data to a file
2546 * @iocb: IO state structure (file, offset, etc.)
2547 * @from: iov_iter with data to write
2549 * This function does all the work needed for actually writing data to a
2550 * file. It does all basic checks, removes SUID from the file, updates
2551 * modification times and calls proper subroutines depending on whether we
2552 * do direct IO or a standard buffered write.
2554 * It expects i_mutex to be grabbed unless we work on a block device or similar
2555 * object which does not need locking at all.
2557 * This function does *not* take care of syncing data in case of O_SYNC write.
2558 * A caller has to handle it. This is mainly due to the fact that we want to
2559 * avoid syncing under i_mutex.
2561 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2563 struct file
*file
= iocb
->ki_filp
;
2564 struct address_space
* mapping
= file
->f_mapping
;
2565 struct inode
*inode
= mapping
->host
;
2566 loff_t pos
= iocb
->ki_pos
;
2567 ssize_t written
= 0;
2570 size_t count
= iov_iter_count(from
);
2572 /* We can write back this queue in page reclaim */
2573 current
->backing_dev_info
= mapping
->backing_dev_info
;
2574 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2581 iov_iter_truncate(from
, count
);
2583 err
= file_remove_suid(file
);
2587 err
= file_update_time(file
);
2591 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2592 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2595 written
= generic_file_direct_write(iocb
, from
, pos
);
2596 if (written
< 0 || written
== count
)
2600 * direct-io write to a hole: fall through to buffered I/O
2601 * for completing the rest of the request.
2606 status
= generic_perform_write(file
, from
, pos
);
2608 * If generic_perform_write() returned a synchronous error
2609 * then we want to return the number of bytes which were
2610 * direct-written, or the error code if that was zero. Note
2611 * that this differs from normal direct-io semantics, which
2612 * will return -EFOO even if some bytes were written.
2614 if (unlikely(status
< 0)) {
2618 iocb
->ki_pos
= pos
+ status
;
2620 * We need to ensure that the page cache pages are written to
2621 * disk and invalidated to preserve the expected O_DIRECT
2624 endbyte
= pos
+ status
- 1;
2625 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2628 invalidate_mapping_pages(mapping
,
2629 pos
>> PAGE_CACHE_SHIFT
,
2630 endbyte
>> PAGE_CACHE_SHIFT
);
2633 * We don't know how much we wrote, so just return
2634 * the number of bytes which were direct-written
2638 written
= generic_perform_write(file
, from
, pos
);
2639 if (likely(written
>= 0))
2640 iocb
->ki_pos
= pos
+ written
;
2643 current
->backing_dev_info
= NULL
;
2644 return written
? written
: err
;
2646 EXPORT_SYMBOL(__generic_file_write_iter
);
2649 * generic_file_write_iter - write data to a file
2650 * @iocb: IO state structure
2651 * @from: iov_iter with data to write
2653 * This is a wrapper around __generic_file_write_iter() to be used by most
2654 * filesystems. It takes care of syncing the file in case of O_SYNC file
2655 * and acquires i_mutex as needed.
2657 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2659 struct file
*file
= iocb
->ki_filp
;
2660 struct inode
*inode
= file
->f_mapping
->host
;
2663 mutex_lock(&inode
->i_mutex
);
2664 ret
= __generic_file_write_iter(iocb
, from
);
2665 mutex_unlock(&inode
->i_mutex
);
2670 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
2676 EXPORT_SYMBOL(generic_file_write_iter
);
2679 * try_to_release_page() - release old fs-specific metadata on a page
2681 * @page: the page which the kernel is trying to free
2682 * @gfp_mask: memory allocation flags (and I/O mode)
2684 * The address_space is to try to release any data against the page
2685 * (presumably at page->private). If the release was successful, return `1'.
2686 * Otherwise return zero.
2688 * This may also be called if PG_fscache is set on a page, indicating that the
2689 * page is known to the local caching routines.
2691 * The @gfp_mask argument specifies whether I/O may be performed to release
2692 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2695 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2697 struct address_space
* const mapping
= page
->mapping
;
2699 BUG_ON(!PageLocked(page
));
2700 if (PageWriteback(page
))
2703 if (mapping
&& mapping
->a_ops
->releasepage
)
2704 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2705 return try_to_free_buffers(page
);
2708 EXPORT_SYMBOL(try_to_release_page
);