vfs: export check_sticky()
[linux/fpc-iii.git] / mm / filemap.c
blob14b4642279f1260e6bbd6a6b73b0518ee377acd1
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 #include <asm/mman.h>
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 * Lock ordering:
65 * ->i_mmap_mutex (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
70 * ->i_mutex
71 * ->i_mmap_mutex (truncate->unmap_mapping_range)
73 * ->mmap_sem
74 * ->i_mmap_mutex
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_mutex
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->i_mmap_mutex
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
121 VM_BUG_ON(!PageLocked(page));
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125 if (shadow) {
126 mapping->nrshadows++;
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
133 smp_wmb();
135 mapping->nrpages--;
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
162 * Track node that only contains shadow entries.
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
176 * Delete a page from the page cache and free it. Caller has to make
177 * sure the page is locked and that nobody else uses it - or that usage
178 * is safe. The caller must hold the mapping's tree_lock.
180 void __delete_from_page_cache(struct page *page, void *shadow)
182 struct address_space *mapping = page->mapping;
184 trace_mm_filemap_delete_from_page_cache(page);
186 * if we're uptodate, flush out into the cleancache, otherwise
187 * invalidate any existing cleancache entries. We can't leave
188 * stale data around in the cleancache once our page is gone
190 if (PageUptodate(page) && PageMappedToDisk(page))
191 cleancache_put_page(page);
192 else
193 cleancache_invalidate_page(mapping, page);
195 page_cache_tree_delete(mapping, page, shadow);
197 page->mapping = NULL;
198 /* Leave page->index set: truncation lookup relies upon it */
200 __dec_zone_page_state(page, NR_FILE_PAGES);
201 if (PageSwapBacked(page))
202 __dec_zone_page_state(page, NR_SHMEM);
203 BUG_ON(page_mapped(page));
206 * Some filesystems seem to re-dirty the page even after
207 * the VM has canceled the dirty bit (eg ext3 journaling).
209 * Fix it up by doing a final dirty accounting check after
210 * having removed the page entirely.
212 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
213 dec_zone_page_state(page, NR_FILE_DIRTY);
214 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
219 * delete_from_page_cache - delete page from page cache
220 * @page: the page which the kernel is trying to remove from page cache
222 * This must be called only on pages that have been verified to be in the page
223 * cache and locked. It will never put the page into the free list, the caller
224 * has a reference on the page.
226 void delete_from_page_cache(struct page *page)
228 struct address_space *mapping = page->mapping;
229 void (*freepage)(struct page *);
231 BUG_ON(!PageLocked(page));
233 freepage = mapping->a_ops->freepage;
234 spin_lock_irq(&mapping->tree_lock);
235 __delete_from_page_cache(page, NULL);
236 spin_unlock_irq(&mapping->tree_lock);
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
242 EXPORT_SYMBOL(delete_from_page_cache);
244 static int filemap_check_errors(struct address_space *mapping)
246 int ret = 0;
247 /* Check for outstanding write errors */
248 if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 ret = -ENOSPC;
251 if (test_bit(AS_EIO, &mapping->flags) &&
252 test_and_clear_bit(AS_EIO, &mapping->flags))
253 ret = -EIO;
254 return ret;
258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
261 * @end: offset in bytes where the range ends (inclusive)
262 * @sync_mode: enable synchronous operation
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268 * opposed to a regular memory cleansing writeback. The difference between
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 loff_t end, int sync_mode)
275 int ret;
276 struct writeback_control wbc = {
277 .sync_mode = sync_mode,
278 .nr_to_write = LONG_MAX,
279 .range_start = start,
280 .range_end = end,
283 if (!mapping_cap_writeback_dirty(mapping))
284 return 0;
286 ret = do_writepages(mapping, &wbc);
287 return ret;
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 int sync_mode)
293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
296 int filemap_fdatawrite(struct address_space *mapping)
298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
300 EXPORT_SYMBOL(filemap_fdatawrite);
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 loff_t end)
305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
316 int filemap_flush(struct address_space *mapping)
318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
320 EXPORT_SYMBOL(filemap_flush);
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 loff_t end_byte)
334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 struct pagevec pvec;
337 int nr_pages;
338 int ret2, ret = 0;
340 if (end_byte < start_byte)
341 goto out;
343 pagevec_init(&pvec, 0);
344 while ((index <= end) &&
345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 PAGECACHE_TAG_WRITEBACK,
347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 unsigned i;
350 for (i = 0; i < nr_pages; i++) {
351 struct page *page = pvec.pages[i];
353 /* until radix tree lookup accepts end_index */
354 if (page->index > end)
355 continue;
357 wait_on_page_writeback(page);
358 if (TestClearPageError(page))
359 ret = -EIO;
361 pagevec_release(&pvec);
362 cond_resched();
364 out:
365 ret2 = filemap_check_errors(mapping);
366 if (!ret)
367 ret = ret2;
369 return ret;
371 EXPORT_SYMBOL(filemap_fdatawait_range);
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
380 int filemap_fdatawait(struct address_space *mapping)
382 loff_t i_size = i_size_read(mapping->host);
384 if (i_size == 0)
385 return 0;
387 return filemap_fdatawait_range(mapping, 0, i_size - 1);
389 EXPORT_SYMBOL(filemap_fdatawait);
391 int filemap_write_and_wait(struct address_space *mapping)
393 int err = 0;
395 if (mapping->nrpages) {
396 err = filemap_fdatawrite(mapping);
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
408 } else {
409 err = filemap_check_errors(mapping);
411 return err;
413 EXPORT_SYMBOL(filemap_write_and_wait);
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
421 * Write out and wait upon file offsets lstart->lend, inclusive.
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
429 int err = 0;
431 if (mapping->nrpages) {
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
436 int err2 = filemap_fdatawait_range(mapping,
437 lstart, lend);
438 if (!err)
439 err = err2;
441 } else {
442 err = filemap_check_errors(mapping);
444 return err;
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
465 int error;
467 VM_BUG_ON_PAGE(!PageLocked(old), old);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping, new);
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (!error) {
473 struct address_space *mapping = old->mapping;
474 void (*freepage)(struct page *);
476 pgoff_t offset = old->index;
477 freepage = mapping->a_ops->freepage;
479 page_cache_get(new);
480 new->mapping = mapping;
481 new->index = offset;
483 spin_lock_irq(&mapping->tree_lock);
484 __delete_from_page_cache(old, NULL);
485 error = radix_tree_insert(&mapping->page_tree, offset, new);
486 BUG_ON(error);
487 mapping->nrpages++;
488 __inc_zone_page_state(new, NR_FILE_PAGES);
489 if (PageSwapBacked(new))
490 __inc_zone_page_state(new, NR_SHMEM);
491 spin_unlock_irq(&mapping->tree_lock);
492 mem_cgroup_migrate(old, new, true);
493 radix_tree_preload_end();
494 if (freepage)
495 freepage(old);
496 page_cache_release(old);
499 return error;
501 EXPORT_SYMBOL_GPL(replace_page_cache_page);
503 static int page_cache_tree_insert(struct address_space *mapping,
504 struct page *page, void **shadowp)
506 struct radix_tree_node *node;
507 void **slot;
508 int error;
510 error = __radix_tree_create(&mapping->page_tree, page->index,
511 &node, &slot);
512 if (error)
513 return error;
514 if (*slot) {
515 void *p;
517 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
518 if (!radix_tree_exceptional_entry(p))
519 return -EEXIST;
520 if (shadowp)
521 *shadowp = p;
522 mapping->nrshadows--;
523 if (node)
524 workingset_node_shadows_dec(node);
526 radix_tree_replace_slot(slot, page);
527 mapping->nrpages++;
528 if (node) {
529 workingset_node_pages_inc(node);
531 * Don't track node that contains actual pages.
533 * Avoid acquiring the list_lru lock if already
534 * untracked. The list_empty() test is safe as
535 * node->private_list is protected by
536 * mapping->tree_lock.
538 if (!list_empty(&node->private_list))
539 list_lru_del(&workingset_shadow_nodes,
540 &node->private_list);
542 return 0;
545 static int __add_to_page_cache_locked(struct page *page,
546 struct address_space *mapping,
547 pgoff_t offset, gfp_t gfp_mask,
548 void **shadowp)
550 int huge = PageHuge(page);
551 struct mem_cgroup *memcg;
552 int error;
554 VM_BUG_ON_PAGE(!PageLocked(page), page);
555 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
557 if (!huge) {
558 error = mem_cgroup_try_charge(page, current->mm,
559 gfp_mask, &memcg);
560 if (error)
561 return error;
564 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
565 if (error) {
566 if (!huge)
567 mem_cgroup_cancel_charge(page, memcg);
568 return error;
571 page_cache_get(page);
572 page->mapping = mapping;
573 page->index = offset;
575 spin_lock_irq(&mapping->tree_lock);
576 error = page_cache_tree_insert(mapping, page, shadowp);
577 radix_tree_preload_end();
578 if (unlikely(error))
579 goto err_insert;
580 __inc_zone_page_state(page, NR_FILE_PAGES);
581 spin_unlock_irq(&mapping->tree_lock);
582 if (!huge)
583 mem_cgroup_commit_charge(page, memcg, false);
584 trace_mm_filemap_add_to_page_cache(page);
585 return 0;
586 err_insert:
587 page->mapping = NULL;
588 /* Leave page->index set: truncation relies upon it */
589 spin_unlock_irq(&mapping->tree_lock);
590 if (!huge)
591 mem_cgroup_cancel_charge(page, memcg);
592 page_cache_release(page);
593 return error;
597 * add_to_page_cache_locked - add a locked page to the pagecache
598 * @page: page to add
599 * @mapping: the page's address_space
600 * @offset: page index
601 * @gfp_mask: page allocation mode
603 * This function is used to add a page to the pagecache. It must be locked.
604 * This function does not add the page to the LRU. The caller must do that.
606 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
607 pgoff_t offset, gfp_t gfp_mask)
609 return __add_to_page_cache_locked(page, mapping, offset,
610 gfp_mask, NULL);
612 EXPORT_SYMBOL(add_to_page_cache_locked);
614 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
615 pgoff_t offset, gfp_t gfp_mask)
617 void *shadow = NULL;
618 int ret;
620 __set_page_locked(page);
621 ret = __add_to_page_cache_locked(page, mapping, offset,
622 gfp_mask, &shadow);
623 if (unlikely(ret))
624 __clear_page_locked(page);
625 else {
627 * The page might have been evicted from cache only
628 * recently, in which case it should be activated like
629 * any other repeatedly accessed page.
631 if (shadow && workingset_refault(shadow)) {
632 SetPageActive(page);
633 workingset_activation(page);
634 } else
635 ClearPageActive(page);
636 lru_cache_add(page);
638 return ret;
640 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
642 #ifdef CONFIG_NUMA
643 struct page *__page_cache_alloc(gfp_t gfp)
645 int n;
646 struct page *page;
648 if (cpuset_do_page_mem_spread()) {
649 unsigned int cpuset_mems_cookie;
650 do {
651 cpuset_mems_cookie = read_mems_allowed_begin();
652 n = cpuset_mem_spread_node();
653 page = alloc_pages_exact_node(n, gfp, 0);
654 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
656 return page;
658 return alloc_pages(gfp, 0);
660 EXPORT_SYMBOL(__page_cache_alloc);
661 #endif
664 * In order to wait for pages to become available there must be
665 * waitqueues associated with pages. By using a hash table of
666 * waitqueues where the bucket discipline is to maintain all
667 * waiters on the same queue and wake all when any of the pages
668 * become available, and for the woken contexts to check to be
669 * sure the appropriate page became available, this saves space
670 * at a cost of "thundering herd" phenomena during rare hash
671 * collisions.
673 wait_queue_head_t *page_waitqueue(struct page *page)
675 const struct zone *zone = page_zone(page);
677 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
679 EXPORT_SYMBOL(page_waitqueue);
681 void wait_on_page_bit(struct page *page, int bit_nr)
683 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
685 if (test_bit(bit_nr, &page->flags))
686 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
687 TASK_UNINTERRUPTIBLE);
689 EXPORT_SYMBOL(wait_on_page_bit);
691 int wait_on_page_bit_killable(struct page *page, int bit_nr)
693 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
695 if (!test_bit(bit_nr, &page->flags))
696 return 0;
698 return __wait_on_bit(page_waitqueue(page), &wait,
699 bit_wait_io, TASK_KILLABLE);
702 int wait_on_page_bit_killable_timeout(struct page *page,
703 int bit_nr, unsigned long timeout)
705 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
707 wait.key.timeout = jiffies + timeout;
708 if (!test_bit(bit_nr, &page->flags))
709 return 0;
710 return __wait_on_bit(page_waitqueue(page), &wait,
711 bit_wait_io_timeout, TASK_KILLABLE);
713 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
716 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
717 * @page: Page defining the wait queue of interest
718 * @waiter: Waiter to add to the queue
720 * Add an arbitrary @waiter to the wait queue for the nominated @page.
722 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
724 wait_queue_head_t *q = page_waitqueue(page);
725 unsigned long flags;
727 spin_lock_irqsave(&q->lock, flags);
728 __add_wait_queue(q, waiter);
729 spin_unlock_irqrestore(&q->lock, flags);
731 EXPORT_SYMBOL_GPL(add_page_wait_queue);
734 * unlock_page - unlock a locked page
735 * @page: the page
737 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
738 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
739 * mechanism between PageLocked pages and PageWriteback pages is shared.
740 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
742 * The mb is necessary to enforce ordering between the clear_bit and the read
743 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
745 void unlock_page(struct page *page)
747 VM_BUG_ON_PAGE(!PageLocked(page), page);
748 clear_bit_unlock(PG_locked, &page->flags);
749 smp_mb__after_atomic();
750 wake_up_page(page, PG_locked);
752 EXPORT_SYMBOL(unlock_page);
755 * end_page_writeback - end writeback against a page
756 * @page: the page
758 void end_page_writeback(struct page *page)
761 * TestClearPageReclaim could be used here but it is an atomic
762 * operation and overkill in this particular case. Failing to
763 * shuffle a page marked for immediate reclaim is too mild to
764 * justify taking an atomic operation penalty at the end of
765 * ever page writeback.
767 if (PageReclaim(page)) {
768 ClearPageReclaim(page);
769 rotate_reclaimable_page(page);
772 if (!test_clear_page_writeback(page))
773 BUG();
775 smp_mb__after_atomic();
776 wake_up_page(page, PG_writeback);
778 EXPORT_SYMBOL(end_page_writeback);
781 * After completing I/O on a page, call this routine to update the page
782 * flags appropriately
784 void page_endio(struct page *page, int rw, int err)
786 if (rw == READ) {
787 if (!err) {
788 SetPageUptodate(page);
789 } else {
790 ClearPageUptodate(page);
791 SetPageError(page);
793 unlock_page(page);
794 } else { /* rw == WRITE */
795 if (err) {
796 SetPageError(page);
797 if (page->mapping)
798 mapping_set_error(page->mapping, err);
800 end_page_writeback(page);
803 EXPORT_SYMBOL_GPL(page_endio);
806 * __lock_page - get a lock on the page, assuming we need to sleep to get it
807 * @page: the page to lock
809 void __lock_page(struct page *page)
811 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
813 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
814 TASK_UNINTERRUPTIBLE);
816 EXPORT_SYMBOL(__lock_page);
818 int __lock_page_killable(struct page *page)
820 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
822 return __wait_on_bit_lock(page_waitqueue(page), &wait,
823 bit_wait_io, TASK_KILLABLE);
825 EXPORT_SYMBOL_GPL(__lock_page_killable);
828 * Return values:
829 * 1 - page is locked; mmap_sem is still held.
830 * 0 - page is not locked.
831 * mmap_sem has been released (up_read()), unless flags had both
832 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
833 * which case mmap_sem is still held.
835 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
836 * with the page locked and the mmap_sem unperturbed.
838 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
839 unsigned int flags)
841 if (flags & FAULT_FLAG_ALLOW_RETRY) {
843 * CAUTION! In this case, mmap_sem is not released
844 * even though return 0.
846 if (flags & FAULT_FLAG_RETRY_NOWAIT)
847 return 0;
849 up_read(&mm->mmap_sem);
850 if (flags & FAULT_FLAG_KILLABLE)
851 wait_on_page_locked_killable(page);
852 else
853 wait_on_page_locked(page);
854 return 0;
855 } else {
856 if (flags & FAULT_FLAG_KILLABLE) {
857 int ret;
859 ret = __lock_page_killable(page);
860 if (ret) {
861 up_read(&mm->mmap_sem);
862 return 0;
864 } else
865 __lock_page(page);
866 return 1;
871 * page_cache_next_hole - find the next hole (not-present entry)
872 * @mapping: mapping
873 * @index: index
874 * @max_scan: maximum range to search
876 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
877 * lowest indexed hole.
879 * Returns: the index of the hole if found, otherwise returns an index
880 * outside of the set specified (in which case 'return - index >=
881 * max_scan' will be true). In rare cases of index wrap-around, 0 will
882 * be returned.
884 * page_cache_next_hole may be called under rcu_read_lock. However,
885 * like radix_tree_gang_lookup, this will not atomically search a
886 * snapshot of the tree at a single point in time. For example, if a
887 * hole is created at index 5, then subsequently a hole is created at
888 * index 10, page_cache_next_hole covering both indexes may return 10
889 * if called under rcu_read_lock.
891 pgoff_t page_cache_next_hole(struct address_space *mapping,
892 pgoff_t index, unsigned long max_scan)
894 unsigned long i;
896 for (i = 0; i < max_scan; i++) {
897 struct page *page;
899 page = radix_tree_lookup(&mapping->page_tree, index);
900 if (!page || radix_tree_exceptional_entry(page))
901 break;
902 index++;
903 if (index == 0)
904 break;
907 return index;
909 EXPORT_SYMBOL(page_cache_next_hole);
912 * page_cache_prev_hole - find the prev hole (not-present entry)
913 * @mapping: mapping
914 * @index: index
915 * @max_scan: maximum range to search
917 * Search backwards in the range [max(index-max_scan+1, 0), index] for
918 * the first hole.
920 * Returns: the index of the hole if found, otherwise returns an index
921 * outside of the set specified (in which case 'index - return >=
922 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
923 * will be returned.
925 * page_cache_prev_hole may be called under rcu_read_lock. However,
926 * like radix_tree_gang_lookup, this will not atomically search a
927 * snapshot of the tree at a single point in time. For example, if a
928 * hole is created at index 10, then subsequently a hole is created at
929 * index 5, page_cache_prev_hole covering both indexes may return 5 if
930 * called under rcu_read_lock.
932 pgoff_t page_cache_prev_hole(struct address_space *mapping,
933 pgoff_t index, unsigned long max_scan)
935 unsigned long i;
937 for (i = 0; i < max_scan; i++) {
938 struct page *page;
940 page = radix_tree_lookup(&mapping->page_tree, index);
941 if (!page || radix_tree_exceptional_entry(page))
942 break;
943 index--;
944 if (index == ULONG_MAX)
945 break;
948 return index;
950 EXPORT_SYMBOL(page_cache_prev_hole);
953 * find_get_entry - find and get a page cache entry
954 * @mapping: the address_space to search
955 * @offset: the page cache index
957 * Looks up the page cache slot at @mapping & @offset. If there is a
958 * page cache page, it is returned with an increased refcount.
960 * If the slot holds a shadow entry of a previously evicted page, or a
961 * swap entry from shmem/tmpfs, it is returned.
963 * Otherwise, %NULL is returned.
965 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
967 void **pagep;
968 struct page *page;
970 rcu_read_lock();
971 repeat:
972 page = NULL;
973 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
974 if (pagep) {
975 page = radix_tree_deref_slot(pagep);
976 if (unlikely(!page))
977 goto out;
978 if (radix_tree_exception(page)) {
979 if (radix_tree_deref_retry(page))
980 goto repeat;
982 * A shadow entry of a recently evicted page,
983 * or a swap entry from shmem/tmpfs. Return
984 * it without attempting to raise page count.
986 goto out;
988 if (!page_cache_get_speculative(page))
989 goto repeat;
992 * Has the page moved?
993 * This is part of the lockless pagecache protocol. See
994 * include/linux/pagemap.h for details.
996 if (unlikely(page != *pagep)) {
997 page_cache_release(page);
998 goto repeat;
1001 out:
1002 rcu_read_unlock();
1004 return page;
1006 EXPORT_SYMBOL(find_get_entry);
1009 * find_lock_entry - locate, pin and lock a page cache entry
1010 * @mapping: the address_space to search
1011 * @offset: the page cache index
1013 * Looks up the page cache slot at @mapping & @offset. If there is a
1014 * page cache page, it is returned locked and with an increased
1015 * refcount.
1017 * If the slot holds a shadow entry of a previously evicted page, or a
1018 * swap entry from shmem/tmpfs, it is returned.
1020 * Otherwise, %NULL is returned.
1022 * find_lock_entry() may sleep.
1024 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1026 struct page *page;
1028 repeat:
1029 page = find_get_entry(mapping, offset);
1030 if (page && !radix_tree_exception(page)) {
1031 lock_page(page);
1032 /* Has the page been truncated? */
1033 if (unlikely(page->mapping != mapping)) {
1034 unlock_page(page);
1035 page_cache_release(page);
1036 goto repeat;
1038 VM_BUG_ON_PAGE(page->index != offset, page);
1040 return page;
1042 EXPORT_SYMBOL(find_lock_entry);
1045 * pagecache_get_page - find and get a page reference
1046 * @mapping: the address_space to search
1047 * @offset: the page index
1048 * @fgp_flags: PCG flags
1049 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1050 * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1052 * Looks up the page cache slot at @mapping & @offset.
1054 * PCG flags modify how the page is returned.
1056 * FGP_ACCESSED: the page will be marked accessed
1057 * FGP_LOCK: Page is return locked
1058 * FGP_CREAT: If page is not present then a new page is allocated using
1059 * @cache_gfp_mask and added to the page cache and the VM's LRU
1060 * list. If radix tree nodes are allocated during page cache
1061 * insertion then @radix_gfp_mask is used. The page is returned
1062 * locked and with an increased refcount. Otherwise, %NULL is
1063 * returned.
1065 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1066 * if the GFP flags specified for FGP_CREAT are atomic.
1068 * If there is a page cache page, it is returned with an increased refcount.
1070 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1071 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1073 struct page *page;
1075 repeat:
1076 page = find_get_entry(mapping, offset);
1077 if (radix_tree_exceptional_entry(page))
1078 page = NULL;
1079 if (!page)
1080 goto no_page;
1082 if (fgp_flags & FGP_LOCK) {
1083 if (fgp_flags & FGP_NOWAIT) {
1084 if (!trylock_page(page)) {
1085 page_cache_release(page);
1086 return NULL;
1088 } else {
1089 lock_page(page);
1092 /* Has the page been truncated? */
1093 if (unlikely(page->mapping != mapping)) {
1094 unlock_page(page);
1095 page_cache_release(page);
1096 goto repeat;
1098 VM_BUG_ON_PAGE(page->index != offset, page);
1101 if (page && (fgp_flags & FGP_ACCESSED))
1102 mark_page_accessed(page);
1104 no_page:
1105 if (!page && (fgp_flags & FGP_CREAT)) {
1106 int err;
1107 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1108 cache_gfp_mask |= __GFP_WRITE;
1109 if (fgp_flags & FGP_NOFS) {
1110 cache_gfp_mask &= ~__GFP_FS;
1111 radix_gfp_mask &= ~__GFP_FS;
1114 page = __page_cache_alloc(cache_gfp_mask);
1115 if (!page)
1116 return NULL;
1118 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1119 fgp_flags |= FGP_LOCK;
1121 /* Init accessed so avoid atomic mark_page_accessed later */
1122 if (fgp_flags & FGP_ACCESSED)
1123 __SetPageReferenced(page);
1125 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1126 if (unlikely(err)) {
1127 page_cache_release(page);
1128 page = NULL;
1129 if (err == -EEXIST)
1130 goto repeat;
1134 return page;
1136 EXPORT_SYMBOL(pagecache_get_page);
1139 * find_get_entries - gang pagecache lookup
1140 * @mapping: The address_space to search
1141 * @start: The starting page cache index
1142 * @nr_entries: The maximum number of entries
1143 * @entries: Where the resulting entries are placed
1144 * @indices: The cache indices corresponding to the entries in @entries
1146 * find_get_entries() will search for and return a group of up to
1147 * @nr_entries entries in the mapping. The entries are placed at
1148 * @entries. find_get_entries() takes a reference against any actual
1149 * pages it returns.
1151 * The search returns a group of mapping-contiguous page cache entries
1152 * with ascending indexes. There may be holes in the indices due to
1153 * not-present pages.
1155 * Any shadow entries of evicted pages, or swap entries from
1156 * shmem/tmpfs, are included in the returned array.
1158 * find_get_entries() returns the number of pages and shadow entries
1159 * which were found.
1161 unsigned find_get_entries(struct address_space *mapping,
1162 pgoff_t start, unsigned int nr_entries,
1163 struct page **entries, pgoff_t *indices)
1165 void **slot;
1166 unsigned int ret = 0;
1167 struct radix_tree_iter iter;
1169 if (!nr_entries)
1170 return 0;
1172 rcu_read_lock();
1173 restart:
1174 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1175 struct page *page;
1176 repeat:
1177 page = radix_tree_deref_slot(slot);
1178 if (unlikely(!page))
1179 continue;
1180 if (radix_tree_exception(page)) {
1181 if (radix_tree_deref_retry(page))
1182 goto restart;
1184 * A shadow entry of a recently evicted page,
1185 * or a swap entry from shmem/tmpfs. Return
1186 * it without attempting to raise page count.
1188 goto export;
1190 if (!page_cache_get_speculative(page))
1191 goto repeat;
1193 /* Has the page moved? */
1194 if (unlikely(page != *slot)) {
1195 page_cache_release(page);
1196 goto repeat;
1198 export:
1199 indices[ret] = iter.index;
1200 entries[ret] = page;
1201 if (++ret == nr_entries)
1202 break;
1204 rcu_read_unlock();
1205 return ret;
1209 * find_get_pages - gang pagecache lookup
1210 * @mapping: The address_space to search
1211 * @start: The starting page index
1212 * @nr_pages: The maximum number of pages
1213 * @pages: Where the resulting pages are placed
1215 * find_get_pages() will search for and return a group of up to
1216 * @nr_pages pages in the mapping. The pages are placed at @pages.
1217 * find_get_pages() takes a reference against the returned pages.
1219 * The search returns a group of mapping-contiguous pages with ascending
1220 * indexes. There may be holes in the indices due to not-present pages.
1222 * find_get_pages() returns the number of pages which were found.
1224 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1225 unsigned int nr_pages, struct page **pages)
1227 struct radix_tree_iter iter;
1228 void **slot;
1229 unsigned ret = 0;
1231 if (unlikely(!nr_pages))
1232 return 0;
1234 rcu_read_lock();
1235 restart:
1236 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1237 struct page *page;
1238 repeat:
1239 page = radix_tree_deref_slot(slot);
1240 if (unlikely(!page))
1241 continue;
1243 if (radix_tree_exception(page)) {
1244 if (radix_tree_deref_retry(page)) {
1246 * Transient condition which can only trigger
1247 * when entry at index 0 moves out of or back
1248 * to root: none yet gotten, safe to restart.
1250 WARN_ON(iter.index);
1251 goto restart;
1254 * A shadow entry of a recently evicted page,
1255 * or a swap entry from shmem/tmpfs. Skip
1256 * over it.
1258 continue;
1261 if (!page_cache_get_speculative(page))
1262 goto repeat;
1264 /* Has the page moved? */
1265 if (unlikely(page != *slot)) {
1266 page_cache_release(page);
1267 goto repeat;
1270 pages[ret] = page;
1271 if (++ret == nr_pages)
1272 break;
1275 rcu_read_unlock();
1276 return ret;
1280 * find_get_pages_contig - gang contiguous pagecache lookup
1281 * @mapping: The address_space to search
1282 * @index: The starting page index
1283 * @nr_pages: The maximum number of pages
1284 * @pages: Where the resulting pages are placed
1286 * find_get_pages_contig() works exactly like find_get_pages(), except
1287 * that the returned number of pages are guaranteed to be contiguous.
1289 * find_get_pages_contig() returns the number of pages which were found.
1291 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1292 unsigned int nr_pages, struct page **pages)
1294 struct radix_tree_iter iter;
1295 void **slot;
1296 unsigned int ret = 0;
1298 if (unlikely(!nr_pages))
1299 return 0;
1301 rcu_read_lock();
1302 restart:
1303 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1304 struct page *page;
1305 repeat:
1306 page = radix_tree_deref_slot(slot);
1307 /* The hole, there no reason to continue */
1308 if (unlikely(!page))
1309 break;
1311 if (radix_tree_exception(page)) {
1312 if (radix_tree_deref_retry(page)) {
1314 * Transient condition which can only trigger
1315 * when entry at index 0 moves out of or back
1316 * to root: none yet gotten, safe to restart.
1318 goto restart;
1321 * A shadow entry of a recently evicted page,
1322 * or a swap entry from shmem/tmpfs. Stop
1323 * looking for contiguous pages.
1325 break;
1328 if (!page_cache_get_speculative(page))
1329 goto repeat;
1331 /* Has the page moved? */
1332 if (unlikely(page != *slot)) {
1333 page_cache_release(page);
1334 goto repeat;
1338 * must check mapping and index after taking the ref.
1339 * otherwise we can get both false positives and false
1340 * negatives, which is just confusing to the caller.
1342 if (page->mapping == NULL || page->index != iter.index) {
1343 page_cache_release(page);
1344 break;
1347 pages[ret] = page;
1348 if (++ret == nr_pages)
1349 break;
1351 rcu_read_unlock();
1352 return ret;
1354 EXPORT_SYMBOL(find_get_pages_contig);
1357 * find_get_pages_tag - find and return pages that match @tag
1358 * @mapping: the address_space to search
1359 * @index: the starting page index
1360 * @tag: the tag index
1361 * @nr_pages: the maximum number of pages
1362 * @pages: where the resulting pages are placed
1364 * Like find_get_pages, except we only return pages which are tagged with
1365 * @tag. We update @index to index the next page for the traversal.
1367 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1368 int tag, unsigned int nr_pages, struct page **pages)
1370 struct radix_tree_iter iter;
1371 void **slot;
1372 unsigned ret = 0;
1374 if (unlikely(!nr_pages))
1375 return 0;
1377 rcu_read_lock();
1378 restart:
1379 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1380 &iter, *index, tag) {
1381 struct page *page;
1382 repeat:
1383 page = radix_tree_deref_slot(slot);
1384 if (unlikely(!page))
1385 continue;
1387 if (radix_tree_exception(page)) {
1388 if (radix_tree_deref_retry(page)) {
1390 * Transient condition which can only trigger
1391 * when entry at index 0 moves out of or back
1392 * to root: none yet gotten, safe to restart.
1394 goto restart;
1397 * A shadow entry of a recently evicted page.
1399 * Those entries should never be tagged, but
1400 * this tree walk is lockless and the tags are
1401 * looked up in bulk, one radix tree node at a
1402 * time, so there is a sizable window for page
1403 * reclaim to evict a page we saw tagged.
1405 * Skip over it.
1407 continue;
1410 if (!page_cache_get_speculative(page))
1411 goto repeat;
1413 /* Has the page moved? */
1414 if (unlikely(page != *slot)) {
1415 page_cache_release(page);
1416 goto repeat;
1419 pages[ret] = page;
1420 if (++ret == nr_pages)
1421 break;
1424 rcu_read_unlock();
1426 if (ret)
1427 *index = pages[ret - 1]->index + 1;
1429 return ret;
1431 EXPORT_SYMBOL(find_get_pages_tag);
1434 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1435 * a _large_ part of the i/o request. Imagine the worst scenario:
1437 * ---R__________________________________________B__________
1438 * ^ reading here ^ bad block(assume 4k)
1440 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1441 * => failing the whole request => read(R) => read(R+1) =>
1442 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1443 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1444 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1446 * It is going insane. Fix it by quickly scaling down the readahead size.
1448 static void shrink_readahead_size_eio(struct file *filp,
1449 struct file_ra_state *ra)
1451 ra->ra_pages /= 4;
1455 * do_generic_file_read - generic file read routine
1456 * @filp: the file to read
1457 * @ppos: current file position
1458 * @iter: data destination
1459 * @written: already copied
1461 * This is a generic file read routine, and uses the
1462 * mapping->a_ops->readpage() function for the actual low-level stuff.
1464 * This is really ugly. But the goto's actually try to clarify some
1465 * of the logic when it comes to error handling etc.
1467 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1468 struct iov_iter *iter, ssize_t written)
1470 struct address_space *mapping = filp->f_mapping;
1471 struct inode *inode = mapping->host;
1472 struct file_ra_state *ra = &filp->f_ra;
1473 pgoff_t index;
1474 pgoff_t last_index;
1475 pgoff_t prev_index;
1476 unsigned long offset; /* offset into pagecache page */
1477 unsigned int prev_offset;
1478 int error = 0;
1480 index = *ppos >> PAGE_CACHE_SHIFT;
1481 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1482 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1483 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1484 offset = *ppos & ~PAGE_CACHE_MASK;
1486 for (;;) {
1487 struct page *page;
1488 pgoff_t end_index;
1489 loff_t isize;
1490 unsigned long nr, ret;
1492 cond_resched();
1493 find_page:
1494 page = find_get_page(mapping, index);
1495 if (!page) {
1496 page_cache_sync_readahead(mapping,
1497 ra, filp,
1498 index, last_index - index);
1499 page = find_get_page(mapping, index);
1500 if (unlikely(page == NULL))
1501 goto no_cached_page;
1503 if (PageReadahead(page)) {
1504 page_cache_async_readahead(mapping,
1505 ra, filp, page,
1506 index, last_index - index);
1508 if (!PageUptodate(page)) {
1509 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1510 !mapping->a_ops->is_partially_uptodate)
1511 goto page_not_up_to_date;
1512 if (!trylock_page(page))
1513 goto page_not_up_to_date;
1514 /* Did it get truncated before we got the lock? */
1515 if (!page->mapping)
1516 goto page_not_up_to_date_locked;
1517 if (!mapping->a_ops->is_partially_uptodate(page,
1518 offset, iter->count))
1519 goto page_not_up_to_date_locked;
1520 unlock_page(page);
1522 page_ok:
1524 * i_size must be checked after we know the page is Uptodate.
1526 * Checking i_size after the check allows us to calculate
1527 * the correct value for "nr", which means the zero-filled
1528 * part of the page is not copied back to userspace (unless
1529 * another truncate extends the file - this is desired though).
1532 isize = i_size_read(inode);
1533 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1534 if (unlikely(!isize || index > end_index)) {
1535 page_cache_release(page);
1536 goto out;
1539 /* nr is the maximum number of bytes to copy from this page */
1540 nr = PAGE_CACHE_SIZE;
1541 if (index == end_index) {
1542 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1543 if (nr <= offset) {
1544 page_cache_release(page);
1545 goto out;
1548 nr = nr - offset;
1550 /* If users can be writing to this page using arbitrary
1551 * virtual addresses, take care about potential aliasing
1552 * before reading the page on the kernel side.
1554 if (mapping_writably_mapped(mapping))
1555 flush_dcache_page(page);
1558 * When a sequential read accesses a page several times,
1559 * only mark it as accessed the first time.
1561 if (prev_index != index || offset != prev_offset)
1562 mark_page_accessed(page);
1563 prev_index = index;
1566 * Ok, we have the page, and it's up-to-date, so
1567 * now we can copy it to user space...
1570 ret = copy_page_to_iter(page, offset, nr, iter);
1571 offset += ret;
1572 index += offset >> PAGE_CACHE_SHIFT;
1573 offset &= ~PAGE_CACHE_MASK;
1574 prev_offset = offset;
1576 page_cache_release(page);
1577 written += ret;
1578 if (!iov_iter_count(iter))
1579 goto out;
1580 if (ret < nr) {
1581 error = -EFAULT;
1582 goto out;
1584 continue;
1586 page_not_up_to_date:
1587 /* Get exclusive access to the page ... */
1588 error = lock_page_killable(page);
1589 if (unlikely(error))
1590 goto readpage_error;
1592 page_not_up_to_date_locked:
1593 /* Did it get truncated before we got the lock? */
1594 if (!page->mapping) {
1595 unlock_page(page);
1596 page_cache_release(page);
1597 continue;
1600 /* Did somebody else fill it already? */
1601 if (PageUptodate(page)) {
1602 unlock_page(page);
1603 goto page_ok;
1606 readpage:
1608 * A previous I/O error may have been due to temporary
1609 * failures, eg. multipath errors.
1610 * PG_error will be set again if readpage fails.
1612 ClearPageError(page);
1613 /* Start the actual read. The read will unlock the page. */
1614 error = mapping->a_ops->readpage(filp, page);
1616 if (unlikely(error)) {
1617 if (error == AOP_TRUNCATED_PAGE) {
1618 page_cache_release(page);
1619 error = 0;
1620 goto find_page;
1622 goto readpage_error;
1625 if (!PageUptodate(page)) {
1626 error = lock_page_killable(page);
1627 if (unlikely(error))
1628 goto readpage_error;
1629 if (!PageUptodate(page)) {
1630 if (page->mapping == NULL) {
1632 * invalidate_mapping_pages got it
1634 unlock_page(page);
1635 page_cache_release(page);
1636 goto find_page;
1638 unlock_page(page);
1639 shrink_readahead_size_eio(filp, ra);
1640 error = -EIO;
1641 goto readpage_error;
1643 unlock_page(page);
1646 goto page_ok;
1648 readpage_error:
1649 /* UHHUH! A synchronous read error occurred. Report it */
1650 page_cache_release(page);
1651 goto out;
1653 no_cached_page:
1655 * Ok, it wasn't cached, so we need to create a new
1656 * page..
1658 page = page_cache_alloc_cold(mapping);
1659 if (!page) {
1660 error = -ENOMEM;
1661 goto out;
1663 error = add_to_page_cache_lru(page, mapping,
1664 index, GFP_KERNEL);
1665 if (error) {
1666 page_cache_release(page);
1667 if (error == -EEXIST) {
1668 error = 0;
1669 goto find_page;
1671 goto out;
1673 goto readpage;
1676 out:
1677 ra->prev_pos = prev_index;
1678 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1679 ra->prev_pos |= prev_offset;
1681 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1682 file_accessed(filp);
1683 return written ? written : error;
1687 * generic_file_read_iter - generic filesystem read routine
1688 * @iocb: kernel I/O control block
1689 * @iter: destination for the data read
1691 * This is the "read_iter()" routine for all filesystems
1692 * that can use the page cache directly.
1694 ssize_t
1695 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1697 struct file *file = iocb->ki_filp;
1698 ssize_t retval = 0;
1699 loff_t *ppos = &iocb->ki_pos;
1700 loff_t pos = *ppos;
1702 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1703 if (file->f_flags & O_DIRECT) {
1704 struct address_space *mapping = file->f_mapping;
1705 struct inode *inode = mapping->host;
1706 size_t count = iov_iter_count(iter);
1707 loff_t size;
1709 if (!count)
1710 goto out; /* skip atime */
1711 size = i_size_read(inode);
1712 retval = filemap_write_and_wait_range(mapping, pos,
1713 pos + count - 1);
1714 if (!retval) {
1715 struct iov_iter data = *iter;
1716 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1719 if (retval > 0) {
1720 *ppos = pos + retval;
1721 iov_iter_advance(iter, retval);
1725 * Btrfs can have a short DIO read if we encounter
1726 * compressed extents, so if there was an error, or if
1727 * we've already read everything we wanted to, or if
1728 * there was a short read because we hit EOF, go ahead
1729 * and return. Otherwise fallthrough to buffered io for
1730 * the rest of the read.
1732 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1733 file_accessed(file);
1734 goto out;
1738 retval = do_generic_file_read(file, ppos, iter, retval);
1739 out:
1740 return retval;
1742 EXPORT_SYMBOL(generic_file_read_iter);
1744 #ifdef CONFIG_MMU
1746 * page_cache_read - adds requested page to the page cache if not already there
1747 * @file: file to read
1748 * @offset: page index
1750 * This adds the requested page to the page cache if it isn't already there,
1751 * and schedules an I/O to read in its contents from disk.
1753 static int page_cache_read(struct file *file, pgoff_t offset)
1755 struct address_space *mapping = file->f_mapping;
1756 struct page *page;
1757 int ret;
1759 do {
1760 page = page_cache_alloc_cold(mapping);
1761 if (!page)
1762 return -ENOMEM;
1764 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1765 if (ret == 0)
1766 ret = mapping->a_ops->readpage(file, page);
1767 else if (ret == -EEXIST)
1768 ret = 0; /* losing race to add is OK */
1770 page_cache_release(page);
1772 } while (ret == AOP_TRUNCATED_PAGE);
1774 return ret;
1777 #define MMAP_LOTSAMISS (100)
1780 * Synchronous readahead happens when we don't even find
1781 * a page in the page cache at all.
1783 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1784 struct file_ra_state *ra,
1785 struct file *file,
1786 pgoff_t offset)
1788 unsigned long ra_pages;
1789 struct address_space *mapping = file->f_mapping;
1791 /* If we don't want any read-ahead, don't bother */
1792 if (vma->vm_flags & VM_RAND_READ)
1793 return;
1794 if (!ra->ra_pages)
1795 return;
1797 if (vma->vm_flags & VM_SEQ_READ) {
1798 page_cache_sync_readahead(mapping, ra, file, offset,
1799 ra->ra_pages);
1800 return;
1803 /* Avoid banging the cache line if not needed */
1804 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1805 ra->mmap_miss++;
1808 * Do we miss much more than hit in this file? If so,
1809 * stop bothering with read-ahead. It will only hurt.
1811 if (ra->mmap_miss > MMAP_LOTSAMISS)
1812 return;
1815 * mmap read-around
1817 ra_pages = max_sane_readahead(ra->ra_pages);
1818 ra->start = max_t(long, 0, offset - ra_pages / 2);
1819 ra->size = ra_pages;
1820 ra->async_size = ra_pages / 4;
1821 ra_submit(ra, mapping, file);
1825 * Asynchronous readahead happens when we find the page and PG_readahead,
1826 * so we want to possibly extend the readahead further..
1828 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1829 struct file_ra_state *ra,
1830 struct file *file,
1831 struct page *page,
1832 pgoff_t offset)
1834 struct address_space *mapping = file->f_mapping;
1836 /* If we don't want any read-ahead, don't bother */
1837 if (vma->vm_flags & VM_RAND_READ)
1838 return;
1839 if (ra->mmap_miss > 0)
1840 ra->mmap_miss--;
1841 if (PageReadahead(page))
1842 page_cache_async_readahead(mapping, ra, file,
1843 page, offset, ra->ra_pages);
1847 * filemap_fault - read in file data for page fault handling
1848 * @vma: vma in which the fault was taken
1849 * @vmf: struct vm_fault containing details of the fault
1851 * filemap_fault() is invoked via the vma operations vector for a
1852 * mapped memory region to read in file data during a page fault.
1854 * The goto's are kind of ugly, but this streamlines the normal case of having
1855 * it in the page cache, and handles the special cases reasonably without
1856 * having a lot of duplicated code.
1858 * vma->vm_mm->mmap_sem must be held on entry.
1860 * If our return value has VM_FAULT_RETRY set, it's because
1861 * lock_page_or_retry() returned 0.
1862 * The mmap_sem has usually been released in this case.
1863 * See __lock_page_or_retry() for the exception.
1865 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1866 * has not been released.
1868 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1870 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1872 int error;
1873 struct file *file = vma->vm_file;
1874 struct address_space *mapping = file->f_mapping;
1875 struct file_ra_state *ra = &file->f_ra;
1876 struct inode *inode = mapping->host;
1877 pgoff_t offset = vmf->pgoff;
1878 struct page *page;
1879 loff_t size;
1880 int ret = 0;
1882 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1883 if (offset >= size >> PAGE_CACHE_SHIFT)
1884 return VM_FAULT_SIGBUS;
1887 * Do we have something in the page cache already?
1889 page = find_get_page(mapping, offset);
1890 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1892 * We found the page, so try async readahead before
1893 * waiting for the lock.
1895 do_async_mmap_readahead(vma, ra, file, page, offset);
1896 } else if (!page) {
1897 /* No page in the page cache at all */
1898 do_sync_mmap_readahead(vma, ra, file, offset);
1899 count_vm_event(PGMAJFAULT);
1900 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1901 ret = VM_FAULT_MAJOR;
1902 retry_find:
1903 page = find_get_page(mapping, offset);
1904 if (!page)
1905 goto no_cached_page;
1908 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1909 page_cache_release(page);
1910 return ret | VM_FAULT_RETRY;
1913 /* Did it get truncated? */
1914 if (unlikely(page->mapping != mapping)) {
1915 unlock_page(page);
1916 put_page(page);
1917 goto retry_find;
1919 VM_BUG_ON_PAGE(page->index != offset, page);
1922 * We have a locked page in the page cache, now we need to check
1923 * that it's up-to-date. If not, it is going to be due to an error.
1925 if (unlikely(!PageUptodate(page)))
1926 goto page_not_uptodate;
1929 * Found the page and have a reference on it.
1930 * We must recheck i_size under page lock.
1932 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1933 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1934 unlock_page(page);
1935 page_cache_release(page);
1936 return VM_FAULT_SIGBUS;
1939 vmf->page = page;
1940 return ret | VM_FAULT_LOCKED;
1942 no_cached_page:
1944 * We're only likely to ever get here if MADV_RANDOM is in
1945 * effect.
1947 error = page_cache_read(file, offset);
1950 * The page we want has now been added to the page cache.
1951 * In the unlikely event that someone removed it in the
1952 * meantime, we'll just come back here and read it again.
1954 if (error >= 0)
1955 goto retry_find;
1958 * An error return from page_cache_read can result if the
1959 * system is low on memory, or a problem occurs while trying
1960 * to schedule I/O.
1962 if (error == -ENOMEM)
1963 return VM_FAULT_OOM;
1964 return VM_FAULT_SIGBUS;
1966 page_not_uptodate:
1968 * Umm, take care of errors if the page isn't up-to-date.
1969 * Try to re-read it _once_. We do this synchronously,
1970 * because there really aren't any performance issues here
1971 * and we need to check for errors.
1973 ClearPageError(page);
1974 error = mapping->a_ops->readpage(file, page);
1975 if (!error) {
1976 wait_on_page_locked(page);
1977 if (!PageUptodate(page))
1978 error = -EIO;
1980 page_cache_release(page);
1982 if (!error || error == AOP_TRUNCATED_PAGE)
1983 goto retry_find;
1985 /* Things didn't work out. Return zero to tell the mm layer so. */
1986 shrink_readahead_size_eio(file, ra);
1987 return VM_FAULT_SIGBUS;
1989 EXPORT_SYMBOL(filemap_fault);
1991 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1993 struct radix_tree_iter iter;
1994 void **slot;
1995 struct file *file = vma->vm_file;
1996 struct address_space *mapping = file->f_mapping;
1997 loff_t size;
1998 struct page *page;
1999 unsigned long address = (unsigned long) vmf->virtual_address;
2000 unsigned long addr;
2001 pte_t *pte;
2003 rcu_read_lock();
2004 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2005 if (iter.index > vmf->max_pgoff)
2006 break;
2007 repeat:
2008 page = radix_tree_deref_slot(slot);
2009 if (unlikely(!page))
2010 goto next;
2011 if (radix_tree_exception(page)) {
2012 if (radix_tree_deref_retry(page))
2013 break;
2014 else
2015 goto next;
2018 if (!page_cache_get_speculative(page))
2019 goto repeat;
2021 /* Has the page moved? */
2022 if (unlikely(page != *slot)) {
2023 page_cache_release(page);
2024 goto repeat;
2027 if (!PageUptodate(page) ||
2028 PageReadahead(page) ||
2029 PageHWPoison(page))
2030 goto skip;
2031 if (!trylock_page(page))
2032 goto skip;
2034 if (page->mapping != mapping || !PageUptodate(page))
2035 goto unlock;
2037 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2038 if (page->index >= size >> PAGE_CACHE_SHIFT)
2039 goto unlock;
2041 pte = vmf->pte + page->index - vmf->pgoff;
2042 if (!pte_none(*pte))
2043 goto unlock;
2045 if (file->f_ra.mmap_miss > 0)
2046 file->f_ra.mmap_miss--;
2047 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2048 do_set_pte(vma, addr, page, pte, false, false);
2049 unlock_page(page);
2050 goto next;
2051 unlock:
2052 unlock_page(page);
2053 skip:
2054 page_cache_release(page);
2055 next:
2056 if (iter.index == vmf->max_pgoff)
2057 break;
2059 rcu_read_unlock();
2061 EXPORT_SYMBOL(filemap_map_pages);
2063 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2065 struct page *page = vmf->page;
2066 struct inode *inode = file_inode(vma->vm_file);
2067 int ret = VM_FAULT_LOCKED;
2069 sb_start_pagefault(inode->i_sb);
2070 file_update_time(vma->vm_file);
2071 lock_page(page);
2072 if (page->mapping != inode->i_mapping) {
2073 unlock_page(page);
2074 ret = VM_FAULT_NOPAGE;
2075 goto out;
2078 * We mark the page dirty already here so that when freeze is in
2079 * progress, we are guaranteed that writeback during freezing will
2080 * see the dirty page and writeprotect it again.
2082 set_page_dirty(page);
2083 wait_for_stable_page(page);
2084 out:
2085 sb_end_pagefault(inode->i_sb);
2086 return ret;
2088 EXPORT_SYMBOL(filemap_page_mkwrite);
2090 const struct vm_operations_struct generic_file_vm_ops = {
2091 .fault = filemap_fault,
2092 .map_pages = filemap_map_pages,
2093 .page_mkwrite = filemap_page_mkwrite,
2094 .remap_pages = generic_file_remap_pages,
2097 /* This is used for a general mmap of a disk file */
2099 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2101 struct address_space *mapping = file->f_mapping;
2103 if (!mapping->a_ops->readpage)
2104 return -ENOEXEC;
2105 file_accessed(file);
2106 vma->vm_ops = &generic_file_vm_ops;
2107 return 0;
2111 * This is for filesystems which do not implement ->writepage.
2113 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2115 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2116 return -EINVAL;
2117 return generic_file_mmap(file, vma);
2119 #else
2120 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2122 return -ENOSYS;
2124 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2126 return -ENOSYS;
2128 #endif /* CONFIG_MMU */
2130 EXPORT_SYMBOL(generic_file_mmap);
2131 EXPORT_SYMBOL(generic_file_readonly_mmap);
2133 static struct page *wait_on_page_read(struct page *page)
2135 if (!IS_ERR(page)) {
2136 wait_on_page_locked(page);
2137 if (!PageUptodate(page)) {
2138 page_cache_release(page);
2139 page = ERR_PTR(-EIO);
2142 return page;
2145 static struct page *__read_cache_page(struct address_space *mapping,
2146 pgoff_t index,
2147 int (*filler)(void *, struct page *),
2148 void *data,
2149 gfp_t gfp)
2151 struct page *page;
2152 int err;
2153 repeat:
2154 page = find_get_page(mapping, index);
2155 if (!page) {
2156 page = __page_cache_alloc(gfp | __GFP_COLD);
2157 if (!page)
2158 return ERR_PTR(-ENOMEM);
2159 err = add_to_page_cache_lru(page, mapping, index, gfp);
2160 if (unlikely(err)) {
2161 page_cache_release(page);
2162 if (err == -EEXIST)
2163 goto repeat;
2164 /* Presumably ENOMEM for radix tree node */
2165 return ERR_PTR(err);
2167 err = filler(data, page);
2168 if (err < 0) {
2169 page_cache_release(page);
2170 page = ERR_PTR(err);
2171 } else {
2172 page = wait_on_page_read(page);
2175 return page;
2178 static struct page *do_read_cache_page(struct address_space *mapping,
2179 pgoff_t index,
2180 int (*filler)(void *, struct page *),
2181 void *data,
2182 gfp_t gfp)
2185 struct page *page;
2186 int err;
2188 retry:
2189 page = __read_cache_page(mapping, index, filler, data, gfp);
2190 if (IS_ERR(page))
2191 return page;
2192 if (PageUptodate(page))
2193 goto out;
2195 lock_page(page);
2196 if (!page->mapping) {
2197 unlock_page(page);
2198 page_cache_release(page);
2199 goto retry;
2201 if (PageUptodate(page)) {
2202 unlock_page(page);
2203 goto out;
2205 err = filler(data, page);
2206 if (err < 0) {
2207 page_cache_release(page);
2208 return ERR_PTR(err);
2209 } else {
2210 page = wait_on_page_read(page);
2211 if (IS_ERR(page))
2212 return page;
2214 out:
2215 mark_page_accessed(page);
2216 return page;
2220 * read_cache_page - read into page cache, fill it if needed
2221 * @mapping: the page's address_space
2222 * @index: the page index
2223 * @filler: function to perform the read
2224 * @data: first arg to filler(data, page) function, often left as NULL
2226 * Read into the page cache. If a page already exists, and PageUptodate() is
2227 * not set, try to fill the page and wait for it to become unlocked.
2229 * If the page does not get brought uptodate, return -EIO.
2231 struct page *read_cache_page(struct address_space *mapping,
2232 pgoff_t index,
2233 int (*filler)(void *, struct page *),
2234 void *data)
2236 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2238 EXPORT_SYMBOL(read_cache_page);
2241 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2242 * @mapping: the page's address_space
2243 * @index: the page index
2244 * @gfp: the page allocator flags to use if allocating
2246 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2247 * any new page allocations done using the specified allocation flags.
2249 * If the page does not get brought uptodate, return -EIO.
2251 struct page *read_cache_page_gfp(struct address_space *mapping,
2252 pgoff_t index,
2253 gfp_t gfp)
2255 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2257 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2259 EXPORT_SYMBOL(read_cache_page_gfp);
2262 * Performs necessary checks before doing a write
2264 * Can adjust writing position or amount of bytes to write.
2265 * Returns appropriate error code that caller should return or
2266 * zero in case that write should be allowed.
2268 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2270 struct inode *inode = file->f_mapping->host;
2271 unsigned long limit = rlimit(RLIMIT_FSIZE);
2273 if (unlikely(*pos < 0))
2274 return -EINVAL;
2276 if (!isblk) {
2277 /* FIXME: this is for backwards compatibility with 2.4 */
2278 if (file->f_flags & O_APPEND)
2279 *pos = i_size_read(inode);
2281 if (limit != RLIM_INFINITY) {
2282 if (*pos >= limit) {
2283 send_sig(SIGXFSZ, current, 0);
2284 return -EFBIG;
2286 if (*count > limit - (typeof(limit))*pos) {
2287 *count = limit - (typeof(limit))*pos;
2293 * LFS rule
2295 if (unlikely(*pos + *count > MAX_NON_LFS &&
2296 !(file->f_flags & O_LARGEFILE))) {
2297 if (*pos >= MAX_NON_LFS) {
2298 return -EFBIG;
2300 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2301 *count = MAX_NON_LFS - (unsigned long)*pos;
2306 * Are we about to exceed the fs block limit ?
2308 * If we have written data it becomes a short write. If we have
2309 * exceeded without writing data we send a signal and return EFBIG.
2310 * Linus frestrict idea will clean these up nicely..
2312 if (likely(!isblk)) {
2313 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2314 if (*count || *pos > inode->i_sb->s_maxbytes) {
2315 return -EFBIG;
2317 /* zero-length writes at ->s_maxbytes are OK */
2320 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2321 *count = inode->i_sb->s_maxbytes - *pos;
2322 } else {
2323 #ifdef CONFIG_BLOCK
2324 loff_t isize;
2325 if (bdev_read_only(I_BDEV(inode)))
2326 return -EPERM;
2327 isize = i_size_read(inode);
2328 if (*pos >= isize) {
2329 if (*count || *pos > isize)
2330 return -ENOSPC;
2333 if (*pos + *count > isize)
2334 *count = isize - *pos;
2335 #else
2336 return -EPERM;
2337 #endif
2339 return 0;
2341 EXPORT_SYMBOL(generic_write_checks);
2343 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2344 loff_t pos, unsigned len, unsigned flags,
2345 struct page **pagep, void **fsdata)
2347 const struct address_space_operations *aops = mapping->a_ops;
2349 return aops->write_begin(file, mapping, pos, len, flags,
2350 pagep, fsdata);
2352 EXPORT_SYMBOL(pagecache_write_begin);
2354 int pagecache_write_end(struct file *file, struct address_space *mapping,
2355 loff_t pos, unsigned len, unsigned copied,
2356 struct page *page, void *fsdata)
2358 const struct address_space_operations *aops = mapping->a_ops;
2360 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2362 EXPORT_SYMBOL(pagecache_write_end);
2364 ssize_t
2365 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2367 struct file *file = iocb->ki_filp;
2368 struct address_space *mapping = file->f_mapping;
2369 struct inode *inode = mapping->host;
2370 ssize_t written;
2371 size_t write_len;
2372 pgoff_t end;
2373 struct iov_iter data;
2375 write_len = iov_iter_count(from);
2376 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2378 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2379 if (written)
2380 goto out;
2383 * After a write we want buffered reads to be sure to go to disk to get
2384 * the new data. We invalidate clean cached page from the region we're
2385 * about to write. We do this *before* the write so that we can return
2386 * without clobbering -EIOCBQUEUED from ->direct_IO().
2388 if (mapping->nrpages) {
2389 written = invalidate_inode_pages2_range(mapping,
2390 pos >> PAGE_CACHE_SHIFT, end);
2392 * If a page can not be invalidated, return 0 to fall back
2393 * to buffered write.
2395 if (written) {
2396 if (written == -EBUSY)
2397 return 0;
2398 goto out;
2402 data = *from;
2403 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2406 * Finally, try again to invalidate clean pages which might have been
2407 * cached by non-direct readahead, or faulted in by get_user_pages()
2408 * if the source of the write was an mmap'ed region of the file
2409 * we're writing. Either one is a pretty crazy thing to do,
2410 * so we don't support it 100%. If this invalidation
2411 * fails, tough, the write still worked...
2413 if (mapping->nrpages) {
2414 invalidate_inode_pages2_range(mapping,
2415 pos >> PAGE_CACHE_SHIFT, end);
2418 if (written > 0) {
2419 pos += written;
2420 iov_iter_advance(from, written);
2421 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2422 i_size_write(inode, pos);
2423 mark_inode_dirty(inode);
2425 iocb->ki_pos = pos;
2427 out:
2428 return written;
2430 EXPORT_SYMBOL(generic_file_direct_write);
2433 * Find or create a page at the given pagecache position. Return the locked
2434 * page. This function is specifically for buffered writes.
2436 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2437 pgoff_t index, unsigned flags)
2439 struct page *page;
2440 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2442 if (flags & AOP_FLAG_NOFS)
2443 fgp_flags |= FGP_NOFS;
2445 page = pagecache_get_page(mapping, index, fgp_flags,
2446 mapping_gfp_mask(mapping),
2447 GFP_KERNEL);
2448 if (page)
2449 wait_for_stable_page(page);
2451 return page;
2453 EXPORT_SYMBOL(grab_cache_page_write_begin);
2455 ssize_t generic_perform_write(struct file *file,
2456 struct iov_iter *i, loff_t pos)
2458 struct address_space *mapping = file->f_mapping;
2459 const struct address_space_operations *a_ops = mapping->a_ops;
2460 long status = 0;
2461 ssize_t written = 0;
2462 unsigned int flags = 0;
2465 * Copies from kernel address space cannot fail (NFSD is a big user).
2467 if (segment_eq(get_fs(), KERNEL_DS))
2468 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2470 do {
2471 struct page *page;
2472 unsigned long offset; /* Offset into pagecache page */
2473 unsigned long bytes; /* Bytes to write to page */
2474 size_t copied; /* Bytes copied from user */
2475 void *fsdata;
2477 offset = (pos & (PAGE_CACHE_SIZE - 1));
2478 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2479 iov_iter_count(i));
2481 again:
2483 * Bring in the user page that we will copy from _first_.
2484 * Otherwise there's a nasty deadlock on copying from the
2485 * same page as we're writing to, without it being marked
2486 * up-to-date.
2488 * Not only is this an optimisation, but it is also required
2489 * to check that the address is actually valid, when atomic
2490 * usercopies are used, below.
2492 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2493 status = -EFAULT;
2494 break;
2497 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2498 &page, &fsdata);
2499 if (unlikely(status < 0))
2500 break;
2502 if (mapping_writably_mapped(mapping))
2503 flush_dcache_page(page);
2505 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2506 flush_dcache_page(page);
2508 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2509 page, fsdata);
2510 if (unlikely(status < 0))
2511 break;
2512 copied = status;
2514 cond_resched();
2516 iov_iter_advance(i, copied);
2517 if (unlikely(copied == 0)) {
2519 * If we were unable to copy any data at all, we must
2520 * fall back to a single segment length write.
2522 * If we didn't fallback here, we could livelock
2523 * because not all segments in the iov can be copied at
2524 * once without a pagefault.
2526 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2527 iov_iter_single_seg_count(i));
2528 goto again;
2530 pos += copied;
2531 written += copied;
2533 balance_dirty_pages_ratelimited(mapping);
2534 if (fatal_signal_pending(current)) {
2535 status = -EINTR;
2536 break;
2538 } while (iov_iter_count(i));
2540 return written ? written : status;
2542 EXPORT_SYMBOL(generic_perform_write);
2545 * __generic_file_write_iter - write data to a file
2546 * @iocb: IO state structure (file, offset, etc.)
2547 * @from: iov_iter with data to write
2549 * This function does all the work needed for actually writing data to a
2550 * file. It does all basic checks, removes SUID from the file, updates
2551 * modification times and calls proper subroutines depending on whether we
2552 * do direct IO or a standard buffered write.
2554 * It expects i_mutex to be grabbed unless we work on a block device or similar
2555 * object which does not need locking at all.
2557 * This function does *not* take care of syncing data in case of O_SYNC write.
2558 * A caller has to handle it. This is mainly due to the fact that we want to
2559 * avoid syncing under i_mutex.
2561 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2563 struct file *file = iocb->ki_filp;
2564 struct address_space * mapping = file->f_mapping;
2565 struct inode *inode = mapping->host;
2566 loff_t pos = iocb->ki_pos;
2567 ssize_t written = 0;
2568 ssize_t err;
2569 ssize_t status;
2570 size_t count = iov_iter_count(from);
2572 /* We can write back this queue in page reclaim */
2573 current->backing_dev_info = mapping->backing_dev_info;
2574 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2575 if (err)
2576 goto out;
2578 if (count == 0)
2579 goto out;
2581 iov_iter_truncate(from, count);
2583 err = file_remove_suid(file);
2584 if (err)
2585 goto out;
2587 err = file_update_time(file);
2588 if (err)
2589 goto out;
2591 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2592 if (unlikely(file->f_flags & O_DIRECT)) {
2593 loff_t endbyte;
2595 written = generic_file_direct_write(iocb, from, pos);
2596 if (written < 0 || written == count)
2597 goto out;
2600 * direct-io write to a hole: fall through to buffered I/O
2601 * for completing the rest of the request.
2603 pos += written;
2604 count -= written;
2606 status = generic_perform_write(file, from, pos);
2608 * If generic_perform_write() returned a synchronous error
2609 * then we want to return the number of bytes which were
2610 * direct-written, or the error code if that was zero. Note
2611 * that this differs from normal direct-io semantics, which
2612 * will return -EFOO even if some bytes were written.
2614 if (unlikely(status < 0)) {
2615 err = status;
2616 goto out;
2618 iocb->ki_pos = pos + status;
2620 * We need to ensure that the page cache pages are written to
2621 * disk and invalidated to preserve the expected O_DIRECT
2622 * semantics.
2624 endbyte = pos + status - 1;
2625 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2626 if (err == 0) {
2627 written += status;
2628 invalidate_mapping_pages(mapping,
2629 pos >> PAGE_CACHE_SHIFT,
2630 endbyte >> PAGE_CACHE_SHIFT);
2631 } else {
2633 * We don't know how much we wrote, so just return
2634 * the number of bytes which were direct-written
2637 } else {
2638 written = generic_perform_write(file, from, pos);
2639 if (likely(written >= 0))
2640 iocb->ki_pos = pos + written;
2642 out:
2643 current->backing_dev_info = NULL;
2644 return written ? written : err;
2646 EXPORT_SYMBOL(__generic_file_write_iter);
2649 * generic_file_write_iter - write data to a file
2650 * @iocb: IO state structure
2651 * @from: iov_iter with data to write
2653 * This is a wrapper around __generic_file_write_iter() to be used by most
2654 * filesystems. It takes care of syncing the file in case of O_SYNC file
2655 * and acquires i_mutex as needed.
2657 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2659 struct file *file = iocb->ki_filp;
2660 struct inode *inode = file->f_mapping->host;
2661 ssize_t ret;
2663 mutex_lock(&inode->i_mutex);
2664 ret = __generic_file_write_iter(iocb, from);
2665 mutex_unlock(&inode->i_mutex);
2667 if (ret > 0) {
2668 ssize_t err;
2670 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2671 if (err < 0)
2672 ret = err;
2674 return ret;
2676 EXPORT_SYMBOL(generic_file_write_iter);
2679 * try_to_release_page() - release old fs-specific metadata on a page
2681 * @page: the page which the kernel is trying to free
2682 * @gfp_mask: memory allocation flags (and I/O mode)
2684 * The address_space is to try to release any data against the page
2685 * (presumably at page->private). If the release was successful, return `1'.
2686 * Otherwise return zero.
2688 * This may also be called if PG_fscache is set on a page, indicating that the
2689 * page is known to the local caching routines.
2691 * The @gfp_mask argument specifies whether I/O may be performed to release
2692 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2695 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2697 struct address_space * const mapping = page->mapping;
2699 BUG_ON(!PageLocked(page));
2700 if (PageWriteback(page))
2701 return 0;
2703 if (mapping && mapping->a_ops->releasepage)
2704 return mapping->a_ops->releasepage(page, gfp_mask);
2705 return try_to_free_buffers(page);
2708 EXPORT_SYMBOL(try_to_release_page);