vfs: export check_sticky()
[linux/fpc-iii.git] / mm / zsmalloc.c
blob839a48c3ca27b2bf008496c89867f7210aeb6610
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
56 * For _first_ page only:
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
103 #define ZS_ALIGN 8
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
113 * Object location (<PFN>, <obj_idx>) is encoded as
114 * as single (unsigned long) handle value.
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
120 * This is made more complicated by various memory models and PAE.
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129 * be PAGE_SHIFT
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
145 * On systems with 4K page size, this gives 255 size classes! There is a
146 * trader-off here:
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155 * (reason above)
157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
158 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 ZS_SIZE_CLASS_DELTA + 1)
162 * We do not maintain any list for completely empty or full pages
164 enum fullness_group {
165 ZS_ALMOST_FULL,
166 ZS_ALMOST_EMPTY,
167 _ZS_NR_FULLNESS_GROUPS,
169 ZS_EMPTY,
170 ZS_FULL
174 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175 * n <= N / f, where
176 * n = number of allocated objects
177 * N = total number of objects zspage can store
178 * f = fullness_threshold_frac
180 * Similarly, we assign zspage to:
181 * ZS_ALMOST_FULL when n > N / f
182 * ZS_EMPTY when n == 0
183 * ZS_FULL when n == N
185 * (see: fix_fullness_group())
187 static const int fullness_threshold_frac = 4;
189 struct size_class {
191 * Size of objects stored in this class. Must be multiple
192 * of ZS_ALIGN.
194 int size;
195 unsigned int index;
197 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
198 int pages_per_zspage;
200 spinlock_t lock;
202 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
206 * Placed within free objects to form a singly linked list.
207 * For every zspage, first_page->freelist gives head of this list.
209 * This must be power of 2 and less than or equal to ZS_ALIGN
211 struct link_free {
212 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
213 void *next;
216 struct zs_pool {
217 struct size_class size_class[ZS_SIZE_CLASSES];
219 gfp_t flags; /* allocation flags used when growing pool */
220 atomic_long_t pages_allocated;
224 * A zspage's class index and fullness group
225 * are encoded in its (first)page->mapping
227 #define CLASS_IDX_BITS 28
228 #define FULLNESS_BITS 4
229 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
230 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
232 struct mapping_area {
233 #ifdef CONFIG_PGTABLE_MAPPING
234 struct vm_struct *vm; /* vm area for mapping object that span pages */
235 #else
236 char *vm_buf; /* copy buffer for objects that span pages */
237 #endif
238 char *vm_addr; /* address of kmap_atomic()'ed pages */
239 enum zs_mapmode vm_mm; /* mapping mode */
242 /* zpool driver */
244 #ifdef CONFIG_ZPOOL
246 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
248 return zs_create_pool(gfp);
251 static void zs_zpool_destroy(void *pool)
253 zs_destroy_pool(pool);
256 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
257 unsigned long *handle)
259 *handle = zs_malloc(pool, size);
260 return *handle ? 0 : -1;
262 static void zs_zpool_free(void *pool, unsigned long handle)
264 zs_free(pool, handle);
267 static int zs_zpool_shrink(void *pool, unsigned int pages,
268 unsigned int *reclaimed)
270 return -EINVAL;
273 static void *zs_zpool_map(void *pool, unsigned long handle,
274 enum zpool_mapmode mm)
276 enum zs_mapmode zs_mm;
278 switch (mm) {
279 case ZPOOL_MM_RO:
280 zs_mm = ZS_MM_RO;
281 break;
282 case ZPOOL_MM_WO:
283 zs_mm = ZS_MM_WO;
284 break;
285 case ZPOOL_MM_RW: /* fallthru */
286 default:
287 zs_mm = ZS_MM_RW;
288 break;
291 return zs_map_object(pool, handle, zs_mm);
293 static void zs_zpool_unmap(void *pool, unsigned long handle)
295 zs_unmap_object(pool, handle);
298 static u64 zs_zpool_total_size(void *pool)
300 return zs_get_total_pages(pool) << PAGE_SHIFT;
303 static struct zpool_driver zs_zpool_driver = {
304 .type = "zsmalloc",
305 .owner = THIS_MODULE,
306 .create = zs_zpool_create,
307 .destroy = zs_zpool_destroy,
308 .malloc = zs_zpool_malloc,
309 .free = zs_zpool_free,
310 .shrink = zs_zpool_shrink,
311 .map = zs_zpool_map,
312 .unmap = zs_zpool_unmap,
313 .total_size = zs_zpool_total_size,
316 MODULE_ALIAS("zpool-zsmalloc");
317 #endif /* CONFIG_ZPOOL */
319 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
320 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
322 static int is_first_page(struct page *page)
324 return PagePrivate(page);
327 static int is_last_page(struct page *page)
329 return PagePrivate2(page);
332 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
333 enum fullness_group *fullness)
335 unsigned long m;
336 BUG_ON(!is_first_page(page));
338 m = (unsigned long)page->mapping;
339 *fullness = m & FULLNESS_MASK;
340 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
343 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
344 enum fullness_group fullness)
346 unsigned long m;
347 BUG_ON(!is_first_page(page));
349 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
350 (fullness & FULLNESS_MASK);
351 page->mapping = (struct address_space *)m;
355 * zsmalloc divides the pool into various size classes where each
356 * class maintains a list of zspages where each zspage is divided
357 * into equal sized chunks. Each allocation falls into one of these
358 * classes depending on its size. This function returns index of the
359 * size class which has chunk size big enough to hold the give size.
361 static int get_size_class_index(int size)
363 int idx = 0;
365 if (likely(size > ZS_MIN_ALLOC_SIZE))
366 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
367 ZS_SIZE_CLASS_DELTA);
369 return idx;
373 * For each size class, zspages are divided into different groups
374 * depending on how "full" they are. This was done so that we could
375 * easily find empty or nearly empty zspages when we try to shrink
376 * the pool (not yet implemented). This function returns fullness
377 * status of the given page.
379 static enum fullness_group get_fullness_group(struct page *page)
381 int inuse, max_objects;
382 enum fullness_group fg;
383 BUG_ON(!is_first_page(page));
385 inuse = page->inuse;
386 max_objects = page->objects;
388 if (inuse == 0)
389 fg = ZS_EMPTY;
390 else if (inuse == max_objects)
391 fg = ZS_FULL;
392 else if (inuse <= max_objects / fullness_threshold_frac)
393 fg = ZS_ALMOST_EMPTY;
394 else
395 fg = ZS_ALMOST_FULL;
397 return fg;
401 * Each size class maintains various freelists and zspages are assigned
402 * to one of these freelists based on the number of live objects they
403 * have. This functions inserts the given zspage into the freelist
404 * identified by <class, fullness_group>.
406 static void insert_zspage(struct page *page, struct size_class *class,
407 enum fullness_group fullness)
409 struct page **head;
411 BUG_ON(!is_first_page(page));
413 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
414 return;
416 head = &class->fullness_list[fullness];
417 if (*head)
418 list_add_tail(&page->lru, &(*head)->lru);
420 *head = page;
424 * This function removes the given zspage from the freelist identified
425 * by <class, fullness_group>.
427 static void remove_zspage(struct page *page, struct size_class *class,
428 enum fullness_group fullness)
430 struct page **head;
432 BUG_ON(!is_first_page(page));
434 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
435 return;
437 head = &class->fullness_list[fullness];
438 BUG_ON(!*head);
439 if (list_empty(&(*head)->lru))
440 *head = NULL;
441 else if (*head == page)
442 *head = (struct page *)list_entry((*head)->lru.next,
443 struct page, lru);
445 list_del_init(&page->lru);
449 * Each size class maintains zspages in different fullness groups depending
450 * on the number of live objects they contain. When allocating or freeing
451 * objects, the fullness status of the page can change, say, from ALMOST_FULL
452 * to ALMOST_EMPTY when freeing an object. This function checks if such
453 * a status change has occurred for the given page and accordingly moves the
454 * page from the freelist of the old fullness group to that of the new
455 * fullness group.
457 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
458 struct page *page)
460 int class_idx;
461 struct size_class *class;
462 enum fullness_group currfg, newfg;
464 BUG_ON(!is_first_page(page));
466 get_zspage_mapping(page, &class_idx, &currfg);
467 newfg = get_fullness_group(page);
468 if (newfg == currfg)
469 goto out;
471 class = &pool->size_class[class_idx];
472 remove_zspage(page, class, currfg);
473 insert_zspage(page, class, newfg);
474 set_zspage_mapping(page, class_idx, newfg);
476 out:
477 return newfg;
481 * We have to decide on how many pages to link together
482 * to form a zspage for each size class. This is important
483 * to reduce wastage due to unusable space left at end of
484 * each zspage which is given as:
485 * wastage = Zp - Zp % size_class
486 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
488 * For example, for size class of 3/8 * PAGE_SIZE, we should
489 * link together 3 PAGE_SIZE sized pages to form a zspage
490 * since then we can perfectly fit in 8 such objects.
492 static int get_pages_per_zspage(int class_size)
494 int i, max_usedpc = 0;
495 /* zspage order which gives maximum used size per KB */
496 int max_usedpc_order = 1;
498 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
499 int zspage_size;
500 int waste, usedpc;
502 zspage_size = i * PAGE_SIZE;
503 waste = zspage_size % class_size;
504 usedpc = (zspage_size - waste) * 100 / zspage_size;
506 if (usedpc > max_usedpc) {
507 max_usedpc = usedpc;
508 max_usedpc_order = i;
512 return max_usedpc_order;
516 * A single 'zspage' is composed of many system pages which are
517 * linked together using fields in struct page. This function finds
518 * the first/head page, given any component page of a zspage.
520 static struct page *get_first_page(struct page *page)
522 if (is_first_page(page))
523 return page;
524 else
525 return page->first_page;
528 static struct page *get_next_page(struct page *page)
530 struct page *next;
532 if (is_last_page(page))
533 next = NULL;
534 else if (is_first_page(page))
535 next = (struct page *)page_private(page);
536 else
537 next = list_entry(page->lru.next, struct page, lru);
539 return next;
543 * Encode <page, obj_idx> as a single handle value.
544 * On hardware platforms with physical memory starting at 0x0 the pfn
545 * could be 0 so we ensure that the handle will never be 0 by adjusting the
546 * encoded obj_idx value before encoding.
548 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
550 unsigned long handle;
552 if (!page) {
553 BUG_ON(obj_idx);
554 return NULL;
557 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
558 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
560 return (void *)handle;
564 * Decode <page, obj_idx> pair from the given object handle. We adjust the
565 * decoded obj_idx back to its original value since it was adjusted in
566 * obj_location_to_handle().
568 static void obj_handle_to_location(unsigned long handle, struct page **page,
569 unsigned long *obj_idx)
571 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
572 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
575 static unsigned long obj_idx_to_offset(struct page *page,
576 unsigned long obj_idx, int class_size)
578 unsigned long off = 0;
580 if (!is_first_page(page))
581 off = page->index;
583 return off + obj_idx * class_size;
586 static void reset_page(struct page *page)
588 clear_bit(PG_private, &page->flags);
589 clear_bit(PG_private_2, &page->flags);
590 set_page_private(page, 0);
591 page->mapping = NULL;
592 page->freelist = NULL;
593 page_mapcount_reset(page);
596 static void free_zspage(struct page *first_page)
598 struct page *nextp, *tmp, *head_extra;
600 BUG_ON(!is_first_page(first_page));
601 BUG_ON(first_page->inuse);
603 head_extra = (struct page *)page_private(first_page);
605 reset_page(first_page);
606 __free_page(first_page);
608 /* zspage with only 1 system page */
609 if (!head_extra)
610 return;
612 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
613 list_del(&nextp->lru);
614 reset_page(nextp);
615 __free_page(nextp);
617 reset_page(head_extra);
618 __free_page(head_extra);
621 /* Initialize a newly allocated zspage */
622 static void init_zspage(struct page *first_page, struct size_class *class)
624 unsigned long off = 0;
625 struct page *page = first_page;
627 BUG_ON(!is_first_page(first_page));
628 while (page) {
629 struct page *next_page;
630 struct link_free *link;
631 unsigned int i = 1;
634 * page->index stores offset of first object starting
635 * in the page. For the first page, this is always 0,
636 * so we use first_page->index (aka ->freelist) to store
637 * head of corresponding zspage's freelist.
639 if (page != first_page)
640 page->index = off;
642 link = (struct link_free *)kmap_atomic(page) +
643 off / sizeof(*link);
645 while ((off += class->size) < PAGE_SIZE) {
646 link->next = obj_location_to_handle(page, i++);
647 link += class->size / sizeof(*link);
651 * We now come to the last (full or partial) object on this
652 * page, which must point to the first object on the next
653 * page (if present)
655 next_page = get_next_page(page);
656 link->next = obj_location_to_handle(next_page, 0);
657 kunmap_atomic(link);
658 page = next_page;
659 off %= PAGE_SIZE;
664 * Allocate a zspage for the given size class
666 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
668 int i, error;
669 struct page *first_page = NULL, *uninitialized_var(prev_page);
672 * Allocate individual pages and link them together as:
673 * 1. first page->private = first sub-page
674 * 2. all sub-pages are linked together using page->lru
675 * 3. each sub-page is linked to the first page using page->first_page
677 * For each size class, First/Head pages are linked together using
678 * page->lru. Also, we set PG_private to identify the first page
679 * (i.e. no other sub-page has this flag set) and PG_private_2 to
680 * identify the last page.
682 error = -ENOMEM;
683 for (i = 0; i < class->pages_per_zspage; i++) {
684 struct page *page;
686 page = alloc_page(flags);
687 if (!page)
688 goto cleanup;
690 INIT_LIST_HEAD(&page->lru);
691 if (i == 0) { /* first page */
692 SetPagePrivate(page);
693 set_page_private(page, 0);
694 first_page = page;
695 first_page->inuse = 0;
697 if (i == 1)
698 set_page_private(first_page, (unsigned long)page);
699 if (i >= 1)
700 page->first_page = first_page;
701 if (i >= 2)
702 list_add(&page->lru, &prev_page->lru);
703 if (i == class->pages_per_zspage - 1) /* last page */
704 SetPagePrivate2(page);
705 prev_page = page;
708 init_zspage(first_page, class);
710 first_page->freelist = obj_location_to_handle(first_page, 0);
711 /* Maximum number of objects we can store in this zspage */
712 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
714 error = 0; /* Success */
716 cleanup:
717 if (unlikely(error) && first_page) {
718 free_zspage(first_page);
719 first_page = NULL;
722 return first_page;
725 static struct page *find_get_zspage(struct size_class *class)
727 int i;
728 struct page *page;
730 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
731 page = class->fullness_list[i];
732 if (page)
733 break;
736 return page;
739 #ifdef CONFIG_PGTABLE_MAPPING
740 static inline int __zs_cpu_up(struct mapping_area *area)
743 * Make sure we don't leak memory if a cpu UP notification
744 * and zs_init() race and both call zs_cpu_up() on the same cpu
746 if (area->vm)
747 return 0;
748 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
749 if (!area->vm)
750 return -ENOMEM;
751 return 0;
754 static inline void __zs_cpu_down(struct mapping_area *area)
756 if (area->vm)
757 free_vm_area(area->vm);
758 area->vm = NULL;
761 static inline void *__zs_map_object(struct mapping_area *area,
762 struct page *pages[2], int off, int size)
764 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
765 area->vm_addr = area->vm->addr;
766 return area->vm_addr + off;
769 static inline void __zs_unmap_object(struct mapping_area *area,
770 struct page *pages[2], int off, int size)
772 unsigned long addr = (unsigned long)area->vm_addr;
774 unmap_kernel_range(addr, PAGE_SIZE * 2);
777 #else /* CONFIG_PGTABLE_MAPPING */
779 static inline int __zs_cpu_up(struct mapping_area *area)
782 * Make sure we don't leak memory if a cpu UP notification
783 * and zs_init() race and both call zs_cpu_up() on the same cpu
785 if (area->vm_buf)
786 return 0;
787 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
788 if (!area->vm_buf)
789 return -ENOMEM;
790 return 0;
793 static inline void __zs_cpu_down(struct mapping_area *area)
795 if (area->vm_buf)
796 free_page((unsigned long)area->vm_buf);
797 area->vm_buf = NULL;
800 static void *__zs_map_object(struct mapping_area *area,
801 struct page *pages[2], int off, int size)
803 int sizes[2];
804 void *addr;
805 char *buf = area->vm_buf;
807 /* disable page faults to match kmap_atomic() return conditions */
808 pagefault_disable();
810 /* no read fastpath */
811 if (area->vm_mm == ZS_MM_WO)
812 goto out;
814 sizes[0] = PAGE_SIZE - off;
815 sizes[1] = size - sizes[0];
817 /* copy object to per-cpu buffer */
818 addr = kmap_atomic(pages[0]);
819 memcpy(buf, addr + off, sizes[0]);
820 kunmap_atomic(addr);
821 addr = kmap_atomic(pages[1]);
822 memcpy(buf + sizes[0], addr, sizes[1]);
823 kunmap_atomic(addr);
824 out:
825 return area->vm_buf;
828 static void __zs_unmap_object(struct mapping_area *area,
829 struct page *pages[2], int off, int size)
831 int sizes[2];
832 void *addr;
833 char *buf = area->vm_buf;
835 /* no write fastpath */
836 if (area->vm_mm == ZS_MM_RO)
837 goto out;
839 sizes[0] = PAGE_SIZE - off;
840 sizes[1] = size - sizes[0];
842 /* copy per-cpu buffer to object */
843 addr = kmap_atomic(pages[0]);
844 memcpy(addr + off, buf, sizes[0]);
845 kunmap_atomic(addr);
846 addr = kmap_atomic(pages[1]);
847 memcpy(addr, buf + sizes[0], sizes[1]);
848 kunmap_atomic(addr);
850 out:
851 /* enable page faults to match kunmap_atomic() return conditions */
852 pagefault_enable();
855 #endif /* CONFIG_PGTABLE_MAPPING */
857 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
858 void *pcpu)
860 int ret, cpu = (long)pcpu;
861 struct mapping_area *area;
863 switch (action) {
864 case CPU_UP_PREPARE:
865 area = &per_cpu(zs_map_area, cpu);
866 ret = __zs_cpu_up(area);
867 if (ret)
868 return notifier_from_errno(ret);
869 break;
870 case CPU_DEAD:
871 case CPU_UP_CANCELED:
872 area = &per_cpu(zs_map_area, cpu);
873 __zs_cpu_down(area);
874 break;
877 return NOTIFY_OK;
880 static struct notifier_block zs_cpu_nb = {
881 .notifier_call = zs_cpu_notifier
884 static void zs_exit(void)
886 int cpu;
888 #ifdef CONFIG_ZPOOL
889 zpool_unregister_driver(&zs_zpool_driver);
890 #endif
892 cpu_notifier_register_begin();
894 for_each_online_cpu(cpu)
895 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
896 __unregister_cpu_notifier(&zs_cpu_nb);
898 cpu_notifier_register_done();
901 static int zs_init(void)
903 int cpu, ret;
905 cpu_notifier_register_begin();
907 __register_cpu_notifier(&zs_cpu_nb);
908 for_each_online_cpu(cpu) {
909 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
910 if (notifier_to_errno(ret)) {
911 cpu_notifier_register_done();
912 goto fail;
916 cpu_notifier_register_done();
918 #ifdef CONFIG_ZPOOL
919 zpool_register_driver(&zs_zpool_driver);
920 #endif
922 return 0;
923 fail:
924 zs_exit();
925 return notifier_to_errno(ret);
929 * zs_create_pool - Creates an allocation pool to work from.
930 * @flags: allocation flags used to allocate pool metadata
932 * This function must be called before anything when using
933 * the zsmalloc allocator.
935 * On success, a pointer to the newly created pool is returned,
936 * otherwise NULL.
938 struct zs_pool *zs_create_pool(gfp_t flags)
940 int i, ovhd_size;
941 struct zs_pool *pool;
943 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
944 pool = kzalloc(ovhd_size, GFP_KERNEL);
945 if (!pool)
946 return NULL;
948 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
949 int size;
950 struct size_class *class;
952 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
953 if (size > ZS_MAX_ALLOC_SIZE)
954 size = ZS_MAX_ALLOC_SIZE;
956 class = &pool->size_class[i];
957 class->size = size;
958 class->index = i;
959 spin_lock_init(&class->lock);
960 class->pages_per_zspage = get_pages_per_zspage(size);
964 pool->flags = flags;
966 return pool;
968 EXPORT_SYMBOL_GPL(zs_create_pool);
970 void zs_destroy_pool(struct zs_pool *pool)
972 int i;
974 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
975 int fg;
976 struct size_class *class = &pool->size_class[i];
978 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
979 if (class->fullness_list[fg]) {
980 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
981 class->size, fg);
985 kfree(pool);
987 EXPORT_SYMBOL_GPL(zs_destroy_pool);
990 * zs_malloc - Allocate block of given size from pool.
991 * @pool: pool to allocate from
992 * @size: size of block to allocate
994 * On success, handle to the allocated object is returned,
995 * otherwise 0.
996 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
998 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1000 unsigned long obj;
1001 struct link_free *link;
1002 int class_idx;
1003 struct size_class *class;
1005 struct page *first_page, *m_page;
1006 unsigned long m_objidx, m_offset;
1008 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1009 return 0;
1011 class_idx = get_size_class_index(size);
1012 class = &pool->size_class[class_idx];
1013 BUG_ON(class_idx != class->index);
1015 spin_lock(&class->lock);
1016 first_page = find_get_zspage(class);
1018 if (!first_page) {
1019 spin_unlock(&class->lock);
1020 first_page = alloc_zspage(class, pool->flags);
1021 if (unlikely(!first_page))
1022 return 0;
1024 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1025 atomic_long_add(class->pages_per_zspage,
1026 &pool->pages_allocated);
1027 spin_lock(&class->lock);
1030 obj = (unsigned long)first_page->freelist;
1031 obj_handle_to_location(obj, &m_page, &m_objidx);
1032 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1034 link = (struct link_free *)kmap_atomic(m_page) +
1035 m_offset / sizeof(*link);
1036 first_page->freelist = link->next;
1037 memset(link, POISON_INUSE, sizeof(*link));
1038 kunmap_atomic(link);
1040 first_page->inuse++;
1041 /* Now move the zspage to another fullness group, if required */
1042 fix_fullness_group(pool, first_page);
1043 spin_unlock(&class->lock);
1045 return obj;
1047 EXPORT_SYMBOL_GPL(zs_malloc);
1049 void zs_free(struct zs_pool *pool, unsigned long obj)
1051 struct link_free *link;
1052 struct page *first_page, *f_page;
1053 unsigned long f_objidx, f_offset;
1055 int class_idx;
1056 struct size_class *class;
1057 enum fullness_group fullness;
1059 if (unlikely(!obj))
1060 return;
1062 obj_handle_to_location(obj, &f_page, &f_objidx);
1063 first_page = get_first_page(f_page);
1065 get_zspage_mapping(first_page, &class_idx, &fullness);
1066 class = &pool->size_class[class_idx];
1067 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1069 spin_lock(&class->lock);
1071 /* Insert this object in containing zspage's freelist */
1072 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
1073 + f_offset);
1074 link->next = first_page->freelist;
1075 kunmap_atomic(link);
1076 first_page->freelist = (void *)obj;
1078 first_page->inuse--;
1079 fullness = fix_fullness_group(pool, first_page);
1080 spin_unlock(&class->lock);
1082 if (fullness == ZS_EMPTY) {
1083 atomic_long_sub(class->pages_per_zspage,
1084 &pool->pages_allocated);
1085 free_zspage(first_page);
1088 EXPORT_SYMBOL_GPL(zs_free);
1091 * zs_map_object - get address of allocated object from handle.
1092 * @pool: pool from which the object was allocated
1093 * @handle: handle returned from zs_malloc
1095 * Before using an object allocated from zs_malloc, it must be mapped using
1096 * this function. When done with the object, it must be unmapped using
1097 * zs_unmap_object.
1099 * Only one object can be mapped per cpu at a time. There is no protection
1100 * against nested mappings.
1102 * This function returns with preemption and page faults disabled.
1104 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1105 enum zs_mapmode mm)
1107 struct page *page;
1108 unsigned long obj_idx, off;
1110 unsigned int class_idx;
1111 enum fullness_group fg;
1112 struct size_class *class;
1113 struct mapping_area *area;
1114 struct page *pages[2];
1116 BUG_ON(!handle);
1119 * Because we use per-cpu mapping areas shared among the
1120 * pools/users, we can't allow mapping in interrupt context
1121 * because it can corrupt another users mappings.
1123 BUG_ON(in_interrupt());
1125 obj_handle_to_location(handle, &page, &obj_idx);
1126 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1127 class = &pool->size_class[class_idx];
1128 off = obj_idx_to_offset(page, obj_idx, class->size);
1130 area = &get_cpu_var(zs_map_area);
1131 area->vm_mm = mm;
1132 if (off + class->size <= PAGE_SIZE) {
1133 /* this object is contained entirely within a page */
1134 area->vm_addr = kmap_atomic(page);
1135 return area->vm_addr + off;
1138 /* this object spans two pages */
1139 pages[0] = page;
1140 pages[1] = get_next_page(page);
1141 BUG_ON(!pages[1]);
1143 return __zs_map_object(area, pages, off, class->size);
1145 EXPORT_SYMBOL_GPL(zs_map_object);
1147 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1149 struct page *page;
1150 unsigned long obj_idx, off;
1152 unsigned int class_idx;
1153 enum fullness_group fg;
1154 struct size_class *class;
1155 struct mapping_area *area;
1157 BUG_ON(!handle);
1159 obj_handle_to_location(handle, &page, &obj_idx);
1160 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1161 class = &pool->size_class[class_idx];
1162 off = obj_idx_to_offset(page, obj_idx, class->size);
1164 area = this_cpu_ptr(&zs_map_area);
1165 if (off + class->size <= PAGE_SIZE)
1166 kunmap_atomic(area->vm_addr);
1167 else {
1168 struct page *pages[2];
1170 pages[0] = page;
1171 pages[1] = get_next_page(page);
1172 BUG_ON(!pages[1]);
1174 __zs_unmap_object(area, pages, off, class->size);
1176 put_cpu_var(zs_map_area);
1178 EXPORT_SYMBOL_GPL(zs_unmap_object);
1180 unsigned long zs_get_total_pages(struct zs_pool *pool)
1182 return atomic_long_read(&pool->pages_allocated);
1184 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1186 module_init(zs_init);
1187 module_exit(zs_exit);
1189 MODULE_LICENSE("Dual BSD/GPL");
1190 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");