mtd: mtdblock: Dynamically allocate cache info structures
[linux/fpc-iii.git] / drivers / md / dm-table.c
blobbe625475cf6df41faa48c9a3b91e841655afb3b2
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
22 #define DM_MSG_PREFIX "table"
24 #define MAX_DEPTH 16
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
38 * When the table is about to be destroyed, we wait for table->holders to
39 * drop to zero.
42 struct dm_table {
43 struct mapped_device *md;
44 atomic_t holders;
45 unsigned type;
47 /* btree table */
48 unsigned int depth;
49 unsigned int counts[MAX_DEPTH]; /* in nodes */
50 sector_t *index[MAX_DEPTH];
52 unsigned int num_targets;
53 unsigned int num_allocated;
54 sector_t *highs;
55 struct dm_target *targets;
58 * Indicates the rw permissions for the new logical
59 * device. This should be a combination of FMODE_READ
60 * and FMODE_WRITE.
62 fmode_t mode;
64 /* a list of devices used by this table */
65 struct list_head devices;
67 /* events get handed up using this callback */
68 void (*event_fn)(void *);
69 void *event_context;
71 struct dm_md_mempools *mempools;
75 * Similar to ceiling(log_size(n))
77 static unsigned int int_log(unsigned int n, unsigned int base)
79 int result = 0;
81 while (n > 1) {
82 n = dm_div_up(n, base);
83 result++;
86 return result;
90 * Calculate the index of the child node of the n'th node k'th key.
92 static inline unsigned int get_child(unsigned int n, unsigned int k)
94 return (n * CHILDREN_PER_NODE) + k;
98 * Return the n'th node of level l from table t.
100 static inline sector_t *get_node(struct dm_table *t,
101 unsigned int l, unsigned int n)
103 return t->index[l] + (n * KEYS_PER_NODE);
107 * Return the highest key that you could lookup from the n'th
108 * node on level l of the btree.
110 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
112 for (; l < t->depth - 1; l++)
113 n = get_child(n, CHILDREN_PER_NODE - 1);
115 if (n >= t->counts[l])
116 return (sector_t) - 1;
118 return get_node(t, l, n)[KEYS_PER_NODE - 1];
122 * Fills in a level of the btree based on the highs of the level
123 * below it.
125 static int setup_btree_index(unsigned int l, struct dm_table *t)
127 unsigned int n, k;
128 sector_t *node;
130 for (n = 0U; n < t->counts[l]; n++) {
131 node = get_node(t, l, n);
133 for (k = 0U; k < KEYS_PER_NODE; k++)
134 node[k] = high(t, l + 1, get_child(n, k));
137 return 0;
140 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
142 unsigned long size;
143 void *addr;
146 * Check that we're not going to overflow.
148 if (nmemb > (ULONG_MAX / elem_size))
149 return NULL;
151 size = nmemb * elem_size;
152 addr = vmalloc(size);
153 if (addr)
154 memset(addr, 0, size);
156 return addr;
160 * highs, and targets are managed as dynamic arrays during a
161 * table load.
163 static int alloc_targets(struct dm_table *t, unsigned int num)
165 sector_t *n_highs;
166 struct dm_target *n_targets;
167 int n = t->num_targets;
170 * Allocate both the target array and offset array at once.
171 * Append an empty entry to catch sectors beyond the end of
172 * the device.
174 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
175 sizeof(sector_t));
176 if (!n_highs)
177 return -ENOMEM;
179 n_targets = (struct dm_target *) (n_highs + num);
181 if (n) {
182 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
183 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
186 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
187 vfree(t->highs);
189 t->num_allocated = num;
190 t->highs = n_highs;
191 t->targets = n_targets;
193 return 0;
196 int dm_table_create(struct dm_table **result, fmode_t mode,
197 unsigned num_targets, struct mapped_device *md)
199 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
201 if (!t)
202 return -ENOMEM;
204 INIT_LIST_HEAD(&t->devices);
205 atomic_set(&t->holders, 0);
207 if (!num_targets)
208 num_targets = KEYS_PER_NODE;
210 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
212 if (alloc_targets(t, num_targets)) {
213 kfree(t);
214 t = NULL;
215 return -ENOMEM;
218 t->mode = mode;
219 t->md = md;
220 *result = t;
221 return 0;
224 static void free_devices(struct list_head *devices)
226 struct list_head *tmp, *next;
228 list_for_each_safe(tmp, next, devices) {
229 struct dm_dev_internal *dd =
230 list_entry(tmp, struct dm_dev_internal, list);
231 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
232 dd->dm_dev.name);
233 kfree(dd);
237 void dm_table_destroy(struct dm_table *t)
239 unsigned int i;
241 if (!t)
242 return;
244 while (atomic_read(&t->holders))
245 msleep(1);
246 smp_mb();
248 /* free the indexes (see dm_table_complete) */
249 if (t->depth >= 2)
250 vfree(t->index[t->depth - 2]);
252 /* free the targets */
253 for (i = 0; i < t->num_targets; i++) {
254 struct dm_target *tgt = t->targets + i;
256 if (tgt->type->dtr)
257 tgt->type->dtr(tgt);
259 dm_put_target_type(tgt->type);
262 vfree(t->highs);
264 /* free the device list */
265 if (t->devices.next != &t->devices)
266 free_devices(&t->devices);
268 dm_free_md_mempools(t->mempools);
270 kfree(t);
273 void dm_table_get(struct dm_table *t)
275 atomic_inc(&t->holders);
278 void dm_table_put(struct dm_table *t)
280 if (!t)
281 return;
283 smp_mb__before_atomic_dec();
284 atomic_dec(&t->holders);
288 * Checks to see if we need to extend highs or targets.
290 static inline int check_space(struct dm_table *t)
292 if (t->num_targets >= t->num_allocated)
293 return alloc_targets(t, t->num_allocated * 2);
295 return 0;
299 * See if we've already got a device in the list.
301 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
303 struct dm_dev_internal *dd;
305 list_for_each_entry (dd, l, list)
306 if (dd->dm_dev.bdev->bd_dev == dev)
307 return dd;
309 return NULL;
313 * Open a device so we can use it as a map destination.
315 static int open_dev(struct dm_dev_internal *d, dev_t dev,
316 struct mapped_device *md)
318 static char *_claim_ptr = "I belong to device-mapper";
319 struct block_device *bdev;
321 int r;
323 BUG_ON(d->dm_dev.bdev);
325 bdev = open_by_devnum(dev, d->dm_dev.mode);
326 if (IS_ERR(bdev))
327 return PTR_ERR(bdev);
328 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
329 if (r)
330 blkdev_put(bdev, d->dm_dev.mode);
331 else
332 d->dm_dev.bdev = bdev;
333 return r;
337 * Close a device that we've been using.
339 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
341 if (!d->dm_dev.bdev)
342 return;
344 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
345 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
346 d->dm_dev.bdev = NULL;
350 * If possible, this checks an area of a destination device is invalid.
352 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
353 sector_t start, sector_t len, void *data)
355 struct queue_limits *limits = data;
356 struct block_device *bdev = dev->bdev;
357 sector_t dev_size =
358 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
359 unsigned short logical_block_size_sectors =
360 limits->logical_block_size >> SECTOR_SHIFT;
361 char b[BDEVNAME_SIZE];
363 if (!dev_size)
364 return 0;
366 if ((start >= dev_size) || (start + len > dev_size)) {
367 DMWARN("%s: %s too small for target: "
368 "start=%llu, len=%llu, dev_size=%llu",
369 dm_device_name(ti->table->md), bdevname(bdev, b),
370 (unsigned long long)start,
371 (unsigned long long)len,
372 (unsigned long long)dev_size);
373 return 1;
376 if (logical_block_size_sectors <= 1)
377 return 0;
379 if (start & (logical_block_size_sectors - 1)) {
380 DMWARN("%s: start=%llu not aligned to h/w "
381 "logical block size %u of %s",
382 dm_device_name(ti->table->md),
383 (unsigned long long)start,
384 limits->logical_block_size, bdevname(bdev, b));
385 return 1;
388 if (len & (logical_block_size_sectors - 1)) {
389 DMWARN("%s: len=%llu not aligned to h/w "
390 "logical block size %u of %s",
391 dm_device_name(ti->table->md),
392 (unsigned long long)len,
393 limits->logical_block_size, bdevname(bdev, b));
394 return 1;
397 return 0;
401 * This upgrades the mode on an already open dm_dev, being
402 * careful to leave things as they were if we fail to reopen the
403 * device and not to touch the existing bdev field in case
404 * it is accessed concurrently inside dm_table_any_congested().
406 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
407 struct mapped_device *md)
409 int r;
410 struct dm_dev_internal dd_new, dd_old;
412 dd_new = dd_old = *dd;
414 dd_new.dm_dev.mode |= new_mode;
415 dd_new.dm_dev.bdev = NULL;
417 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
418 if (r)
419 return r;
421 dd->dm_dev.mode |= new_mode;
422 close_dev(&dd_old, md);
424 return 0;
428 * Add a device to the list, or just increment the usage count if
429 * it's already present.
431 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
432 const char *path, sector_t start, sector_t len,
433 fmode_t mode, struct dm_dev **result)
435 int r;
436 dev_t uninitialized_var(dev);
437 struct dm_dev_internal *dd;
438 unsigned int major, minor;
440 BUG_ON(!t);
442 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
443 /* Extract the major/minor numbers */
444 dev = MKDEV(major, minor);
445 if (MAJOR(dev) != major || MINOR(dev) != minor)
446 return -EOVERFLOW;
447 } else {
448 /* convert the path to a device */
449 struct block_device *bdev = lookup_bdev(path);
451 if (IS_ERR(bdev))
452 return PTR_ERR(bdev);
453 dev = bdev->bd_dev;
454 bdput(bdev);
457 dd = find_device(&t->devices, dev);
458 if (!dd) {
459 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
460 if (!dd)
461 return -ENOMEM;
463 dd->dm_dev.mode = mode;
464 dd->dm_dev.bdev = NULL;
466 if ((r = open_dev(dd, dev, t->md))) {
467 kfree(dd);
468 return r;
471 format_dev_t(dd->dm_dev.name, dev);
473 atomic_set(&dd->count, 0);
474 list_add(&dd->list, &t->devices);
476 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
477 r = upgrade_mode(dd, mode, t->md);
478 if (r)
479 return r;
481 atomic_inc(&dd->count);
483 *result = &dd->dm_dev;
484 return 0;
488 * Returns the minimum that is _not_ zero, unless both are zero.
490 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
492 int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
493 sector_t start, sector_t len, void *data)
495 struct queue_limits *limits = data;
496 struct block_device *bdev = dev->bdev;
497 struct request_queue *q = bdev_get_queue(bdev);
498 char b[BDEVNAME_SIZE];
500 if (unlikely(!q)) {
501 DMWARN("%s: Cannot set limits for nonexistent device %s",
502 dm_device_name(ti->table->md), bdevname(bdev, b));
503 return 0;
506 if (blk_stack_limits(limits, &q->limits, start << 9) < 0)
507 DMWARN("%s: target device %s is misaligned: "
508 "physical_block_size=%u, logical_block_size=%u, "
509 "alignment_offset=%u, start=%llu",
510 dm_device_name(ti->table->md), bdevname(bdev, b),
511 q->limits.physical_block_size,
512 q->limits.logical_block_size,
513 q->limits.alignment_offset,
514 (unsigned long long) start << 9);
518 * Check if merge fn is supported.
519 * If not we'll force DM to use PAGE_SIZE or
520 * smaller I/O, just to be safe.
523 if (q->merge_bvec_fn && !ti->type->merge)
524 limits->max_sectors =
525 min_not_zero(limits->max_sectors,
526 (unsigned int) (PAGE_SIZE >> 9));
527 return 0;
529 EXPORT_SYMBOL_GPL(dm_set_device_limits);
531 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
532 sector_t len, fmode_t mode, struct dm_dev **result)
534 return __table_get_device(ti->table, ti, path,
535 start, len, mode, result);
540 * Decrement a devices use count and remove it if necessary.
542 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
544 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
545 dm_dev);
547 if (atomic_dec_and_test(&dd->count)) {
548 close_dev(dd, ti->table->md);
549 list_del(&dd->list);
550 kfree(dd);
555 * Checks to see if the target joins onto the end of the table.
557 static int adjoin(struct dm_table *table, struct dm_target *ti)
559 struct dm_target *prev;
561 if (!table->num_targets)
562 return !ti->begin;
564 prev = &table->targets[table->num_targets - 1];
565 return (ti->begin == (prev->begin + prev->len));
569 * Used to dynamically allocate the arg array.
571 static char **realloc_argv(unsigned *array_size, char **old_argv)
573 char **argv;
574 unsigned new_size;
576 new_size = *array_size ? *array_size * 2 : 64;
577 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
578 if (argv) {
579 memcpy(argv, old_argv, *array_size * sizeof(*argv));
580 *array_size = new_size;
583 kfree(old_argv);
584 return argv;
588 * Destructively splits up the argument list to pass to ctr.
590 int dm_split_args(int *argc, char ***argvp, char *input)
592 char *start, *end = input, *out, **argv = NULL;
593 unsigned array_size = 0;
595 *argc = 0;
597 if (!input) {
598 *argvp = NULL;
599 return 0;
602 argv = realloc_argv(&array_size, argv);
603 if (!argv)
604 return -ENOMEM;
606 while (1) {
607 /* Skip whitespace */
608 start = skip_spaces(end);
610 if (!*start)
611 break; /* success, we hit the end */
613 /* 'out' is used to remove any back-quotes */
614 end = out = start;
615 while (*end) {
616 /* Everything apart from '\0' can be quoted */
617 if (*end == '\\' && *(end + 1)) {
618 *out++ = *(end + 1);
619 end += 2;
620 continue;
623 if (isspace(*end))
624 break; /* end of token */
626 *out++ = *end++;
629 /* have we already filled the array ? */
630 if ((*argc + 1) > array_size) {
631 argv = realloc_argv(&array_size, argv);
632 if (!argv)
633 return -ENOMEM;
636 /* we know this is whitespace */
637 if (*end)
638 end++;
640 /* terminate the string and put it in the array */
641 *out = '\0';
642 argv[*argc] = start;
643 (*argc)++;
646 *argvp = argv;
647 return 0;
651 * Impose necessary and sufficient conditions on a devices's table such
652 * that any incoming bio which respects its logical_block_size can be
653 * processed successfully. If it falls across the boundary between
654 * two or more targets, the size of each piece it gets split into must
655 * be compatible with the logical_block_size of the target processing it.
657 static int validate_hardware_logical_block_alignment(struct dm_table *table,
658 struct queue_limits *limits)
661 * This function uses arithmetic modulo the logical_block_size
662 * (in units of 512-byte sectors).
664 unsigned short device_logical_block_size_sects =
665 limits->logical_block_size >> SECTOR_SHIFT;
668 * Offset of the start of the next table entry, mod logical_block_size.
670 unsigned short next_target_start = 0;
673 * Given an aligned bio that extends beyond the end of a
674 * target, how many sectors must the next target handle?
676 unsigned short remaining = 0;
678 struct dm_target *uninitialized_var(ti);
679 struct queue_limits ti_limits;
680 unsigned i = 0;
683 * Check each entry in the table in turn.
685 while (i < dm_table_get_num_targets(table)) {
686 ti = dm_table_get_target(table, i++);
688 blk_set_default_limits(&ti_limits);
690 /* combine all target devices' limits */
691 if (ti->type->iterate_devices)
692 ti->type->iterate_devices(ti, dm_set_device_limits,
693 &ti_limits);
696 * If the remaining sectors fall entirely within this
697 * table entry are they compatible with its logical_block_size?
699 if (remaining < ti->len &&
700 remaining & ((ti_limits.logical_block_size >>
701 SECTOR_SHIFT) - 1))
702 break; /* Error */
704 next_target_start =
705 (unsigned short) ((next_target_start + ti->len) &
706 (device_logical_block_size_sects - 1));
707 remaining = next_target_start ?
708 device_logical_block_size_sects - next_target_start : 0;
711 if (remaining) {
712 DMWARN("%s: table line %u (start sect %llu len %llu) "
713 "not aligned to h/w logical block size %u",
714 dm_device_name(table->md), i,
715 (unsigned long long) ti->begin,
716 (unsigned long long) ti->len,
717 limits->logical_block_size);
718 return -EINVAL;
721 return 0;
724 int dm_table_add_target(struct dm_table *t, const char *type,
725 sector_t start, sector_t len, char *params)
727 int r = -EINVAL, argc;
728 char **argv;
729 struct dm_target *tgt;
731 if ((r = check_space(t)))
732 return r;
734 tgt = t->targets + t->num_targets;
735 memset(tgt, 0, sizeof(*tgt));
737 if (!len) {
738 DMERR("%s: zero-length target", dm_device_name(t->md));
739 return -EINVAL;
742 tgt->type = dm_get_target_type(type);
743 if (!tgt->type) {
744 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
745 type);
746 return -EINVAL;
749 tgt->table = t;
750 tgt->begin = start;
751 tgt->len = len;
752 tgt->error = "Unknown error";
755 * Does this target adjoin the previous one ?
757 if (!adjoin(t, tgt)) {
758 tgt->error = "Gap in table";
759 r = -EINVAL;
760 goto bad;
763 r = dm_split_args(&argc, &argv, params);
764 if (r) {
765 tgt->error = "couldn't split parameters (insufficient memory)";
766 goto bad;
769 r = tgt->type->ctr(tgt, argc, argv);
770 kfree(argv);
771 if (r)
772 goto bad;
774 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
776 return 0;
778 bad:
779 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
780 dm_put_target_type(tgt->type);
781 return r;
784 int dm_table_set_type(struct dm_table *t)
786 unsigned i;
787 unsigned bio_based = 0, request_based = 0;
788 struct dm_target *tgt;
789 struct dm_dev_internal *dd;
790 struct list_head *devices;
792 for (i = 0; i < t->num_targets; i++) {
793 tgt = t->targets + i;
794 if (dm_target_request_based(tgt))
795 request_based = 1;
796 else
797 bio_based = 1;
799 if (bio_based && request_based) {
800 DMWARN("Inconsistent table: different target types"
801 " can't be mixed up");
802 return -EINVAL;
806 if (bio_based) {
807 /* We must use this table as bio-based */
808 t->type = DM_TYPE_BIO_BASED;
809 return 0;
812 BUG_ON(!request_based); /* No targets in this table */
814 /* Non-request-stackable devices can't be used for request-based dm */
815 devices = dm_table_get_devices(t);
816 list_for_each_entry(dd, devices, list) {
817 if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
818 DMWARN("table load rejected: including"
819 " non-request-stackable devices");
820 return -EINVAL;
825 * Request-based dm supports only tables that have a single target now.
826 * To support multiple targets, request splitting support is needed,
827 * and that needs lots of changes in the block-layer.
828 * (e.g. request completion process for partial completion.)
830 if (t->num_targets > 1) {
831 DMWARN("Request-based dm doesn't support multiple targets yet");
832 return -EINVAL;
835 t->type = DM_TYPE_REQUEST_BASED;
837 return 0;
840 unsigned dm_table_get_type(struct dm_table *t)
842 return t->type;
845 bool dm_table_request_based(struct dm_table *t)
847 return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
850 int dm_table_alloc_md_mempools(struct dm_table *t)
852 unsigned type = dm_table_get_type(t);
854 if (unlikely(type == DM_TYPE_NONE)) {
855 DMWARN("no table type is set, can't allocate mempools");
856 return -EINVAL;
859 t->mempools = dm_alloc_md_mempools(type);
860 if (!t->mempools)
861 return -ENOMEM;
863 return 0;
866 void dm_table_free_md_mempools(struct dm_table *t)
868 dm_free_md_mempools(t->mempools);
869 t->mempools = NULL;
872 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
874 return t->mempools;
877 static int setup_indexes(struct dm_table *t)
879 int i;
880 unsigned int total = 0;
881 sector_t *indexes;
883 /* allocate the space for *all* the indexes */
884 for (i = t->depth - 2; i >= 0; i--) {
885 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
886 total += t->counts[i];
889 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
890 if (!indexes)
891 return -ENOMEM;
893 /* set up internal nodes, bottom-up */
894 for (i = t->depth - 2; i >= 0; i--) {
895 t->index[i] = indexes;
896 indexes += (KEYS_PER_NODE * t->counts[i]);
897 setup_btree_index(i, t);
900 return 0;
904 * Builds the btree to index the map.
906 int dm_table_complete(struct dm_table *t)
908 int r = 0;
909 unsigned int leaf_nodes;
911 /* how many indexes will the btree have ? */
912 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
913 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
915 /* leaf layer has already been set up */
916 t->counts[t->depth - 1] = leaf_nodes;
917 t->index[t->depth - 1] = t->highs;
919 if (t->depth >= 2)
920 r = setup_indexes(t);
922 return r;
925 static DEFINE_MUTEX(_event_lock);
926 void dm_table_event_callback(struct dm_table *t,
927 void (*fn)(void *), void *context)
929 mutex_lock(&_event_lock);
930 t->event_fn = fn;
931 t->event_context = context;
932 mutex_unlock(&_event_lock);
935 void dm_table_event(struct dm_table *t)
938 * You can no longer call dm_table_event() from interrupt
939 * context, use a bottom half instead.
941 BUG_ON(in_interrupt());
943 mutex_lock(&_event_lock);
944 if (t->event_fn)
945 t->event_fn(t->event_context);
946 mutex_unlock(&_event_lock);
949 sector_t dm_table_get_size(struct dm_table *t)
951 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
954 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
956 if (index >= t->num_targets)
957 return NULL;
959 return t->targets + index;
963 * Search the btree for the correct target.
965 * Caller should check returned pointer with dm_target_is_valid()
966 * to trap I/O beyond end of device.
968 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
970 unsigned int l, n = 0, k = 0;
971 sector_t *node;
973 for (l = 0; l < t->depth; l++) {
974 n = get_child(n, k);
975 node = get_node(t, l, n);
977 for (k = 0; k < KEYS_PER_NODE; k++)
978 if (node[k] >= sector)
979 break;
982 return &t->targets[(KEYS_PER_NODE * n) + k];
986 * Establish the new table's queue_limits and validate them.
988 int dm_calculate_queue_limits(struct dm_table *table,
989 struct queue_limits *limits)
991 struct dm_target *uninitialized_var(ti);
992 struct queue_limits ti_limits;
993 unsigned i = 0;
995 blk_set_default_limits(limits);
997 while (i < dm_table_get_num_targets(table)) {
998 blk_set_default_limits(&ti_limits);
1000 ti = dm_table_get_target(table, i++);
1002 if (!ti->type->iterate_devices)
1003 goto combine_limits;
1006 * Combine queue limits of all the devices this target uses.
1008 ti->type->iterate_devices(ti, dm_set_device_limits,
1009 &ti_limits);
1011 /* Set I/O hints portion of queue limits */
1012 if (ti->type->io_hints)
1013 ti->type->io_hints(ti, &ti_limits);
1016 * Check each device area is consistent with the target's
1017 * overall queue limits.
1019 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1020 &ti_limits))
1021 return -EINVAL;
1023 combine_limits:
1025 * Merge this target's queue limits into the overall limits
1026 * for the table.
1028 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1029 DMWARN("%s: target device "
1030 "(start sect %llu len %llu) "
1031 "is misaligned",
1032 dm_device_name(table->md),
1033 (unsigned long long) ti->begin,
1034 (unsigned long long) ti->len);
1037 return validate_hardware_logical_block_alignment(table, limits);
1041 * Set the integrity profile for this device if all devices used have
1042 * matching profiles.
1044 static void dm_table_set_integrity(struct dm_table *t)
1046 struct list_head *devices = dm_table_get_devices(t);
1047 struct dm_dev_internal *prev = NULL, *dd = NULL;
1049 if (!blk_get_integrity(dm_disk(t->md)))
1050 return;
1052 list_for_each_entry(dd, devices, list) {
1053 if (prev &&
1054 blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
1055 dd->dm_dev.bdev->bd_disk) < 0) {
1056 DMWARN("%s: integrity not set: %s and %s mismatch",
1057 dm_device_name(t->md),
1058 prev->dm_dev.bdev->bd_disk->disk_name,
1059 dd->dm_dev.bdev->bd_disk->disk_name);
1060 goto no_integrity;
1062 prev = dd;
1065 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
1066 goto no_integrity;
1068 blk_integrity_register(dm_disk(t->md),
1069 bdev_get_integrity(prev->dm_dev.bdev));
1071 return;
1073 no_integrity:
1074 blk_integrity_register(dm_disk(t->md), NULL);
1076 return;
1079 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1080 struct queue_limits *limits)
1083 * Each target device in the table has a data area that should normally
1084 * be aligned such that the DM device's alignment_offset is 0.
1085 * FIXME: Propagate alignment_offsets up the stack and warn of
1086 * sub-optimal or inconsistent settings.
1088 limits->alignment_offset = 0;
1089 limits->misaligned = 0;
1092 * Copy table's limits to the DM device's request_queue
1094 q->limits = *limits;
1096 if (limits->no_cluster)
1097 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1098 else
1099 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
1101 dm_table_set_integrity(t);
1104 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1105 * visible to other CPUs because, once the flag is set, incoming bios
1106 * are processed by request-based dm, which refers to the queue
1107 * settings.
1108 * Until the flag set, bios are passed to bio-based dm and queued to
1109 * md->deferred where queue settings are not needed yet.
1110 * Those bios are passed to request-based dm at the resume time.
1112 smp_mb();
1113 if (dm_table_request_based(t))
1114 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1117 unsigned int dm_table_get_num_targets(struct dm_table *t)
1119 return t->num_targets;
1122 struct list_head *dm_table_get_devices(struct dm_table *t)
1124 return &t->devices;
1127 fmode_t dm_table_get_mode(struct dm_table *t)
1129 return t->mode;
1132 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1134 int i = t->num_targets;
1135 struct dm_target *ti = t->targets;
1137 while (i--) {
1138 if (postsuspend) {
1139 if (ti->type->postsuspend)
1140 ti->type->postsuspend(ti);
1141 } else if (ti->type->presuspend)
1142 ti->type->presuspend(ti);
1144 ti++;
1148 void dm_table_presuspend_targets(struct dm_table *t)
1150 if (!t)
1151 return;
1153 suspend_targets(t, 0);
1156 void dm_table_postsuspend_targets(struct dm_table *t)
1158 if (!t)
1159 return;
1161 suspend_targets(t, 1);
1164 int dm_table_resume_targets(struct dm_table *t)
1166 int i, r = 0;
1168 for (i = 0; i < t->num_targets; i++) {
1169 struct dm_target *ti = t->targets + i;
1171 if (!ti->type->preresume)
1172 continue;
1174 r = ti->type->preresume(ti);
1175 if (r)
1176 return r;
1179 for (i = 0; i < t->num_targets; i++) {
1180 struct dm_target *ti = t->targets + i;
1182 if (ti->type->resume)
1183 ti->type->resume(ti);
1186 return 0;
1189 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1191 struct dm_dev_internal *dd;
1192 struct list_head *devices = dm_table_get_devices(t);
1193 int r = 0;
1195 list_for_each_entry(dd, devices, list) {
1196 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1197 char b[BDEVNAME_SIZE];
1199 if (likely(q))
1200 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1201 else
1202 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1203 dm_device_name(t->md),
1204 bdevname(dd->dm_dev.bdev, b));
1207 return r;
1210 int dm_table_any_busy_target(struct dm_table *t)
1212 unsigned i;
1213 struct dm_target *ti;
1215 for (i = 0; i < t->num_targets; i++) {
1216 ti = t->targets + i;
1217 if (ti->type->busy && ti->type->busy(ti))
1218 return 1;
1221 return 0;
1224 void dm_table_unplug_all(struct dm_table *t)
1226 struct dm_dev_internal *dd;
1227 struct list_head *devices = dm_table_get_devices(t);
1229 list_for_each_entry(dd, devices, list) {
1230 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1231 char b[BDEVNAME_SIZE];
1233 if (likely(q))
1234 blk_unplug(q);
1235 else
1236 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1237 dm_device_name(t->md),
1238 bdevname(dd->dm_dev.bdev, b));
1242 struct mapped_device *dm_table_get_md(struct dm_table *t)
1244 dm_get(t->md);
1246 return t->md;
1249 EXPORT_SYMBOL(dm_vcalloc);
1250 EXPORT_SYMBOL(dm_get_device);
1251 EXPORT_SYMBOL(dm_put_device);
1252 EXPORT_SYMBOL(dm_table_event);
1253 EXPORT_SYMBOL(dm_table_get_size);
1254 EXPORT_SYMBOL(dm_table_get_mode);
1255 EXPORT_SYMBOL(dm_table_get_md);
1256 EXPORT_SYMBOL(dm_table_put);
1257 EXPORT_SYMBOL(dm_table_get);
1258 EXPORT_SYMBOL(dm_table_unplug_all);