2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <asm/atomic.h>
22 #define DM_MSG_PREFIX "table"
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 * The table has always exactly one reference from either mapped_device->map
31 * or hash_cell->new_map. This reference is not counted in table->holders.
32 * A pair of dm_create_table/dm_destroy_table functions is used for table
33 * creation/destruction.
35 * Temporary references from the other code increase table->holders. A pair
36 * of dm_table_get/dm_table_put functions is used to manipulate it.
38 * When the table is about to be destroyed, we wait for table->holders to
43 struct mapped_device
*md
;
49 unsigned int counts
[MAX_DEPTH
]; /* in nodes */
50 sector_t
*index
[MAX_DEPTH
];
52 unsigned int num_targets
;
53 unsigned int num_allocated
;
55 struct dm_target
*targets
;
58 * Indicates the rw permissions for the new logical
59 * device. This should be a combination of FMODE_READ
64 /* a list of devices used by this table */
65 struct list_head devices
;
67 /* events get handed up using this callback */
68 void (*event_fn
)(void *);
71 struct dm_md_mempools
*mempools
;
75 * Similar to ceiling(log_size(n))
77 static unsigned int int_log(unsigned int n
, unsigned int base
)
82 n
= dm_div_up(n
, base
);
90 * Calculate the index of the child node of the n'th node k'th key.
92 static inline unsigned int get_child(unsigned int n
, unsigned int k
)
94 return (n
* CHILDREN_PER_NODE
) + k
;
98 * Return the n'th node of level l from table t.
100 static inline sector_t
*get_node(struct dm_table
*t
,
101 unsigned int l
, unsigned int n
)
103 return t
->index
[l
] + (n
* KEYS_PER_NODE
);
107 * Return the highest key that you could lookup from the n'th
108 * node on level l of the btree.
110 static sector_t
high(struct dm_table
*t
, unsigned int l
, unsigned int n
)
112 for (; l
< t
->depth
- 1; l
++)
113 n
= get_child(n
, CHILDREN_PER_NODE
- 1);
115 if (n
>= t
->counts
[l
])
116 return (sector_t
) - 1;
118 return get_node(t
, l
, n
)[KEYS_PER_NODE
- 1];
122 * Fills in a level of the btree based on the highs of the level
125 static int setup_btree_index(unsigned int l
, struct dm_table
*t
)
130 for (n
= 0U; n
< t
->counts
[l
]; n
++) {
131 node
= get_node(t
, l
, n
);
133 for (k
= 0U; k
< KEYS_PER_NODE
; k
++)
134 node
[k
] = high(t
, l
+ 1, get_child(n
, k
));
140 void *dm_vcalloc(unsigned long nmemb
, unsigned long elem_size
)
146 * Check that we're not going to overflow.
148 if (nmemb
> (ULONG_MAX
/ elem_size
))
151 size
= nmemb
* elem_size
;
152 addr
= vmalloc(size
);
154 memset(addr
, 0, size
);
160 * highs, and targets are managed as dynamic arrays during a
163 static int alloc_targets(struct dm_table
*t
, unsigned int num
)
166 struct dm_target
*n_targets
;
167 int n
= t
->num_targets
;
170 * Allocate both the target array and offset array at once.
171 * Append an empty entry to catch sectors beyond the end of
174 n_highs
= (sector_t
*) dm_vcalloc(num
+ 1, sizeof(struct dm_target
) +
179 n_targets
= (struct dm_target
*) (n_highs
+ num
);
182 memcpy(n_highs
, t
->highs
, sizeof(*n_highs
) * n
);
183 memcpy(n_targets
, t
->targets
, sizeof(*n_targets
) * n
);
186 memset(n_highs
+ n
, -1, sizeof(*n_highs
) * (num
- n
));
189 t
->num_allocated
= num
;
191 t
->targets
= n_targets
;
196 int dm_table_create(struct dm_table
**result
, fmode_t mode
,
197 unsigned num_targets
, struct mapped_device
*md
)
199 struct dm_table
*t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
204 INIT_LIST_HEAD(&t
->devices
);
205 atomic_set(&t
->holders
, 0);
208 num_targets
= KEYS_PER_NODE
;
210 num_targets
= dm_round_up(num_targets
, KEYS_PER_NODE
);
212 if (alloc_targets(t
, num_targets
)) {
224 static void free_devices(struct list_head
*devices
)
226 struct list_head
*tmp
, *next
;
228 list_for_each_safe(tmp
, next
, devices
) {
229 struct dm_dev_internal
*dd
=
230 list_entry(tmp
, struct dm_dev_internal
, list
);
231 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
237 void dm_table_destroy(struct dm_table
*t
)
244 while (atomic_read(&t
->holders
))
248 /* free the indexes (see dm_table_complete) */
250 vfree(t
->index
[t
->depth
- 2]);
252 /* free the targets */
253 for (i
= 0; i
< t
->num_targets
; i
++) {
254 struct dm_target
*tgt
= t
->targets
+ i
;
259 dm_put_target_type(tgt
->type
);
264 /* free the device list */
265 if (t
->devices
.next
!= &t
->devices
)
266 free_devices(&t
->devices
);
268 dm_free_md_mempools(t
->mempools
);
273 void dm_table_get(struct dm_table
*t
)
275 atomic_inc(&t
->holders
);
278 void dm_table_put(struct dm_table
*t
)
283 smp_mb__before_atomic_dec();
284 atomic_dec(&t
->holders
);
288 * Checks to see if we need to extend highs or targets.
290 static inline int check_space(struct dm_table
*t
)
292 if (t
->num_targets
>= t
->num_allocated
)
293 return alloc_targets(t
, t
->num_allocated
* 2);
299 * See if we've already got a device in the list.
301 static struct dm_dev_internal
*find_device(struct list_head
*l
, dev_t dev
)
303 struct dm_dev_internal
*dd
;
305 list_for_each_entry (dd
, l
, list
)
306 if (dd
->dm_dev
.bdev
->bd_dev
== dev
)
313 * Open a device so we can use it as a map destination.
315 static int open_dev(struct dm_dev_internal
*d
, dev_t dev
,
316 struct mapped_device
*md
)
318 static char *_claim_ptr
= "I belong to device-mapper";
319 struct block_device
*bdev
;
323 BUG_ON(d
->dm_dev
.bdev
);
325 bdev
= open_by_devnum(dev
, d
->dm_dev
.mode
);
327 return PTR_ERR(bdev
);
328 r
= bd_claim_by_disk(bdev
, _claim_ptr
, dm_disk(md
));
330 blkdev_put(bdev
, d
->dm_dev
.mode
);
332 d
->dm_dev
.bdev
= bdev
;
337 * Close a device that we've been using.
339 static void close_dev(struct dm_dev_internal
*d
, struct mapped_device
*md
)
344 bd_release_from_disk(d
->dm_dev
.bdev
, dm_disk(md
));
345 blkdev_put(d
->dm_dev
.bdev
, d
->dm_dev
.mode
);
346 d
->dm_dev
.bdev
= NULL
;
350 * If possible, this checks an area of a destination device is invalid.
352 static int device_area_is_invalid(struct dm_target
*ti
, struct dm_dev
*dev
,
353 sector_t start
, sector_t len
, void *data
)
355 struct queue_limits
*limits
= data
;
356 struct block_device
*bdev
= dev
->bdev
;
358 i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
359 unsigned short logical_block_size_sectors
=
360 limits
->logical_block_size
>> SECTOR_SHIFT
;
361 char b
[BDEVNAME_SIZE
];
366 if ((start
>= dev_size
) || (start
+ len
> dev_size
)) {
367 DMWARN("%s: %s too small for target: "
368 "start=%llu, len=%llu, dev_size=%llu",
369 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
370 (unsigned long long)start
,
371 (unsigned long long)len
,
372 (unsigned long long)dev_size
);
376 if (logical_block_size_sectors
<= 1)
379 if (start
& (logical_block_size_sectors
- 1)) {
380 DMWARN("%s: start=%llu not aligned to h/w "
381 "logical block size %u of %s",
382 dm_device_name(ti
->table
->md
),
383 (unsigned long long)start
,
384 limits
->logical_block_size
, bdevname(bdev
, b
));
388 if (len
& (logical_block_size_sectors
- 1)) {
389 DMWARN("%s: len=%llu not aligned to h/w "
390 "logical block size %u of %s",
391 dm_device_name(ti
->table
->md
),
392 (unsigned long long)len
,
393 limits
->logical_block_size
, bdevname(bdev
, b
));
401 * This upgrades the mode on an already open dm_dev, being
402 * careful to leave things as they were if we fail to reopen the
403 * device and not to touch the existing bdev field in case
404 * it is accessed concurrently inside dm_table_any_congested().
406 static int upgrade_mode(struct dm_dev_internal
*dd
, fmode_t new_mode
,
407 struct mapped_device
*md
)
410 struct dm_dev_internal dd_new
, dd_old
;
412 dd_new
= dd_old
= *dd
;
414 dd_new
.dm_dev
.mode
|= new_mode
;
415 dd_new
.dm_dev
.bdev
= NULL
;
417 r
= open_dev(&dd_new
, dd
->dm_dev
.bdev
->bd_dev
, md
);
421 dd
->dm_dev
.mode
|= new_mode
;
422 close_dev(&dd_old
, md
);
428 * Add a device to the list, or just increment the usage count if
429 * it's already present.
431 static int __table_get_device(struct dm_table
*t
, struct dm_target
*ti
,
432 const char *path
, sector_t start
, sector_t len
,
433 fmode_t mode
, struct dm_dev
**result
)
436 dev_t
uninitialized_var(dev
);
437 struct dm_dev_internal
*dd
;
438 unsigned int major
, minor
;
442 if (sscanf(path
, "%u:%u", &major
, &minor
) == 2) {
443 /* Extract the major/minor numbers */
444 dev
= MKDEV(major
, minor
);
445 if (MAJOR(dev
) != major
|| MINOR(dev
) != minor
)
448 /* convert the path to a device */
449 struct block_device
*bdev
= lookup_bdev(path
);
452 return PTR_ERR(bdev
);
457 dd
= find_device(&t
->devices
, dev
);
459 dd
= kmalloc(sizeof(*dd
), GFP_KERNEL
);
463 dd
->dm_dev
.mode
= mode
;
464 dd
->dm_dev
.bdev
= NULL
;
466 if ((r
= open_dev(dd
, dev
, t
->md
))) {
471 format_dev_t(dd
->dm_dev
.name
, dev
);
473 atomic_set(&dd
->count
, 0);
474 list_add(&dd
->list
, &t
->devices
);
476 } else if (dd
->dm_dev
.mode
!= (mode
| dd
->dm_dev
.mode
)) {
477 r
= upgrade_mode(dd
, mode
, t
->md
);
481 atomic_inc(&dd
->count
);
483 *result
= &dd
->dm_dev
;
488 * Returns the minimum that is _not_ zero, unless both are zero.
490 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
492 int dm_set_device_limits(struct dm_target
*ti
, struct dm_dev
*dev
,
493 sector_t start
, sector_t len
, void *data
)
495 struct queue_limits
*limits
= data
;
496 struct block_device
*bdev
= dev
->bdev
;
497 struct request_queue
*q
= bdev_get_queue(bdev
);
498 char b
[BDEVNAME_SIZE
];
501 DMWARN("%s: Cannot set limits for nonexistent device %s",
502 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
));
506 if (blk_stack_limits(limits
, &q
->limits
, start
<< 9) < 0)
507 DMWARN("%s: target device %s is misaligned: "
508 "physical_block_size=%u, logical_block_size=%u, "
509 "alignment_offset=%u, start=%llu",
510 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
511 q
->limits
.physical_block_size
,
512 q
->limits
.logical_block_size
,
513 q
->limits
.alignment_offset
,
514 (unsigned long long) start
<< 9);
518 * Check if merge fn is supported.
519 * If not we'll force DM to use PAGE_SIZE or
520 * smaller I/O, just to be safe.
523 if (q
->merge_bvec_fn
&& !ti
->type
->merge
)
524 limits
->max_sectors
=
525 min_not_zero(limits
->max_sectors
,
526 (unsigned int) (PAGE_SIZE
>> 9));
529 EXPORT_SYMBOL_GPL(dm_set_device_limits
);
531 int dm_get_device(struct dm_target
*ti
, const char *path
, sector_t start
,
532 sector_t len
, fmode_t mode
, struct dm_dev
**result
)
534 return __table_get_device(ti
->table
, ti
, path
,
535 start
, len
, mode
, result
);
540 * Decrement a devices use count and remove it if necessary.
542 void dm_put_device(struct dm_target
*ti
, struct dm_dev
*d
)
544 struct dm_dev_internal
*dd
= container_of(d
, struct dm_dev_internal
,
547 if (atomic_dec_and_test(&dd
->count
)) {
548 close_dev(dd
, ti
->table
->md
);
555 * Checks to see if the target joins onto the end of the table.
557 static int adjoin(struct dm_table
*table
, struct dm_target
*ti
)
559 struct dm_target
*prev
;
561 if (!table
->num_targets
)
564 prev
= &table
->targets
[table
->num_targets
- 1];
565 return (ti
->begin
== (prev
->begin
+ prev
->len
));
569 * Used to dynamically allocate the arg array.
571 static char **realloc_argv(unsigned *array_size
, char **old_argv
)
576 new_size
= *array_size
? *array_size
* 2 : 64;
577 argv
= kmalloc(new_size
* sizeof(*argv
), GFP_KERNEL
);
579 memcpy(argv
, old_argv
, *array_size
* sizeof(*argv
));
580 *array_size
= new_size
;
588 * Destructively splits up the argument list to pass to ctr.
590 int dm_split_args(int *argc
, char ***argvp
, char *input
)
592 char *start
, *end
= input
, *out
, **argv
= NULL
;
593 unsigned array_size
= 0;
602 argv
= realloc_argv(&array_size
, argv
);
607 /* Skip whitespace */
608 start
= skip_spaces(end
);
611 break; /* success, we hit the end */
613 /* 'out' is used to remove any back-quotes */
616 /* Everything apart from '\0' can be quoted */
617 if (*end
== '\\' && *(end
+ 1)) {
624 break; /* end of token */
629 /* have we already filled the array ? */
630 if ((*argc
+ 1) > array_size
) {
631 argv
= realloc_argv(&array_size
, argv
);
636 /* we know this is whitespace */
640 /* terminate the string and put it in the array */
651 * Impose necessary and sufficient conditions on a devices's table such
652 * that any incoming bio which respects its logical_block_size can be
653 * processed successfully. If it falls across the boundary between
654 * two or more targets, the size of each piece it gets split into must
655 * be compatible with the logical_block_size of the target processing it.
657 static int validate_hardware_logical_block_alignment(struct dm_table
*table
,
658 struct queue_limits
*limits
)
661 * This function uses arithmetic modulo the logical_block_size
662 * (in units of 512-byte sectors).
664 unsigned short device_logical_block_size_sects
=
665 limits
->logical_block_size
>> SECTOR_SHIFT
;
668 * Offset of the start of the next table entry, mod logical_block_size.
670 unsigned short next_target_start
= 0;
673 * Given an aligned bio that extends beyond the end of a
674 * target, how many sectors must the next target handle?
676 unsigned short remaining
= 0;
678 struct dm_target
*uninitialized_var(ti
);
679 struct queue_limits ti_limits
;
683 * Check each entry in the table in turn.
685 while (i
< dm_table_get_num_targets(table
)) {
686 ti
= dm_table_get_target(table
, i
++);
688 blk_set_default_limits(&ti_limits
);
690 /* combine all target devices' limits */
691 if (ti
->type
->iterate_devices
)
692 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
696 * If the remaining sectors fall entirely within this
697 * table entry are they compatible with its logical_block_size?
699 if (remaining
< ti
->len
&&
700 remaining
& ((ti_limits
.logical_block_size
>>
705 (unsigned short) ((next_target_start
+ ti
->len
) &
706 (device_logical_block_size_sects
- 1));
707 remaining
= next_target_start
?
708 device_logical_block_size_sects
- next_target_start
: 0;
712 DMWARN("%s: table line %u (start sect %llu len %llu) "
713 "not aligned to h/w logical block size %u",
714 dm_device_name(table
->md
), i
,
715 (unsigned long long) ti
->begin
,
716 (unsigned long long) ti
->len
,
717 limits
->logical_block_size
);
724 int dm_table_add_target(struct dm_table
*t
, const char *type
,
725 sector_t start
, sector_t len
, char *params
)
727 int r
= -EINVAL
, argc
;
729 struct dm_target
*tgt
;
731 if ((r
= check_space(t
)))
734 tgt
= t
->targets
+ t
->num_targets
;
735 memset(tgt
, 0, sizeof(*tgt
));
738 DMERR("%s: zero-length target", dm_device_name(t
->md
));
742 tgt
->type
= dm_get_target_type(type
);
744 DMERR("%s: %s: unknown target type", dm_device_name(t
->md
),
752 tgt
->error
= "Unknown error";
755 * Does this target adjoin the previous one ?
757 if (!adjoin(t
, tgt
)) {
758 tgt
->error
= "Gap in table";
763 r
= dm_split_args(&argc
, &argv
, params
);
765 tgt
->error
= "couldn't split parameters (insufficient memory)";
769 r
= tgt
->type
->ctr(tgt
, argc
, argv
);
774 t
->highs
[t
->num_targets
++] = tgt
->begin
+ tgt
->len
- 1;
779 DMERR("%s: %s: %s", dm_device_name(t
->md
), type
, tgt
->error
);
780 dm_put_target_type(tgt
->type
);
784 int dm_table_set_type(struct dm_table
*t
)
787 unsigned bio_based
= 0, request_based
= 0;
788 struct dm_target
*tgt
;
789 struct dm_dev_internal
*dd
;
790 struct list_head
*devices
;
792 for (i
= 0; i
< t
->num_targets
; i
++) {
793 tgt
= t
->targets
+ i
;
794 if (dm_target_request_based(tgt
))
799 if (bio_based
&& request_based
) {
800 DMWARN("Inconsistent table: different target types"
801 " can't be mixed up");
807 /* We must use this table as bio-based */
808 t
->type
= DM_TYPE_BIO_BASED
;
812 BUG_ON(!request_based
); /* No targets in this table */
814 /* Non-request-stackable devices can't be used for request-based dm */
815 devices
= dm_table_get_devices(t
);
816 list_for_each_entry(dd
, devices
, list
) {
817 if (!blk_queue_stackable(bdev_get_queue(dd
->dm_dev
.bdev
))) {
818 DMWARN("table load rejected: including"
819 " non-request-stackable devices");
825 * Request-based dm supports only tables that have a single target now.
826 * To support multiple targets, request splitting support is needed,
827 * and that needs lots of changes in the block-layer.
828 * (e.g. request completion process for partial completion.)
830 if (t
->num_targets
> 1) {
831 DMWARN("Request-based dm doesn't support multiple targets yet");
835 t
->type
= DM_TYPE_REQUEST_BASED
;
840 unsigned dm_table_get_type(struct dm_table
*t
)
845 bool dm_table_request_based(struct dm_table
*t
)
847 return dm_table_get_type(t
) == DM_TYPE_REQUEST_BASED
;
850 int dm_table_alloc_md_mempools(struct dm_table
*t
)
852 unsigned type
= dm_table_get_type(t
);
854 if (unlikely(type
== DM_TYPE_NONE
)) {
855 DMWARN("no table type is set, can't allocate mempools");
859 t
->mempools
= dm_alloc_md_mempools(type
);
866 void dm_table_free_md_mempools(struct dm_table
*t
)
868 dm_free_md_mempools(t
->mempools
);
872 struct dm_md_mempools
*dm_table_get_md_mempools(struct dm_table
*t
)
877 static int setup_indexes(struct dm_table
*t
)
880 unsigned int total
= 0;
883 /* allocate the space for *all* the indexes */
884 for (i
= t
->depth
- 2; i
>= 0; i
--) {
885 t
->counts
[i
] = dm_div_up(t
->counts
[i
+ 1], CHILDREN_PER_NODE
);
886 total
+= t
->counts
[i
];
889 indexes
= (sector_t
*) dm_vcalloc(total
, (unsigned long) NODE_SIZE
);
893 /* set up internal nodes, bottom-up */
894 for (i
= t
->depth
- 2; i
>= 0; i
--) {
895 t
->index
[i
] = indexes
;
896 indexes
+= (KEYS_PER_NODE
* t
->counts
[i
]);
897 setup_btree_index(i
, t
);
904 * Builds the btree to index the map.
906 int dm_table_complete(struct dm_table
*t
)
909 unsigned int leaf_nodes
;
911 /* how many indexes will the btree have ? */
912 leaf_nodes
= dm_div_up(t
->num_targets
, KEYS_PER_NODE
);
913 t
->depth
= 1 + int_log(leaf_nodes
, CHILDREN_PER_NODE
);
915 /* leaf layer has already been set up */
916 t
->counts
[t
->depth
- 1] = leaf_nodes
;
917 t
->index
[t
->depth
- 1] = t
->highs
;
920 r
= setup_indexes(t
);
925 static DEFINE_MUTEX(_event_lock
);
926 void dm_table_event_callback(struct dm_table
*t
,
927 void (*fn
)(void *), void *context
)
929 mutex_lock(&_event_lock
);
931 t
->event_context
= context
;
932 mutex_unlock(&_event_lock
);
935 void dm_table_event(struct dm_table
*t
)
938 * You can no longer call dm_table_event() from interrupt
939 * context, use a bottom half instead.
941 BUG_ON(in_interrupt());
943 mutex_lock(&_event_lock
);
945 t
->event_fn(t
->event_context
);
946 mutex_unlock(&_event_lock
);
949 sector_t
dm_table_get_size(struct dm_table
*t
)
951 return t
->num_targets
? (t
->highs
[t
->num_targets
- 1] + 1) : 0;
954 struct dm_target
*dm_table_get_target(struct dm_table
*t
, unsigned int index
)
956 if (index
>= t
->num_targets
)
959 return t
->targets
+ index
;
963 * Search the btree for the correct target.
965 * Caller should check returned pointer with dm_target_is_valid()
966 * to trap I/O beyond end of device.
968 struct dm_target
*dm_table_find_target(struct dm_table
*t
, sector_t sector
)
970 unsigned int l
, n
= 0, k
= 0;
973 for (l
= 0; l
< t
->depth
; l
++) {
975 node
= get_node(t
, l
, n
);
977 for (k
= 0; k
< KEYS_PER_NODE
; k
++)
978 if (node
[k
] >= sector
)
982 return &t
->targets
[(KEYS_PER_NODE
* n
) + k
];
986 * Establish the new table's queue_limits and validate them.
988 int dm_calculate_queue_limits(struct dm_table
*table
,
989 struct queue_limits
*limits
)
991 struct dm_target
*uninitialized_var(ti
);
992 struct queue_limits ti_limits
;
995 blk_set_default_limits(limits
);
997 while (i
< dm_table_get_num_targets(table
)) {
998 blk_set_default_limits(&ti_limits
);
1000 ti
= dm_table_get_target(table
, i
++);
1002 if (!ti
->type
->iterate_devices
)
1003 goto combine_limits
;
1006 * Combine queue limits of all the devices this target uses.
1008 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
1011 /* Set I/O hints portion of queue limits */
1012 if (ti
->type
->io_hints
)
1013 ti
->type
->io_hints(ti
, &ti_limits
);
1016 * Check each device area is consistent with the target's
1017 * overall queue limits.
1019 if (ti
->type
->iterate_devices(ti
, device_area_is_invalid
,
1025 * Merge this target's queue limits into the overall limits
1028 if (blk_stack_limits(limits
, &ti_limits
, 0) < 0)
1029 DMWARN("%s: target device "
1030 "(start sect %llu len %llu) "
1032 dm_device_name(table
->md
),
1033 (unsigned long long) ti
->begin
,
1034 (unsigned long long) ti
->len
);
1037 return validate_hardware_logical_block_alignment(table
, limits
);
1041 * Set the integrity profile for this device if all devices used have
1042 * matching profiles.
1044 static void dm_table_set_integrity(struct dm_table
*t
)
1046 struct list_head
*devices
= dm_table_get_devices(t
);
1047 struct dm_dev_internal
*prev
= NULL
, *dd
= NULL
;
1049 if (!blk_get_integrity(dm_disk(t
->md
)))
1052 list_for_each_entry(dd
, devices
, list
) {
1054 blk_integrity_compare(prev
->dm_dev
.bdev
->bd_disk
,
1055 dd
->dm_dev
.bdev
->bd_disk
) < 0) {
1056 DMWARN("%s: integrity not set: %s and %s mismatch",
1057 dm_device_name(t
->md
),
1058 prev
->dm_dev
.bdev
->bd_disk
->disk_name
,
1059 dd
->dm_dev
.bdev
->bd_disk
->disk_name
);
1065 if (!prev
|| !bdev_get_integrity(prev
->dm_dev
.bdev
))
1068 blk_integrity_register(dm_disk(t
->md
),
1069 bdev_get_integrity(prev
->dm_dev
.bdev
));
1074 blk_integrity_register(dm_disk(t
->md
), NULL
);
1079 void dm_table_set_restrictions(struct dm_table
*t
, struct request_queue
*q
,
1080 struct queue_limits
*limits
)
1083 * Each target device in the table has a data area that should normally
1084 * be aligned such that the DM device's alignment_offset is 0.
1085 * FIXME: Propagate alignment_offsets up the stack and warn of
1086 * sub-optimal or inconsistent settings.
1088 limits
->alignment_offset
= 0;
1089 limits
->misaligned
= 0;
1092 * Copy table's limits to the DM device's request_queue
1094 q
->limits
= *limits
;
1096 if (limits
->no_cluster
)
1097 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER
, q
);
1099 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER
, q
);
1101 dm_table_set_integrity(t
);
1104 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1105 * visible to other CPUs because, once the flag is set, incoming bios
1106 * are processed by request-based dm, which refers to the queue
1108 * Until the flag set, bios are passed to bio-based dm and queued to
1109 * md->deferred where queue settings are not needed yet.
1110 * Those bios are passed to request-based dm at the resume time.
1113 if (dm_table_request_based(t
))
1114 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE
, q
);
1117 unsigned int dm_table_get_num_targets(struct dm_table
*t
)
1119 return t
->num_targets
;
1122 struct list_head
*dm_table_get_devices(struct dm_table
*t
)
1127 fmode_t
dm_table_get_mode(struct dm_table
*t
)
1132 static void suspend_targets(struct dm_table
*t
, unsigned postsuspend
)
1134 int i
= t
->num_targets
;
1135 struct dm_target
*ti
= t
->targets
;
1139 if (ti
->type
->postsuspend
)
1140 ti
->type
->postsuspend(ti
);
1141 } else if (ti
->type
->presuspend
)
1142 ti
->type
->presuspend(ti
);
1148 void dm_table_presuspend_targets(struct dm_table
*t
)
1153 suspend_targets(t
, 0);
1156 void dm_table_postsuspend_targets(struct dm_table
*t
)
1161 suspend_targets(t
, 1);
1164 int dm_table_resume_targets(struct dm_table
*t
)
1168 for (i
= 0; i
< t
->num_targets
; i
++) {
1169 struct dm_target
*ti
= t
->targets
+ i
;
1171 if (!ti
->type
->preresume
)
1174 r
= ti
->type
->preresume(ti
);
1179 for (i
= 0; i
< t
->num_targets
; i
++) {
1180 struct dm_target
*ti
= t
->targets
+ i
;
1182 if (ti
->type
->resume
)
1183 ti
->type
->resume(ti
);
1189 int dm_table_any_congested(struct dm_table
*t
, int bdi_bits
)
1191 struct dm_dev_internal
*dd
;
1192 struct list_head
*devices
= dm_table_get_devices(t
);
1195 list_for_each_entry(dd
, devices
, list
) {
1196 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
.bdev
);
1197 char b
[BDEVNAME_SIZE
];
1200 r
|= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1202 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1203 dm_device_name(t
->md
),
1204 bdevname(dd
->dm_dev
.bdev
, b
));
1210 int dm_table_any_busy_target(struct dm_table
*t
)
1213 struct dm_target
*ti
;
1215 for (i
= 0; i
< t
->num_targets
; i
++) {
1216 ti
= t
->targets
+ i
;
1217 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1224 void dm_table_unplug_all(struct dm_table
*t
)
1226 struct dm_dev_internal
*dd
;
1227 struct list_head
*devices
= dm_table_get_devices(t
);
1229 list_for_each_entry(dd
, devices
, list
) {
1230 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
.bdev
);
1231 char b
[BDEVNAME_SIZE
];
1236 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1237 dm_device_name(t
->md
),
1238 bdevname(dd
->dm_dev
.bdev
, b
));
1242 struct mapped_device
*dm_table_get_md(struct dm_table
*t
)
1249 EXPORT_SYMBOL(dm_vcalloc
);
1250 EXPORT_SYMBOL(dm_get_device
);
1251 EXPORT_SYMBOL(dm_put_device
);
1252 EXPORT_SYMBOL(dm_table_event
);
1253 EXPORT_SYMBOL(dm_table_get_size
);
1254 EXPORT_SYMBOL(dm_table_get_mode
);
1255 EXPORT_SYMBOL(dm_table_get_md
);
1256 EXPORT_SYMBOL(dm_table_put
);
1257 EXPORT_SYMBOL(dm_table_get
);
1258 EXPORT_SYMBOL(dm_table_unplug_all
);