kvm: take srcu lock around kvm_steal_time_set_preempted()
[linux/fpc-iii.git] / arch / arm / kernel / perf_event_v6.c
blob09413e7b49aa62a47c743b8a0b4df07dbd712d0b
1 /*
2 * ARMv6 Performance counter handling code.
4 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
6 * ARMv6 has 2 configurable performance counters and a single cycle counter.
7 * They all share a single reset bit but can be written to zero so we can use
8 * that for a reset.
10 * The counters can't be individually enabled or disabled so when we remove
11 * one event and replace it with another we could get spurious counts from the
12 * wrong event. However, we can take advantage of the fact that the
13 * performance counters can export events to the event bus, and the event bus
14 * itself can be monitored. This requires that we *don't* export the events to
15 * the event bus. The procedure for disabling a configurable counter is:
16 * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
17 * effectively stops the counter from counting.
18 * - disable the counter's interrupt generation (each counter has it's
19 * own interrupt enable bit).
20 * Once stopped, the counter value can be written as 0 to reset.
22 * To enable a counter:
23 * - enable the counter's interrupt generation.
24 * - set the new event type.
26 * Note: the dedicated cycle counter only counts cycles and can't be
27 * enabled/disabled independently of the others. When we want to disable the
28 * cycle counter, we have to just disable the interrupt reporting and start
29 * ignoring that counter. When re-enabling, we have to reset the value and
30 * enable the interrupt.
33 #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
35 #include <asm/cputype.h>
36 #include <asm/irq_regs.h>
38 #include <linux/of.h>
39 #include <linux/perf/arm_pmu.h>
40 #include <linux/platform_device.h>
42 enum armv6_perf_types {
43 ARMV6_PERFCTR_ICACHE_MISS = 0x0,
44 ARMV6_PERFCTR_IBUF_STALL = 0x1,
45 ARMV6_PERFCTR_DDEP_STALL = 0x2,
46 ARMV6_PERFCTR_ITLB_MISS = 0x3,
47 ARMV6_PERFCTR_DTLB_MISS = 0x4,
48 ARMV6_PERFCTR_BR_EXEC = 0x5,
49 ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
50 ARMV6_PERFCTR_INSTR_EXEC = 0x7,
51 ARMV6_PERFCTR_DCACHE_HIT = 0x9,
52 ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
53 ARMV6_PERFCTR_DCACHE_MISS = 0xB,
54 ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
55 ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
56 ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
57 ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
58 ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
59 ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
60 ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
61 ARMV6_PERFCTR_NOP = 0x20,
64 enum armv6_counters {
65 ARMV6_CYCLE_COUNTER = 0,
66 ARMV6_COUNTER0,
67 ARMV6_COUNTER1,
71 * The hardware events that we support. We do support cache operations but
72 * we have harvard caches and no way to combine instruction and data
73 * accesses/misses in hardware.
75 static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
76 PERF_MAP_ALL_UNSUPPORTED,
77 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
78 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
79 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
80 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
81 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6_PERFCTR_IBUF_STALL,
82 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV6_PERFCTR_LSU_FULL_STALL,
85 static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
86 [PERF_COUNT_HW_CACHE_OP_MAX]
87 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
88 PERF_CACHE_MAP_ALL_UNSUPPORTED,
91 * The performance counters don't differentiate between read and write
92 * accesses/misses so this isn't strictly correct, but it's the best we
93 * can do. Writes and reads get combined.
95 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
96 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
97 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
98 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
100 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
103 * The ARM performance counters can count micro DTLB misses, micro ITLB
104 * misses and main TLB misses. There isn't an event for TLB misses, so
105 * use the micro misses here and if users want the main TLB misses they
106 * can use a raw counter.
108 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
109 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
111 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
112 [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
115 enum armv6mpcore_perf_types {
116 ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
117 ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
118 ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
119 ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
120 ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
121 ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
122 ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
123 ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
124 ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
125 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
126 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
127 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
128 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
129 ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
130 ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
131 ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
132 ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
133 ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
134 ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
135 ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
139 * The hardware events that we support. We do support cache operations but
140 * we have harvard caches and no way to combine instruction and data
141 * accesses/misses in hardware.
143 static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
144 PERF_MAP_ALL_UNSUPPORTED,
145 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
146 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
147 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
148 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
149 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6MPCORE_PERFCTR_IBUF_STALL,
150 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV6MPCORE_PERFCTR_LSU_FULL_STALL,
153 static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
154 [PERF_COUNT_HW_CACHE_OP_MAX]
155 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
156 PERF_CACHE_MAP_ALL_UNSUPPORTED,
158 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
159 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
160 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
161 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
163 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
166 * The ARM performance counters can count micro DTLB misses, micro ITLB
167 * misses and main TLB misses. There isn't an event for TLB misses, so
168 * use the micro misses here and if users want the main TLB misses they
169 * can use a raw counter.
171 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
172 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
174 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
175 [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
178 static inline unsigned long
179 armv6_pmcr_read(void)
181 u32 val;
182 asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
183 return val;
186 static inline void
187 armv6_pmcr_write(unsigned long val)
189 asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
192 #define ARMV6_PMCR_ENABLE (1 << 0)
193 #define ARMV6_PMCR_CTR01_RESET (1 << 1)
194 #define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
195 #define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
196 #define ARMV6_PMCR_COUNT0_IEN (1 << 4)
197 #define ARMV6_PMCR_COUNT1_IEN (1 << 5)
198 #define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
199 #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
200 #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
201 #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
202 #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
203 #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
204 #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
205 #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
207 #define ARMV6_PMCR_OVERFLOWED_MASK \
208 (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
209 ARMV6_PMCR_CCOUNT_OVERFLOW)
211 static inline int
212 armv6_pmcr_has_overflowed(unsigned long pmcr)
214 return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
217 static inline int
218 armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
219 enum armv6_counters counter)
221 int ret = 0;
223 if (ARMV6_CYCLE_COUNTER == counter)
224 ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
225 else if (ARMV6_COUNTER0 == counter)
226 ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
227 else if (ARMV6_COUNTER1 == counter)
228 ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
229 else
230 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
232 return ret;
235 static inline u32 armv6pmu_read_counter(struct perf_event *event)
237 struct hw_perf_event *hwc = &event->hw;
238 int counter = hwc->idx;
239 unsigned long value = 0;
241 if (ARMV6_CYCLE_COUNTER == counter)
242 asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
243 else if (ARMV6_COUNTER0 == counter)
244 asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
245 else if (ARMV6_COUNTER1 == counter)
246 asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
247 else
248 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
250 return value;
253 static inline void armv6pmu_write_counter(struct perf_event *event, u32 value)
255 struct hw_perf_event *hwc = &event->hw;
256 int counter = hwc->idx;
258 if (ARMV6_CYCLE_COUNTER == counter)
259 asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
260 else if (ARMV6_COUNTER0 == counter)
261 asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
262 else if (ARMV6_COUNTER1 == counter)
263 asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
264 else
265 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
268 static void armv6pmu_enable_event(struct perf_event *event)
270 unsigned long val, mask, evt, flags;
271 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
272 struct hw_perf_event *hwc = &event->hw;
273 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
274 int idx = hwc->idx;
276 if (ARMV6_CYCLE_COUNTER == idx) {
277 mask = 0;
278 evt = ARMV6_PMCR_CCOUNT_IEN;
279 } else if (ARMV6_COUNTER0 == idx) {
280 mask = ARMV6_PMCR_EVT_COUNT0_MASK;
281 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
282 ARMV6_PMCR_COUNT0_IEN;
283 } else if (ARMV6_COUNTER1 == idx) {
284 mask = ARMV6_PMCR_EVT_COUNT1_MASK;
285 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
286 ARMV6_PMCR_COUNT1_IEN;
287 } else {
288 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
289 return;
293 * Mask out the current event and set the counter to count the event
294 * that we're interested in.
296 raw_spin_lock_irqsave(&events->pmu_lock, flags);
297 val = armv6_pmcr_read();
298 val &= ~mask;
299 val |= evt;
300 armv6_pmcr_write(val);
301 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
304 static irqreturn_t
305 armv6pmu_handle_irq(int irq_num,
306 void *dev)
308 unsigned long pmcr = armv6_pmcr_read();
309 struct perf_sample_data data;
310 struct arm_pmu *cpu_pmu = (struct arm_pmu *)dev;
311 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
312 struct pt_regs *regs;
313 int idx;
315 if (!armv6_pmcr_has_overflowed(pmcr))
316 return IRQ_NONE;
318 regs = get_irq_regs();
321 * The interrupts are cleared by writing the overflow flags back to
322 * the control register. All of the other bits don't have any effect
323 * if they are rewritten, so write the whole value back.
325 armv6_pmcr_write(pmcr);
327 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
328 struct perf_event *event = cpuc->events[idx];
329 struct hw_perf_event *hwc;
331 /* Ignore if we don't have an event. */
332 if (!event)
333 continue;
336 * We have a single interrupt for all counters. Check that
337 * each counter has overflowed before we process it.
339 if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
340 continue;
342 hwc = &event->hw;
343 armpmu_event_update(event);
344 perf_sample_data_init(&data, 0, hwc->last_period);
345 if (!armpmu_event_set_period(event))
346 continue;
348 if (perf_event_overflow(event, &data, regs))
349 cpu_pmu->disable(event);
353 * Handle the pending perf events.
355 * Note: this call *must* be run with interrupts disabled. For
356 * platforms that can have the PMU interrupts raised as an NMI, this
357 * will not work.
359 irq_work_run();
361 return IRQ_HANDLED;
364 static void armv6pmu_start(struct arm_pmu *cpu_pmu)
366 unsigned long flags, val;
367 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
369 raw_spin_lock_irqsave(&events->pmu_lock, flags);
370 val = armv6_pmcr_read();
371 val |= ARMV6_PMCR_ENABLE;
372 armv6_pmcr_write(val);
373 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
376 static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
378 unsigned long flags, val;
379 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
381 raw_spin_lock_irqsave(&events->pmu_lock, flags);
382 val = armv6_pmcr_read();
383 val &= ~ARMV6_PMCR_ENABLE;
384 armv6_pmcr_write(val);
385 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
388 static int
389 armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
390 struct perf_event *event)
392 struct hw_perf_event *hwc = &event->hw;
393 /* Always place a cycle counter into the cycle counter. */
394 if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
395 if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
396 return -EAGAIN;
398 return ARMV6_CYCLE_COUNTER;
399 } else {
401 * For anything other than a cycle counter, try and use
402 * counter0 and counter1.
404 if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
405 return ARMV6_COUNTER1;
407 if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
408 return ARMV6_COUNTER0;
410 /* The counters are all in use. */
411 return -EAGAIN;
415 static void armv6pmu_disable_event(struct perf_event *event)
417 unsigned long val, mask, evt, flags;
418 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
419 struct hw_perf_event *hwc = &event->hw;
420 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
421 int idx = hwc->idx;
423 if (ARMV6_CYCLE_COUNTER == idx) {
424 mask = ARMV6_PMCR_CCOUNT_IEN;
425 evt = 0;
426 } else if (ARMV6_COUNTER0 == idx) {
427 mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
428 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
429 } else if (ARMV6_COUNTER1 == idx) {
430 mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
431 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
432 } else {
433 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
434 return;
438 * Mask out the current event and set the counter to count the number
439 * of ETM bus signal assertion cycles. The external reporting should
440 * be disabled and so this should never increment.
442 raw_spin_lock_irqsave(&events->pmu_lock, flags);
443 val = armv6_pmcr_read();
444 val &= ~mask;
445 val |= evt;
446 armv6_pmcr_write(val);
447 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
450 static void armv6mpcore_pmu_disable_event(struct perf_event *event)
452 unsigned long val, mask, flags, evt = 0;
453 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
454 struct hw_perf_event *hwc = &event->hw;
455 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
456 int idx = hwc->idx;
458 if (ARMV6_CYCLE_COUNTER == idx) {
459 mask = ARMV6_PMCR_CCOUNT_IEN;
460 } else if (ARMV6_COUNTER0 == idx) {
461 mask = ARMV6_PMCR_COUNT0_IEN;
462 } else if (ARMV6_COUNTER1 == idx) {
463 mask = ARMV6_PMCR_COUNT1_IEN;
464 } else {
465 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
466 return;
470 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
471 * simply disable the interrupt reporting.
473 raw_spin_lock_irqsave(&events->pmu_lock, flags);
474 val = armv6_pmcr_read();
475 val &= ~mask;
476 val |= evt;
477 armv6_pmcr_write(val);
478 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
481 static int armv6_map_event(struct perf_event *event)
483 return armpmu_map_event(event, &armv6_perf_map,
484 &armv6_perf_cache_map, 0xFF);
487 static void armv6pmu_init(struct arm_pmu *cpu_pmu)
489 cpu_pmu->handle_irq = armv6pmu_handle_irq;
490 cpu_pmu->enable = armv6pmu_enable_event;
491 cpu_pmu->disable = armv6pmu_disable_event;
492 cpu_pmu->read_counter = armv6pmu_read_counter;
493 cpu_pmu->write_counter = armv6pmu_write_counter;
494 cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
495 cpu_pmu->start = armv6pmu_start;
496 cpu_pmu->stop = armv6pmu_stop;
497 cpu_pmu->map_event = armv6_map_event;
498 cpu_pmu->num_events = 3;
499 cpu_pmu->max_period = (1LLU << 32) - 1;
502 static int armv6_1136_pmu_init(struct arm_pmu *cpu_pmu)
504 armv6pmu_init(cpu_pmu);
505 cpu_pmu->name = "armv6_1136";
506 return 0;
509 static int armv6_1156_pmu_init(struct arm_pmu *cpu_pmu)
511 armv6pmu_init(cpu_pmu);
512 cpu_pmu->name = "armv6_1156";
513 return 0;
516 static int armv6_1176_pmu_init(struct arm_pmu *cpu_pmu)
518 armv6pmu_init(cpu_pmu);
519 cpu_pmu->name = "armv6_1176";
520 return 0;
524 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
525 * that some of the events have different enumerations and that there is no
526 * *hack* to stop the programmable counters. To stop the counters we simply
527 * disable the interrupt reporting and update the event. When unthrottling we
528 * reset the period and enable the interrupt reporting.
531 static int armv6mpcore_map_event(struct perf_event *event)
533 return armpmu_map_event(event, &armv6mpcore_perf_map,
534 &armv6mpcore_perf_cache_map, 0xFF);
537 static int armv6mpcore_pmu_init(struct arm_pmu *cpu_pmu)
539 cpu_pmu->name = "armv6_11mpcore";
540 cpu_pmu->handle_irq = armv6pmu_handle_irq;
541 cpu_pmu->enable = armv6pmu_enable_event;
542 cpu_pmu->disable = armv6mpcore_pmu_disable_event;
543 cpu_pmu->read_counter = armv6pmu_read_counter;
544 cpu_pmu->write_counter = armv6pmu_write_counter;
545 cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
546 cpu_pmu->start = armv6pmu_start;
547 cpu_pmu->stop = armv6pmu_stop;
548 cpu_pmu->map_event = armv6mpcore_map_event;
549 cpu_pmu->num_events = 3;
550 cpu_pmu->max_period = (1LLU << 32) - 1;
552 return 0;
555 static struct of_device_id armv6_pmu_of_device_ids[] = {
556 {.compatible = "arm,arm11mpcore-pmu", .data = armv6mpcore_pmu_init},
557 {.compatible = "arm,arm1176-pmu", .data = armv6_1176_pmu_init},
558 {.compatible = "arm,arm1136-pmu", .data = armv6_1136_pmu_init},
559 { /* sentinel value */ }
562 static const struct pmu_probe_info armv6_pmu_probe_table[] = {
563 ARM_PMU_PROBE(ARM_CPU_PART_ARM1136, armv6_1136_pmu_init),
564 ARM_PMU_PROBE(ARM_CPU_PART_ARM1156, armv6_1156_pmu_init),
565 ARM_PMU_PROBE(ARM_CPU_PART_ARM1176, armv6_1176_pmu_init),
566 ARM_PMU_PROBE(ARM_CPU_PART_ARM11MPCORE, armv6mpcore_pmu_init),
567 { /* sentinel value */ }
570 static int armv6_pmu_device_probe(struct platform_device *pdev)
572 return arm_pmu_device_probe(pdev, armv6_pmu_of_device_ids,
573 armv6_pmu_probe_table);
576 static struct platform_driver armv6_pmu_driver = {
577 .driver = {
578 .name = "armv6-pmu",
579 .of_match_table = armv6_pmu_of_device_ids,
581 .probe = armv6_pmu_device_probe,
584 static int __init register_armv6_pmu_driver(void)
586 return platform_driver_register(&armv6_pmu_driver);
588 device_initcall(register_armv6_pmu_driver);
589 #endif /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */