2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
59 #include <asm/debugreg.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
69 #define CREATE_TRACE_POINTS
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported
= MCG_CTL_P
| MCG_SER_P
;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported
);
77 #define emul_to_vcpu(ctxt) \
78 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81 * - enable syscall per default because its emulated by KVM
82 * - enable LME and LMA per default on 64 bit KVM
86 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
88 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
98 static void process_nmi(struct kvm_vcpu
*vcpu
);
99 static void enter_smm(struct kvm_vcpu
*vcpu
);
100 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
102 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
105 static bool __read_mostly ignore_msrs
= 0;
106 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
108 unsigned int min_timer_period_us
= 500;
109 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
111 static bool __read_mostly kvmclock_periodic_sync
= true;
112 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
114 bool __read_mostly kvm_has_tsc_control
;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
116 u32 __read_mostly kvm_max_guest_tsc_khz
;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
118 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
120 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio
;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio
);
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm
= 250;
127 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
131 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
133 static bool __read_mostly vector_hashing
= true;
134 module_param(vector_hashing
, bool, S_IRUGO
);
136 static bool __read_mostly backwards_tsc_observed
= false;
138 #define KVM_NR_SHARED_MSRS 16
140 struct kvm_shared_msrs_global
{
142 u32 msrs
[KVM_NR_SHARED_MSRS
];
145 struct kvm_shared_msrs
{
146 struct user_return_notifier urn
;
148 struct kvm_shared_msr_values
{
151 } values
[KVM_NR_SHARED_MSRS
];
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
155 static struct kvm_shared_msrs __percpu
*shared_msrs
;
157 struct kvm_stats_debugfs_item debugfs_entries
[] = {
158 { "pf_fixed", VCPU_STAT(pf_fixed
) },
159 { "pf_guest", VCPU_STAT(pf_guest
) },
160 { "tlb_flush", VCPU_STAT(tlb_flush
) },
161 { "invlpg", VCPU_STAT(invlpg
) },
162 { "exits", VCPU_STAT(exits
) },
163 { "io_exits", VCPU_STAT(io_exits
) },
164 { "mmio_exits", VCPU_STAT(mmio_exits
) },
165 { "signal_exits", VCPU_STAT(signal_exits
) },
166 { "irq_window", VCPU_STAT(irq_window_exits
) },
167 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
168 { "halt_exits", VCPU_STAT(halt_exits
) },
169 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
170 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
171 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid
) },
172 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
173 { "hypercalls", VCPU_STAT(hypercalls
) },
174 { "request_irq", VCPU_STAT(request_irq_exits
) },
175 { "irq_exits", VCPU_STAT(irq_exits
) },
176 { "host_state_reload", VCPU_STAT(host_state_reload
) },
177 { "efer_reload", VCPU_STAT(efer_reload
) },
178 { "fpu_reload", VCPU_STAT(fpu_reload
) },
179 { "insn_emulation", VCPU_STAT(insn_emulation
) },
180 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
181 { "irq_injections", VCPU_STAT(irq_injections
) },
182 { "nmi_injections", VCPU_STAT(nmi_injections
) },
183 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
184 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
185 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
186 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
187 { "mmu_flooded", VM_STAT(mmu_flooded
) },
188 { "mmu_recycled", VM_STAT(mmu_recycled
) },
189 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
190 { "mmu_unsync", VM_STAT(mmu_unsync
) },
191 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
192 { "largepages", VM_STAT(lpages
) },
196 u64 __read_mostly host_xcr0
;
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
203 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
204 vcpu
->arch
.apf
.gfns
[i
] = ~0;
207 static void kvm_on_user_return(struct user_return_notifier
*urn
)
210 struct kvm_shared_msrs
*locals
211 = container_of(urn
, struct kvm_shared_msrs
, urn
);
212 struct kvm_shared_msr_values
*values
;
216 * Disabling irqs at this point since the following code could be
217 * interrupted and executed through kvm_arch_hardware_disable()
219 local_irq_save(flags
);
220 if (locals
->registered
) {
221 locals
->registered
= false;
222 user_return_notifier_unregister(urn
);
224 local_irq_restore(flags
);
225 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
226 values
= &locals
->values
[slot
];
227 if (values
->host
!= values
->curr
) {
228 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
229 values
->curr
= values
->host
;
234 static void shared_msr_update(unsigned slot
, u32 msr
)
237 unsigned int cpu
= smp_processor_id();
238 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
240 /* only read, and nobody should modify it at this time,
241 * so don't need lock */
242 if (slot
>= shared_msrs_global
.nr
) {
243 printk(KERN_ERR
"kvm: invalid MSR slot!");
246 rdmsrl_safe(msr
, &value
);
247 smsr
->values
[slot
].host
= value
;
248 smsr
->values
[slot
].curr
= value
;
251 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
253 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
254 shared_msrs_global
.msrs
[slot
] = msr
;
255 if (slot
>= shared_msrs_global
.nr
)
256 shared_msrs_global
.nr
= slot
+ 1;
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
260 static void kvm_shared_msr_cpu_online(void)
264 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
265 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
268 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
270 unsigned int cpu
= smp_processor_id();
271 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
274 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
276 smsr
->values
[slot
].curr
= value
;
277 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
281 if (!smsr
->registered
) {
282 smsr
->urn
.on_user_return
= kvm_on_user_return
;
283 user_return_notifier_register(&smsr
->urn
);
284 smsr
->registered
= true;
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
290 static void drop_user_return_notifiers(void)
292 unsigned int cpu
= smp_processor_id();
293 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
295 if (smsr
->registered
)
296 kvm_on_user_return(&smsr
->urn
);
299 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
301 return vcpu
->arch
.apic_base
;
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
305 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
307 u64 old_state
= vcpu
->arch
.apic_base
&
308 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
309 u64 new_state
= msr_info
->data
&
310 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
311 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
312 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
314 if (!msr_info
->host_initiated
&&
315 ((msr_info
->data
& reserved_bits
) != 0 ||
316 new_state
== X2APIC_ENABLE
||
317 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
318 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
319 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
323 kvm_lapic_set_base(vcpu
, msr_info
->data
);
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
328 asmlinkage __visible
void kvm_spurious_fault(void)
330 /* Fault while not rebooting. We want the trace. */
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
335 #define EXCPT_BENIGN 0
336 #define EXCPT_CONTRIBUTORY 1
339 static int exception_class(int vector
)
349 return EXCPT_CONTRIBUTORY
;
356 #define EXCPT_FAULT 0
358 #define EXCPT_ABORT 2
359 #define EXCPT_INTERRUPT 3
361 static int exception_type(int vector
)
365 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
366 return EXCPT_INTERRUPT
;
370 /* #DB is trap, as instruction watchpoints are handled elsewhere */
371 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
374 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
377 /* Reserved exceptions will result in fault */
381 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
382 unsigned nr
, bool has_error
, u32 error_code
,
388 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
390 if (!vcpu
->arch
.exception
.pending
) {
392 if (has_error
&& !is_protmode(vcpu
))
394 vcpu
->arch
.exception
.pending
= true;
395 vcpu
->arch
.exception
.has_error_code
= has_error
;
396 vcpu
->arch
.exception
.nr
= nr
;
397 vcpu
->arch
.exception
.error_code
= error_code
;
398 vcpu
->arch
.exception
.reinject
= reinject
;
402 /* to check exception */
403 prev_nr
= vcpu
->arch
.exception
.nr
;
404 if (prev_nr
== DF_VECTOR
) {
405 /* triple fault -> shutdown */
406 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
409 class1
= exception_class(prev_nr
);
410 class2
= exception_class(nr
);
411 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
412 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
413 /* generate double fault per SDM Table 5-5 */
414 vcpu
->arch
.exception
.pending
= true;
415 vcpu
->arch
.exception
.has_error_code
= true;
416 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
417 vcpu
->arch
.exception
.error_code
= 0;
419 /* replace previous exception with a new one in a hope
420 that instruction re-execution will regenerate lost
425 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
427 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
429 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
431 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
433 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
437 int kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
440 kvm_inject_gp(vcpu
, 0);
442 return kvm_skip_emulated_instruction(vcpu
);
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
448 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
450 ++vcpu
->stat
.pf_guest
;
451 vcpu
->arch
.cr2
= fault
->address
;
452 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
456 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
458 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
459 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
461 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
463 return fault
->nested_page_fault
;
466 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
468 atomic_inc(&vcpu
->arch
.nmi_queued
);
469 kvm_make_request(KVM_REQ_NMI
, vcpu
);
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
473 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
475 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
479 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
481 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
486 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
487 * a #GP and return false.
489 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
491 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
493 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
496 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
498 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
500 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
503 kvm_queue_exception(vcpu
, UD_VECTOR
);
506 EXPORT_SYMBOL_GPL(kvm_require_dr
);
509 * This function will be used to read from the physical memory of the currently
510 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511 * can read from guest physical or from the guest's guest physical memory.
513 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
514 gfn_t ngfn
, void *data
, int offset
, int len
,
517 struct x86_exception exception
;
521 ngpa
= gfn_to_gpa(ngfn
);
522 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
523 if (real_gfn
== UNMAPPED_GVA
)
526 real_gfn
= gpa_to_gfn(real_gfn
);
528 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
532 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
533 void *data
, int offset
, int len
, u32 access
)
535 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
536 data
, offset
, len
, access
);
540 * Load the pae pdptrs. Return true is they are all valid.
542 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
544 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
545 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
548 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
550 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
551 offset
* sizeof(u64
), sizeof(pdpte
),
552 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
557 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
558 if ((pdpte
[i
] & PT_PRESENT_MASK
) &&
560 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
567 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
568 __set_bit(VCPU_EXREG_PDPTR
,
569 (unsigned long *)&vcpu
->arch
.regs_avail
);
570 __set_bit(VCPU_EXREG_PDPTR
,
571 (unsigned long *)&vcpu
->arch
.regs_dirty
);
576 EXPORT_SYMBOL_GPL(load_pdptrs
);
578 bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
580 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
586 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
589 if (!test_bit(VCPU_EXREG_PDPTR
,
590 (unsigned long *)&vcpu
->arch
.regs_avail
))
593 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
594 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
595 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
596 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
599 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
604 EXPORT_SYMBOL_GPL(pdptrs_changed
);
606 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
608 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
609 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
614 if (cr0
& 0xffffffff00000000UL
)
618 cr0
&= ~CR0_RESERVED_BITS
;
620 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
623 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
626 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
628 if ((vcpu
->arch
.efer
& EFER_LME
)) {
633 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
638 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
643 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
646 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
648 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
649 kvm_clear_async_pf_completion_queue(vcpu
);
650 kvm_async_pf_hash_reset(vcpu
);
653 if ((cr0
^ old_cr0
) & update_bits
)
654 kvm_mmu_reset_context(vcpu
);
656 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
657 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
658 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
659 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
663 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
665 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
667 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
669 EXPORT_SYMBOL_GPL(kvm_lmsw
);
671 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
673 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
674 !vcpu
->guest_xcr0_loaded
) {
675 /* kvm_set_xcr() also depends on this */
676 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
677 vcpu
->guest_xcr0_loaded
= 1;
681 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
683 if (vcpu
->guest_xcr0_loaded
) {
684 if (vcpu
->arch
.xcr0
!= host_xcr0
)
685 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
686 vcpu
->guest_xcr0_loaded
= 0;
690 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
693 u64 old_xcr0
= vcpu
->arch
.xcr0
;
696 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
697 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
699 if (!(xcr0
& XFEATURE_MASK_FP
))
701 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
705 * Do not allow the guest to set bits that we do not support
706 * saving. However, xcr0 bit 0 is always set, even if the
707 * emulated CPU does not support XSAVE (see fx_init).
709 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
710 if (xcr0
& ~valid_bits
)
713 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
714 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
717 if (xcr0
& XFEATURE_MASK_AVX512
) {
718 if (!(xcr0
& XFEATURE_MASK_YMM
))
720 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
723 vcpu
->arch
.xcr0
= xcr0
;
725 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
726 kvm_update_cpuid(vcpu
);
730 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
732 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
733 __kvm_set_xcr(vcpu
, index
, xcr
)) {
734 kvm_inject_gp(vcpu
, 0);
739 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
741 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
743 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
744 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
745 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
747 if (cr4
& CR4_RESERVED_BITS
)
750 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
753 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
756 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
759 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
762 if (!guest_cpuid_has_pku(vcpu
) && (cr4
& X86_CR4_PKE
))
765 if (is_long_mode(vcpu
)) {
766 if (!(cr4
& X86_CR4_PAE
))
768 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
769 && ((cr4
^ old_cr4
) & pdptr_bits
)
770 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
774 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
775 if (!guest_cpuid_has_pcid(vcpu
))
778 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
783 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
786 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
787 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
788 kvm_mmu_reset_context(vcpu
);
790 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
791 kvm_update_cpuid(vcpu
);
795 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
797 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
800 cr3
&= ~CR3_PCID_INVD
;
803 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
804 kvm_mmu_sync_roots(vcpu
);
805 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
809 if (is_long_mode(vcpu
)) {
810 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
812 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
813 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
816 vcpu
->arch
.cr3
= cr3
;
817 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
818 kvm_mmu_new_cr3(vcpu
);
821 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
823 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
825 if (cr8
& CR8_RESERVED_BITS
)
827 if (lapic_in_kernel(vcpu
))
828 kvm_lapic_set_tpr(vcpu
, cr8
);
830 vcpu
->arch
.cr8
= cr8
;
833 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
835 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
837 if (lapic_in_kernel(vcpu
))
838 return kvm_lapic_get_cr8(vcpu
);
840 return vcpu
->arch
.cr8
;
842 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
844 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
848 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
849 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
850 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
851 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
855 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
857 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
858 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
861 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
865 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
866 dr7
= vcpu
->arch
.guest_debug_dr7
;
868 dr7
= vcpu
->arch
.dr7
;
869 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
870 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
871 if (dr7
& DR7_BP_EN_MASK
)
872 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
875 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
877 u64 fixed
= DR6_FIXED_1
;
879 if (!guest_cpuid_has_rtm(vcpu
))
884 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
888 vcpu
->arch
.db
[dr
] = val
;
889 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
890 vcpu
->arch
.eff_db
[dr
] = val
;
895 if (val
& 0xffffffff00000000ULL
)
897 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
898 kvm_update_dr6(vcpu
);
903 if (val
& 0xffffffff00000000ULL
)
905 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
906 kvm_update_dr7(vcpu
);
913 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
915 if (__kvm_set_dr(vcpu
, dr
, val
)) {
916 kvm_inject_gp(vcpu
, 0);
921 EXPORT_SYMBOL_GPL(kvm_set_dr
);
923 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
927 *val
= vcpu
->arch
.db
[dr
];
932 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
933 *val
= vcpu
->arch
.dr6
;
935 *val
= kvm_x86_ops
->get_dr6(vcpu
);
940 *val
= vcpu
->arch
.dr7
;
945 EXPORT_SYMBOL_GPL(kvm_get_dr
);
947 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
949 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
953 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
956 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
957 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
960 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
963 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
966 * This list is modified at module load time to reflect the
967 * capabilities of the host cpu. This capabilities test skips MSRs that are
968 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969 * may depend on host virtualization features rather than host cpu features.
972 static u32 msrs_to_save
[] = {
973 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
976 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
978 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
979 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
982 static unsigned num_msrs_to_save
;
984 static u32 emulated_msrs
[] = {
985 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
986 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
987 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
988 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
989 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
990 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
993 HV_X64_MSR_VP_RUNTIME
,
995 HV_X64_MSR_STIMER0_CONFIG
,
996 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
1000 MSR_IA32_TSCDEADLINE
,
1001 MSR_IA32_MISC_ENABLE
,
1002 MSR_IA32_MCG_STATUS
,
1004 MSR_IA32_MCG_EXT_CTL
,
1008 static unsigned num_emulated_msrs
;
1010 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1012 if (efer
& efer_reserved_bits
)
1015 if (efer
& EFER_FFXSR
) {
1016 struct kvm_cpuid_entry2
*feat
;
1018 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1019 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
1023 if (efer
& EFER_SVME
) {
1024 struct kvm_cpuid_entry2
*feat
;
1026 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1027 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1035 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1037 u64 old_efer
= vcpu
->arch
.efer
;
1039 if (!kvm_valid_efer(vcpu
, efer
))
1043 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1047 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1049 kvm_x86_ops
->set_efer(vcpu
, efer
);
1051 /* Update reserved bits */
1052 if ((efer
^ old_efer
) & EFER_NX
)
1053 kvm_mmu_reset_context(vcpu
);
1058 void kvm_enable_efer_bits(u64 mask
)
1060 efer_reserved_bits
&= ~mask
;
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1065 * Writes msr value into into the appropriate "register".
1066 * Returns 0 on success, non-0 otherwise.
1067 * Assumes vcpu_load() was already called.
1069 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1071 switch (msr
->index
) {
1074 case MSR_KERNEL_GS_BASE
:
1077 if (is_noncanonical_address(msr
->data
))
1080 case MSR_IA32_SYSENTER_EIP
:
1081 case MSR_IA32_SYSENTER_ESP
:
1083 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084 * non-canonical address is written on Intel but not on
1085 * AMD (which ignores the top 32-bits, because it does
1086 * not implement 64-bit SYSENTER).
1088 * 64-bit code should hence be able to write a non-canonical
1089 * value on AMD. Making the address canonical ensures that
1090 * vmentry does not fail on Intel after writing a non-canonical
1091 * value, and that something deterministic happens if the guest
1092 * invokes 64-bit SYSENTER.
1094 msr
->data
= get_canonical(msr
->data
);
1096 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1098 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1101 * Adapt set_msr() to msr_io()'s calling convention
1103 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1105 struct msr_data msr
;
1109 msr
.host_initiated
= true;
1110 r
= kvm_get_msr(vcpu
, &msr
);
1118 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1120 struct msr_data msr
;
1124 msr
.host_initiated
= true;
1125 return kvm_set_msr(vcpu
, &msr
);
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data
{
1132 struct { /* extract of a clocksource struct */
1144 static struct pvclock_gtod_data pvclock_gtod_data
;
1146 static void update_pvclock_gtod(struct timekeeper
*tk
)
1148 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1151 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1153 write_seqcount_begin(&vdata
->seq
);
1155 /* copy pvclock gtod data */
1156 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1157 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1158 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1159 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1160 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1162 vdata
->boot_ns
= boot_ns
;
1163 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1165 write_seqcount_end(&vdata
->seq
);
1169 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1172 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173 * vcpu_enter_guest. This function is only called from
1174 * the physical CPU that is running vcpu.
1176 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1179 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1183 struct pvclock_wall_clock wc
;
1184 struct timespec64 boot
;
1189 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1194 ++version
; /* first time write, random junk */
1198 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1202 * The guest calculates current wall clock time by adding
1203 * system time (updated by kvm_guest_time_update below) to the
1204 * wall clock specified here. guest system time equals host
1205 * system time for us, thus we must fill in host boot time here.
1207 getboottime64(&boot
);
1209 if (kvm
->arch
.kvmclock_offset
) {
1210 struct timespec64 ts
= ns_to_timespec64(kvm
->arch
.kvmclock_offset
);
1211 boot
= timespec64_sub(boot
, ts
);
1213 wc
.sec
= (u32
)boot
.tv_sec
; /* overflow in 2106 guest time */
1214 wc
.nsec
= boot
.tv_nsec
;
1215 wc
.version
= version
;
1217 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1220 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1223 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1225 do_shl32_div32(dividend
, divisor
);
1229 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1230 s8
*pshift
, u32
*pmultiplier
)
1238 scaled64
= scaled_hz
;
1239 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1244 tps32
= (uint32_t)tps64
;
1245 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1246 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1254 *pmultiplier
= div_frac(scaled64
, tps32
);
1256 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1265 static unsigned long max_tsc_khz
;
1267 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1269 u64 v
= (u64
)khz
* (1000000 + ppm
);
1274 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1278 /* Guest TSC same frequency as host TSC? */
1280 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1284 /* TSC scaling supported? */
1285 if (!kvm_has_tsc_control
) {
1286 if (user_tsc_khz
> tsc_khz
) {
1287 vcpu
->arch
.tsc_catchup
= 1;
1288 vcpu
->arch
.tsc_always_catchup
= 1;
1291 WARN(1, "user requested TSC rate below hardware speed\n");
1296 /* TSC scaling required - calculate ratio */
1297 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1298 user_tsc_khz
, tsc_khz
);
1300 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1301 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1306 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1310 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1312 u32 thresh_lo
, thresh_hi
;
1313 int use_scaling
= 0;
1315 /* tsc_khz can be zero if TSC calibration fails */
1316 if (user_tsc_khz
== 0) {
1317 /* set tsc_scaling_ratio to a safe value */
1318 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1322 /* Compute a scale to convert nanoseconds in TSC cycles */
1323 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1324 &vcpu
->arch
.virtual_tsc_shift
,
1325 &vcpu
->arch
.virtual_tsc_mult
);
1326 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1329 * Compute the variation in TSC rate which is acceptable
1330 * within the range of tolerance and decide if the
1331 * rate being applied is within that bounds of the hardware
1332 * rate. If so, no scaling or compensation need be done.
1334 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1335 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1336 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1337 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1340 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1343 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1345 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1346 vcpu
->arch
.virtual_tsc_mult
,
1347 vcpu
->arch
.virtual_tsc_shift
);
1348 tsc
+= vcpu
->arch
.this_tsc_write
;
1352 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1354 #ifdef CONFIG_X86_64
1356 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1357 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1359 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1360 atomic_read(&vcpu
->kvm
->online_vcpus
));
1363 * Once the masterclock is enabled, always perform request in
1364 * order to update it.
1366 * In order to enable masterclock, the host clocksource must be TSC
1367 * and the vcpus need to have matched TSCs. When that happens,
1368 * perform request to enable masterclock.
1370 if (ka
->use_master_clock
||
1371 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1372 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1374 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1375 atomic_read(&vcpu
->kvm
->online_vcpus
),
1376 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1382 u64 curr_offset
= vcpu
->arch
.tsc_offset
;
1383 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1387 * Multiply tsc by a fixed point number represented by ratio.
1389 * The most significant 64-N bits (mult) of ratio represent the
1390 * integral part of the fixed point number; the remaining N bits
1391 * (frac) represent the fractional part, ie. ratio represents a fixed
1392 * point number (mult + frac * 2^(-N)).
1394 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1396 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1398 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1401 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1404 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1406 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1407 _tsc
= __scale_tsc(ratio
, tsc
);
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1413 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1417 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1419 return target_tsc
- tsc
;
1422 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1424 return vcpu
->arch
.tsc_offset
+ kvm_scale_tsc(vcpu
, host_tsc
);
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1430 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1431 vcpu
->arch
.tsc_offset
= offset
;
1434 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1436 struct kvm
*kvm
= vcpu
->kvm
;
1437 u64 offset
, ns
, elapsed
;
1438 unsigned long flags
;
1441 bool already_matched
;
1442 u64 data
= msr
->data
;
1444 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1445 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1446 ns
= ktime_get_boot_ns();
1447 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1449 if (vcpu
->arch
.virtual_tsc_khz
) {
1452 /* n.b - signed multiplication and division required */
1453 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1454 #ifdef CONFIG_X86_64
1455 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1457 /* do_div() only does unsigned */
1458 asm("1: idivl %[divisor]\n"
1459 "2: xor %%edx, %%edx\n"
1460 " movl $0, %[faulted]\n"
1462 ".section .fixup,\"ax\"\n"
1463 "4: movl $1, %[faulted]\n"
1467 _ASM_EXTABLE(1b
, 4b
)
1469 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1470 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1473 do_div(elapsed
, 1000);
1478 /* idivl overflow => difference is larger than USEC_PER_SEC */
1480 usdiff
= USEC_PER_SEC
;
1482 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1485 * Special case: TSC write with a small delta (1 second) of virtual
1486 * cycle time against real time is interpreted as an attempt to
1487 * synchronize the CPU.
1489 * For a reliable TSC, we can match TSC offsets, and for an unstable
1490 * TSC, we add elapsed time in this computation. We could let the
1491 * compensation code attempt to catch up if we fall behind, but
1492 * it's better to try to match offsets from the beginning.
1494 if (usdiff
< USEC_PER_SEC
&&
1495 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1496 if (!check_tsc_unstable()) {
1497 offset
= kvm
->arch
.cur_tsc_offset
;
1498 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1500 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1502 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1503 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1506 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1509 * We split periods of matched TSC writes into generations.
1510 * For each generation, we track the original measured
1511 * nanosecond time, offset, and write, so if TSCs are in
1512 * sync, we can match exact offset, and if not, we can match
1513 * exact software computation in compute_guest_tsc()
1515 * These values are tracked in kvm->arch.cur_xxx variables.
1517 kvm
->arch
.cur_tsc_generation
++;
1518 kvm
->arch
.cur_tsc_nsec
= ns
;
1519 kvm
->arch
.cur_tsc_write
= data
;
1520 kvm
->arch
.cur_tsc_offset
= offset
;
1522 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523 kvm
->arch
.cur_tsc_generation
, data
);
1527 * We also track th most recent recorded KHZ, write and time to
1528 * allow the matching interval to be extended at each write.
1530 kvm
->arch
.last_tsc_nsec
= ns
;
1531 kvm
->arch
.last_tsc_write
= data
;
1532 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1534 vcpu
->arch
.last_guest_tsc
= data
;
1536 /* Keep track of which generation this VCPU has synchronized to */
1537 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1538 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1539 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1541 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1542 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1543 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
1544 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1546 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1548 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1549 } else if (!already_matched
) {
1550 kvm
->arch
.nr_vcpus_matched_tsc
++;
1553 kvm_track_tsc_matching(vcpu
);
1554 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1562 kvm_vcpu_write_tsc_offset(vcpu
, vcpu
->arch
.tsc_offset
+ adjustment
);
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1567 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1568 WARN_ON(adjustment
< 0);
1569 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1570 adjust_tsc_offset_guest(vcpu
, adjustment
);
1573 #ifdef CONFIG_X86_64
1575 static cycle_t
read_tsc(void)
1577 cycle_t ret
= (cycle_t
)rdtsc_ordered();
1578 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1580 if (likely(ret
>= last
))
1584 * GCC likes to generate cmov here, but this branch is extremely
1585 * predictable (it's just a function of time and the likely is
1586 * very likely) and there's a data dependence, so force GCC
1587 * to generate a branch instead. I don't barrier() because
1588 * we don't actually need a barrier, and if this function
1589 * ever gets inlined it will generate worse code.
1595 static inline u64
vgettsc(cycle_t
*cycle_now
)
1598 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1600 *cycle_now
= read_tsc();
1602 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1603 return v
* gtod
->clock
.mult
;
1606 static int do_monotonic_boot(s64
*t
, cycle_t
*cycle_now
)
1608 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1614 seq
= read_seqcount_begin(>od
->seq
);
1615 mode
= gtod
->clock
.vclock_mode
;
1616 ns
= gtod
->nsec_base
;
1617 ns
+= vgettsc(cycle_now
);
1618 ns
>>= gtod
->clock
.shift
;
1619 ns
+= gtod
->boot_ns
;
1620 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1629 /* checked again under seqlock below */
1630 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1633 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1639 * Assuming a stable TSC across physical CPUS, and a stable TSC
1640 * across virtual CPUs, the following condition is possible.
1641 * Each numbered line represents an event visible to both
1642 * CPUs at the next numbered event.
1644 * "timespecX" represents host monotonic time. "tscX" represents
1647 * VCPU0 on CPU0 | VCPU1 on CPU1
1649 * 1. read timespec0,tsc0
1650 * 2. | timespec1 = timespec0 + N
1652 * 3. transition to guest | transition to guest
1653 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1655 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1657 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1660 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1662 * - 0 < N - M => M < N
1664 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665 * always the case (the difference between two distinct xtime instances
1666 * might be smaller then the difference between corresponding TSC reads,
1667 * when updating guest vcpus pvclock areas).
1669 * To avoid that problem, do not allow visibility of distinct
1670 * system_timestamp/tsc_timestamp values simultaneously: use a master
1671 * copy of host monotonic time values. Update that master copy
1674 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1678 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1680 #ifdef CONFIG_X86_64
1681 struct kvm_arch
*ka
= &kvm
->arch
;
1683 bool host_tsc_clocksource
, vcpus_matched
;
1685 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1686 atomic_read(&kvm
->online_vcpus
));
1689 * If the host uses TSC clock, then passthrough TSC as stable
1692 host_tsc_clocksource
= kvm_get_time_and_clockread(
1693 &ka
->master_kernel_ns
,
1694 &ka
->master_cycle_now
);
1696 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1697 && !backwards_tsc_observed
1698 && !ka
->boot_vcpu_runs_old_kvmclock
;
1700 if (ka
->use_master_clock
)
1701 atomic_set(&kvm_guest_has_master_clock
, 1);
1703 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1704 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1709 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
1711 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
1714 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1716 #ifdef CONFIG_X86_64
1718 struct kvm_vcpu
*vcpu
;
1719 struct kvm_arch
*ka
= &kvm
->arch
;
1721 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1722 kvm_make_mclock_inprogress_request(kvm
);
1723 /* no guest entries from this point */
1724 pvclock_update_vm_gtod_copy(kvm
);
1726 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1727 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1729 /* guest entries allowed */
1730 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1731 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1733 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1737 static u64
__get_kvmclock_ns(struct kvm
*kvm
)
1739 struct kvm_arch
*ka
= &kvm
->arch
;
1740 struct pvclock_vcpu_time_info hv_clock
;
1742 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1743 if (!ka
->use_master_clock
) {
1744 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1745 return ktime_get_boot_ns() + ka
->kvmclock_offset
;
1748 hv_clock
.tsc_timestamp
= ka
->master_cycle_now
;
1749 hv_clock
.system_time
= ka
->master_kernel_ns
+ ka
->kvmclock_offset
;
1750 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1752 kvm_get_time_scale(NSEC_PER_SEC
, __this_cpu_read(cpu_tsc_khz
) * 1000LL,
1753 &hv_clock
.tsc_shift
,
1754 &hv_clock
.tsc_to_system_mul
);
1755 return __pvclock_read_cycles(&hv_clock
, rdtsc());
1758 u64
get_kvmclock_ns(struct kvm
*kvm
)
1760 unsigned long flags
;
1763 local_irq_save(flags
);
1764 ns
= __get_kvmclock_ns(kvm
);
1765 local_irq_restore(flags
);
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu
*v
)
1772 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1773 struct pvclock_vcpu_time_info guest_hv_clock
;
1775 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1776 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1779 /* This VCPU is paused, but it's legal for a guest to read another
1780 * VCPU's kvmclock, so we really have to follow the specification where
1781 * it says that version is odd if data is being modified, and even after
1784 * Version field updates must be kept separate. This is because
1785 * kvm_write_guest_cached might use a "rep movs" instruction, and
1786 * writes within a string instruction are weakly ordered. So there
1787 * are three writes overall.
1789 * As a small optimization, only write the version field in the first
1790 * and third write. The vcpu->pv_time cache is still valid, because the
1791 * version field is the first in the struct.
1793 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1795 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1796 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1798 sizeof(vcpu
->hv_clock
.version
));
1802 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803 vcpu
->hv_clock
.flags
|= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1805 if (vcpu
->pvclock_set_guest_stopped_request
) {
1806 vcpu
->hv_clock
.flags
|= PVCLOCK_GUEST_STOPPED
;
1807 vcpu
->pvclock_set_guest_stopped_request
= false;
1810 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1812 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1814 sizeof(vcpu
->hv_clock
));
1818 vcpu
->hv_clock
.version
++;
1819 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1821 sizeof(vcpu
->hv_clock
.version
));
1824 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1826 unsigned long flags
, tgt_tsc_khz
;
1827 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1828 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1830 u64 tsc_timestamp
, host_tsc
;
1832 bool use_master_clock
;
1838 * If the host uses TSC clock, then passthrough TSC as stable
1841 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1842 use_master_clock
= ka
->use_master_clock
;
1843 if (use_master_clock
) {
1844 host_tsc
= ka
->master_cycle_now
;
1845 kernel_ns
= ka
->master_kernel_ns
;
1847 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1849 /* Keep irq disabled to prevent changes to the clock */
1850 local_irq_save(flags
);
1851 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1852 if (unlikely(tgt_tsc_khz
== 0)) {
1853 local_irq_restore(flags
);
1854 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1857 if (!use_master_clock
) {
1859 kernel_ns
= ktime_get_boot_ns();
1862 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
1865 * We may have to catch up the TSC to match elapsed wall clock
1866 * time for two reasons, even if kvmclock is used.
1867 * 1) CPU could have been running below the maximum TSC rate
1868 * 2) Broken TSC compensation resets the base at each VCPU
1869 * entry to avoid unknown leaps of TSC even when running
1870 * again on the same CPU. This may cause apparent elapsed
1871 * time to disappear, and the guest to stand still or run
1874 if (vcpu
->tsc_catchup
) {
1875 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1876 if (tsc
> tsc_timestamp
) {
1877 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1878 tsc_timestamp
= tsc
;
1882 local_irq_restore(flags
);
1884 /* With all the info we got, fill in the values */
1886 if (kvm_has_tsc_control
)
1887 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
1889 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
1890 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
1891 &vcpu
->hv_clock
.tsc_shift
,
1892 &vcpu
->hv_clock
.tsc_to_system_mul
);
1893 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
1896 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1897 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1898 vcpu
->last_guest_tsc
= tsc_timestamp
;
1900 /* If the host uses TSC clocksource, then it is stable */
1902 if (use_master_clock
)
1903 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1905 vcpu
->hv_clock
.flags
= pvclock_flags
;
1907 if (vcpu
->pv_time_enabled
)
1908 kvm_setup_pvclock_page(v
);
1909 if (v
== kvm_get_vcpu(v
->kvm
, 0))
1910 kvm_hv_setup_tsc_page(v
->kvm
, &vcpu
->hv_clock
);
1915 * kvmclock updates which are isolated to a given vcpu, such as
1916 * vcpu->cpu migration, should not allow system_timestamp from
1917 * the rest of the vcpus to remain static. Otherwise ntp frequency
1918 * correction applies to one vcpu's system_timestamp but not
1921 * So in those cases, request a kvmclock update for all vcpus.
1922 * We need to rate-limit these requests though, as they can
1923 * considerably slow guests that have a large number of vcpus.
1924 * The time for a remote vcpu to update its kvmclock is bound
1925 * by the delay we use to rate-limit the updates.
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1930 static void kvmclock_update_fn(struct work_struct
*work
)
1933 struct delayed_work
*dwork
= to_delayed_work(work
);
1934 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1935 kvmclock_update_work
);
1936 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1937 struct kvm_vcpu
*vcpu
;
1939 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1940 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1941 kvm_vcpu_kick(vcpu
);
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1947 struct kvm
*kvm
= v
->kvm
;
1949 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1950 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1951 KVMCLOCK_UPDATE_DELAY
);
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1956 static void kvmclock_sync_fn(struct work_struct
*work
)
1958 struct delayed_work
*dwork
= to_delayed_work(work
);
1959 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1960 kvmclock_sync_work
);
1961 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1963 if (!kvmclock_periodic_sync
)
1966 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1967 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1968 KVMCLOCK_SYNC_PERIOD
);
1971 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1973 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1974 unsigned bank_num
= mcg_cap
& 0xff;
1977 case MSR_IA32_MCG_STATUS
:
1978 vcpu
->arch
.mcg_status
= data
;
1980 case MSR_IA32_MCG_CTL
:
1981 if (!(mcg_cap
& MCG_CTL_P
))
1983 if (data
!= 0 && data
!= ~(u64
)0)
1985 vcpu
->arch
.mcg_ctl
= data
;
1988 if (msr
>= MSR_IA32_MC0_CTL
&&
1989 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
1990 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1991 /* only 0 or all 1s can be written to IA32_MCi_CTL
1992 * some Linux kernels though clear bit 10 in bank 4 to
1993 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994 * this to avoid an uncatched #GP in the guest
1996 if ((offset
& 0x3) == 0 &&
1997 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1999 vcpu
->arch
.mce_banks
[offset
] = data
;
2007 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
2009 struct kvm
*kvm
= vcpu
->kvm
;
2010 int lm
= is_long_mode(vcpu
);
2011 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
2012 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
2013 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
2014 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
2015 u32 page_num
= data
& ~PAGE_MASK
;
2016 u64 page_addr
= data
& PAGE_MASK
;
2021 if (page_num
>= blob_size
)
2024 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
2029 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2040 gpa_t gpa
= data
& ~0x3f;
2042 /* Bits 2:5 are reserved, Should be zero */
2046 vcpu
->arch
.apf
.msr_val
= data
;
2048 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2049 kvm_clear_async_pf_completion_queue(vcpu
);
2050 kvm_async_pf_hash_reset(vcpu
);
2054 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2058 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2059 kvm_async_pf_wakeup_all(vcpu
);
2063 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2065 vcpu
->arch
.pv_time_enabled
= false;
2068 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2070 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2073 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2074 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2077 vcpu
->arch
.st
.steal
.preempted
= 0;
2079 if (vcpu
->arch
.st
.steal
.version
& 1)
2080 vcpu
->arch
.st
.steal
.version
+= 1; /* first time write, random junk */
2082 vcpu
->arch
.st
.steal
.version
+= 1;
2084 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2085 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2089 vcpu
->arch
.st
.steal
.steal
+= current
->sched_info
.run_delay
-
2090 vcpu
->arch
.st
.last_steal
;
2091 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2093 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2094 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2098 vcpu
->arch
.st
.steal
.version
+= 1;
2100 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2101 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2104 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2107 u32 msr
= msr_info
->index
;
2108 u64 data
= msr_info
->data
;
2111 case MSR_AMD64_NB_CFG
:
2112 case MSR_IA32_UCODE_REV
:
2113 case MSR_IA32_UCODE_WRITE
:
2114 case MSR_VM_HSAVE_PA
:
2115 case MSR_AMD64_PATCH_LOADER
:
2116 case MSR_AMD64_BU_CFG2
:
2120 return set_efer(vcpu
, data
);
2122 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2123 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2124 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2125 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2127 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2132 case MSR_FAM10H_MMIO_CONF_BASE
:
2134 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2139 case MSR_IA32_DEBUGCTLMSR
:
2141 /* We support the non-activated case already */
2143 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2144 /* Values other than LBR and BTF are vendor-specific,
2145 thus reserved and should throw a #GP */
2148 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2151 case 0x200 ... 0x2ff:
2152 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2153 case MSR_IA32_APICBASE
:
2154 return kvm_set_apic_base(vcpu
, msr_info
);
2155 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2156 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2157 case MSR_IA32_TSCDEADLINE
:
2158 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2160 case MSR_IA32_TSC_ADJUST
:
2161 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2162 if (!msr_info
->host_initiated
) {
2163 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2164 adjust_tsc_offset_guest(vcpu
, adj
);
2166 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2169 case MSR_IA32_MISC_ENABLE
:
2170 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2172 case MSR_IA32_SMBASE
:
2173 if (!msr_info
->host_initiated
)
2175 vcpu
->arch
.smbase
= data
;
2177 case MSR_KVM_WALL_CLOCK_NEW
:
2178 case MSR_KVM_WALL_CLOCK
:
2179 vcpu
->kvm
->arch
.wall_clock
= data
;
2180 kvm_write_wall_clock(vcpu
->kvm
, data
);
2182 case MSR_KVM_SYSTEM_TIME_NEW
:
2183 case MSR_KVM_SYSTEM_TIME
: {
2184 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2186 kvmclock_reset(vcpu
);
2188 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2189 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2191 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2192 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
2195 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2198 vcpu
->arch
.time
= data
;
2199 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2201 /* we verify if the enable bit is set... */
2205 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2206 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2207 sizeof(struct pvclock_vcpu_time_info
)))
2208 vcpu
->arch
.pv_time_enabled
= false;
2210 vcpu
->arch
.pv_time_enabled
= true;
2214 case MSR_KVM_ASYNC_PF_EN
:
2215 if (kvm_pv_enable_async_pf(vcpu
, data
))
2218 case MSR_KVM_STEAL_TIME
:
2220 if (unlikely(!sched_info_on()))
2223 if (data
& KVM_STEAL_RESERVED_MASK
)
2226 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2227 data
& KVM_STEAL_VALID_BITS
,
2228 sizeof(struct kvm_steal_time
)))
2231 vcpu
->arch
.st
.msr_val
= data
;
2233 if (!(data
& KVM_MSR_ENABLED
))
2236 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2239 case MSR_KVM_PV_EOI_EN
:
2240 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2244 case MSR_IA32_MCG_CTL
:
2245 case MSR_IA32_MCG_STATUS
:
2246 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2247 return set_msr_mce(vcpu
, msr
, data
);
2249 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2250 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2251 pr
= true; /* fall through */
2252 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2253 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2254 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2255 return kvm_pmu_set_msr(vcpu
, msr_info
);
2257 if (pr
|| data
!= 0)
2258 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2259 "0x%x data 0x%llx\n", msr
, data
);
2261 case MSR_K7_CLK_CTL
:
2263 * Ignore all writes to this no longer documented MSR.
2264 * Writes are only relevant for old K7 processors,
2265 * all pre-dating SVM, but a recommended workaround from
2266 * AMD for these chips. It is possible to specify the
2267 * affected processor models on the command line, hence
2268 * the need to ignore the workaround.
2271 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2272 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2273 case HV_X64_MSR_CRASH_CTL
:
2274 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2275 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2276 msr_info
->host_initiated
);
2277 case MSR_IA32_BBL_CR_CTL3
:
2278 /* Drop writes to this legacy MSR -- see rdmsr
2279 * counterpart for further detail.
2281 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n", msr
, data
);
2283 case MSR_AMD64_OSVW_ID_LENGTH
:
2284 if (!guest_cpuid_has_osvw(vcpu
))
2286 vcpu
->arch
.osvw
.length
= data
;
2288 case MSR_AMD64_OSVW_STATUS
:
2289 if (!guest_cpuid_has_osvw(vcpu
))
2291 vcpu
->arch
.osvw
.status
= data
;
2294 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2295 return xen_hvm_config(vcpu
, data
);
2296 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2297 return kvm_pmu_set_msr(vcpu
, msr_info
);
2299 vcpu_debug_ratelimited(vcpu
, "unhandled wrmsr: 0x%x data 0x%llx\n",
2303 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data 0x%llx\n",
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2314 * Reads an msr value (of 'msr_index') into 'pdata'.
2315 * Returns 0 on success, non-0 otherwise.
2316 * Assumes vcpu_load() was already called.
2318 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2320 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2322 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2324 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2327 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2328 unsigned bank_num
= mcg_cap
& 0xff;
2331 case MSR_IA32_P5_MC_ADDR
:
2332 case MSR_IA32_P5_MC_TYPE
:
2335 case MSR_IA32_MCG_CAP
:
2336 data
= vcpu
->arch
.mcg_cap
;
2338 case MSR_IA32_MCG_CTL
:
2339 if (!(mcg_cap
& MCG_CTL_P
))
2341 data
= vcpu
->arch
.mcg_ctl
;
2343 case MSR_IA32_MCG_STATUS
:
2344 data
= vcpu
->arch
.mcg_status
;
2347 if (msr
>= MSR_IA32_MC0_CTL
&&
2348 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2349 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2350 data
= vcpu
->arch
.mce_banks
[offset
];
2359 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2361 switch (msr_info
->index
) {
2362 case MSR_IA32_PLATFORM_ID
:
2363 case MSR_IA32_EBL_CR_POWERON
:
2364 case MSR_IA32_DEBUGCTLMSR
:
2365 case MSR_IA32_LASTBRANCHFROMIP
:
2366 case MSR_IA32_LASTBRANCHTOIP
:
2367 case MSR_IA32_LASTINTFROMIP
:
2368 case MSR_IA32_LASTINTTOIP
:
2370 case MSR_K8_TSEG_ADDR
:
2371 case MSR_K8_TSEG_MASK
:
2373 case MSR_VM_HSAVE_PA
:
2374 case MSR_K8_INT_PENDING_MSG
:
2375 case MSR_AMD64_NB_CFG
:
2376 case MSR_FAM10H_MMIO_CONF_BASE
:
2377 case MSR_AMD64_BU_CFG2
:
2378 case MSR_IA32_PERF_CTL
:
2381 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2382 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2383 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2384 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2385 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2386 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2389 case MSR_IA32_UCODE_REV
:
2390 msr_info
->data
= 0x100000000ULL
;
2393 case 0x200 ... 0x2ff:
2394 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2395 case 0xcd: /* fsb frequency */
2399 * MSR_EBC_FREQUENCY_ID
2400 * Conservative value valid for even the basic CPU models.
2401 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403 * and 266MHz for model 3, or 4. Set Core Clock
2404 * Frequency to System Bus Frequency Ratio to 1 (bits
2405 * 31:24) even though these are only valid for CPU
2406 * models > 2, however guests may end up dividing or
2407 * multiplying by zero otherwise.
2409 case MSR_EBC_FREQUENCY_ID
:
2410 msr_info
->data
= 1 << 24;
2412 case MSR_IA32_APICBASE
:
2413 msr_info
->data
= kvm_get_apic_base(vcpu
);
2415 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2416 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2418 case MSR_IA32_TSCDEADLINE
:
2419 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2421 case MSR_IA32_TSC_ADJUST
:
2422 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2424 case MSR_IA32_MISC_ENABLE
:
2425 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2427 case MSR_IA32_SMBASE
:
2428 if (!msr_info
->host_initiated
)
2430 msr_info
->data
= vcpu
->arch
.smbase
;
2432 case MSR_IA32_PERF_STATUS
:
2433 /* TSC increment by tick */
2434 msr_info
->data
= 1000ULL;
2435 /* CPU multiplier */
2436 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2439 msr_info
->data
= vcpu
->arch
.efer
;
2441 case MSR_KVM_WALL_CLOCK
:
2442 case MSR_KVM_WALL_CLOCK_NEW
:
2443 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2445 case MSR_KVM_SYSTEM_TIME
:
2446 case MSR_KVM_SYSTEM_TIME_NEW
:
2447 msr_info
->data
= vcpu
->arch
.time
;
2449 case MSR_KVM_ASYNC_PF_EN
:
2450 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2452 case MSR_KVM_STEAL_TIME
:
2453 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2455 case MSR_KVM_PV_EOI_EN
:
2456 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2458 case MSR_IA32_P5_MC_ADDR
:
2459 case MSR_IA32_P5_MC_TYPE
:
2460 case MSR_IA32_MCG_CAP
:
2461 case MSR_IA32_MCG_CTL
:
2462 case MSR_IA32_MCG_STATUS
:
2463 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2464 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2465 case MSR_K7_CLK_CTL
:
2467 * Provide expected ramp-up count for K7. All other
2468 * are set to zero, indicating minimum divisors for
2471 * This prevents guest kernels on AMD host with CPU
2472 * type 6, model 8 and higher from exploding due to
2473 * the rdmsr failing.
2475 msr_info
->data
= 0x20000000;
2477 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2478 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2479 case HV_X64_MSR_CRASH_CTL
:
2480 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2481 return kvm_hv_get_msr_common(vcpu
,
2482 msr_info
->index
, &msr_info
->data
);
2484 case MSR_IA32_BBL_CR_CTL3
:
2485 /* This legacy MSR exists but isn't fully documented in current
2486 * silicon. It is however accessed by winxp in very narrow
2487 * scenarios where it sets bit #19, itself documented as
2488 * a "reserved" bit. Best effort attempt to source coherent
2489 * read data here should the balance of the register be
2490 * interpreted by the guest:
2492 * L2 cache control register 3: 64GB range, 256KB size,
2493 * enabled, latency 0x1, configured
2495 msr_info
->data
= 0xbe702111;
2497 case MSR_AMD64_OSVW_ID_LENGTH
:
2498 if (!guest_cpuid_has_osvw(vcpu
))
2500 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2502 case MSR_AMD64_OSVW_STATUS
:
2503 if (!guest_cpuid_has_osvw(vcpu
))
2505 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2508 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2509 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2511 vcpu_debug_ratelimited(vcpu
, "unhandled rdmsr: 0x%x\n",
2515 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr_info
->index
);
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2525 * Read or write a bunch of msrs. All parameters are kernel addresses.
2527 * @return number of msrs set successfully.
2529 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2530 struct kvm_msr_entry
*entries
,
2531 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2532 unsigned index
, u64
*data
))
2536 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2537 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2538 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2540 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2546 * Read or write a bunch of msrs. Parameters are user addresses.
2548 * @return number of msrs set successfully.
2550 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2551 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2552 unsigned index
, u64
*data
),
2555 struct kvm_msrs msrs
;
2556 struct kvm_msr_entry
*entries
;
2561 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2565 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2568 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2569 entries
= memdup_user(user_msrs
->entries
, size
);
2570 if (IS_ERR(entries
)) {
2571 r
= PTR_ERR(entries
);
2575 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2580 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2591 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2596 case KVM_CAP_IRQCHIP
:
2598 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2599 case KVM_CAP_SET_TSS_ADDR
:
2600 case KVM_CAP_EXT_CPUID
:
2601 case KVM_CAP_EXT_EMUL_CPUID
:
2602 case KVM_CAP_CLOCKSOURCE
:
2604 case KVM_CAP_NOP_IO_DELAY
:
2605 case KVM_CAP_MP_STATE
:
2606 case KVM_CAP_SYNC_MMU
:
2607 case KVM_CAP_USER_NMI
:
2608 case KVM_CAP_REINJECT_CONTROL
:
2609 case KVM_CAP_IRQ_INJECT_STATUS
:
2610 case KVM_CAP_IOEVENTFD
:
2611 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2613 case KVM_CAP_PIT_STATE2
:
2614 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2615 case KVM_CAP_XEN_HVM
:
2616 case KVM_CAP_VCPU_EVENTS
:
2617 case KVM_CAP_HYPERV
:
2618 case KVM_CAP_HYPERV_VAPIC
:
2619 case KVM_CAP_HYPERV_SPIN
:
2620 case KVM_CAP_HYPERV_SYNIC
:
2621 case KVM_CAP_PCI_SEGMENT
:
2622 case KVM_CAP_DEBUGREGS
:
2623 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2625 case KVM_CAP_ASYNC_PF
:
2626 case KVM_CAP_GET_TSC_KHZ
:
2627 case KVM_CAP_KVMCLOCK_CTRL
:
2628 case KVM_CAP_READONLY_MEM
:
2629 case KVM_CAP_HYPERV_TIME
:
2630 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2631 case KVM_CAP_TSC_DEADLINE_TIMER
:
2632 case KVM_CAP_ENABLE_CAP_VM
:
2633 case KVM_CAP_DISABLE_QUIRKS
:
2634 case KVM_CAP_SET_BOOT_CPU_ID
:
2635 case KVM_CAP_SPLIT_IRQCHIP
:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637 case KVM_CAP_ASSIGN_DEV_IRQ
:
2638 case KVM_CAP_PCI_2_3
:
2642 case KVM_CAP_ADJUST_CLOCK
:
2643 r
= KVM_CLOCK_TSC_STABLE
;
2645 case KVM_CAP_X86_SMM
:
2646 /* SMBASE is usually relocated above 1M on modern chipsets,
2647 * and SMM handlers might indeed rely on 4G segment limits,
2648 * so do not report SMM to be available if real mode is
2649 * emulated via vm86 mode. Still, do not go to great lengths
2650 * to avoid userspace's usage of the feature, because it is a
2651 * fringe case that is not enabled except via specific settings
2652 * of the module parameters.
2654 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2656 case KVM_CAP_COALESCED_MMIO
:
2657 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2660 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2662 case KVM_CAP_NR_VCPUS
:
2663 r
= KVM_SOFT_MAX_VCPUS
;
2665 case KVM_CAP_MAX_VCPUS
:
2668 case KVM_CAP_NR_MEMSLOTS
:
2669 r
= KVM_USER_MEM_SLOTS
;
2671 case KVM_CAP_PV_MMU
: /* obsolete */
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2676 r
= iommu_present(&pci_bus_type
);
2680 r
= KVM_MAX_MCE_BANKS
;
2683 r
= boot_cpu_has(X86_FEATURE_XSAVE
);
2685 case KVM_CAP_TSC_CONTROL
:
2686 r
= kvm_has_tsc_control
;
2688 case KVM_CAP_X2APIC_API
:
2689 r
= KVM_X2APIC_API_VALID_FLAGS
;
2699 long kvm_arch_dev_ioctl(struct file
*filp
,
2700 unsigned int ioctl
, unsigned long arg
)
2702 void __user
*argp
= (void __user
*)arg
;
2706 case KVM_GET_MSR_INDEX_LIST
: {
2707 struct kvm_msr_list __user
*user_msr_list
= argp
;
2708 struct kvm_msr_list msr_list
;
2712 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2715 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2716 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2719 if (n
< msr_list
.nmsrs
)
2722 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2723 num_msrs_to_save
* sizeof(u32
)))
2725 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2727 num_emulated_msrs
* sizeof(u32
)))
2732 case KVM_GET_SUPPORTED_CPUID
:
2733 case KVM_GET_EMULATED_CPUID
: {
2734 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2735 struct kvm_cpuid2 cpuid
;
2738 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2741 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2747 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2752 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2754 if (copy_to_user(argp
, &kvm_mce_cap_supported
,
2755 sizeof(kvm_mce_cap_supported
)))
2767 static void wbinvd_ipi(void *garbage
)
2772 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2774 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2777 static inline void kvm_migrate_timers(struct kvm_vcpu
*vcpu
)
2779 set_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
);
2782 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2784 /* Address WBINVD may be executed by guest */
2785 if (need_emulate_wbinvd(vcpu
)) {
2786 if (kvm_x86_ops
->has_wbinvd_exit())
2787 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2788 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2789 smp_call_function_single(vcpu
->cpu
,
2790 wbinvd_ipi
, NULL
, 1);
2793 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2795 /* Apply any externally detected TSC adjustments (due to suspend) */
2796 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2797 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2798 vcpu
->arch
.tsc_offset_adjustment
= 0;
2799 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2802 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2803 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2804 rdtsc() - vcpu
->arch
.last_host_tsc
;
2806 mark_tsc_unstable("KVM discovered backwards TSC");
2808 if (check_tsc_unstable()) {
2809 u64 offset
= kvm_compute_tsc_offset(vcpu
,
2810 vcpu
->arch
.last_guest_tsc
);
2811 kvm_vcpu_write_tsc_offset(vcpu
, offset
);
2812 vcpu
->arch
.tsc_catchup
= 1;
2814 if (kvm_lapic_hv_timer_in_use(vcpu
) &&
2815 kvm_x86_ops
->set_hv_timer(vcpu
,
2816 kvm_get_lapic_target_expiration_tsc(vcpu
)))
2817 kvm_lapic_switch_to_sw_timer(vcpu
);
2819 * On a host with synchronized TSC, there is no need to update
2820 * kvmclock on vcpu->cpu migration
2822 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2823 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2824 if (vcpu
->cpu
!= cpu
)
2825 kvm_migrate_timers(vcpu
);
2829 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu
*vcpu
)
2834 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2837 vcpu
->arch
.st
.steal
.preempted
= 1;
2839 kvm_write_guest_offset_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2840 &vcpu
->arch
.st
.steal
.preempted
,
2841 offsetof(struct kvm_steal_time
, preempted
),
2842 sizeof(vcpu
->arch
.st
.steal
.preempted
));
2845 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2849 * Disable page faults because we're in atomic context here.
2850 * kvm_write_guest_offset_cached() would call might_fault()
2851 * that relies on pagefault_disable() to tell if there's a
2852 * bug. NOTE: the write to guest memory may not go through if
2853 * during postcopy live migration or if there's heavy guest
2856 pagefault_disable();
2858 * kvm_memslots() will be called by
2859 * kvm_write_guest_offset_cached() so take the srcu lock.
2861 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2862 kvm_steal_time_set_preempted(vcpu
);
2863 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2865 kvm_x86_ops
->vcpu_put(vcpu
);
2866 kvm_put_guest_fpu(vcpu
);
2867 vcpu
->arch
.last_host_tsc
= rdtsc();
2870 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2871 struct kvm_lapic_state
*s
)
2873 if (vcpu
->arch
.apicv_active
)
2874 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2876 return kvm_apic_get_state(vcpu
, s
);
2879 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2880 struct kvm_lapic_state
*s
)
2884 r
= kvm_apic_set_state(vcpu
, s
);
2887 update_cr8_intercept(vcpu
);
2892 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
2894 return (!lapic_in_kernel(vcpu
) ||
2895 kvm_apic_accept_pic_intr(vcpu
));
2899 * if userspace requested an interrupt window, check that the
2900 * interrupt window is open.
2902 * No need to exit to userspace if we already have an interrupt queued.
2904 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
2906 return kvm_arch_interrupt_allowed(vcpu
) &&
2907 !kvm_cpu_has_interrupt(vcpu
) &&
2908 !kvm_event_needs_reinjection(vcpu
) &&
2909 kvm_cpu_accept_dm_intr(vcpu
);
2912 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2913 struct kvm_interrupt
*irq
)
2915 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2918 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2919 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2920 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2925 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2926 * fail for in-kernel 8259.
2928 if (pic_in_kernel(vcpu
->kvm
))
2931 if (vcpu
->arch
.pending_external_vector
!= -1)
2934 vcpu
->arch
.pending_external_vector
= irq
->irq
;
2935 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2939 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2941 kvm_inject_nmi(vcpu
);
2946 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
2948 kvm_make_request(KVM_REQ_SMI
, vcpu
);
2953 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2954 struct kvm_tpr_access_ctl
*tac
)
2958 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2962 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2966 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2969 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2971 if (mcg_cap
& ~(kvm_mce_cap_supported
| 0xff | 0xff0000))
2974 vcpu
->arch
.mcg_cap
= mcg_cap
;
2975 /* Init IA32_MCG_CTL to all 1s */
2976 if (mcg_cap
& MCG_CTL_P
)
2977 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2978 /* Init IA32_MCi_CTL to all 1s */
2979 for (bank
= 0; bank
< bank_num
; bank
++)
2980 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2982 if (kvm_x86_ops
->setup_mce
)
2983 kvm_x86_ops
->setup_mce(vcpu
);
2988 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2989 struct kvm_x86_mce
*mce
)
2991 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2992 unsigned bank_num
= mcg_cap
& 0xff;
2993 u64
*banks
= vcpu
->arch
.mce_banks
;
2995 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2998 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2999 * reporting is disabled
3001 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3002 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3004 banks
+= 4 * mce
->bank
;
3006 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3007 * reporting is disabled for the bank
3009 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3011 if (mce
->status
& MCI_STATUS_UC
) {
3012 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3013 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3014 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3017 if (banks
[1] & MCI_STATUS_VAL
)
3018 mce
->status
|= MCI_STATUS_OVER
;
3019 banks
[2] = mce
->addr
;
3020 banks
[3] = mce
->misc
;
3021 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3022 banks
[1] = mce
->status
;
3023 kvm_queue_exception(vcpu
, MC_VECTOR
);
3024 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3025 || !(banks
[1] & MCI_STATUS_UC
)) {
3026 if (banks
[1] & MCI_STATUS_VAL
)
3027 mce
->status
|= MCI_STATUS_OVER
;
3028 banks
[2] = mce
->addr
;
3029 banks
[3] = mce
->misc
;
3030 banks
[1] = mce
->status
;
3032 banks
[1] |= MCI_STATUS_OVER
;
3036 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3037 struct kvm_vcpu_events
*events
)
3040 events
->exception
.injected
=
3041 vcpu
->arch
.exception
.pending
&&
3042 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
3043 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3044 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3045 events
->exception
.pad
= 0;
3046 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3048 events
->interrupt
.injected
=
3049 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
3050 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3051 events
->interrupt
.soft
= 0;
3052 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3054 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3055 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3056 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3057 events
->nmi
.pad
= 0;
3059 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3061 events
->smi
.smm
= is_smm(vcpu
);
3062 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
3063 events
->smi
.smm_inside_nmi
=
3064 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
3065 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
3067 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3068 | KVM_VCPUEVENT_VALID_SHADOW
3069 | KVM_VCPUEVENT_VALID_SMM
);
3070 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3073 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3074 struct kvm_vcpu_events
*events
)
3076 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3077 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3078 | KVM_VCPUEVENT_VALID_SHADOW
3079 | KVM_VCPUEVENT_VALID_SMM
))
3082 if (events
->exception
.injected
&&
3083 (events
->exception
.nr
> 31 || events
->exception
.nr
== NMI_VECTOR
))
3087 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3088 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3089 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3090 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3092 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3093 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3094 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3095 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3096 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3097 events
->interrupt
.shadow
);
3099 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3100 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3101 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3102 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3104 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3105 lapic_in_kernel(vcpu
))
3106 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3108 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
3109 if (events
->smi
.smm
)
3110 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
3112 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
3113 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
3114 if (events
->smi
.smm_inside_nmi
)
3115 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3117 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3118 if (lapic_in_kernel(vcpu
)) {
3119 if (events
->smi
.latched_init
)
3120 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3122 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3126 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3131 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3132 struct kvm_debugregs
*dbgregs
)
3136 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3137 kvm_get_dr(vcpu
, 6, &val
);
3139 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3141 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3144 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3145 struct kvm_debugregs
*dbgregs
)
3150 if (dbgregs
->dr6
& ~0xffffffffull
)
3152 if (dbgregs
->dr7
& ~0xffffffffull
)
3155 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3156 kvm_update_dr0123(vcpu
);
3157 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3158 kvm_update_dr6(vcpu
);
3159 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3160 kvm_update_dr7(vcpu
);
3165 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3167 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3169 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3170 u64 xstate_bv
= xsave
->header
.xfeatures
;
3174 * Copy legacy XSAVE area, to avoid complications with CPUID
3175 * leaves 0 and 1 in the loop below.
3177 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3180 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3183 * Copy each region from the possibly compacted offset to the
3184 * non-compacted offset.
3186 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3188 u64 feature
= valid
& -valid
;
3189 int index
= fls64(feature
) - 1;
3190 void *src
= get_xsave_addr(xsave
, feature
);
3193 u32 size
, offset
, ecx
, edx
;
3194 cpuid_count(XSTATE_CPUID
, index
,
3195 &size
, &offset
, &ecx
, &edx
);
3196 memcpy(dest
+ offset
, src
, size
);
3203 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3205 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3206 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3210 * Copy legacy XSAVE area, to avoid complications with CPUID
3211 * leaves 0 and 1 in the loop below.
3213 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3215 /* Set XSTATE_BV and possibly XCOMP_BV. */
3216 xsave
->header
.xfeatures
= xstate_bv
;
3217 if (boot_cpu_has(X86_FEATURE_XSAVES
))
3218 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3221 * Copy each region from the non-compacted offset to the
3222 * possibly compacted offset.
3224 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3226 u64 feature
= valid
& -valid
;
3227 int index
= fls64(feature
) - 1;
3228 void *dest
= get_xsave_addr(xsave
, feature
);
3231 u32 size
, offset
, ecx
, edx
;
3232 cpuid_count(XSTATE_CPUID
, index
,
3233 &size
, &offset
, &ecx
, &edx
);
3234 memcpy(dest
, src
+ offset
, size
);
3241 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3242 struct kvm_xsave
*guest_xsave
)
3244 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3245 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3246 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3248 memcpy(guest_xsave
->region
,
3249 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3250 sizeof(struct fxregs_state
));
3251 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3252 XFEATURE_MASK_FPSSE
;
3256 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3257 struct kvm_xsave
*guest_xsave
)
3260 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3262 if (boot_cpu_has(X86_FEATURE_XSAVE
)) {
3264 * Here we allow setting states that are not present in
3265 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3266 * with old userspace.
3268 if (xstate_bv
& ~kvm_supported_xcr0())
3270 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3272 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
)
3274 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3275 guest_xsave
->region
, sizeof(struct fxregs_state
));
3280 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3281 struct kvm_xcrs
*guest_xcrs
)
3283 if (!boot_cpu_has(X86_FEATURE_XSAVE
)) {
3284 guest_xcrs
->nr_xcrs
= 0;
3288 guest_xcrs
->nr_xcrs
= 1;
3289 guest_xcrs
->flags
= 0;
3290 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3291 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3294 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3295 struct kvm_xcrs
*guest_xcrs
)
3299 if (!boot_cpu_has(X86_FEATURE_XSAVE
))
3302 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3305 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3306 /* Only support XCR0 currently */
3307 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3308 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3309 guest_xcrs
->xcrs
[i
].value
);
3318 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3319 * stopped by the hypervisor. This function will be called from the host only.
3320 * EINVAL is returned when the host attempts to set the flag for a guest that
3321 * does not support pv clocks.
3323 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3325 if (!vcpu
->arch
.pv_time_enabled
)
3327 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3328 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3332 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3333 struct kvm_enable_cap
*cap
)
3339 case KVM_CAP_HYPERV_SYNIC
:
3340 return kvm_hv_activate_synic(vcpu
);
3346 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3347 unsigned int ioctl
, unsigned long arg
)
3349 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3350 void __user
*argp
= (void __user
*)arg
;
3353 struct kvm_lapic_state
*lapic
;
3354 struct kvm_xsave
*xsave
;
3355 struct kvm_xcrs
*xcrs
;
3361 case KVM_GET_LAPIC
: {
3363 if (!lapic_in_kernel(vcpu
))
3365 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3370 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3374 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3379 case KVM_SET_LAPIC
: {
3381 if (!lapic_in_kernel(vcpu
))
3383 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3384 if (IS_ERR(u
.lapic
))
3385 return PTR_ERR(u
.lapic
);
3387 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3390 case KVM_INTERRUPT
: {
3391 struct kvm_interrupt irq
;
3394 if (copy_from_user(&irq
, argp
, sizeof irq
))
3396 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3400 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3404 r
= kvm_vcpu_ioctl_smi(vcpu
);
3407 case KVM_SET_CPUID
: {
3408 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3409 struct kvm_cpuid cpuid
;
3412 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3414 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3417 case KVM_SET_CPUID2
: {
3418 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3419 struct kvm_cpuid2 cpuid
;
3422 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3424 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3425 cpuid_arg
->entries
);
3428 case KVM_GET_CPUID2
: {
3429 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3430 struct kvm_cpuid2 cpuid
;
3433 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3435 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3436 cpuid_arg
->entries
);
3440 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3446 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3449 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3451 case KVM_TPR_ACCESS_REPORTING
: {
3452 struct kvm_tpr_access_ctl tac
;
3455 if (copy_from_user(&tac
, argp
, sizeof tac
))
3457 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3461 if (copy_to_user(argp
, &tac
, sizeof tac
))
3466 case KVM_SET_VAPIC_ADDR
: {
3467 struct kvm_vapic_addr va
;
3471 if (!lapic_in_kernel(vcpu
))
3474 if (copy_from_user(&va
, argp
, sizeof va
))
3476 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
3477 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3478 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
3481 case KVM_X86_SETUP_MCE
: {
3485 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3487 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3490 case KVM_X86_SET_MCE
: {
3491 struct kvm_x86_mce mce
;
3494 if (copy_from_user(&mce
, argp
, sizeof mce
))
3496 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3499 case KVM_GET_VCPU_EVENTS
: {
3500 struct kvm_vcpu_events events
;
3502 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3505 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3510 case KVM_SET_VCPU_EVENTS
: {
3511 struct kvm_vcpu_events events
;
3514 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3517 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3520 case KVM_GET_DEBUGREGS
: {
3521 struct kvm_debugregs dbgregs
;
3523 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3526 if (copy_to_user(argp
, &dbgregs
,
3527 sizeof(struct kvm_debugregs
)))
3532 case KVM_SET_DEBUGREGS
: {
3533 struct kvm_debugregs dbgregs
;
3536 if (copy_from_user(&dbgregs
, argp
,
3537 sizeof(struct kvm_debugregs
)))
3540 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3543 case KVM_GET_XSAVE
: {
3544 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3549 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3552 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3557 case KVM_SET_XSAVE
: {
3558 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3559 if (IS_ERR(u
.xsave
))
3560 return PTR_ERR(u
.xsave
);
3562 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3565 case KVM_GET_XCRS
: {
3566 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3571 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3574 if (copy_to_user(argp
, u
.xcrs
,
3575 sizeof(struct kvm_xcrs
)))
3580 case KVM_SET_XCRS
: {
3581 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3583 return PTR_ERR(u
.xcrs
);
3585 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3588 case KVM_SET_TSC_KHZ
: {
3592 user_tsc_khz
= (u32
)arg
;
3594 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3597 if (user_tsc_khz
== 0)
3598 user_tsc_khz
= tsc_khz
;
3600 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3605 case KVM_GET_TSC_KHZ
: {
3606 r
= vcpu
->arch
.virtual_tsc_khz
;
3609 case KVM_KVMCLOCK_CTRL
: {
3610 r
= kvm_set_guest_paused(vcpu
);
3613 case KVM_ENABLE_CAP
: {
3614 struct kvm_enable_cap cap
;
3617 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3619 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
3630 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3632 return VM_FAULT_SIGBUS
;
3635 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3639 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3641 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3645 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3648 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3652 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3653 u32 kvm_nr_mmu_pages
)
3655 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3658 mutex_lock(&kvm
->slots_lock
);
3660 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3661 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3663 mutex_unlock(&kvm
->slots_lock
);
3667 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3669 return kvm
->arch
.n_max_mmu_pages
;
3672 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3677 switch (chip
->chip_id
) {
3678 case KVM_IRQCHIP_PIC_MASTER
:
3679 memcpy(&chip
->chip
.pic
,
3680 &pic_irqchip(kvm
)->pics
[0],
3681 sizeof(struct kvm_pic_state
));
3683 case KVM_IRQCHIP_PIC_SLAVE
:
3684 memcpy(&chip
->chip
.pic
,
3685 &pic_irqchip(kvm
)->pics
[1],
3686 sizeof(struct kvm_pic_state
));
3688 case KVM_IRQCHIP_IOAPIC
:
3689 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3698 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3703 switch (chip
->chip_id
) {
3704 case KVM_IRQCHIP_PIC_MASTER
:
3705 spin_lock(&pic_irqchip(kvm
)->lock
);
3706 memcpy(&pic_irqchip(kvm
)->pics
[0],
3708 sizeof(struct kvm_pic_state
));
3709 spin_unlock(&pic_irqchip(kvm
)->lock
);
3711 case KVM_IRQCHIP_PIC_SLAVE
:
3712 spin_lock(&pic_irqchip(kvm
)->lock
);
3713 memcpy(&pic_irqchip(kvm
)->pics
[1],
3715 sizeof(struct kvm_pic_state
));
3716 spin_unlock(&pic_irqchip(kvm
)->lock
);
3718 case KVM_IRQCHIP_IOAPIC
:
3719 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3725 kvm_pic_update_irq(pic_irqchip(kvm
));
3729 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3731 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
3733 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
3735 mutex_lock(&kps
->lock
);
3736 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
3737 mutex_unlock(&kps
->lock
);
3741 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3744 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3746 mutex_lock(&pit
->pit_state
.lock
);
3747 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
3748 for (i
= 0; i
< 3; i
++)
3749 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
3750 mutex_unlock(&pit
->pit_state
.lock
);
3754 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3756 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3757 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3758 sizeof(ps
->channels
));
3759 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3760 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3761 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3765 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3769 u32 prev_legacy
, cur_legacy
;
3770 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3772 mutex_lock(&pit
->pit_state
.lock
);
3773 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3774 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3775 if (!prev_legacy
&& cur_legacy
)
3777 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
3778 sizeof(pit
->pit_state
.channels
));
3779 pit
->pit_state
.flags
= ps
->flags
;
3780 for (i
= 0; i
< 3; i
++)
3781 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
3783 mutex_unlock(&pit
->pit_state
.lock
);
3787 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3788 struct kvm_reinject_control
*control
)
3790 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3795 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3796 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3797 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3799 mutex_lock(&pit
->pit_state
.lock
);
3800 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
3801 mutex_unlock(&pit
->pit_state
.lock
);
3807 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3808 * @kvm: kvm instance
3809 * @log: slot id and address to which we copy the log
3811 * Steps 1-4 below provide general overview of dirty page logging. See
3812 * kvm_get_dirty_log_protect() function description for additional details.
3814 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3815 * always flush the TLB (step 4) even if previous step failed and the dirty
3816 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3817 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3818 * writes will be marked dirty for next log read.
3820 * 1. Take a snapshot of the bit and clear it if needed.
3821 * 2. Write protect the corresponding page.
3822 * 3. Copy the snapshot to the userspace.
3823 * 4. Flush TLB's if needed.
3825 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3827 bool is_dirty
= false;
3830 mutex_lock(&kvm
->slots_lock
);
3833 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3835 if (kvm_x86_ops
->flush_log_dirty
)
3836 kvm_x86_ops
->flush_log_dirty(kvm
);
3838 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3841 * All the TLBs can be flushed out of mmu lock, see the comments in
3842 * kvm_mmu_slot_remove_write_access().
3844 lockdep_assert_held(&kvm
->slots_lock
);
3846 kvm_flush_remote_tlbs(kvm
);
3848 mutex_unlock(&kvm
->slots_lock
);
3852 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3855 if (!irqchip_in_kernel(kvm
))
3858 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3859 irq_event
->irq
, irq_event
->level
,
3864 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3865 struct kvm_enable_cap
*cap
)
3873 case KVM_CAP_DISABLE_QUIRKS
:
3874 kvm
->arch
.disabled_quirks
= cap
->args
[0];
3877 case KVM_CAP_SPLIT_IRQCHIP
: {
3878 mutex_lock(&kvm
->lock
);
3880 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
3881 goto split_irqchip_unlock
;
3883 if (irqchip_in_kernel(kvm
))
3884 goto split_irqchip_unlock
;
3885 if (kvm
->created_vcpus
)
3886 goto split_irqchip_unlock
;
3887 r
= kvm_setup_empty_irq_routing(kvm
);
3889 goto split_irqchip_unlock
;
3890 /* Pairs with irqchip_in_kernel. */
3892 kvm
->arch
.irqchip_split
= true;
3893 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
3895 split_irqchip_unlock
:
3896 mutex_unlock(&kvm
->lock
);
3899 case KVM_CAP_X2APIC_API
:
3901 if (cap
->args
[0] & ~KVM_X2APIC_API_VALID_FLAGS
)
3904 if (cap
->args
[0] & KVM_X2APIC_API_USE_32BIT_IDS
)
3905 kvm
->arch
.x2apic_format
= true;
3906 if (cap
->args
[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK
)
3907 kvm
->arch
.x2apic_broadcast_quirk_disabled
= true;
3918 long kvm_arch_vm_ioctl(struct file
*filp
,
3919 unsigned int ioctl
, unsigned long arg
)
3921 struct kvm
*kvm
= filp
->private_data
;
3922 void __user
*argp
= (void __user
*)arg
;
3925 * This union makes it completely explicit to gcc-3.x
3926 * that these two variables' stack usage should be
3927 * combined, not added together.
3930 struct kvm_pit_state ps
;
3931 struct kvm_pit_state2 ps2
;
3932 struct kvm_pit_config pit_config
;
3936 case KVM_SET_TSS_ADDR
:
3937 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3939 case KVM_SET_IDENTITY_MAP_ADDR
: {
3943 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3945 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3948 case KVM_SET_NR_MMU_PAGES
:
3949 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3951 case KVM_GET_NR_MMU_PAGES
:
3952 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3954 case KVM_CREATE_IRQCHIP
: {
3955 struct kvm_pic
*vpic
;
3957 mutex_lock(&kvm
->lock
);
3960 goto create_irqchip_unlock
;
3962 if (kvm
->created_vcpus
)
3963 goto create_irqchip_unlock
;
3965 vpic
= kvm_create_pic(kvm
);
3967 r
= kvm_ioapic_init(kvm
);
3969 mutex_lock(&kvm
->slots_lock
);
3970 kvm_destroy_pic(vpic
);
3971 mutex_unlock(&kvm
->slots_lock
);
3972 goto create_irqchip_unlock
;
3975 goto create_irqchip_unlock
;
3976 r
= kvm_setup_default_irq_routing(kvm
);
3978 mutex_lock(&kvm
->slots_lock
);
3979 mutex_lock(&kvm
->irq_lock
);
3980 kvm_ioapic_destroy(kvm
);
3981 kvm_destroy_pic(vpic
);
3982 mutex_unlock(&kvm
->irq_lock
);
3983 mutex_unlock(&kvm
->slots_lock
);
3984 goto create_irqchip_unlock
;
3986 /* Write kvm->irq_routing before kvm->arch.vpic. */
3988 kvm
->arch
.vpic
= vpic
;
3989 create_irqchip_unlock
:
3990 mutex_unlock(&kvm
->lock
);
3993 case KVM_CREATE_PIT
:
3994 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3996 case KVM_CREATE_PIT2
:
3998 if (copy_from_user(&u
.pit_config
, argp
,
3999 sizeof(struct kvm_pit_config
)))
4002 mutex_lock(&kvm
->lock
);
4005 goto create_pit_unlock
;
4007 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
4011 mutex_unlock(&kvm
->lock
);
4013 case KVM_GET_IRQCHIP
: {
4014 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4015 struct kvm_irqchip
*chip
;
4017 chip
= memdup_user(argp
, sizeof(*chip
));
4024 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
4025 goto get_irqchip_out
;
4026 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
4028 goto get_irqchip_out
;
4030 if (copy_to_user(argp
, chip
, sizeof *chip
))
4031 goto get_irqchip_out
;
4037 case KVM_SET_IRQCHIP
: {
4038 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4039 struct kvm_irqchip
*chip
;
4041 chip
= memdup_user(argp
, sizeof(*chip
));
4048 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
4049 goto set_irqchip_out
;
4050 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
4052 goto set_irqchip_out
;
4060 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
4063 if (!kvm
->arch
.vpit
)
4065 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
4069 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
4076 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
4079 if (!kvm
->arch
.vpit
)
4081 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4084 case KVM_GET_PIT2
: {
4086 if (!kvm
->arch
.vpit
)
4088 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4092 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4097 case KVM_SET_PIT2
: {
4099 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4102 if (!kvm
->arch
.vpit
)
4104 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4107 case KVM_REINJECT_CONTROL
: {
4108 struct kvm_reinject_control control
;
4110 if (copy_from_user(&control
, argp
, sizeof(control
)))
4112 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4115 case KVM_SET_BOOT_CPU_ID
:
4117 mutex_lock(&kvm
->lock
);
4118 if (kvm
->created_vcpus
)
4121 kvm
->arch
.bsp_vcpu_id
= arg
;
4122 mutex_unlock(&kvm
->lock
);
4124 case KVM_XEN_HVM_CONFIG
: {
4126 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
4127 sizeof(struct kvm_xen_hvm_config
)))
4130 if (kvm
->arch
.xen_hvm_config
.flags
)
4135 case KVM_SET_CLOCK
: {
4136 struct kvm_clock_data user_ns
;
4140 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4148 local_irq_disable();
4149 now_ns
= __get_kvmclock_ns(kvm
);
4150 kvm
->arch
.kvmclock_offset
+= user_ns
.clock
- now_ns
;
4152 kvm_gen_update_masterclock(kvm
);
4155 case KVM_GET_CLOCK
: {
4156 struct kvm_clock_data user_ns
;
4159 local_irq_disable();
4160 now_ns
= __get_kvmclock_ns(kvm
);
4161 user_ns
.clock
= now_ns
;
4162 user_ns
.flags
= kvm
->arch
.use_master_clock
? KVM_CLOCK_TSC_STABLE
: 0;
4164 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4167 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4172 case KVM_ENABLE_CAP
: {
4173 struct kvm_enable_cap cap
;
4176 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4178 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4182 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
4188 static void kvm_init_msr_list(void)
4193 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4194 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4198 * Even MSRs that are valid in the host may not be exposed
4199 * to the guests in some cases.
4201 switch (msrs_to_save
[i
]) {
4202 case MSR_IA32_BNDCFGS
:
4203 if (!kvm_x86_ops
->mpx_supported())
4207 if (!kvm_x86_ops
->rdtscp_supported())
4215 msrs_to_save
[j
] = msrs_to_save
[i
];
4218 num_msrs_to_save
= j
;
4220 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4221 switch (emulated_msrs
[i
]) {
4222 case MSR_IA32_SMBASE
:
4223 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4231 emulated_msrs
[j
] = emulated_msrs
[i
];
4234 num_emulated_msrs
= j
;
4237 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4245 if (!(lapic_in_kernel(vcpu
) &&
4246 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4247 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4258 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4265 if (!(lapic_in_kernel(vcpu
) &&
4266 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4268 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4270 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4280 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4281 struct kvm_segment
*var
, int seg
)
4283 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4286 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4287 struct kvm_segment
*var
, int seg
)
4289 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4292 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4293 struct x86_exception
*exception
)
4297 BUG_ON(!mmu_is_nested(vcpu
));
4299 /* NPT walks are always user-walks */
4300 access
|= PFERR_USER_MASK
;
4301 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4306 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4307 struct x86_exception
*exception
)
4309 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4310 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4313 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4314 struct x86_exception
*exception
)
4316 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4317 access
|= PFERR_FETCH_MASK
;
4318 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4321 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4322 struct x86_exception
*exception
)
4324 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4325 access
|= PFERR_WRITE_MASK
;
4326 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4329 /* uses this to access any guest's mapped memory without checking CPL */
4330 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4331 struct x86_exception
*exception
)
4333 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4336 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4337 struct kvm_vcpu
*vcpu
, u32 access
,
4338 struct x86_exception
*exception
)
4341 int r
= X86EMUL_CONTINUE
;
4344 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4346 unsigned offset
= addr
& (PAGE_SIZE
-1);
4347 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4350 if (gpa
== UNMAPPED_GVA
)
4351 return X86EMUL_PROPAGATE_FAULT
;
4352 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4355 r
= X86EMUL_IO_NEEDED
;
4367 /* used for instruction fetching */
4368 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4369 gva_t addr
, void *val
, unsigned int bytes
,
4370 struct x86_exception
*exception
)
4372 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4373 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4377 /* Inline kvm_read_guest_virt_helper for speed. */
4378 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4380 if (unlikely(gpa
== UNMAPPED_GVA
))
4381 return X86EMUL_PROPAGATE_FAULT
;
4383 offset
= addr
& (PAGE_SIZE
-1);
4384 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4385 bytes
= (unsigned)PAGE_SIZE
- offset
;
4386 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4388 if (unlikely(ret
< 0))
4389 return X86EMUL_IO_NEEDED
;
4391 return X86EMUL_CONTINUE
;
4394 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4395 gva_t addr
, void *val
, unsigned int bytes
,
4396 struct x86_exception
*exception
)
4398 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4399 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4401 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4404 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4406 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4407 gva_t addr
, void *val
, unsigned int bytes
,
4408 struct x86_exception
*exception
)
4410 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4411 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4414 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4415 unsigned long addr
, void *val
, unsigned int bytes
)
4417 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4418 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4420 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4423 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4424 gva_t addr
, void *val
,
4426 struct x86_exception
*exception
)
4428 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4430 int r
= X86EMUL_CONTINUE
;
4433 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4436 unsigned offset
= addr
& (PAGE_SIZE
-1);
4437 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4440 if (gpa
== UNMAPPED_GVA
)
4441 return X86EMUL_PROPAGATE_FAULT
;
4442 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4444 r
= X86EMUL_IO_NEEDED
;
4455 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4457 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4458 gpa_t
*gpa
, struct x86_exception
*exception
,
4461 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4462 | (write
? PFERR_WRITE_MASK
: 0);
4465 * currently PKRU is only applied to ept enabled guest so
4466 * there is no pkey in EPT page table for L1 guest or EPT
4467 * shadow page table for L2 guest.
4469 if (vcpu_match_mmio_gva(vcpu
, gva
)
4470 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4471 vcpu
->arch
.access
, 0, access
)) {
4472 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4473 (gva
& (PAGE_SIZE
- 1));
4474 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4478 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4480 if (*gpa
== UNMAPPED_GVA
)
4483 /* For APIC access vmexit */
4484 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4487 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4488 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4495 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4496 const void *val
, int bytes
)
4500 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4503 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
4507 struct read_write_emulator_ops
{
4508 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4510 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4511 void *val
, int bytes
);
4512 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4513 int bytes
, void *val
);
4514 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4515 void *val
, int bytes
);
4519 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4521 if (vcpu
->mmio_read_completed
) {
4522 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4523 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4524 vcpu
->mmio_read_completed
= 0;
4531 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4532 void *val
, int bytes
)
4534 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4537 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4538 void *val
, int bytes
)
4540 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4543 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4545 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4546 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4549 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4550 void *val
, int bytes
)
4552 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4553 return X86EMUL_IO_NEEDED
;
4556 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4557 void *val
, int bytes
)
4559 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4561 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4562 return X86EMUL_CONTINUE
;
4565 static const struct read_write_emulator_ops read_emultor
= {
4566 .read_write_prepare
= read_prepare
,
4567 .read_write_emulate
= read_emulate
,
4568 .read_write_mmio
= vcpu_mmio_read
,
4569 .read_write_exit_mmio
= read_exit_mmio
,
4572 static const struct read_write_emulator_ops write_emultor
= {
4573 .read_write_emulate
= write_emulate
,
4574 .read_write_mmio
= write_mmio
,
4575 .read_write_exit_mmio
= write_exit_mmio
,
4579 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4581 struct x86_exception
*exception
,
4582 struct kvm_vcpu
*vcpu
,
4583 const struct read_write_emulator_ops
*ops
)
4587 bool write
= ops
->write
;
4588 struct kvm_mmio_fragment
*frag
;
4590 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4593 return X86EMUL_PROPAGATE_FAULT
;
4595 /* For APIC access vmexit */
4599 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4600 return X86EMUL_CONTINUE
;
4604 * Is this MMIO handled locally?
4606 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4607 if (handled
== bytes
)
4608 return X86EMUL_CONTINUE
;
4614 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4615 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4619 return X86EMUL_CONTINUE
;
4622 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4624 void *val
, unsigned int bytes
,
4625 struct x86_exception
*exception
,
4626 const struct read_write_emulator_ops
*ops
)
4628 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4632 if (ops
->read_write_prepare
&&
4633 ops
->read_write_prepare(vcpu
, val
, bytes
))
4634 return X86EMUL_CONTINUE
;
4636 vcpu
->mmio_nr_fragments
= 0;
4638 /* Crossing a page boundary? */
4639 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4642 now
= -addr
& ~PAGE_MASK
;
4643 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4646 if (rc
!= X86EMUL_CONTINUE
)
4649 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4655 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4657 if (rc
!= X86EMUL_CONTINUE
)
4660 if (!vcpu
->mmio_nr_fragments
)
4663 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4665 vcpu
->mmio_needed
= 1;
4666 vcpu
->mmio_cur_fragment
= 0;
4668 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4669 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4670 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4671 vcpu
->run
->mmio
.phys_addr
= gpa
;
4673 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4676 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4680 struct x86_exception
*exception
)
4682 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4683 exception
, &read_emultor
);
4686 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4690 struct x86_exception
*exception
)
4692 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4693 exception
, &write_emultor
);
4696 #define CMPXCHG_TYPE(t, ptr, old, new) \
4697 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4699 #ifdef CONFIG_X86_64
4700 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4702 # define CMPXCHG64(ptr, old, new) \
4703 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4706 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4711 struct x86_exception
*exception
)
4713 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4719 /* guests cmpxchg8b have to be emulated atomically */
4720 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4723 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4725 if (gpa
== UNMAPPED_GVA
||
4726 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4729 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4732 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4733 if (is_error_page(page
))
4736 kaddr
= kmap_atomic(page
);
4737 kaddr
+= offset_in_page(gpa
);
4740 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4743 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4746 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4749 exchanged
= CMPXCHG64(kaddr
, old
, new);
4754 kunmap_atomic(kaddr
);
4755 kvm_release_page_dirty(page
);
4758 return X86EMUL_CMPXCHG_FAILED
;
4760 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
4761 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
4763 return X86EMUL_CONTINUE
;
4766 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4768 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4771 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4773 /* TODO: String I/O for in kernel device */
4776 if (vcpu
->arch
.pio
.in
)
4777 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4778 vcpu
->arch
.pio
.size
, pd
);
4780 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4781 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4786 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4787 unsigned short port
, void *val
,
4788 unsigned int count
, bool in
)
4790 vcpu
->arch
.pio
.port
= port
;
4791 vcpu
->arch
.pio
.in
= in
;
4792 vcpu
->arch
.pio
.count
= count
;
4793 vcpu
->arch
.pio
.size
= size
;
4795 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4796 vcpu
->arch
.pio
.count
= 0;
4800 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4801 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4802 vcpu
->run
->io
.size
= size
;
4803 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4804 vcpu
->run
->io
.count
= count
;
4805 vcpu
->run
->io
.port
= port
;
4810 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4811 int size
, unsigned short port
, void *val
,
4814 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4817 if (vcpu
->arch
.pio
.count
)
4820 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4823 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4824 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4825 vcpu
->arch
.pio
.count
= 0;
4832 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4833 int size
, unsigned short port
,
4834 const void *val
, unsigned int count
)
4836 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4838 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4839 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4840 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4843 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4845 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4848 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4850 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4853 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4855 if (!need_emulate_wbinvd(vcpu
))
4856 return X86EMUL_CONTINUE
;
4858 if (kvm_x86_ops
->has_wbinvd_exit()) {
4859 int cpu
= get_cpu();
4861 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4862 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4863 wbinvd_ipi
, NULL
, 1);
4865 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4868 return X86EMUL_CONTINUE
;
4871 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4873 kvm_emulate_wbinvd_noskip(vcpu
);
4874 return kvm_skip_emulated_instruction(vcpu
);
4876 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4880 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4882 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
4885 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4886 unsigned long *dest
)
4888 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4891 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4892 unsigned long value
)
4895 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4898 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4900 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4903 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4905 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4906 unsigned long value
;
4910 value
= kvm_read_cr0(vcpu
);
4913 value
= vcpu
->arch
.cr2
;
4916 value
= kvm_read_cr3(vcpu
);
4919 value
= kvm_read_cr4(vcpu
);
4922 value
= kvm_get_cr8(vcpu
);
4925 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4932 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4934 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4939 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4942 vcpu
->arch
.cr2
= val
;
4945 res
= kvm_set_cr3(vcpu
, val
);
4948 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4951 res
= kvm_set_cr8(vcpu
, val
);
4954 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4961 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4963 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4966 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4968 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4971 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4973 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4976 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4978 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4981 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4983 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4986 static unsigned long emulator_get_cached_segment_base(
4987 struct x86_emulate_ctxt
*ctxt
, int seg
)
4989 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4992 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4993 struct desc_struct
*desc
, u32
*base3
,
4996 struct kvm_segment var
;
4998 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4999 *selector
= var
.selector
;
5002 memset(desc
, 0, sizeof(*desc
));
5008 set_desc_limit(desc
, var
.limit
);
5009 set_desc_base(desc
, (unsigned long)var
.base
);
5010 #ifdef CONFIG_X86_64
5012 *base3
= var
.base
>> 32;
5014 desc
->type
= var
.type
;
5016 desc
->dpl
= var
.dpl
;
5017 desc
->p
= var
.present
;
5018 desc
->avl
= var
.avl
;
5026 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
5027 struct desc_struct
*desc
, u32 base3
,
5030 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5031 struct kvm_segment var
;
5033 var
.selector
= selector
;
5034 var
.base
= get_desc_base(desc
);
5035 #ifdef CONFIG_X86_64
5036 var
.base
|= ((u64
)base3
) << 32;
5038 var
.limit
= get_desc_limit(desc
);
5040 var
.limit
= (var
.limit
<< 12) | 0xfff;
5041 var
.type
= desc
->type
;
5042 var
.dpl
= desc
->dpl
;
5047 var
.avl
= desc
->avl
;
5048 var
.present
= desc
->p
;
5049 var
.unusable
= !var
.present
;
5052 kvm_set_segment(vcpu
, &var
, seg
);
5056 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
5057 u32 msr_index
, u64
*pdata
)
5059 struct msr_data msr
;
5062 msr
.index
= msr_index
;
5063 msr
.host_initiated
= false;
5064 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
5072 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
5073 u32 msr_index
, u64 data
)
5075 struct msr_data msr
;
5078 msr
.index
= msr_index
;
5079 msr
.host_initiated
= false;
5080 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
5083 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
5085 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5087 return vcpu
->arch
.smbase
;
5090 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
5092 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5094 vcpu
->arch
.smbase
= smbase
;
5097 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
5100 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
5103 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
5104 u32 pmc
, u64
*pdata
)
5106 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
5109 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
5111 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
5114 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
5117 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
5120 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
5125 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
5126 struct x86_instruction_info
*info
,
5127 enum x86_intercept_stage stage
)
5129 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5132 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5133 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
5135 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
5138 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5140 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5143 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5145 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5148 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5150 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5153 static const struct x86_emulate_ops emulate_ops
= {
5154 .read_gpr
= emulator_read_gpr
,
5155 .write_gpr
= emulator_write_gpr
,
5156 .read_std
= kvm_read_guest_virt_system
,
5157 .write_std
= kvm_write_guest_virt_system
,
5158 .read_phys
= kvm_read_guest_phys_system
,
5159 .fetch
= kvm_fetch_guest_virt
,
5160 .read_emulated
= emulator_read_emulated
,
5161 .write_emulated
= emulator_write_emulated
,
5162 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5163 .invlpg
= emulator_invlpg
,
5164 .pio_in_emulated
= emulator_pio_in_emulated
,
5165 .pio_out_emulated
= emulator_pio_out_emulated
,
5166 .get_segment
= emulator_get_segment
,
5167 .set_segment
= emulator_set_segment
,
5168 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5169 .get_gdt
= emulator_get_gdt
,
5170 .get_idt
= emulator_get_idt
,
5171 .set_gdt
= emulator_set_gdt
,
5172 .set_idt
= emulator_set_idt
,
5173 .get_cr
= emulator_get_cr
,
5174 .set_cr
= emulator_set_cr
,
5175 .cpl
= emulator_get_cpl
,
5176 .get_dr
= emulator_get_dr
,
5177 .set_dr
= emulator_set_dr
,
5178 .get_smbase
= emulator_get_smbase
,
5179 .set_smbase
= emulator_set_smbase
,
5180 .set_msr
= emulator_set_msr
,
5181 .get_msr
= emulator_get_msr
,
5182 .check_pmc
= emulator_check_pmc
,
5183 .read_pmc
= emulator_read_pmc
,
5184 .halt
= emulator_halt
,
5185 .wbinvd
= emulator_wbinvd
,
5186 .fix_hypercall
= emulator_fix_hypercall
,
5187 .get_fpu
= emulator_get_fpu
,
5188 .put_fpu
= emulator_put_fpu
,
5189 .intercept
= emulator_intercept
,
5190 .get_cpuid
= emulator_get_cpuid
,
5191 .set_nmi_mask
= emulator_set_nmi_mask
,
5194 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5196 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5198 * an sti; sti; sequence only disable interrupts for the first
5199 * instruction. So, if the last instruction, be it emulated or
5200 * not, left the system with the INT_STI flag enabled, it
5201 * means that the last instruction is an sti. We should not
5202 * leave the flag on in this case. The same goes for mov ss
5204 if (int_shadow
& mask
)
5206 if (unlikely(int_shadow
|| mask
)) {
5207 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5209 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5213 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5215 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5216 if (ctxt
->exception
.vector
== PF_VECTOR
)
5217 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5219 if (ctxt
->exception
.error_code_valid
)
5220 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5221 ctxt
->exception
.error_code
);
5223 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5227 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5229 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5232 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5234 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5235 ctxt
->eip
= kvm_rip_read(vcpu
);
5236 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5237 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5238 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5239 cs_db
? X86EMUL_MODE_PROT32
:
5240 X86EMUL_MODE_PROT16
;
5241 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5242 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5243 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5244 ctxt
->emul_flags
= vcpu
->arch
.hflags
;
5246 init_decode_cache(ctxt
);
5247 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5250 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5252 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5255 init_emulate_ctxt(vcpu
);
5259 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5260 ret
= emulate_int_real(ctxt
, irq
);
5262 if (ret
!= X86EMUL_CONTINUE
)
5263 return EMULATE_FAIL
;
5265 ctxt
->eip
= ctxt
->_eip
;
5266 kvm_rip_write(vcpu
, ctxt
->eip
);
5267 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5269 if (irq
== NMI_VECTOR
)
5270 vcpu
->arch
.nmi_pending
= 0;
5272 vcpu
->arch
.interrupt
.pending
= false;
5274 return EMULATE_DONE
;
5276 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5278 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5280 int r
= EMULATE_DONE
;
5282 ++vcpu
->stat
.insn_emulation_fail
;
5283 trace_kvm_emulate_insn_failed(vcpu
);
5284 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5285 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5286 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5287 vcpu
->run
->internal
.ndata
= 0;
5290 kvm_queue_exception(vcpu
, UD_VECTOR
);
5295 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5296 bool write_fault_to_shadow_pgtable
,
5302 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5305 if (!vcpu
->arch
.mmu
.direct_map
) {
5307 * Write permission should be allowed since only
5308 * write access need to be emulated.
5310 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5313 * If the mapping is invalid in guest, let cpu retry
5314 * it to generate fault.
5316 if (gpa
== UNMAPPED_GVA
)
5321 * Do not retry the unhandleable instruction if it faults on the
5322 * readonly host memory, otherwise it will goto a infinite loop:
5323 * retry instruction -> write #PF -> emulation fail -> retry
5324 * instruction -> ...
5326 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5329 * If the instruction failed on the error pfn, it can not be fixed,
5330 * report the error to userspace.
5332 if (is_error_noslot_pfn(pfn
))
5335 kvm_release_pfn_clean(pfn
);
5337 /* The instructions are well-emulated on direct mmu. */
5338 if (vcpu
->arch
.mmu
.direct_map
) {
5339 unsigned int indirect_shadow_pages
;
5341 spin_lock(&vcpu
->kvm
->mmu_lock
);
5342 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5343 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5345 if (indirect_shadow_pages
)
5346 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5352 * if emulation was due to access to shadowed page table
5353 * and it failed try to unshadow page and re-enter the
5354 * guest to let CPU execute the instruction.
5356 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5359 * If the access faults on its page table, it can not
5360 * be fixed by unprotecting shadow page and it should
5361 * be reported to userspace.
5363 return !write_fault_to_shadow_pgtable
;
5366 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5367 unsigned long cr2
, int emulation_type
)
5369 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5370 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5372 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5373 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5376 * If the emulation is caused by #PF and it is non-page_table
5377 * writing instruction, it means the VM-EXIT is caused by shadow
5378 * page protected, we can zap the shadow page and retry this
5379 * instruction directly.
5381 * Note: if the guest uses a non-page-table modifying instruction
5382 * on the PDE that points to the instruction, then we will unmap
5383 * the instruction and go to an infinite loop. So, we cache the
5384 * last retried eip and the last fault address, if we meet the eip
5385 * and the address again, we can break out of the potential infinite
5388 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5390 if (!(emulation_type
& EMULTYPE_RETRY
))
5393 if (x86_page_table_writing_insn(ctxt
))
5396 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5399 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5400 vcpu
->arch
.last_retry_addr
= cr2
;
5402 if (!vcpu
->arch
.mmu
.direct_map
)
5403 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5405 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5410 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5411 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5413 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5415 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5416 /* This is a good place to trace that we are exiting SMM. */
5417 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5419 /* Process a latched INIT or SMI, if any. */
5420 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5423 kvm_mmu_reset_context(vcpu
);
5426 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5428 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5430 vcpu
->arch
.hflags
= emul_flags
;
5432 if (changed
& HF_SMM_MASK
)
5433 kvm_smm_changed(vcpu
);
5436 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5445 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5446 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5451 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, unsigned long rflags
, int *r
)
5453 struct kvm_run
*kvm_run
= vcpu
->run
;
5456 * rflags is the old, "raw" value of the flags. The new value has
5457 * not been saved yet.
5459 * This is correct even for TF set by the guest, because "the
5460 * processor will not generate this exception after the instruction
5461 * that sets the TF flag".
5463 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5464 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5465 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
|
5467 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5468 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5469 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5470 *r
= EMULATE_USER_EXIT
;
5473 * "Certain debug exceptions may clear bit 0-3. The
5474 * remaining contents of the DR6 register are never
5475 * cleared by the processor".
5477 vcpu
->arch
.dr6
&= ~15;
5478 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5479 kvm_queue_exception(vcpu
, DB_VECTOR
);
5484 int kvm_skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
5486 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5487 int r
= EMULATE_DONE
;
5489 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5490 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5491 return r
== EMULATE_DONE
;
5493 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction
);
5495 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5497 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5498 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5499 struct kvm_run
*kvm_run
= vcpu
->run
;
5500 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5501 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5502 vcpu
->arch
.guest_debug_dr7
,
5506 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5507 kvm_run
->debug
.arch
.pc
= eip
;
5508 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5509 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5510 *r
= EMULATE_USER_EXIT
;
5515 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5516 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5517 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5518 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5523 vcpu
->arch
.dr6
&= ~15;
5524 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5525 kvm_queue_exception(vcpu
, DB_VECTOR
);
5534 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5541 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5542 bool writeback
= true;
5543 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5546 * Clear write_fault_to_shadow_pgtable here to ensure it is
5549 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5550 kvm_clear_exception_queue(vcpu
);
5552 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5553 init_emulate_ctxt(vcpu
);
5556 * We will reenter on the same instruction since
5557 * we do not set complete_userspace_io. This does not
5558 * handle watchpoints yet, those would be handled in
5561 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5564 ctxt
->interruptibility
= 0;
5565 ctxt
->have_exception
= false;
5566 ctxt
->exception
.vector
= -1;
5567 ctxt
->perm_ok
= false;
5569 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5571 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5573 trace_kvm_emulate_insn_start(vcpu
);
5574 ++vcpu
->stat
.insn_emulation
;
5575 if (r
!= EMULATION_OK
) {
5576 if (emulation_type
& EMULTYPE_TRAP_UD
)
5577 return EMULATE_FAIL
;
5578 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5580 return EMULATE_DONE
;
5581 if (emulation_type
& EMULTYPE_SKIP
)
5582 return EMULATE_FAIL
;
5583 return handle_emulation_failure(vcpu
);
5587 if (emulation_type
& EMULTYPE_SKIP
) {
5588 kvm_rip_write(vcpu
, ctxt
->_eip
);
5589 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5590 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5591 return EMULATE_DONE
;
5594 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5595 return EMULATE_DONE
;
5597 /* this is needed for vmware backdoor interface to work since it
5598 changes registers values during IO operation */
5599 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5600 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5601 emulator_invalidate_register_cache(ctxt
);
5605 r
= x86_emulate_insn(ctxt
);
5607 if (r
== EMULATION_INTERCEPTED
)
5608 return EMULATE_DONE
;
5610 if (r
== EMULATION_FAILED
) {
5611 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5613 return EMULATE_DONE
;
5615 return handle_emulation_failure(vcpu
);
5618 if (ctxt
->have_exception
) {
5620 if (inject_emulated_exception(vcpu
))
5622 } else if (vcpu
->arch
.pio
.count
) {
5623 if (!vcpu
->arch
.pio
.in
) {
5624 /* FIXME: return into emulator if single-stepping. */
5625 vcpu
->arch
.pio
.count
= 0;
5628 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5630 r
= EMULATE_USER_EXIT
;
5631 } else if (vcpu
->mmio_needed
) {
5632 if (!vcpu
->mmio_is_write
)
5634 r
= EMULATE_USER_EXIT
;
5635 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5636 } else if (r
== EMULATION_RESTART
)
5642 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5643 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5644 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5645 if (vcpu
->arch
.hflags
!= ctxt
->emul_flags
)
5646 kvm_set_hflags(vcpu
, ctxt
->emul_flags
);
5647 kvm_rip_write(vcpu
, ctxt
->eip
);
5648 if (r
== EMULATE_DONE
)
5649 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5650 if (!ctxt
->have_exception
||
5651 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5652 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5655 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5656 * do nothing, and it will be requested again as soon as
5657 * the shadow expires. But we still need to check here,
5658 * because POPF has no interrupt shadow.
5660 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5661 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5663 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5667 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5669 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5671 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5672 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5673 size
, port
, &val
, 1);
5674 /* do not return to emulator after return from userspace */
5675 vcpu
->arch
.pio
.count
= 0;
5678 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5680 static int complete_fast_pio_in(struct kvm_vcpu
*vcpu
)
5684 /* We should only ever be called with arch.pio.count equal to 1 */
5685 BUG_ON(vcpu
->arch
.pio
.count
!= 1);
5687 /* For size less than 4 we merge, else we zero extend */
5688 val
= (vcpu
->arch
.pio
.size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
)
5692 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5693 * the copy and tracing
5695 emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, vcpu
->arch
.pio
.size
,
5696 vcpu
->arch
.pio
.port
, &val
, 1);
5697 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
5702 int kvm_fast_pio_in(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5707 /* For size less than 4 we merge, else we zero extend */
5708 val
= (size
< 4) ? kvm_register_read(vcpu
, VCPU_REGS_RAX
) : 0;
5710 ret
= emulator_pio_in_emulated(&vcpu
->arch
.emulate_ctxt
, size
, port
,
5713 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
5717 vcpu
->arch
.complete_userspace_io
= complete_fast_pio_in
;
5721 EXPORT_SYMBOL_GPL(kvm_fast_pio_in
);
5723 static int kvmclock_cpu_down_prep(unsigned int cpu
)
5725 __this_cpu_write(cpu_tsc_khz
, 0);
5729 static void tsc_khz_changed(void *data
)
5731 struct cpufreq_freqs
*freq
= data
;
5732 unsigned long khz
= 0;
5736 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5737 khz
= cpufreq_quick_get(raw_smp_processor_id());
5740 __this_cpu_write(cpu_tsc_khz
, khz
);
5743 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5746 struct cpufreq_freqs
*freq
= data
;
5748 struct kvm_vcpu
*vcpu
;
5749 int i
, send_ipi
= 0;
5752 * We allow guests to temporarily run on slowing clocks,
5753 * provided we notify them after, or to run on accelerating
5754 * clocks, provided we notify them before. Thus time never
5757 * However, we have a problem. We can't atomically update
5758 * the frequency of a given CPU from this function; it is
5759 * merely a notifier, which can be called from any CPU.
5760 * Changing the TSC frequency at arbitrary points in time
5761 * requires a recomputation of local variables related to
5762 * the TSC for each VCPU. We must flag these local variables
5763 * to be updated and be sure the update takes place with the
5764 * new frequency before any guests proceed.
5766 * Unfortunately, the combination of hotplug CPU and frequency
5767 * change creates an intractable locking scenario; the order
5768 * of when these callouts happen is undefined with respect to
5769 * CPU hotplug, and they can race with each other. As such,
5770 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5771 * undefined; you can actually have a CPU frequency change take
5772 * place in between the computation of X and the setting of the
5773 * variable. To protect against this problem, all updates of
5774 * the per_cpu tsc_khz variable are done in an interrupt
5775 * protected IPI, and all callers wishing to update the value
5776 * must wait for a synchronous IPI to complete (which is trivial
5777 * if the caller is on the CPU already). This establishes the
5778 * necessary total order on variable updates.
5780 * Note that because a guest time update may take place
5781 * anytime after the setting of the VCPU's request bit, the
5782 * correct TSC value must be set before the request. However,
5783 * to ensure the update actually makes it to any guest which
5784 * starts running in hardware virtualization between the set
5785 * and the acquisition of the spinlock, we must also ping the
5786 * CPU after setting the request bit.
5790 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5792 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5795 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5797 spin_lock(&kvm_lock
);
5798 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5799 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5800 if (vcpu
->cpu
!= freq
->cpu
)
5802 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5803 if (vcpu
->cpu
!= smp_processor_id())
5807 spin_unlock(&kvm_lock
);
5809 if (freq
->old
< freq
->new && send_ipi
) {
5811 * We upscale the frequency. Must make the guest
5812 * doesn't see old kvmclock values while running with
5813 * the new frequency, otherwise we risk the guest sees
5814 * time go backwards.
5816 * In case we update the frequency for another cpu
5817 * (which might be in guest context) send an interrupt
5818 * to kick the cpu out of guest context. Next time
5819 * guest context is entered kvmclock will be updated,
5820 * so the guest will not see stale values.
5822 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5827 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5828 .notifier_call
= kvmclock_cpufreq_notifier
5831 static int kvmclock_cpu_online(unsigned int cpu
)
5833 tsc_khz_changed(NULL
);
5837 static void kvm_timer_init(void)
5839 max_tsc_khz
= tsc_khz
;
5841 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5842 #ifdef CONFIG_CPU_FREQ
5843 struct cpufreq_policy policy
;
5846 memset(&policy
, 0, sizeof(policy
));
5848 cpufreq_get_policy(&policy
, cpu
);
5849 if (policy
.cpuinfo
.max_freq
)
5850 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5853 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5854 CPUFREQ_TRANSITION_NOTIFIER
);
5856 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5858 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE
, "AP_X86_KVM_CLK_ONLINE",
5859 kvmclock_cpu_online
, kvmclock_cpu_down_prep
);
5862 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5864 int kvm_is_in_guest(void)
5866 return __this_cpu_read(current_vcpu
) != NULL
;
5869 static int kvm_is_user_mode(void)
5873 if (__this_cpu_read(current_vcpu
))
5874 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5876 return user_mode
!= 0;
5879 static unsigned long kvm_get_guest_ip(void)
5881 unsigned long ip
= 0;
5883 if (__this_cpu_read(current_vcpu
))
5884 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5889 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5890 .is_in_guest
= kvm_is_in_guest
,
5891 .is_user_mode
= kvm_is_user_mode
,
5892 .get_guest_ip
= kvm_get_guest_ip
,
5895 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5897 __this_cpu_write(current_vcpu
, vcpu
);
5899 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5901 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5903 __this_cpu_write(current_vcpu
, NULL
);
5905 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5907 static void kvm_set_mmio_spte_mask(void)
5910 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5913 * Set the reserved bits and the present bit of an paging-structure
5914 * entry to generate page fault with PFER.RSV = 1.
5916 /* Mask the reserved physical address bits. */
5917 mask
= rsvd_bits(maxphyaddr
, 51);
5919 /* Bit 62 is always reserved for 32bit host. */
5920 mask
|= 0x3ull
<< 62;
5922 /* Set the present bit. */
5925 #ifdef CONFIG_X86_64
5927 * If reserved bit is not supported, clear the present bit to disable
5930 if (maxphyaddr
== 52)
5934 kvm_mmu_set_mmio_spte_mask(mask
);
5937 #ifdef CONFIG_X86_64
5938 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5942 struct kvm_vcpu
*vcpu
;
5945 spin_lock(&kvm_lock
);
5946 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5947 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5948 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
5949 atomic_set(&kvm_guest_has_master_clock
, 0);
5950 spin_unlock(&kvm_lock
);
5953 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5956 * Notification about pvclock gtod data update.
5958 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5961 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5962 struct timekeeper
*tk
= priv
;
5964 update_pvclock_gtod(tk
);
5966 /* disable master clock if host does not trust, or does not
5967 * use, TSC clocksource
5969 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5970 atomic_read(&kvm_guest_has_master_clock
) != 0)
5971 queue_work(system_long_wq
, &pvclock_gtod_work
);
5976 static struct notifier_block pvclock_gtod_notifier
= {
5977 .notifier_call
= pvclock_gtod_notify
,
5981 int kvm_arch_init(void *opaque
)
5984 struct kvm_x86_ops
*ops
= opaque
;
5987 printk(KERN_ERR
"kvm: already loaded the other module\n");
5992 if (!ops
->cpu_has_kvm_support()) {
5993 printk(KERN_ERR
"kvm: no hardware support\n");
5997 if (ops
->disabled_by_bios()) {
5998 printk(KERN_ERR
"kvm: disabled by bios\n");
6004 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
6006 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
6010 r
= kvm_mmu_module_init();
6012 goto out_free_percpu
;
6014 kvm_set_mmio_spte_mask();
6018 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
6019 PT_DIRTY_MASK
, PT64_NX_MASK
, 0,
6023 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
6025 if (boot_cpu_has(X86_FEATURE_XSAVE
))
6026 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
6029 #ifdef CONFIG_X86_64
6030 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
6036 free_percpu(shared_msrs
);
6041 void kvm_arch_exit(void)
6043 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
6045 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
6046 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
6047 CPUFREQ_TRANSITION_NOTIFIER
);
6048 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE
);
6049 #ifdef CONFIG_X86_64
6050 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
6053 kvm_mmu_module_exit();
6054 free_percpu(shared_msrs
);
6057 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
6059 ++vcpu
->stat
.halt_exits
;
6060 if (lapic_in_kernel(vcpu
)) {
6061 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
6064 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
6068 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
6070 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
6072 int ret
= kvm_skip_emulated_instruction(vcpu
);
6074 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6075 * KVM_EXIT_DEBUG here.
6077 return kvm_vcpu_halt(vcpu
) && ret
;
6079 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
6082 * kvm_pv_kick_cpu_op: Kick a vcpu.
6084 * @apicid - apicid of vcpu to be kicked.
6086 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
6088 struct kvm_lapic_irq lapic_irq
;
6090 lapic_irq
.shorthand
= 0;
6091 lapic_irq
.dest_mode
= 0;
6092 lapic_irq
.dest_id
= apicid
;
6093 lapic_irq
.msi_redir_hint
= false;
6095 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
6096 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
6099 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
6101 vcpu
->arch
.apicv_active
= false;
6102 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
6105 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
6107 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
6110 r
= kvm_skip_emulated_instruction(vcpu
);
6112 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
6113 return kvm_hv_hypercall(vcpu
);
6115 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6116 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6117 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6118 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6119 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6121 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
6123 op_64_bit
= is_64_bit_mode(vcpu
);
6132 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
6138 case KVM_HC_VAPIC_POLL_IRQ
:
6141 case KVM_HC_KICK_CPU
:
6142 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6152 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6153 ++vcpu
->stat
.hypercalls
;
6156 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6158 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6160 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6161 char instruction
[3];
6162 unsigned long rip
= kvm_rip_read(vcpu
);
6164 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6166 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
6169 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6171 return vcpu
->run
->request_interrupt_window
&&
6172 likely(!pic_in_kernel(vcpu
->kvm
));
6175 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6177 struct kvm_run
*kvm_run
= vcpu
->run
;
6179 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6180 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6181 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6182 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6183 kvm_run
->ready_for_interrupt_injection
=
6184 pic_in_kernel(vcpu
->kvm
) ||
6185 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
6188 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6192 if (!kvm_x86_ops
->update_cr8_intercept
)
6195 if (!lapic_in_kernel(vcpu
))
6198 if (vcpu
->arch
.apicv_active
)
6201 if (!vcpu
->arch
.apic
->vapic_addr
)
6202 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6209 tpr
= kvm_lapic_get_cr8(vcpu
);
6211 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6214 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6218 /* try to reinject previous events if any */
6219 if (vcpu
->arch
.exception
.pending
) {
6220 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6221 vcpu
->arch
.exception
.has_error_code
,
6222 vcpu
->arch
.exception
.error_code
);
6224 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6225 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6228 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6229 (vcpu
->arch
.dr7
& DR7_GD
)) {
6230 vcpu
->arch
.dr7
&= ~DR7_GD
;
6231 kvm_update_dr7(vcpu
);
6234 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6235 vcpu
->arch
.exception
.has_error_code
,
6236 vcpu
->arch
.exception
.error_code
,
6237 vcpu
->arch
.exception
.reinject
);
6241 if (vcpu
->arch
.nmi_injected
) {
6242 kvm_x86_ops
->set_nmi(vcpu
);
6246 if (vcpu
->arch
.interrupt
.pending
) {
6247 kvm_x86_ops
->set_irq(vcpu
);
6251 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6252 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6257 /* try to inject new event if pending */
6258 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
)) {
6259 vcpu
->arch
.smi_pending
= false;
6261 } else if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6262 --vcpu
->arch
.nmi_pending
;
6263 vcpu
->arch
.nmi_injected
= true;
6264 kvm_x86_ops
->set_nmi(vcpu
);
6265 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6267 * Because interrupts can be injected asynchronously, we are
6268 * calling check_nested_events again here to avoid a race condition.
6269 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6270 * proposal and current concerns. Perhaps we should be setting
6271 * KVM_REQ_EVENT only on certain events and not unconditionally?
6273 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6274 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6278 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6279 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6281 kvm_x86_ops
->set_irq(vcpu
);
6288 static void process_nmi(struct kvm_vcpu
*vcpu
)
6293 * x86 is limited to one NMI running, and one NMI pending after it.
6294 * If an NMI is already in progress, limit further NMIs to just one.
6295 * Otherwise, allow two (and we'll inject the first one immediately).
6297 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6300 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6301 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6302 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6305 #define put_smstate(type, buf, offset, val) \
6306 *(type *)((buf) + (offset) - 0x7e00) = val
6308 static u32
enter_smm_get_segment_flags(struct kvm_segment
*seg
)
6311 flags
|= seg
->g
<< 23;
6312 flags
|= seg
->db
<< 22;
6313 flags
|= seg
->l
<< 21;
6314 flags
|= seg
->avl
<< 20;
6315 flags
|= seg
->present
<< 15;
6316 flags
|= seg
->dpl
<< 13;
6317 flags
|= seg
->s
<< 12;
6318 flags
|= seg
->type
<< 8;
6322 static void enter_smm_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6324 struct kvm_segment seg
;
6327 kvm_get_segment(vcpu
, &seg
, n
);
6328 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6331 offset
= 0x7f84 + n
* 12;
6333 offset
= 0x7f2c + (n
- 3) * 12;
6335 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6336 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6337 put_smstate(u32
, buf
, offset
, enter_smm_get_segment_flags(&seg
));
6340 #ifdef CONFIG_X86_64
6341 static void enter_smm_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6343 struct kvm_segment seg
;
6347 kvm_get_segment(vcpu
, &seg
, n
);
6348 offset
= 0x7e00 + n
* 16;
6350 flags
= enter_smm_get_segment_flags(&seg
) >> 8;
6351 put_smstate(u16
, buf
, offset
, seg
.selector
);
6352 put_smstate(u16
, buf
, offset
+ 2, flags
);
6353 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6354 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6358 static void enter_smm_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6361 struct kvm_segment seg
;
6365 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6366 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6367 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6368 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6370 for (i
= 0; i
< 8; i
++)
6371 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6373 kvm_get_dr(vcpu
, 6, &val
);
6374 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6375 kvm_get_dr(vcpu
, 7, &val
);
6376 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6378 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6379 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6380 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6381 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6382 put_smstate(u32
, buf
, 0x7f5c, enter_smm_get_segment_flags(&seg
));
6384 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6385 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6386 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6387 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6388 put_smstate(u32
, buf
, 0x7f78, enter_smm_get_segment_flags(&seg
));
6390 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6391 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6392 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6394 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6395 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6396 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6398 for (i
= 0; i
< 6; i
++)
6399 enter_smm_save_seg_32(vcpu
, buf
, i
);
6401 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6404 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6405 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6408 static void enter_smm_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6410 #ifdef CONFIG_X86_64
6412 struct kvm_segment seg
;
6416 for (i
= 0; i
< 16; i
++)
6417 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6419 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6420 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6422 kvm_get_dr(vcpu
, 6, &val
);
6423 put_smstate(u64
, buf
, 0x7f68, val
);
6424 kvm_get_dr(vcpu
, 7, &val
);
6425 put_smstate(u64
, buf
, 0x7f60, val
);
6427 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6428 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6429 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6431 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6434 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6436 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6438 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6439 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6440 put_smstate(u16
, buf
, 0x7e92, enter_smm_get_segment_flags(&seg
) >> 8);
6441 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6442 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6444 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6445 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6446 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6448 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6449 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6450 put_smstate(u16
, buf
, 0x7e72, enter_smm_get_segment_flags(&seg
) >> 8);
6451 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6452 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6454 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6455 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6456 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6458 for (i
= 0; i
< 6; i
++)
6459 enter_smm_save_seg_64(vcpu
, buf
, i
);
6465 static void enter_smm(struct kvm_vcpu
*vcpu
)
6467 struct kvm_segment cs
, ds
;
6472 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6473 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6474 memset(buf
, 0, 512);
6475 if (guest_cpuid_has_longmode(vcpu
))
6476 enter_smm_save_state_64(vcpu
, buf
);
6478 enter_smm_save_state_32(vcpu
, buf
);
6480 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6482 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6483 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6485 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6487 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6488 kvm_rip_write(vcpu
, 0x8000);
6490 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6491 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6492 vcpu
->arch
.cr0
= cr0
;
6494 kvm_x86_ops
->set_cr4(vcpu
, 0);
6496 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6497 dt
.address
= dt
.size
= 0;
6498 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6500 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6502 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6503 cs
.base
= vcpu
->arch
.smbase
;
6508 cs
.limit
= ds
.limit
= 0xffffffff;
6509 cs
.type
= ds
.type
= 0x3;
6510 cs
.dpl
= ds
.dpl
= 0;
6515 cs
.avl
= ds
.avl
= 0;
6516 cs
.present
= ds
.present
= 1;
6517 cs
.unusable
= ds
.unusable
= 0;
6518 cs
.padding
= ds
.padding
= 0;
6520 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6521 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6522 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6523 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6524 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6525 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6527 if (guest_cpuid_has_longmode(vcpu
))
6528 kvm_x86_ops
->set_efer(vcpu
, 0);
6530 kvm_update_cpuid(vcpu
);
6531 kvm_mmu_reset_context(vcpu
);
6534 static void process_smi(struct kvm_vcpu
*vcpu
)
6536 vcpu
->arch
.smi_pending
= true;
6537 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6540 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
6542 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
6545 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6547 u64 eoi_exit_bitmap
[4];
6549 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6552 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
6554 if (irqchip_split(vcpu
->kvm
))
6555 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6557 if (vcpu
->arch
.apicv_active
)
6558 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6559 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6561 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
6562 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
6563 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6566 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6568 ++vcpu
->stat
.tlb_flush
;
6569 kvm_x86_ops
->tlb_flush(vcpu
);
6572 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6574 struct page
*page
= NULL
;
6576 if (!lapic_in_kernel(vcpu
))
6579 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6582 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6583 if (is_error_page(page
))
6585 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6588 * Do not pin apic access page in memory, the MMU notifier
6589 * will call us again if it is migrated or swapped out.
6593 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6595 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6596 unsigned long address
)
6599 * The physical address of apic access page is stored in the VMCS.
6600 * Update it when it becomes invalid.
6602 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6603 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6607 * Returns 1 to let vcpu_run() continue the guest execution loop without
6608 * exiting to the userspace. Otherwise, the value will be returned to the
6611 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6615 dm_request_for_irq_injection(vcpu
) &&
6616 kvm_cpu_accept_dm_intr(vcpu
);
6618 bool req_immediate_exit
= false;
6620 if (vcpu
->requests
) {
6621 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6622 kvm_mmu_unload(vcpu
);
6623 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6624 __kvm_migrate_timers(vcpu
);
6625 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6626 kvm_gen_update_masterclock(vcpu
->kvm
);
6627 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6628 kvm_gen_kvmclock_update(vcpu
);
6629 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6630 r
= kvm_guest_time_update(vcpu
);
6634 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6635 kvm_mmu_sync_roots(vcpu
);
6636 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6637 kvm_vcpu_flush_tlb(vcpu
);
6638 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6639 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6643 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6644 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6648 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
6649 vcpu
->fpu_active
= 0;
6650 kvm_x86_ops
->fpu_deactivate(vcpu
);
6652 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6653 /* Page is swapped out. Do synthetic halt */
6654 vcpu
->arch
.apf
.halted
= true;
6658 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6659 record_steal_time(vcpu
);
6660 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
6662 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6664 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6665 kvm_pmu_handle_event(vcpu
);
6666 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6667 kvm_pmu_deliver_pmi(vcpu
);
6668 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
6669 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
6670 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
6671 vcpu
->arch
.ioapic_handled_vectors
)) {
6672 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
6673 vcpu
->run
->eoi
.vector
=
6674 vcpu
->arch
.pending_ioapic_eoi
;
6679 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6680 vcpu_scan_ioapic(vcpu
);
6681 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6682 kvm_vcpu_reload_apic_access_page(vcpu
);
6683 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
6684 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6685 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
6689 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
6690 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6691 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
6695 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
6696 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
6697 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
6703 * KVM_REQ_HV_STIMER has to be processed after
6704 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6705 * depend on the guest clock being up-to-date
6707 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
6708 kvm_hv_process_stimers(vcpu
);
6712 * KVM_REQ_EVENT is not set when posted interrupts are set by
6713 * VT-d hardware, so we have to update RVI unconditionally.
6715 if (kvm_lapic_enabled(vcpu
)) {
6717 * Update architecture specific hints for APIC
6718 * virtual interrupt delivery.
6720 if (vcpu
->arch
.apicv_active
)
6721 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6722 kvm_lapic_find_highest_irr(vcpu
));
6725 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6726 kvm_apic_accept_events(vcpu
);
6727 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6732 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6733 req_immediate_exit
= true;
6735 /* Enable NMI/IRQ window open exits if needed.
6737 * SMIs have two cases: 1) they can be nested, and
6738 * then there is nothing to do here because RSM will
6739 * cause a vmexit anyway; 2) or the SMI can be pending
6740 * because inject_pending_event has completed the
6741 * injection of an IRQ or NMI from the previous vmexit,
6742 * and then we request an immediate exit to inject the SMI.
6744 if (vcpu
->arch
.smi_pending
&& !is_smm(vcpu
))
6745 req_immediate_exit
= true;
6746 if (vcpu
->arch
.nmi_pending
)
6747 kvm_x86_ops
->enable_nmi_window(vcpu
);
6748 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6749 kvm_x86_ops
->enable_irq_window(vcpu
);
6752 if (kvm_lapic_enabled(vcpu
)) {
6753 update_cr8_intercept(vcpu
);
6754 kvm_lapic_sync_to_vapic(vcpu
);
6758 r
= kvm_mmu_reload(vcpu
);
6760 goto cancel_injection
;
6765 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6766 if (vcpu
->fpu_active
)
6767 kvm_load_guest_fpu(vcpu
);
6768 vcpu
->mode
= IN_GUEST_MODE
;
6770 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6773 * We should set ->mode before check ->requests,
6774 * Please see the comment in kvm_make_all_cpus_request.
6775 * This also orders the write to mode from any reads
6776 * to the page tables done while the VCPU is running.
6777 * Please see the comment in kvm_flush_remote_tlbs.
6779 smp_mb__after_srcu_read_unlock();
6781 local_irq_disable();
6783 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6784 || need_resched() || signal_pending(current
)) {
6785 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6789 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6791 goto cancel_injection
;
6794 kvm_load_guest_xcr0(vcpu
);
6796 if (req_immediate_exit
) {
6797 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6798 smp_send_reschedule(vcpu
->cpu
);
6801 trace_kvm_entry(vcpu
->vcpu_id
);
6802 wait_lapic_expire(vcpu
);
6803 guest_enter_irqoff();
6805 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6807 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6808 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6809 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6810 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6811 set_debugreg(vcpu
->arch
.dr6
, 6);
6812 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6815 kvm_x86_ops
->run(vcpu
);
6818 * Do this here before restoring debug registers on the host. And
6819 * since we do this before handling the vmexit, a DR access vmexit
6820 * can (a) read the correct value of the debug registers, (b) set
6821 * KVM_DEBUGREG_WONT_EXIT again.
6823 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6824 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6825 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6826 kvm_update_dr0123(vcpu
);
6827 kvm_update_dr6(vcpu
);
6828 kvm_update_dr7(vcpu
);
6829 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6833 * If the guest has used debug registers, at least dr7
6834 * will be disabled while returning to the host.
6835 * If we don't have active breakpoints in the host, we don't
6836 * care about the messed up debug address registers. But if
6837 * we have some of them active, restore the old state.
6839 if (hw_breakpoint_active())
6840 hw_breakpoint_restore();
6842 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
6844 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6847 kvm_put_guest_xcr0(vcpu
);
6849 kvm_x86_ops
->handle_external_intr(vcpu
);
6853 guest_exit_irqoff();
6858 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6861 * Profile KVM exit RIPs:
6863 if (unlikely(prof_on
== KVM_PROFILING
)) {
6864 unsigned long rip
= kvm_rip_read(vcpu
);
6865 profile_hit(KVM_PROFILING
, (void *)rip
);
6868 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6869 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6871 if (vcpu
->arch
.apic_attention
)
6872 kvm_lapic_sync_from_vapic(vcpu
);
6874 r
= kvm_x86_ops
->handle_exit(vcpu
);
6878 kvm_x86_ops
->cancel_injection(vcpu
);
6879 if (unlikely(vcpu
->arch
.apic_attention
))
6880 kvm_lapic_sync_from_vapic(vcpu
);
6885 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
6887 if (!kvm_arch_vcpu_runnable(vcpu
) &&
6888 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
6889 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6890 kvm_vcpu_block(vcpu
);
6891 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6893 if (kvm_x86_ops
->post_block
)
6894 kvm_x86_ops
->post_block(vcpu
);
6896 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
6900 kvm_apic_accept_events(vcpu
);
6901 switch(vcpu
->arch
.mp_state
) {
6902 case KVM_MP_STATE_HALTED
:
6903 vcpu
->arch
.pv
.pv_unhalted
= false;
6904 vcpu
->arch
.mp_state
=
6905 KVM_MP_STATE_RUNNABLE
;
6906 case KVM_MP_STATE_RUNNABLE
:
6907 vcpu
->arch
.apf
.halted
= false;
6909 case KVM_MP_STATE_INIT_RECEIVED
:
6918 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
6920 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6921 !vcpu
->arch
.apf
.halted
);
6924 static int vcpu_run(struct kvm_vcpu
*vcpu
)
6927 struct kvm
*kvm
= vcpu
->kvm
;
6929 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6932 if (kvm_vcpu_running(vcpu
)) {
6933 r
= vcpu_enter_guest(vcpu
);
6935 r
= vcpu_block(kvm
, vcpu
);
6941 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6942 if (kvm_cpu_has_pending_timer(vcpu
))
6943 kvm_inject_pending_timer_irqs(vcpu
);
6945 if (dm_request_for_irq_injection(vcpu
) &&
6946 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
6948 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
6949 ++vcpu
->stat
.request_irq_exits
;
6953 kvm_check_async_pf_completion(vcpu
);
6955 if (signal_pending(current
)) {
6957 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6958 ++vcpu
->stat
.signal_exits
;
6961 if (need_resched()) {
6962 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6964 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6968 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6973 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6976 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6977 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6978 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6979 if (r
!= EMULATE_DONE
)
6984 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6986 BUG_ON(!vcpu
->arch
.pio
.count
);
6988 return complete_emulated_io(vcpu
);
6992 * Implements the following, as a state machine:
6996 * for each mmio piece in the fragment
7004 * for each mmio piece in the fragment
7009 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
7011 struct kvm_run
*run
= vcpu
->run
;
7012 struct kvm_mmio_fragment
*frag
;
7015 BUG_ON(!vcpu
->mmio_needed
);
7017 /* Complete previous fragment */
7018 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
7019 len
= min(8u, frag
->len
);
7020 if (!vcpu
->mmio_is_write
)
7021 memcpy(frag
->data
, run
->mmio
.data
, len
);
7023 if (frag
->len
<= 8) {
7024 /* Switch to the next fragment. */
7026 vcpu
->mmio_cur_fragment
++;
7028 /* Go forward to the next mmio piece. */
7034 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
7035 vcpu
->mmio_needed
= 0;
7037 /* FIXME: return into emulator if single-stepping. */
7038 if (vcpu
->mmio_is_write
)
7040 vcpu
->mmio_read_completed
= 1;
7041 return complete_emulated_io(vcpu
);
7044 run
->exit_reason
= KVM_EXIT_MMIO
;
7045 run
->mmio
.phys_addr
= frag
->gpa
;
7046 if (vcpu
->mmio_is_write
)
7047 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
7048 run
->mmio
.len
= min(8u, frag
->len
);
7049 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
7050 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
7055 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
7057 struct fpu
*fpu
= ¤t
->thread
.fpu
;
7061 fpu__activate_curr(fpu
);
7063 if (vcpu
->sigset_active
)
7064 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
7066 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
7067 kvm_vcpu_block(vcpu
);
7068 kvm_apic_accept_events(vcpu
);
7069 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
7074 /* re-sync apic's tpr */
7075 if (!lapic_in_kernel(vcpu
)) {
7076 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
7082 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
7083 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
7084 vcpu
->arch
.complete_userspace_io
= NULL
;
7089 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
7094 post_kvm_run_save(vcpu
);
7095 if (vcpu
->sigset_active
)
7096 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
7101 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7103 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
7105 * We are here if userspace calls get_regs() in the middle of
7106 * instruction emulation. Registers state needs to be copied
7107 * back from emulation context to vcpu. Userspace shouldn't do
7108 * that usually, but some bad designed PV devices (vmware
7109 * backdoor interface) need this to work
7111 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
7112 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7114 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
7115 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
7116 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
7117 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
7118 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
7119 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
7120 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
7121 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
7122 #ifdef CONFIG_X86_64
7123 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
7124 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
7125 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
7126 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
7127 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
7128 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
7129 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
7130 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
7133 regs
->rip
= kvm_rip_read(vcpu
);
7134 regs
->rflags
= kvm_get_rflags(vcpu
);
7139 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
7141 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
7142 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
7144 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
7145 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
7146 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
7147 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
7148 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
7149 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
7150 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
7151 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
7152 #ifdef CONFIG_X86_64
7153 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
7154 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
7155 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
7156 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
7157 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
7158 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
7159 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
7160 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
7163 kvm_rip_write(vcpu
, regs
->rip
);
7164 kvm_set_rflags(vcpu
, regs
->rflags
);
7166 vcpu
->arch
.exception
.pending
= false;
7168 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7173 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
7175 struct kvm_segment cs
;
7177 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7181 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
7183 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
7184 struct kvm_sregs
*sregs
)
7188 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7189 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7190 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7191 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7192 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7193 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7195 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7196 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7198 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7199 sregs
->idt
.limit
= dt
.size
;
7200 sregs
->idt
.base
= dt
.address
;
7201 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7202 sregs
->gdt
.limit
= dt
.size
;
7203 sregs
->gdt
.base
= dt
.address
;
7205 sregs
->cr0
= kvm_read_cr0(vcpu
);
7206 sregs
->cr2
= vcpu
->arch
.cr2
;
7207 sregs
->cr3
= kvm_read_cr3(vcpu
);
7208 sregs
->cr4
= kvm_read_cr4(vcpu
);
7209 sregs
->cr8
= kvm_get_cr8(vcpu
);
7210 sregs
->efer
= vcpu
->arch
.efer
;
7211 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
7213 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
7215 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
7216 set_bit(vcpu
->arch
.interrupt
.nr
,
7217 (unsigned long *)sregs
->interrupt_bitmap
);
7222 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7223 struct kvm_mp_state
*mp_state
)
7225 kvm_apic_accept_events(vcpu
);
7226 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7227 vcpu
->arch
.pv
.pv_unhalted
)
7228 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7230 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7235 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7236 struct kvm_mp_state
*mp_state
)
7238 if (!lapic_in_kernel(vcpu
) &&
7239 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7242 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7243 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7244 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7246 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7247 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7251 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
7252 int reason
, bool has_error_code
, u32 error_code
)
7254 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
7257 init_emulate_ctxt(vcpu
);
7259 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
7260 has_error_code
, error_code
);
7263 return EMULATE_FAIL
;
7265 kvm_rip_write(vcpu
, ctxt
->eip
);
7266 kvm_set_rflags(vcpu
, ctxt
->eflags
);
7267 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7268 return EMULATE_DONE
;
7270 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7272 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7273 struct kvm_sregs
*sregs
)
7275 struct msr_data apic_base_msr
;
7276 int mmu_reset_needed
= 0;
7277 int pending_vec
, max_bits
, idx
;
7280 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
7283 dt
.size
= sregs
->idt
.limit
;
7284 dt
.address
= sregs
->idt
.base
;
7285 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7286 dt
.size
= sregs
->gdt
.limit
;
7287 dt
.address
= sregs
->gdt
.base
;
7288 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7290 vcpu
->arch
.cr2
= sregs
->cr2
;
7291 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7292 vcpu
->arch
.cr3
= sregs
->cr3
;
7293 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7295 kvm_set_cr8(vcpu
, sregs
->cr8
);
7297 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7298 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7299 apic_base_msr
.data
= sregs
->apic_base
;
7300 apic_base_msr
.host_initiated
= true;
7301 kvm_set_apic_base(vcpu
, &apic_base_msr
);
7303 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7304 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7305 vcpu
->arch
.cr0
= sregs
->cr0
;
7307 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7308 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7309 if (sregs
->cr4
& (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
7310 kvm_update_cpuid(vcpu
);
7312 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7313 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7314 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7315 mmu_reset_needed
= 1;
7317 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7319 if (mmu_reset_needed
)
7320 kvm_mmu_reset_context(vcpu
);
7322 max_bits
= KVM_NR_INTERRUPTS
;
7323 pending_vec
= find_first_bit(
7324 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7325 if (pending_vec
< max_bits
) {
7326 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7327 pr_debug("Set back pending irq %d\n", pending_vec
);
7330 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7331 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7332 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7333 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7334 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7335 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7337 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7338 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7340 update_cr8_intercept(vcpu
);
7342 /* Older userspace won't unhalt the vcpu on reset. */
7343 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7344 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7346 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7348 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7353 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7354 struct kvm_guest_debug
*dbg
)
7356 unsigned long rflags
;
7359 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7361 if (vcpu
->arch
.exception
.pending
)
7363 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7364 kvm_queue_exception(vcpu
, DB_VECTOR
);
7366 kvm_queue_exception(vcpu
, BP_VECTOR
);
7370 * Read rflags as long as potentially injected trace flags are still
7373 rflags
= kvm_get_rflags(vcpu
);
7375 vcpu
->guest_debug
= dbg
->control
;
7376 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7377 vcpu
->guest_debug
= 0;
7379 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7380 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7381 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7382 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7384 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7385 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7387 kvm_update_dr7(vcpu
);
7389 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7390 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7391 get_segment_base(vcpu
, VCPU_SREG_CS
);
7394 * Trigger an rflags update that will inject or remove the trace
7397 kvm_set_rflags(vcpu
, rflags
);
7399 kvm_x86_ops
->update_bp_intercept(vcpu
);
7409 * Translate a guest virtual address to a guest physical address.
7411 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7412 struct kvm_translation
*tr
)
7414 unsigned long vaddr
= tr
->linear_address
;
7418 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7419 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7420 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7421 tr
->physical_address
= gpa
;
7422 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7429 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7431 struct fxregs_state
*fxsave
=
7432 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7434 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7435 fpu
->fcw
= fxsave
->cwd
;
7436 fpu
->fsw
= fxsave
->swd
;
7437 fpu
->ftwx
= fxsave
->twd
;
7438 fpu
->last_opcode
= fxsave
->fop
;
7439 fpu
->last_ip
= fxsave
->rip
;
7440 fpu
->last_dp
= fxsave
->rdp
;
7441 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7446 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7448 struct fxregs_state
*fxsave
=
7449 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7451 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7452 fxsave
->cwd
= fpu
->fcw
;
7453 fxsave
->swd
= fpu
->fsw
;
7454 fxsave
->twd
= fpu
->ftwx
;
7455 fxsave
->fop
= fpu
->last_opcode
;
7456 fxsave
->rip
= fpu
->last_ip
;
7457 fxsave
->rdp
= fpu
->last_dp
;
7458 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7463 static void fx_init(struct kvm_vcpu
*vcpu
)
7465 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7466 if (boot_cpu_has(X86_FEATURE_XSAVES
))
7467 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7468 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7471 * Ensure guest xcr0 is valid for loading
7473 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7475 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7478 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7480 if (vcpu
->guest_fpu_loaded
)
7484 * Restore all possible states in the guest,
7485 * and assume host would use all available bits.
7486 * Guest xcr0 would be loaded later.
7488 vcpu
->guest_fpu_loaded
= 1;
7489 __kernel_fpu_begin();
7490 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
);
7494 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7496 if (!vcpu
->guest_fpu_loaded
)
7499 vcpu
->guest_fpu_loaded
= 0;
7500 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7502 ++vcpu
->stat
.fpu_reload
;
7506 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7508 void *wbinvd_dirty_mask
= vcpu
->arch
.wbinvd_dirty_mask
;
7510 kvmclock_reset(vcpu
);
7512 kvm_x86_ops
->vcpu_free(vcpu
);
7513 free_cpumask_var(wbinvd_dirty_mask
);
7516 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7519 struct kvm_vcpu
*vcpu
;
7521 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7522 printk_once(KERN_WARNING
7523 "kvm: SMP vm created on host with unstable TSC; "
7524 "guest TSC will not be reliable\n");
7526 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7531 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7535 kvm_vcpu_mtrr_init(vcpu
);
7536 r
= vcpu_load(vcpu
);
7539 kvm_vcpu_reset(vcpu
, false);
7540 kvm_mmu_setup(vcpu
);
7545 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7547 struct msr_data msr
;
7548 struct kvm
*kvm
= vcpu
->kvm
;
7550 if (vcpu_load(vcpu
))
7553 msr
.index
= MSR_IA32_TSC
;
7554 msr
.host_initiated
= true;
7555 kvm_write_tsc(vcpu
, &msr
);
7558 if (!kvmclock_periodic_sync
)
7561 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7562 KVMCLOCK_SYNC_PERIOD
);
7565 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7568 vcpu
->arch
.apf
.msr_val
= 0;
7570 r
= vcpu_load(vcpu
);
7572 kvm_mmu_unload(vcpu
);
7575 kvm_x86_ops
->vcpu_free(vcpu
);
7578 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
7580 vcpu
->arch
.hflags
= 0;
7582 vcpu
->arch
.smi_pending
= 0;
7583 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7584 vcpu
->arch
.nmi_pending
= 0;
7585 vcpu
->arch
.nmi_injected
= false;
7586 kvm_clear_interrupt_queue(vcpu
);
7587 kvm_clear_exception_queue(vcpu
);
7589 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7590 kvm_update_dr0123(vcpu
);
7591 vcpu
->arch
.dr6
= DR6_INIT
;
7592 kvm_update_dr6(vcpu
);
7593 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7594 kvm_update_dr7(vcpu
);
7598 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7599 vcpu
->arch
.apf
.msr_val
= 0;
7600 vcpu
->arch
.st
.msr_val
= 0;
7602 kvmclock_reset(vcpu
);
7604 kvm_clear_async_pf_completion_queue(vcpu
);
7605 kvm_async_pf_hash_reset(vcpu
);
7606 vcpu
->arch
.apf
.halted
= false;
7609 kvm_pmu_reset(vcpu
);
7610 vcpu
->arch
.smbase
= 0x30000;
7613 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7614 vcpu
->arch
.regs_avail
= ~0;
7615 vcpu
->arch
.regs_dirty
= ~0;
7617 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
7620 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7622 struct kvm_segment cs
;
7624 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7625 cs
.selector
= vector
<< 8;
7626 cs
.base
= vector
<< 12;
7627 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7628 kvm_rip_write(vcpu
, 0);
7631 int kvm_arch_hardware_enable(void)
7634 struct kvm_vcpu
*vcpu
;
7639 bool stable
, backwards_tsc
= false;
7641 kvm_shared_msr_cpu_online();
7642 ret
= kvm_x86_ops
->hardware_enable();
7646 local_tsc
= rdtsc();
7647 stable
= !check_tsc_unstable();
7648 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7649 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7650 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7651 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7652 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7653 backwards_tsc
= true;
7654 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7655 max_tsc
= vcpu
->arch
.last_host_tsc
;
7661 * Sometimes, even reliable TSCs go backwards. This happens on
7662 * platforms that reset TSC during suspend or hibernate actions, but
7663 * maintain synchronization. We must compensate. Fortunately, we can
7664 * detect that condition here, which happens early in CPU bringup,
7665 * before any KVM threads can be running. Unfortunately, we can't
7666 * bring the TSCs fully up to date with real time, as we aren't yet far
7667 * enough into CPU bringup that we know how much real time has actually
7668 * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7669 * variables that haven't been updated yet.
7671 * So we simply find the maximum observed TSC above, then record the
7672 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7673 * the adjustment will be applied. Note that we accumulate
7674 * adjustments, in case multiple suspend cycles happen before some VCPU
7675 * gets a chance to run again. In the event that no KVM threads get a
7676 * chance to run, we will miss the entire elapsed period, as we'll have
7677 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7678 * loose cycle time. This isn't too big a deal, since the loss will be
7679 * uniform across all VCPUs (not to mention the scenario is extremely
7680 * unlikely). It is possible that a second hibernate recovery happens
7681 * much faster than a first, causing the observed TSC here to be
7682 * smaller; this would require additional padding adjustment, which is
7683 * why we set last_host_tsc to the local tsc observed here.
7685 * N.B. - this code below runs only on platforms with reliable TSC,
7686 * as that is the only way backwards_tsc is set above. Also note
7687 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7688 * have the same delta_cyc adjustment applied if backwards_tsc
7689 * is detected. Note further, this adjustment is only done once,
7690 * as we reset last_host_tsc on all VCPUs to stop this from being
7691 * called multiple times (one for each physical CPU bringup).
7693 * Platforms with unreliable TSCs don't have to deal with this, they
7694 * will be compensated by the logic in vcpu_load, which sets the TSC to
7695 * catchup mode. This will catchup all VCPUs to real time, but cannot
7696 * guarantee that they stay in perfect synchronization.
7698 if (backwards_tsc
) {
7699 u64 delta_cyc
= max_tsc
- local_tsc
;
7700 backwards_tsc_observed
= true;
7701 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7702 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7703 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7704 vcpu
->arch
.last_host_tsc
= local_tsc
;
7705 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7709 * We have to disable TSC offset matching.. if you were
7710 * booting a VM while issuing an S4 host suspend....
7711 * you may have some problem. Solving this issue is
7712 * left as an exercise to the reader.
7714 kvm
->arch
.last_tsc_nsec
= 0;
7715 kvm
->arch
.last_tsc_write
= 0;
7722 void kvm_arch_hardware_disable(void)
7724 kvm_x86_ops
->hardware_disable();
7725 drop_user_return_notifiers();
7728 int kvm_arch_hardware_setup(void)
7732 r
= kvm_x86_ops
->hardware_setup();
7736 if (kvm_has_tsc_control
) {
7738 * Make sure the user can only configure tsc_khz values that
7739 * fit into a signed integer.
7740 * A min value is not calculated needed because it will always
7741 * be 1 on all machines.
7743 u64 max
= min(0x7fffffffULL
,
7744 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
7745 kvm_max_guest_tsc_khz
= max
;
7747 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
7750 kvm_init_msr_list();
7754 void kvm_arch_hardware_unsetup(void)
7756 kvm_x86_ops
->hardware_unsetup();
7759 void kvm_arch_check_processor_compat(void *rtn
)
7761 kvm_x86_ops
->check_processor_compatibility(rtn
);
7764 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
7766 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
7768 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
7770 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
7772 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
7775 struct static_key kvm_no_apic_vcpu __read_mostly
;
7776 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
7778 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7784 BUG_ON(vcpu
->kvm
== NULL
);
7787 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv();
7788 vcpu
->arch
.pv
.pv_unhalted
= false;
7789 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7790 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
7791 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7793 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7795 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7800 vcpu
->arch
.pio_data
= page_address(page
);
7802 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7804 r
= kvm_mmu_create(vcpu
);
7806 goto fail_free_pio_data
;
7808 if (irqchip_in_kernel(kvm
)) {
7809 r
= kvm_create_lapic(vcpu
);
7811 goto fail_mmu_destroy
;
7813 static_key_slow_inc(&kvm_no_apic_vcpu
);
7815 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7817 if (!vcpu
->arch
.mce_banks
) {
7819 goto fail_free_lapic
;
7821 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7823 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7825 goto fail_free_mce_banks
;
7830 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7831 vcpu
->arch
.pv_time_enabled
= false;
7833 vcpu
->arch
.guest_supported_xcr0
= 0;
7834 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7836 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
7838 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
7840 kvm_async_pf_hash_reset(vcpu
);
7843 vcpu
->arch
.pending_external_vector
= -1;
7845 kvm_hv_vcpu_init(vcpu
);
7849 fail_free_mce_banks
:
7850 kfree(vcpu
->arch
.mce_banks
);
7852 kvm_free_lapic(vcpu
);
7854 kvm_mmu_destroy(vcpu
);
7856 free_page((unsigned long)vcpu
->arch
.pio_data
);
7861 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7865 kvm_hv_vcpu_uninit(vcpu
);
7866 kvm_pmu_destroy(vcpu
);
7867 kfree(vcpu
->arch
.mce_banks
);
7868 kvm_free_lapic(vcpu
);
7869 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7870 kvm_mmu_destroy(vcpu
);
7871 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7872 free_page((unsigned long)vcpu
->arch
.pio_data
);
7873 if (!lapic_in_kernel(vcpu
))
7874 static_key_slow_dec(&kvm_no_apic_vcpu
);
7877 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
7879 kvm_x86_ops
->sched_in(vcpu
, cpu
);
7882 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7887 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
7888 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7889 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7890 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7891 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7893 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7894 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7895 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7896 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7897 &kvm
->arch
.irq_sources_bitmap
);
7899 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7900 mutex_init(&kvm
->arch
.apic_map_lock
);
7901 mutex_init(&kvm
->arch
.hyperv
.hv_lock
);
7902 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7904 kvm
->arch
.kvmclock_offset
= -ktime_get_boot_ns();
7905 pvclock_update_vm_gtod_copy(kvm
);
7907 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7908 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7910 kvm_page_track_init(kvm
);
7911 kvm_mmu_init_vm(kvm
);
7913 if (kvm_x86_ops
->vm_init
)
7914 return kvm_x86_ops
->vm_init(kvm
);
7919 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7922 r
= vcpu_load(vcpu
);
7924 kvm_mmu_unload(vcpu
);
7928 static void kvm_free_vcpus(struct kvm
*kvm
)
7931 struct kvm_vcpu
*vcpu
;
7934 * Unpin any mmu pages first.
7936 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7937 kvm_clear_async_pf_completion_queue(vcpu
);
7938 kvm_unload_vcpu_mmu(vcpu
);
7940 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7941 kvm_arch_vcpu_free(vcpu
);
7943 mutex_lock(&kvm
->lock
);
7944 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7945 kvm
->vcpus
[i
] = NULL
;
7947 atomic_set(&kvm
->online_vcpus
, 0);
7948 mutex_unlock(&kvm
->lock
);
7951 void kvm_arch_sync_events(struct kvm
*kvm
)
7953 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7954 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7955 kvm_free_all_assigned_devices(kvm
);
7959 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7963 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
7964 struct kvm_memory_slot
*slot
, old
;
7966 /* Called with kvm->slots_lock held. */
7967 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
7970 slot
= id_to_memslot(slots
, id
);
7976 * MAP_SHARED to prevent internal slot pages from being moved
7979 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
7980 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7981 if (IS_ERR((void *)hva
))
7982 return PTR_ERR((void *)hva
);
7991 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
7992 struct kvm_userspace_memory_region m
;
7994 m
.slot
= id
| (i
<< 16);
7996 m
.guest_phys_addr
= gpa
;
7997 m
.userspace_addr
= hva
;
7998 m
.memory_size
= size
;
7999 r
= __kvm_set_memory_region(kvm
, &m
);
8005 r
= vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
8011 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
8013 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
8017 mutex_lock(&kvm
->slots_lock
);
8018 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
8019 mutex_unlock(&kvm
->slots_lock
);
8023 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
8025 void kvm_arch_destroy_vm(struct kvm
*kvm
)
8027 if (current
->mm
== kvm
->mm
) {
8029 * Free memory regions allocated on behalf of userspace,
8030 * unless the the memory map has changed due to process exit
8033 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
8034 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
8035 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
8037 if (kvm_x86_ops
->vm_destroy
)
8038 kvm_x86_ops
->vm_destroy(kvm
);
8039 kvm_iommu_unmap_guest(kvm
);
8040 kfree(kvm
->arch
.vpic
);
8041 kfree(kvm
->arch
.vioapic
);
8042 kvm_free_vcpus(kvm
);
8043 kvfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
8044 kvm_mmu_uninit_vm(kvm
);
8047 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
8048 struct kvm_memory_slot
*dont
)
8052 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8053 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
8054 kvfree(free
->arch
.rmap
[i
]);
8055 free
->arch
.rmap
[i
] = NULL
;
8060 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
8061 dont
->arch
.lpage_info
[i
- 1]) {
8062 kvfree(free
->arch
.lpage_info
[i
- 1]);
8063 free
->arch
.lpage_info
[i
- 1] = NULL
;
8067 kvm_page_track_free_memslot(free
, dont
);
8070 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
8071 unsigned long npages
)
8075 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8076 struct kvm_lpage_info
*linfo
;
8081 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
8082 slot
->base_gfn
, level
) + 1;
8084 slot
->arch
.rmap
[i
] =
8085 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
8086 if (!slot
->arch
.rmap
[i
])
8091 linfo
= kvm_kvzalloc(lpages
* sizeof(*linfo
));
8095 slot
->arch
.lpage_info
[i
- 1] = linfo
;
8097 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
8098 linfo
[0].disallow_lpage
= 1;
8099 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
8100 linfo
[lpages
- 1].disallow_lpage
= 1;
8101 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
8103 * If the gfn and userspace address are not aligned wrt each
8104 * other, or if explicitly asked to, disable large page
8105 * support for this slot
8107 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
8108 !kvm_largepages_enabled()) {
8111 for (j
= 0; j
< lpages
; ++j
)
8112 linfo
[j
].disallow_lpage
= 1;
8116 if (kvm_page_track_create_memslot(slot
, npages
))
8122 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
8123 kvfree(slot
->arch
.rmap
[i
]);
8124 slot
->arch
.rmap
[i
] = NULL
;
8128 kvfree(slot
->arch
.lpage_info
[i
- 1]);
8129 slot
->arch
.lpage_info
[i
- 1] = NULL
;
8134 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
8137 * memslots->generation has been incremented.
8138 * mmio generation may have reached its maximum value.
8140 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
8143 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
8144 struct kvm_memory_slot
*memslot
,
8145 const struct kvm_userspace_memory_region
*mem
,
8146 enum kvm_mr_change change
)
8151 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
8152 struct kvm_memory_slot
*new)
8154 /* Still write protect RO slot */
8155 if (new->flags
& KVM_MEM_READONLY
) {
8156 kvm_mmu_slot_remove_write_access(kvm
, new);
8161 * Call kvm_x86_ops dirty logging hooks when they are valid.
8163 * kvm_x86_ops->slot_disable_log_dirty is called when:
8165 * - KVM_MR_CREATE with dirty logging is disabled
8166 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8168 * The reason is, in case of PML, we need to set D-bit for any slots
8169 * with dirty logging disabled in order to eliminate unnecessary GPA
8170 * logging in PML buffer (and potential PML buffer full VMEXT). This
8171 * guarantees leaving PML enabled during guest's lifetime won't have
8172 * any additonal overhead from PML when guest is running with dirty
8173 * logging disabled for memory slots.
8175 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8176 * to dirty logging mode.
8178 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8180 * In case of write protect:
8182 * Write protect all pages for dirty logging.
8184 * All the sptes including the large sptes which point to this
8185 * slot are set to readonly. We can not create any new large
8186 * spte on this slot until the end of the logging.
8188 * See the comments in fast_page_fault().
8190 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
8191 if (kvm_x86_ops
->slot_enable_log_dirty
)
8192 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
8194 kvm_mmu_slot_remove_write_access(kvm
, new);
8196 if (kvm_x86_ops
->slot_disable_log_dirty
)
8197 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
8201 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
8202 const struct kvm_userspace_memory_region
*mem
,
8203 const struct kvm_memory_slot
*old
,
8204 const struct kvm_memory_slot
*new,
8205 enum kvm_mr_change change
)
8207 int nr_mmu_pages
= 0;
8209 if (!kvm
->arch
.n_requested_mmu_pages
)
8210 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
8213 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
8216 * Dirty logging tracks sptes in 4k granularity, meaning that large
8217 * sptes have to be split. If live migration is successful, the guest
8218 * in the source machine will be destroyed and large sptes will be
8219 * created in the destination. However, if the guest continues to run
8220 * in the source machine (for example if live migration fails), small
8221 * sptes will remain around and cause bad performance.
8223 * Scan sptes if dirty logging has been stopped, dropping those
8224 * which can be collapsed into a single large-page spte. Later
8225 * page faults will create the large-page sptes.
8227 if ((change
!= KVM_MR_DELETE
) &&
8228 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
8229 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
8230 kvm_mmu_zap_collapsible_sptes(kvm
, new);
8233 * Set up write protection and/or dirty logging for the new slot.
8235 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8236 * been zapped so no dirty logging staff is needed for old slot. For
8237 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8238 * new and it's also covered when dealing with the new slot.
8240 * FIXME: const-ify all uses of struct kvm_memory_slot.
8242 if (change
!= KVM_MR_DELETE
)
8243 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
8246 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
8248 kvm_mmu_invalidate_zap_all_pages(kvm
);
8251 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
8252 struct kvm_memory_slot
*slot
)
8254 kvm_page_track_flush_slot(kvm
, slot
);
8257 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
8259 if (!list_empty_careful(&vcpu
->async_pf
.done
))
8262 if (kvm_apic_has_events(vcpu
))
8265 if (vcpu
->arch
.pv
.pv_unhalted
)
8268 if (atomic_read(&vcpu
->arch
.nmi_queued
))
8271 if (test_bit(KVM_REQ_SMI
, &vcpu
->requests
))
8274 if (kvm_arch_interrupt_allowed(vcpu
) &&
8275 kvm_cpu_has_interrupt(vcpu
))
8278 if (kvm_hv_has_stimer_pending(vcpu
))
8284 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8286 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
8287 kvm_x86_ops
->check_nested_events(vcpu
, false);
8289 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
8292 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8294 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8297 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8299 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8302 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8304 if (is_64_bit_mode(vcpu
))
8305 return kvm_rip_read(vcpu
);
8306 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8307 kvm_rip_read(vcpu
));
8309 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8311 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8313 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8315 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8317 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8319 unsigned long rflags
;
8321 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8322 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8323 rflags
&= ~X86_EFLAGS_TF
;
8326 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8328 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8330 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8331 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8332 rflags
|= X86_EFLAGS_TF
;
8333 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8336 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8338 __kvm_set_rflags(vcpu
, rflags
);
8339 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8341 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8343 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8347 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8351 r
= kvm_mmu_reload(vcpu
);
8355 if (!vcpu
->arch
.mmu
.direct_map
&&
8356 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8359 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8362 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8364 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8367 static inline u32
kvm_async_pf_next_probe(u32 key
)
8369 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8372 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8374 u32 key
= kvm_async_pf_hash_fn(gfn
);
8376 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8377 key
= kvm_async_pf_next_probe(key
);
8379 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8382 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8385 u32 key
= kvm_async_pf_hash_fn(gfn
);
8387 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8388 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8389 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8390 key
= kvm_async_pf_next_probe(key
);
8395 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8397 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8400 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8404 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8406 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8408 j
= kvm_async_pf_next_probe(j
);
8409 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8411 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8413 * k lies cyclically in ]i,j]
8415 * |....j i.k.| or |.k..j i...|
8417 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8418 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8423 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8426 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8430 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8431 struct kvm_async_pf
*work
)
8433 struct x86_exception fault
;
8435 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8436 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8438 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8439 (vcpu
->arch
.apf
.send_user_only
&&
8440 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8441 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8442 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8443 fault
.vector
= PF_VECTOR
;
8444 fault
.error_code_valid
= true;
8445 fault
.error_code
= 0;
8446 fault
.nested_page_fault
= false;
8447 fault
.address
= work
->arch
.token
;
8448 kvm_inject_page_fault(vcpu
, &fault
);
8452 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8453 struct kvm_async_pf
*work
)
8455 struct x86_exception fault
;
8457 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8458 if (work
->wakeup_all
)
8459 work
->arch
.token
= ~0; /* broadcast wakeup */
8461 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8463 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
8464 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8465 fault
.vector
= PF_VECTOR
;
8466 fault
.error_code_valid
= true;
8467 fault
.error_code
= 0;
8468 fault
.nested_page_fault
= false;
8469 fault
.address
= work
->arch
.token
;
8470 kvm_inject_page_fault(vcpu
, &fault
);
8472 vcpu
->arch
.apf
.halted
= false;
8473 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8476 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8478 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8481 return !kvm_event_needs_reinjection(vcpu
) &&
8482 kvm_x86_ops
->interrupt_allowed(vcpu
);
8485 void kvm_arch_start_assignment(struct kvm
*kvm
)
8487 atomic_inc(&kvm
->arch
.assigned_device_count
);
8489 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8491 void kvm_arch_end_assignment(struct kvm
*kvm
)
8493 atomic_dec(&kvm
->arch
.assigned_device_count
);
8495 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8497 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8499 return atomic_read(&kvm
->arch
.assigned_device_count
);
8501 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8503 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8505 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8507 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8509 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8511 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
8513 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
8515 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
8517 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
8519 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
8521 bool kvm_arch_has_irq_bypass(void)
8523 return kvm_x86_ops
->update_pi_irte
!= NULL
;
8526 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
8527 struct irq_bypass_producer
*prod
)
8529 struct kvm_kernel_irqfd
*irqfd
=
8530 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8532 irqfd
->producer
= prod
;
8534 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
8535 prod
->irq
, irqfd
->gsi
, 1);
8538 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
8539 struct irq_bypass_producer
*prod
)
8542 struct kvm_kernel_irqfd
*irqfd
=
8543 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8545 WARN_ON(irqfd
->producer
!= prod
);
8546 irqfd
->producer
= NULL
;
8549 * When producer of consumer is unregistered, we change back to
8550 * remapped mode, so we can re-use the current implementation
8551 * when the irq is masked/disabled or the consumer side (KVM
8552 * int this case doesn't want to receive the interrupts.
8554 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
8556 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
8557 " fails: %d\n", irqfd
->consumer
.token
, ret
);
8560 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
8561 uint32_t guest_irq
, bool set
)
8563 if (!kvm_x86_ops
->update_pi_irte
)
8566 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
8569 bool kvm_vector_hashing_enabled(void)
8571 return vector_hashing
;
8573 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
8575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
8576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
8577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
8578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
8579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
8580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
8581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
8582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
8583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
8584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
8585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
8586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
8587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
8588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
8589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
8590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
8591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);
8592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access
);
8593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi
);