2 * buffered writeback throttling. loosely based on CoDel. We can't drop
3 * packets for IO scheduling, so the logic is something like this:
5 * - Monitor latencies in a defined window of time.
6 * - If the minimum latency in the above window exceeds some target, increment
7 * scaling step and scale down queue depth by a factor of 2x. The monitoring
8 * window is then shrunk to 100 / sqrt(scaling step + 1).
9 * - For any window where we don't have solid data on what the latencies
10 * look like, retain status quo.
11 * - If latencies look good, decrement scaling step.
12 * - If we're only doing writes, allow the scaling step to go negative. This
13 * will temporarily boost write performance, snapping back to a stable
14 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
15 * positive scaling steps where we shrink the monitoring window, a negative
16 * scaling step retains the default step==0 window size.
18 * Copyright (C) 2016 Jens Axboe
21 #include <linux/kernel.h>
22 #include <linux/blk_types.h>
23 #include <linux/slab.h>
24 #include <linux/backing-dev.h>
25 #include <linux/swap.h>
29 #define CREATE_TRACE_POINTS
30 #include <trace/events/wbt.h>
34 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
35 * from here depending on device stats
42 RWB_WINDOW_NSEC
= 100 * 1000 * 1000ULL,
45 * Disregard stats, if we don't meet this minimum
47 RWB_MIN_WRITE_SAMPLES
= 3,
50 * If we have this number of consecutive windows with not enough
51 * information to scale up or down, scale up.
56 static inline bool rwb_enabled(struct rq_wb
*rwb
)
58 return rwb
&& rwb
->wb_normal
!= 0;
62 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
63 * false if 'v' + 1 would be bigger than 'below'.
65 static bool atomic_inc_below(atomic_t
*v
, int below
)
67 int cur
= atomic_read(v
);
74 old
= atomic_cmpxchg(v
, cur
, cur
+ 1);
83 static void wb_timestamp(struct rq_wb
*rwb
, unsigned long *var
)
85 if (rwb_enabled(rwb
)) {
86 const unsigned long cur
= jiffies
;
94 * If a task was rate throttled in balance_dirty_pages() within the last
95 * second or so, use that to indicate a higher cleaning rate.
97 static bool wb_recent_wait(struct rq_wb
*rwb
)
99 struct bdi_writeback
*wb
= &rwb
->queue
->backing_dev_info
.wb
;
101 return time_before(jiffies
, wb
->dirty_sleep
+ HZ
);
104 static inline struct rq_wait
*get_rq_wait(struct rq_wb
*rwb
, bool is_kswapd
)
106 return &rwb
->rq_wait
[is_kswapd
];
109 static void rwb_wake_all(struct rq_wb
*rwb
)
113 for (i
= 0; i
< WBT_NUM_RWQ
; i
++) {
114 struct rq_wait
*rqw
= &rwb
->rq_wait
[i
];
116 if (waitqueue_active(&rqw
->wait
))
117 wake_up_all(&rqw
->wait
);
121 void __wbt_done(struct rq_wb
*rwb
, enum wbt_flags wb_acct
)
126 if (!(wb_acct
& WBT_TRACKED
))
129 rqw
= get_rq_wait(rwb
, wb_acct
& WBT_KSWAPD
);
130 inflight
= atomic_dec_return(&rqw
->inflight
);
133 * wbt got disabled with IO in flight. Wake up any potential
134 * waiters, we don't have to do more than that.
136 if (unlikely(!rwb_enabled(rwb
))) {
142 * If the device does write back caching, drop further down
143 * before we wake people up.
145 if (rwb
->wc
&& !wb_recent_wait(rwb
))
148 limit
= rwb
->wb_normal
;
151 * Don't wake anyone up if we are above the normal limit.
153 if (inflight
&& inflight
>= limit
)
156 if (waitqueue_active(&rqw
->wait
)) {
157 int diff
= limit
- inflight
;
159 if (!inflight
|| diff
>= rwb
->wb_background
/ 2)
160 wake_up_all(&rqw
->wait
);
165 * Called on completion of a request. Note that it's also called when
166 * a request is merged, when the request gets freed.
168 void wbt_done(struct rq_wb
*rwb
, struct blk_issue_stat
*stat
)
173 if (!wbt_is_tracked(stat
)) {
174 if (rwb
->sync_cookie
== stat
) {
176 rwb
->sync_cookie
= NULL
;
179 if (wbt_is_read(stat
))
180 wb_timestamp(rwb
, &rwb
->last_comp
);
181 wbt_clear_state(stat
);
183 WARN_ON_ONCE(stat
== rwb
->sync_cookie
);
184 __wbt_done(rwb
, wbt_stat_to_mask(stat
));
185 wbt_clear_state(stat
);
190 * Return true, if we can't increase the depth further by scaling
192 static bool calc_wb_limits(struct rq_wb
*rwb
)
197 if (!rwb
->min_lat_nsec
) {
198 rwb
->wb_max
= rwb
->wb_normal
= rwb
->wb_background
= 0;
203 * For QD=1 devices, this is a special case. It's important for those
204 * to have one request ready when one completes, so force a depth of
205 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
206 * since the device can't have more than that in flight. If we're
207 * scaling down, then keep a setting of 1/1/1.
209 if (rwb
->queue_depth
== 1) {
210 if (rwb
->scale_step
> 0)
211 rwb
->wb_max
= rwb
->wb_normal
= 1;
213 rwb
->wb_max
= rwb
->wb_normal
= 2;
216 rwb
->wb_background
= 1;
219 * scale_step == 0 is our default state. If we have suffered
220 * latency spikes, step will be > 0, and we shrink the
221 * allowed write depths. If step is < 0, we're only doing
222 * writes, and we allow a temporarily higher depth to
223 * increase performance.
225 depth
= min_t(unsigned int, RWB_DEF_DEPTH
, rwb
->queue_depth
);
226 if (rwb
->scale_step
> 0)
227 depth
= 1 + ((depth
- 1) >> min(31, rwb
->scale_step
));
228 else if (rwb
->scale_step
< 0) {
229 unsigned int maxd
= 3 * rwb
->queue_depth
/ 4;
231 depth
= 1 + ((depth
- 1) << -rwb
->scale_step
);
239 * Set our max/normal/bg queue depths based on how far
240 * we have scaled down (->scale_step).
243 rwb
->wb_normal
= (rwb
->wb_max
+ 1) / 2;
244 rwb
->wb_background
= (rwb
->wb_max
+ 3) / 4;
250 static inline bool stat_sample_valid(struct blk_rq_stat
*stat
)
253 * We need at least one read sample, and a minimum of
254 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
255 * that it's writes impacting us, and not just some sole read on
256 * a device that is in a lower power state.
258 return stat
[BLK_STAT_READ
].nr_samples
>= 1 &&
259 stat
[BLK_STAT_WRITE
].nr_samples
>= RWB_MIN_WRITE_SAMPLES
;
262 static u64
rwb_sync_issue_lat(struct rq_wb
*rwb
)
264 u64 now
, issue
= ACCESS_ONCE(rwb
->sync_issue
);
266 if (!issue
|| !rwb
->sync_cookie
)
269 now
= ktime_to_ns(ktime_get());
280 static int __latency_exceeded(struct rq_wb
*rwb
, struct blk_rq_stat
*stat
)
282 struct backing_dev_info
*bdi
= &rwb
->queue
->backing_dev_info
;
286 * If our stored sync issue exceeds the window size, or it
287 * exceeds our min target AND we haven't logged any entries,
288 * flag the latency as exceeded. wbt works off completion latencies,
289 * but for a flooded device, a single sync IO can take a long time
290 * to complete after being issued. If this time exceeds our
291 * monitoring window AND we didn't see any other completions in that
292 * window, then count that sync IO as a violation of the latency.
294 thislat
= rwb_sync_issue_lat(rwb
);
295 if (thislat
> rwb
->cur_win_nsec
||
296 (thislat
> rwb
->min_lat_nsec
&& !stat
[BLK_STAT_READ
].nr_samples
)) {
297 trace_wbt_lat(bdi
, thislat
);
302 * No read/write mix, if stat isn't valid
304 if (!stat_sample_valid(stat
)) {
306 * If we had writes in this stat window and the window is
307 * current, we're only doing writes. If a task recently
308 * waited or still has writes in flights, consider us doing
309 * just writes as well.
311 if ((stat
[BLK_STAT_WRITE
].nr_samples
&& blk_stat_is_current(stat
)) ||
312 wb_recent_wait(rwb
) || wbt_inflight(rwb
))
313 return LAT_UNKNOWN_WRITES
;
318 * If the 'min' latency exceeds our target, step down.
320 if (stat
[BLK_STAT_READ
].min
> rwb
->min_lat_nsec
) {
321 trace_wbt_lat(bdi
, stat
[BLK_STAT_READ
].min
);
322 trace_wbt_stat(bdi
, stat
);
327 trace_wbt_stat(bdi
, stat
);
332 static int latency_exceeded(struct rq_wb
*rwb
)
334 struct blk_rq_stat stat
[2];
336 blk_queue_stat_get(rwb
->queue
, stat
);
337 return __latency_exceeded(rwb
, stat
);
340 static void rwb_trace_step(struct rq_wb
*rwb
, const char *msg
)
342 struct backing_dev_info
*bdi
= &rwb
->queue
->backing_dev_info
;
344 trace_wbt_step(bdi
, msg
, rwb
->scale_step
, rwb
->cur_win_nsec
,
345 rwb
->wb_background
, rwb
->wb_normal
, rwb
->wb_max
);
348 static void scale_up(struct rq_wb
*rwb
)
351 * Hit max in previous round, stop here
357 rwb
->unknown_cnt
= 0;
358 blk_stat_clear(rwb
->queue
);
360 rwb
->scaled_max
= calc_wb_limits(rwb
);
364 rwb_trace_step(rwb
, "step up");
368 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
369 * had a latency violation.
371 static void scale_down(struct rq_wb
*rwb
, bool hard_throttle
)
374 * Stop scaling down when we've hit the limit. This also prevents
375 * ->scale_step from going to crazy values, if the device can't
378 if (rwb
->wb_max
== 1)
381 if (rwb
->scale_step
< 0 && hard_throttle
)
386 rwb
->scaled_max
= false;
387 rwb
->unknown_cnt
= 0;
388 blk_stat_clear(rwb
->queue
);
390 rwb_trace_step(rwb
, "step down");
393 static void rwb_arm_timer(struct rq_wb
*rwb
)
395 unsigned long expires
;
397 if (rwb
->scale_step
> 0) {
399 * We should speed this up, using some variant of a fast
400 * integer inverse square root calculation. Since we only do
401 * this for every window expiration, it's not a huge deal,
404 rwb
->cur_win_nsec
= div_u64(rwb
->win_nsec
<< 4,
405 int_sqrt((rwb
->scale_step
+ 1) << 8));
408 * For step < 0, we don't want to increase/decrease the
411 rwb
->cur_win_nsec
= rwb
->win_nsec
;
414 expires
= jiffies
+ nsecs_to_jiffies(rwb
->cur_win_nsec
);
415 mod_timer(&rwb
->window_timer
, expires
);
418 static void wb_timer_fn(unsigned long data
)
420 struct rq_wb
*rwb
= (struct rq_wb
*) data
;
421 unsigned int inflight
= wbt_inflight(rwb
);
424 status
= latency_exceeded(rwb
);
426 trace_wbt_timer(&rwb
->queue
->backing_dev_info
, status
, rwb
->scale_step
,
430 * If we exceeded the latency target, step down. If we did not,
431 * step one level up. If we don't know enough to say either exceeded
432 * or ok, then don't do anything.
436 scale_down(rwb
, true);
441 case LAT_UNKNOWN_WRITES
:
443 * We started a the center step, but don't have a valid
444 * read/write sample, but we do have writes going on.
445 * Allow step to go negative, to increase write perf.
450 if (++rwb
->unknown_cnt
< RWB_UNKNOWN_BUMP
)
453 * We get here when previously scaled reduced depth, and we
454 * currently don't have a valid read/write sample. For that
455 * case, slowly return to center state (step == 0).
457 if (rwb
->scale_step
> 0)
459 else if (rwb
->scale_step
< 0)
460 scale_down(rwb
, false);
467 * Re-arm timer, if we have IO in flight
469 if (rwb
->scale_step
|| inflight
)
473 void wbt_update_limits(struct rq_wb
*rwb
)
476 rwb
->scaled_max
= false;
482 static bool close_io(struct rq_wb
*rwb
)
484 const unsigned long now
= jiffies
;
486 return time_before(now
, rwb
->last_issue
+ HZ
/ 10) ||
487 time_before(now
, rwb
->last_comp
+ HZ
/ 10);
490 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO)
492 static inline unsigned int get_limit(struct rq_wb
*rwb
, unsigned long rw
)
497 * At this point we know it's a buffered write. If this is
498 * kswapd trying to free memory, or REQ_SYNC is set, set, then
499 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
500 * that. If the write is marked as a background write, then use
501 * the idle limit, or go to normal if we haven't had competing
504 if ((rw
& REQ_HIPRIO
) || wb_recent_wait(rwb
) || current_is_kswapd())
506 else if ((rw
& REQ_BACKGROUND
) || close_io(rwb
)) {
508 * If less than 100ms since we completed unrelated IO,
509 * limit us to half the depth for background writeback.
511 limit
= rwb
->wb_background
;
513 limit
= rwb
->wb_normal
;
518 static inline bool may_queue(struct rq_wb
*rwb
, struct rq_wait
*rqw
,
519 wait_queue_t
*wait
, unsigned long rw
)
522 * inc it here even if disabled, since we'll dec it at completion.
523 * this only happens if the task was sleeping in __wbt_wait(),
524 * and someone turned it off at the same time.
526 if (!rwb_enabled(rwb
)) {
527 atomic_inc(&rqw
->inflight
);
532 * If the waitqueue is already active and we are not the next
533 * in line to be woken up, wait for our turn.
535 if (waitqueue_active(&rqw
->wait
) &&
536 rqw
->wait
.task_list
.next
!= &wait
->task_list
)
539 return atomic_inc_below(&rqw
->inflight
, get_limit(rwb
, rw
));
543 * Block if we will exceed our limit, or if we are currently waiting for
544 * the timer to kick off queuing again.
546 static void __wbt_wait(struct rq_wb
*rwb
, unsigned long rw
, spinlock_t
*lock
)
548 struct rq_wait
*rqw
= get_rq_wait(rwb
, current_is_kswapd());
551 if (may_queue(rwb
, rqw
, &wait
, rw
))
555 prepare_to_wait_exclusive(&rqw
->wait
, &wait
,
556 TASK_UNINTERRUPTIBLE
);
558 if (may_queue(rwb
, rqw
, &wait
, rw
))
562 spin_unlock_irq(lock
);
570 finish_wait(&rqw
->wait
, &wait
);
573 static inline bool wbt_should_throttle(struct rq_wb
*rwb
, struct bio
*bio
)
575 const int op
= bio_op(bio
);
578 * If not a WRITE, do nothing
580 if (op
!= REQ_OP_WRITE
)
584 * Don't throttle WRITE_ODIRECT
586 if ((bio
->bi_opf
& (REQ_SYNC
| REQ_IDLE
)) == (REQ_SYNC
| REQ_IDLE
))
593 * Returns true if the IO request should be accounted, false if not.
594 * May sleep, if we have exceeded the writeback limits. Caller can pass
595 * in an irq held spinlock, if it holds one when calling this function.
596 * If we do sleep, we'll release and re-grab it.
598 unsigned int wbt_wait(struct rq_wb
*rwb
, struct bio
*bio
, spinlock_t
*lock
)
600 unsigned int ret
= 0;
602 if (!rwb_enabled(rwb
))
605 if (bio_op(bio
) == REQ_OP_READ
)
608 if (!wbt_should_throttle(rwb
, bio
)) {
610 wb_timestamp(rwb
, &rwb
->last_issue
);
614 __wbt_wait(rwb
, bio
->bi_opf
, lock
);
616 if (!timer_pending(&rwb
->window_timer
))
619 if (current_is_kswapd())
622 return ret
| WBT_TRACKED
;
625 void wbt_issue(struct rq_wb
*rwb
, struct blk_issue_stat
*stat
)
627 if (!rwb_enabled(rwb
))
631 * Track sync issue, in case it takes a long time to complete. Allows
632 * us to react quicker, if a sync IO takes a long time to complete.
633 * Note that this is just a hint. 'stat' can go away when the
634 * request completes, so it's important we never dereference it. We
635 * only use the address to compare with, which is why we store the
636 * sync_issue time locally.
638 if (wbt_is_read(stat
) && !rwb
->sync_issue
) {
639 rwb
->sync_cookie
= stat
;
640 rwb
->sync_issue
= blk_stat_time(stat
);
644 void wbt_requeue(struct rq_wb
*rwb
, struct blk_issue_stat
*stat
)
646 if (!rwb_enabled(rwb
))
648 if (stat
== rwb
->sync_cookie
) {
650 rwb
->sync_cookie
= NULL
;
654 void wbt_set_queue_depth(struct rq_wb
*rwb
, unsigned int depth
)
657 rwb
->queue_depth
= depth
;
658 wbt_update_limits(rwb
);
662 void wbt_set_write_cache(struct rq_wb
*rwb
, bool write_cache_on
)
665 rwb
->wc
= write_cache_on
;
669 * Disable wbt, if enabled by default. Only called from CFQ, if we have
672 void wbt_disable_default(struct request_queue
*q
)
674 struct rq_wb
*rwb
= q
->rq_wb
;
676 if (rwb
&& rwb
->enable_state
== WBT_STATE_ON_DEFAULT
) {
677 del_timer_sync(&rwb
->window_timer
);
678 rwb
->win_nsec
= rwb
->min_lat_nsec
= 0;
679 wbt_update_limits(rwb
);
682 EXPORT_SYMBOL_GPL(wbt_disable_default
);
684 u64
wbt_default_latency_nsec(struct request_queue
*q
)
687 * We default to 2msec for non-rotational storage, and 75msec
688 * for rotational storage.
690 if (blk_queue_nonrot(q
))
696 int wbt_init(struct request_queue
*q
)
702 * For now, we depend on the stats window being larger than
703 * our monitoring window. Ensure that this isn't inadvertently
706 BUILD_BUG_ON(RWB_WINDOW_NSEC
> BLK_STAT_NSEC
);
707 BUILD_BUG_ON(WBT_NR_BITS
> BLK_STAT_RES_BITS
);
709 rwb
= kzalloc(sizeof(*rwb
), GFP_KERNEL
);
713 for (i
= 0; i
< WBT_NUM_RWQ
; i
++) {
714 atomic_set(&rwb
->rq_wait
[i
].inflight
, 0);
715 init_waitqueue_head(&rwb
->rq_wait
[i
].wait
);
718 setup_timer(&rwb
->window_timer
, wb_timer_fn
, (unsigned long) rwb
);
720 rwb
->queue_depth
= RWB_DEF_DEPTH
;
721 rwb
->last_comp
= rwb
->last_issue
= jiffies
;
723 rwb
->win_nsec
= RWB_WINDOW_NSEC
;
724 rwb
->enable_state
= WBT_STATE_ON_DEFAULT
;
725 wbt_update_limits(rwb
);
728 * Assign rwb, and turn on stats tracking for this queue
733 rwb
->min_lat_nsec
= wbt_default_latency_nsec(q
);
735 wbt_set_queue_depth(rwb
, blk_queue_depth(q
));
736 wbt_set_write_cache(rwb
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
741 void wbt_exit(struct request_queue
*q
)
743 struct rq_wb
*rwb
= q
->rq_wb
;
746 del_timer_sync(&rwb
->window_timer
);