4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim
;
65 /* This context's GFP mask */
68 /* Allocation order */
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
81 struct mem_cgroup
*target_mem_cgroup
;
83 /* Scan (total_size >> priority) pages at once */
86 unsigned int may_writepage
:1;
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap
:1;
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap
:1;
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash
:1;
97 unsigned int hibernation_mode
:1;
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready
:1;
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned
;
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed
;
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
114 if ((_page)->lru.prev != _base) { \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
128 if ((_page)->lru.prev != _base) { \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
140 * From 0 .. 100. Higher means more swappy.
142 int vm_swappiness
= 60;
144 * The total number of pages which are beyond the high watermark within all
147 unsigned long vm_total_pages
;
149 static LIST_HEAD(shrinker_list
);
150 static DECLARE_RWSEM(shrinker_rwsem
);
153 static bool global_reclaim(struct scan_control
*sc
)
155 return !sc
->target_mem_cgroup
;
159 * sane_reclaim - is the usual dirty throttling mechanism operational?
160 * @sc: scan_control in question
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
171 static bool sane_reclaim(struct scan_control
*sc
)
173 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
177 #ifdef CONFIG_CGROUP_WRITEBACK
178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
184 static bool global_reclaim(struct scan_control
*sc
)
189 static bool sane_reclaim(struct scan_control
*sc
)
195 static unsigned long zone_reclaimable_pages(struct zone
*zone
)
199 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
200 zone_page_state(zone
, NR_INACTIVE_FILE
);
202 if (get_nr_swap_pages() > 0)
203 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
204 zone_page_state(zone
, NR_INACTIVE_ANON
);
209 bool zone_reclaimable(struct zone
*zone
)
211 return zone_page_state(zone
, NR_PAGES_SCANNED
) <
212 zone_reclaimable_pages(zone
) * 6;
215 static unsigned long get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
217 if (!mem_cgroup_disabled())
218 return mem_cgroup_get_lru_size(lruvec
, lru
);
220 return zone_page_state(lruvec_zone(lruvec
), NR_LRU_BASE
+ lru
);
224 * Add a shrinker callback to be called from the vm.
226 int register_shrinker(struct shrinker
*shrinker
)
228 size_t size
= sizeof(*shrinker
->nr_deferred
);
231 * If we only have one possible node in the system anyway, save
232 * ourselves the trouble and disable NUMA aware behavior. This way we
233 * will save memory and some small loop time later.
235 if (nr_node_ids
== 1)
236 shrinker
->flags
&= ~SHRINKER_NUMA_AWARE
;
238 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
241 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
242 if (!shrinker
->nr_deferred
)
245 down_write(&shrinker_rwsem
);
246 list_add_tail(&shrinker
->list
, &shrinker_list
);
247 up_write(&shrinker_rwsem
);
250 EXPORT_SYMBOL(register_shrinker
);
255 void unregister_shrinker(struct shrinker
*shrinker
)
257 down_write(&shrinker_rwsem
);
258 list_del(&shrinker
->list
);
259 up_write(&shrinker_rwsem
);
260 kfree(shrinker
->nr_deferred
);
262 EXPORT_SYMBOL(unregister_shrinker
);
264 #define SHRINK_BATCH 128
266 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
267 struct shrinker
*shrinker
,
268 unsigned long nr_scanned
,
269 unsigned long nr_eligible
)
271 unsigned long freed
= 0;
272 unsigned long long delta
;
277 int nid
= shrinkctl
->nid
;
278 long batch_size
= shrinker
->batch
? shrinker
->batch
280 long scanned
= 0, next_deferred
;
282 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
287 * copy the current shrinker scan count into a local variable
288 * and zero it so that other concurrent shrinker invocations
289 * don't also do this scanning work.
291 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
294 delta
= (4 * nr_scanned
) / shrinker
->seeks
;
296 do_div(delta
, nr_eligible
+ 1);
298 if (total_scan
< 0) {
299 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
300 shrinker
->scan_objects
, total_scan
);
301 total_scan
= freeable
;
304 next_deferred
= total_scan
;
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * freeable. This is bad for sustaining a working set in
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
318 if (delta
< freeable
/ 4)
319 total_scan
= min(total_scan
, freeable
/ 2);
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
326 if (total_scan
> freeable
* 2)
327 total_scan
= freeable
* 2;
329 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
330 nr_scanned
, nr_eligible
,
331 freeable
, delta
, total_scan
);
334 * Normally, we should not scan less than batch_size objects in one
335 * pass to avoid too frequent shrinker calls, but if the slab has less
336 * than batch_size objects in total and we are really tight on memory,
337 * we will try to reclaim all available objects, otherwise we can end
338 * up failing allocations although there are plenty of reclaimable
339 * objects spread over several slabs with usage less than the
342 * We detect the "tight on memory" situations by looking at the total
343 * number of objects we want to scan (total_scan). If it is greater
344 * than the total number of objects on slab (freeable), we must be
345 * scanning at high prio and therefore should try to reclaim as much as
348 while (total_scan
>= batch_size
||
349 total_scan
>= freeable
) {
351 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
353 shrinkctl
->nr_to_scan
= nr_to_scan
;
354 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
355 if (ret
== SHRINK_STOP
)
359 count_vm_events(SLABS_SCANNED
, nr_to_scan
);
360 total_scan
-= nr_to_scan
;
361 scanned
+= nr_to_scan
;
366 if (next_deferred
>= scanned
)
367 next_deferred
-= scanned
;
371 * move the unused scan count back into the shrinker in a
372 * manner that handles concurrent updates. If we exhausted the
373 * scan, there is no need to do an update.
375 if (next_deferred
> 0)
376 new_nr
= atomic_long_add_return(next_deferred
,
377 &shrinker
->nr_deferred
[nid
]);
379 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
381 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
386 * shrink_slab - shrink slab caches
387 * @gfp_mask: allocation context
388 * @nid: node whose slab caches to target
389 * @memcg: memory cgroup whose slab caches to target
390 * @nr_scanned: pressure numerator
391 * @nr_eligible: pressure denominator
393 * Call the shrink functions to age shrinkable caches.
395 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
396 * unaware shrinkers will receive a node id of 0 instead.
398 * @memcg specifies the memory cgroup to target. If it is not NULL,
399 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
400 * objects from the memory cgroup specified. Otherwise all shrinkers
401 * are called, and memcg aware shrinkers are supposed to scan the
404 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
405 * the available objects should be scanned. Page reclaim for example
406 * passes the number of pages scanned and the number of pages on the
407 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
408 * when it encountered mapped pages. The ratio is further biased by
409 * the ->seeks setting of the shrink function, which indicates the
410 * cost to recreate an object relative to that of an LRU page.
412 * Returns the number of reclaimed slab objects.
414 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
415 struct mem_cgroup
*memcg
,
416 unsigned long nr_scanned
,
417 unsigned long nr_eligible
)
419 struct shrinker
*shrinker
;
420 unsigned long freed
= 0;
422 if (memcg
&& !memcg_kmem_is_active(memcg
))
426 nr_scanned
= SWAP_CLUSTER_MAX
;
428 if (!down_read_trylock(&shrinker_rwsem
)) {
430 * If we would return 0, our callers would understand that we
431 * have nothing else to shrink and give up trying. By returning
432 * 1 we keep it going and assume we'll be able to shrink next
439 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
440 struct shrink_control sc
= {
441 .gfp_mask
= gfp_mask
,
446 if (memcg
&& !(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
449 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
452 freed
+= do_shrink_slab(&sc
, shrinker
, nr_scanned
, nr_eligible
);
455 up_read(&shrinker_rwsem
);
461 void drop_slab_node(int nid
)
466 struct mem_cgroup
*memcg
= NULL
;
470 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
,
472 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
473 } while (freed
> 10);
480 for_each_online_node(nid
)
484 static inline int is_page_cache_freeable(struct page
*page
)
487 * A freeable page cache page is referenced only by the caller
488 * that isolated the page, the page cache radix tree and
489 * optional buffer heads at page->private.
491 return page_count(page
) - page_has_private(page
) == 2;
494 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
496 if (current
->flags
& PF_SWAPWRITE
)
498 if (!inode_write_congested(inode
))
500 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
506 * We detected a synchronous write error writing a page out. Probably
507 * -ENOSPC. We need to propagate that into the address_space for a subsequent
508 * fsync(), msync() or close().
510 * The tricky part is that after writepage we cannot touch the mapping: nothing
511 * prevents it from being freed up. But we have a ref on the page and once
512 * that page is locked, the mapping is pinned.
514 * We're allowed to run sleeping lock_page() here because we know the caller has
517 static void handle_write_error(struct address_space
*mapping
,
518 struct page
*page
, int error
)
521 if (page_mapping(page
) == mapping
)
522 mapping_set_error(mapping
, error
);
526 /* possible outcome of pageout() */
528 /* failed to write page out, page is locked */
530 /* move page to the active list, page is locked */
532 /* page has been sent to the disk successfully, page is unlocked */
534 /* page is clean and locked */
539 * pageout is called by shrink_page_list() for each dirty page.
540 * Calls ->writepage().
542 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
543 struct scan_control
*sc
)
546 * If the page is dirty, only perform writeback if that write
547 * will be non-blocking. To prevent this allocation from being
548 * stalled by pagecache activity. But note that there may be
549 * stalls if we need to run get_block(). We could test
550 * PagePrivate for that.
552 * If this process is currently in __generic_file_write_iter() against
553 * this page's queue, we can perform writeback even if that
556 * If the page is swapcache, write it back even if that would
557 * block, for some throttling. This happens by accident, because
558 * swap_backing_dev_info is bust: it doesn't reflect the
559 * congestion state of the swapdevs. Easy to fix, if needed.
561 if (!is_page_cache_freeable(page
))
565 * Some data journaling orphaned pages can have
566 * page->mapping == NULL while being dirty with clean buffers.
568 if (page_has_private(page
)) {
569 if (try_to_free_buffers(page
)) {
570 ClearPageDirty(page
);
571 pr_info("%s: orphaned page\n", __func__
);
577 if (mapping
->a_ops
->writepage
== NULL
)
578 return PAGE_ACTIVATE
;
579 if (!may_write_to_inode(mapping
->host
, sc
))
582 if (clear_page_dirty_for_io(page
)) {
584 struct writeback_control wbc
= {
585 .sync_mode
= WB_SYNC_NONE
,
586 .nr_to_write
= SWAP_CLUSTER_MAX
,
588 .range_end
= LLONG_MAX
,
592 SetPageReclaim(page
);
593 res
= mapping
->a_ops
->writepage(page
, &wbc
);
595 handle_write_error(mapping
, page
, res
);
596 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
597 ClearPageReclaim(page
);
598 return PAGE_ACTIVATE
;
601 if (!PageWriteback(page
)) {
602 /* synchronous write or broken a_ops? */
603 ClearPageReclaim(page
);
605 trace_mm_vmscan_writepage(page
, trace_reclaim_flags(page
));
606 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
614 * Same as remove_mapping, but if the page is removed from the mapping, it
615 * gets returned with a refcount of 0.
617 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
621 struct mem_cgroup
*memcg
;
623 BUG_ON(!PageLocked(page
));
624 BUG_ON(mapping
!= page_mapping(page
));
626 memcg
= mem_cgroup_begin_page_stat(page
);
627 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
629 * The non racy check for a busy page.
631 * Must be careful with the order of the tests. When someone has
632 * a ref to the page, it may be possible that they dirty it then
633 * drop the reference. So if PageDirty is tested before page_count
634 * here, then the following race may occur:
636 * get_user_pages(&page);
637 * [user mapping goes away]
639 * !PageDirty(page) [good]
640 * SetPageDirty(page);
642 * !page_count(page) [good, discard it]
644 * [oops, our write_to data is lost]
646 * Reversing the order of the tests ensures such a situation cannot
647 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
648 * load is not satisfied before that of page->_count.
650 * Note that if SetPageDirty is always performed via set_page_dirty,
651 * and thus under tree_lock, then this ordering is not required.
653 if (!page_freeze_refs(page
, 2))
655 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
656 if (unlikely(PageDirty(page
))) {
657 page_unfreeze_refs(page
, 2);
661 if (PageSwapCache(page
)) {
662 swp_entry_t swap
= { .val
= page_private(page
) };
663 mem_cgroup_swapout(page
, swap
);
664 __delete_from_swap_cache(page
);
665 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
666 mem_cgroup_end_page_stat(memcg
);
667 swapcache_free(swap
);
669 void (*freepage
)(struct page
*);
672 freepage
= mapping
->a_ops
->freepage
;
674 * Remember a shadow entry for reclaimed file cache in
675 * order to detect refaults, thus thrashing, later on.
677 * But don't store shadows in an address space that is
678 * already exiting. This is not just an optizimation,
679 * inode reclaim needs to empty out the radix tree or
680 * the nodes are lost. Don't plant shadows behind its
683 if (reclaimed
&& page_is_file_cache(page
) &&
684 !mapping_exiting(mapping
))
685 shadow
= workingset_eviction(mapping
, page
);
686 __delete_from_page_cache(page
, shadow
, memcg
);
687 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
688 mem_cgroup_end_page_stat(memcg
);
690 if (freepage
!= NULL
)
697 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
698 mem_cgroup_end_page_stat(memcg
);
703 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
704 * someone else has a ref on the page, abort and return 0. If it was
705 * successfully detached, return 1. Assumes the caller has a single ref on
708 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
710 if (__remove_mapping(mapping
, page
, false)) {
712 * Unfreezing the refcount with 1 rather than 2 effectively
713 * drops the pagecache ref for us without requiring another
716 page_unfreeze_refs(page
, 1);
723 * putback_lru_page - put previously isolated page onto appropriate LRU list
724 * @page: page to be put back to appropriate lru list
726 * Add previously isolated @page to appropriate LRU list.
727 * Page may still be unevictable for other reasons.
729 * lru_lock must not be held, interrupts must be enabled.
731 void putback_lru_page(struct page
*page
)
734 int was_unevictable
= PageUnevictable(page
);
736 VM_BUG_ON_PAGE(PageLRU(page
), page
);
739 ClearPageUnevictable(page
);
741 if (page_evictable(page
)) {
743 * For evictable pages, we can use the cache.
744 * In event of a race, worst case is we end up with an
745 * unevictable page on [in]active list.
746 * We know how to handle that.
748 is_unevictable
= false;
752 * Put unevictable pages directly on zone's unevictable
755 is_unevictable
= true;
756 add_page_to_unevictable_list(page
);
758 * When racing with an mlock or AS_UNEVICTABLE clearing
759 * (page is unlocked) make sure that if the other thread
760 * does not observe our setting of PG_lru and fails
761 * isolation/check_move_unevictable_pages,
762 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
763 * the page back to the evictable list.
765 * The other side is TestClearPageMlocked() or shmem_lock().
771 * page's status can change while we move it among lru. If an evictable
772 * page is on unevictable list, it never be freed. To avoid that,
773 * check after we added it to the list, again.
775 if (is_unevictable
&& page_evictable(page
)) {
776 if (!isolate_lru_page(page
)) {
780 /* This means someone else dropped this page from LRU
781 * So, it will be freed or putback to LRU again. There is
782 * nothing to do here.
786 if (was_unevictable
&& !is_unevictable
)
787 count_vm_event(UNEVICTABLE_PGRESCUED
);
788 else if (!was_unevictable
&& is_unevictable
)
789 count_vm_event(UNEVICTABLE_PGCULLED
);
791 put_page(page
); /* drop ref from isolate */
794 enum page_references
{
796 PAGEREF_RECLAIM_CLEAN
,
801 static enum page_references
page_check_references(struct page
*page
,
802 struct scan_control
*sc
)
804 int referenced_ptes
, referenced_page
;
805 unsigned long vm_flags
;
807 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
809 referenced_page
= TestClearPageReferenced(page
);
812 * Mlock lost the isolation race with us. Let try_to_unmap()
813 * move the page to the unevictable list.
815 if (vm_flags
& VM_LOCKED
)
816 return PAGEREF_RECLAIM
;
818 if (referenced_ptes
) {
819 if (PageSwapBacked(page
))
820 return PAGEREF_ACTIVATE
;
822 * All mapped pages start out with page table
823 * references from the instantiating fault, so we need
824 * to look twice if a mapped file page is used more
827 * Mark it and spare it for another trip around the
828 * inactive list. Another page table reference will
829 * lead to its activation.
831 * Note: the mark is set for activated pages as well
832 * so that recently deactivated but used pages are
835 SetPageReferenced(page
);
837 if (referenced_page
|| referenced_ptes
> 1)
838 return PAGEREF_ACTIVATE
;
841 * Activate file-backed executable pages after first usage.
843 if (vm_flags
& VM_EXEC
)
844 return PAGEREF_ACTIVATE
;
849 /* Reclaim if clean, defer dirty pages to writeback */
850 if (referenced_page
&& !PageSwapBacked(page
))
851 return PAGEREF_RECLAIM_CLEAN
;
853 return PAGEREF_RECLAIM
;
856 /* Check if a page is dirty or under writeback */
857 static void page_check_dirty_writeback(struct page
*page
,
858 bool *dirty
, bool *writeback
)
860 struct address_space
*mapping
;
863 * Anonymous pages are not handled by flushers and must be written
864 * from reclaim context. Do not stall reclaim based on them
866 if (!page_is_file_cache(page
)) {
872 /* By default assume that the page flags are accurate */
873 *dirty
= PageDirty(page
);
874 *writeback
= PageWriteback(page
);
876 /* Verify dirty/writeback state if the filesystem supports it */
877 if (!page_has_private(page
))
880 mapping
= page_mapping(page
);
881 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
882 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
886 * shrink_page_list() returns the number of reclaimed pages
888 static unsigned long shrink_page_list(struct list_head
*page_list
,
890 struct scan_control
*sc
,
891 enum ttu_flags ttu_flags
,
892 unsigned long *ret_nr_dirty
,
893 unsigned long *ret_nr_unqueued_dirty
,
894 unsigned long *ret_nr_congested
,
895 unsigned long *ret_nr_writeback
,
896 unsigned long *ret_nr_immediate
,
899 LIST_HEAD(ret_pages
);
900 LIST_HEAD(free_pages
);
902 unsigned long nr_unqueued_dirty
= 0;
903 unsigned long nr_dirty
= 0;
904 unsigned long nr_congested
= 0;
905 unsigned long nr_reclaimed
= 0;
906 unsigned long nr_writeback
= 0;
907 unsigned long nr_immediate
= 0;
911 while (!list_empty(page_list
)) {
912 struct address_space
*mapping
;
915 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
916 bool dirty
, writeback
;
920 page
= lru_to_page(page_list
);
921 list_del(&page
->lru
);
923 if (!trylock_page(page
))
926 VM_BUG_ON_PAGE(PageActive(page
), page
);
927 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
931 if (unlikely(!page_evictable(page
)))
934 if (!sc
->may_unmap
&& page_mapped(page
))
937 /* Double the slab pressure for mapped and swapcache pages */
938 if (page_mapped(page
) || PageSwapCache(page
))
941 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
942 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
945 * The number of dirty pages determines if a zone is marked
946 * reclaim_congested which affects wait_iff_congested. kswapd
947 * will stall and start writing pages if the tail of the LRU
948 * is all dirty unqueued pages.
950 page_check_dirty_writeback(page
, &dirty
, &writeback
);
951 if (dirty
|| writeback
)
954 if (dirty
&& !writeback
)
958 * Treat this page as congested if the underlying BDI is or if
959 * pages are cycling through the LRU so quickly that the
960 * pages marked for immediate reclaim are making it to the
961 * end of the LRU a second time.
963 mapping
= page_mapping(page
);
964 if (((dirty
|| writeback
) && mapping
&&
965 inode_write_congested(mapping
->host
)) ||
966 (writeback
&& PageReclaim(page
)))
970 * If a page at the tail of the LRU is under writeback, there
971 * are three cases to consider.
973 * 1) If reclaim is encountering an excessive number of pages
974 * under writeback and this page is both under writeback and
975 * PageReclaim then it indicates that pages are being queued
976 * for IO but are being recycled through the LRU before the
977 * IO can complete. Waiting on the page itself risks an
978 * indefinite stall if it is impossible to writeback the
979 * page due to IO error or disconnected storage so instead
980 * note that the LRU is being scanned too quickly and the
981 * caller can stall after page list has been processed.
983 * 2) Global or new memcg reclaim encounters a page that is
984 * not marked for immediate reclaim, or the caller does not
985 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
986 * not to fs). In this case mark the page for immediate
987 * reclaim and continue scanning.
989 * Require may_enter_fs because we would wait on fs, which
990 * may not have submitted IO yet. And the loop driver might
991 * enter reclaim, and deadlock if it waits on a page for
992 * which it is needed to do the write (loop masks off
993 * __GFP_IO|__GFP_FS for this reason); but more thought
994 * would probably show more reasons.
996 * 3) Legacy memcg encounters a page that is already marked
997 * PageReclaim. memcg does not have any dirty pages
998 * throttling so we could easily OOM just because too many
999 * pages are in writeback and there is nothing else to
1000 * reclaim. Wait for the writeback to complete.
1002 if (PageWriteback(page
)) {
1004 if (current_is_kswapd() &&
1005 PageReclaim(page
) &&
1006 test_bit(ZONE_WRITEBACK
, &zone
->flags
)) {
1011 } else if (sane_reclaim(sc
) ||
1012 !PageReclaim(page
) || !may_enter_fs
) {
1014 * This is slightly racy - end_page_writeback()
1015 * might have just cleared PageReclaim, then
1016 * setting PageReclaim here end up interpreted
1017 * as PageReadahead - but that does not matter
1018 * enough to care. What we do want is for this
1019 * page to have PageReclaim set next time memcg
1020 * reclaim reaches the tests above, so it will
1021 * then wait_on_page_writeback() to avoid OOM;
1022 * and it's also appropriate in global reclaim.
1024 SetPageReclaim(page
);
1031 wait_on_page_writeback(page
);
1032 /* then go back and try same page again */
1033 list_add_tail(&page
->lru
, page_list
);
1039 references
= page_check_references(page
, sc
);
1041 switch (references
) {
1042 case PAGEREF_ACTIVATE
:
1043 goto activate_locked
;
1046 case PAGEREF_RECLAIM
:
1047 case PAGEREF_RECLAIM_CLEAN
:
1048 ; /* try to reclaim the page below */
1052 * Anonymous process memory has backing store?
1053 * Try to allocate it some swap space here.
1055 if (PageAnon(page
) && !PageSwapCache(page
)) {
1056 if (!(sc
->gfp_mask
& __GFP_IO
))
1058 if (!add_to_swap(page
, page_list
))
1059 goto activate_locked
;
1062 /* Adding to swap updated mapping */
1063 mapping
= page_mapping(page
);
1067 * The page is mapped into the page tables of one or more
1068 * processes. Try to unmap it here.
1070 if (page_mapped(page
) && mapping
) {
1071 switch (try_to_unmap(page
,
1072 ttu_flags
|TTU_BATCH_FLUSH
)) {
1074 goto activate_locked
;
1080 ; /* try to free the page below */
1084 if (PageDirty(page
)) {
1086 * Only kswapd can writeback filesystem pages to
1087 * avoid risk of stack overflow but only writeback
1088 * if many dirty pages have been encountered.
1090 if (page_is_file_cache(page
) &&
1091 (!current_is_kswapd() ||
1092 !test_bit(ZONE_DIRTY
, &zone
->flags
))) {
1094 * Immediately reclaim when written back.
1095 * Similar in principal to deactivate_page()
1096 * except we already have the page isolated
1097 * and know it's dirty
1099 inc_zone_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1100 SetPageReclaim(page
);
1105 if (references
== PAGEREF_RECLAIM_CLEAN
)
1109 if (!sc
->may_writepage
)
1113 * Page is dirty. Flush the TLB if a writable entry
1114 * potentially exists to avoid CPU writes after IO
1115 * starts and then write it out here.
1117 try_to_unmap_flush_dirty();
1118 switch (pageout(page
, mapping
, sc
)) {
1122 goto activate_locked
;
1124 if (PageWriteback(page
))
1126 if (PageDirty(page
))
1130 * A synchronous write - probably a ramdisk. Go
1131 * ahead and try to reclaim the page.
1133 if (!trylock_page(page
))
1135 if (PageDirty(page
) || PageWriteback(page
))
1137 mapping
= page_mapping(page
);
1139 ; /* try to free the page below */
1144 * If the page has buffers, try to free the buffer mappings
1145 * associated with this page. If we succeed we try to free
1148 * We do this even if the page is PageDirty().
1149 * try_to_release_page() does not perform I/O, but it is
1150 * possible for a page to have PageDirty set, but it is actually
1151 * clean (all its buffers are clean). This happens if the
1152 * buffers were written out directly, with submit_bh(). ext3
1153 * will do this, as well as the blockdev mapping.
1154 * try_to_release_page() will discover that cleanness and will
1155 * drop the buffers and mark the page clean - it can be freed.
1157 * Rarely, pages can have buffers and no ->mapping. These are
1158 * the pages which were not successfully invalidated in
1159 * truncate_complete_page(). We try to drop those buffers here
1160 * and if that worked, and the page is no longer mapped into
1161 * process address space (page_count == 1) it can be freed.
1162 * Otherwise, leave the page on the LRU so it is swappable.
1164 if (page_has_private(page
)) {
1165 if (!try_to_release_page(page
, sc
->gfp_mask
))
1166 goto activate_locked
;
1167 if (!mapping
&& page_count(page
) == 1) {
1169 if (put_page_testzero(page
))
1173 * rare race with speculative reference.
1174 * the speculative reference will free
1175 * this page shortly, so we may
1176 * increment nr_reclaimed here (and
1177 * leave it off the LRU).
1185 if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1189 * At this point, we have no other references and there is
1190 * no way to pick any more up (removed from LRU, removed
1191 * from pagecache). Can use non-atomic bitops now (and
1192 * we obviously don't have to worry about waking up a process
1193 * waiting on the page lock, because there are no references.
1195 __clear_page_locked(page
);
1200 * Is there need to periodically free_page_list? It would
1201 * appear not as the counts should be low
1203 list_add(&page
->lru
, &free_pages
);
1207 if (PageSwapCache(page
))
1208 try_to_free_swap(page
);
1210 list_add(&page
->lru
, &ret_pages
);
1214 /* Not a candidate for swapping, so reclaim swap space. */
1215 if (PageSwapCache(page
) && vm_swap_full())
1216 try_to_free_swap(page
);
1217 VM_BUG_ON_PAGE(PageActive(page
), page
);
1218 SetPageActive(page
);
1223 list_add(&page
->lru
, &ret_pages
);
1224 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1227 mem_cgroup_uncharge_list(&free_pages
);
1228 try_to_unmap_flush();
1229 free_hot_cold_page_list(&free_pages
, true);
1231 list_splice(&ret_pages
, page_list
);
1232 count_vm_events(PGACTIVATE
, pgactivate
);
1234 *ret_nr_dirty
+= nr_dirty
;
1235 *ret_nr_congested
+= nr_congested
;
1236 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1237 *ret_nr_writeback
+= nr_writeback
;
1238 *ret_nr_immediate
+= nr_immediate
;
1239 return nr_reclaimed
;
1242 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1243 struct list_head
*page_list
)
1245 struct scan_control sc
= {
1246 .gfp_mask
= GFP_KERNEL
,
1247 .priority
= DEF_PRIORITY
,
1250 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1251 struct page
*page
, *next
;
1252 LIST_HEAD(clean_pages
);
1254 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1255 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1256 !isolated_balloon_page(page
)) {
1257 ClearPageActive(page
);
1258 list_move(&page
->lru
, &clean_pages
);
1262 ret
= shrink_page_list(&clean_pages
, zone
, &sc
,
1263 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1264 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1265 list_splice(&clean_pages
, page_list
);
1266 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -ret
);
1271 * Attempt to remove the specified page from its LRU. Only take this page
1272 * if it is of the appropriate PageActive status. Pages which are being
1273 * freed elsewhere are also ignored.
1275 * page: page to consider
1276 * mode: one of the LRU isolation modes defined above
1278 * returns 0 on success, -ve errno on failure.
1280 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1284 /* Only take pages on the LRU. */
1288 /* Compaction should not handle unevictable pages but CMA can do so */
1289 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1295 * To minimise LRU disruption, the caller can indicate that it only
1296 * wants to isolate pages it will be able to operate on without
1297 * blocking - clean pages for the most part.
1299 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1300 * is used by reclaim when it is cannot write to backing storage
1302 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1303 * that it is possible to migrate without blocking
1305 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1306 /* All the caller can do on PageWriteback is block */
1307 if (PageWriteback(page
))
1310 if (PageDirty(page
)) {
1311 struct address_space
*mapping
;
1313 /* ISOLATE_CLEAN means only clean pages */
1314 if (mode
& ISOLATE_CLEAN
)
1318 * Only pages without mappings or that have a
1319 * ->migratepage callback are possible to migrate
1322 mapping
= page_mapping(page
);
1323 if (mapping
&& !mapping
->a_ops
->migratepage
)
1328 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1331 if (likely(get_page_unless_zero(page
))) {
1333 * Be careful not to clear PageLRU until after we're
1334 * sure the page is not being freed elsewhere -- the
1335 * page release code relies on it.
1345 * zone->lru_lock is heavily contended. Some of the functions that
1346 * shrink the lists perform better by taking out a batch of pages
1347 * and working on them outside the LRU lock.
1349 * For pagecache intensive workloads, this function is the hottest
1350 * spot in the kernel (apart from copy_*_user functions).
1352 * Appropriate locks must be held before calling this function.
1354 * @nr_to_scan: The number of pages to look through on the list.
1355 * @lruvec: The LRU vector to pull pages from.
1356 * @dst: The temp list to put pages on to.
1357 * @nr_scanned: The number of pages that were scanned.
1358 * @sc: The scan_control struct for this reclaim session
1359 * @mode: One of the LRU isolation modes
1360 * @lru: LRU list id for isolating
1362 * returns how many pages were moved onto *@dst.
1364 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1365 struct lruvec
*lruvec
, struct list_head
*dst
,
1366 unsigned long *nr_scanned
, struct scan_control
*sc
,
1367 isolate_mode_t mode
, enum lru_list lru
)
1369 struct list_head
*src
= &lruvec
->lists
[lru
];
1370 unsigned long nr_taken
= 0;
1373 for (scan
= 0; scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&&
1374 !list_empty(src
); scan
++) {
1378 page
= lru_to_page(src
);
1379 prefetchw_prev_lru_page(page
, src
, flags
);
1381 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1383 switch (__isolate_lru_page(page
, mode
)) {
1385 nr_pages
= hpage_nr_pages(page
);
1386 mem_cgroup_update_lru_size(lruvec
, lru
, -nr_pages
);
1387 list_move(&page
->lru
, dst
);
1388 nr_taken
+= nr_pages
;
1392 /* else it is being freed elsewhere */
1393 list_move(&page
->lru
, src
);
1402 trace_mm_vmscan_lru_isolate(sc
->order
, nr_to_scan
, scan
,
1403 nr_taken
, mode
, is_file_lru(lru
));
1408 * isolate_lru_page - tries to isolate a page from its LRU list
1409 * @page: page to isolate from its LRU list
1411 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1412 * vmstat statistic corresponding to whatever LRU list the page was on.
1414 * Returns 0 if the page was removed from an LRU list.
1415 * Returns -EBUSY if the page was not on an LRU list.
1417 * The returned page will have PageLRU() cleared. If it was found on
1418 * the active list, it will have PageActive set. If it was found on
1419 * the unevictable list, it will have the PageUnevictable bit set. That flag
1420 * may need to be cleared by the caller before letting the page go.
1422 * The vmstat statistic corresponding to the list on which the page was
1423 * found will be decremented.
1426 * (1) Must be called with an elevated refcount on the page. This is a
1427 * fundamentnal difference from isolate_lru_pages (which is called
1428 * without a stable reference).
1429 * (2) the lru_lock must not be held.
1430 * (3) interrupts must be enabled.
1432 int isolate_lru_page(struct page
*page
)
1436 VM_BUG_ON_PAGE(!page_count(page
), page
);
1438 if (PageLRU(page
)) {
1439 struct zone
*zone
= page_zone(page
);
1440 struct lruvec
*lruvec
;
1442 spin_lock_irq(&zone
->lru_lock
);
1443 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1444 if (PageLRU(page
)) {
1445 int lru
= page_lru(page
);
1448 del_page_from_lru_list(page
, lruvec
, lru
);
1451 spin_unlock_irq(&zone
->lru_lock
);
1457 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1458 * then get resheduled. When there are massive number of tasks doing page
1459 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1460 * the LRU list will go small and be scanned faster than necessary, leading to
1461 * unnecessary swapping, thrashing and OOM.
1463 static int too_many_isolated(struct zone
*zone
, int file
,
1464 struct scan_control
*sc
)
1466 unsigned long inactive
, isolated
;
1468 if (current_is_kswapd())
1471 if (!sane_reclaim(sc
))
1475 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1476 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1478 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1479 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1483 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1484 * won't get blocked by normal direct-reclaimers, forming a circular
1487 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1490 return isolated
> inactive
;
1493 static noinline_for_stack
void
1494 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1496 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1497 struct zone
*zone
= lruvec_zone(lruvec
);
1498 LIST_HEAD(pages_to_free
);
1501 * Put back any unfreeable pages.
1503 while (!list_empty(page_list
)) {
1504 struct page
*page
= lru_to_page(page_list
);
1507 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1508 list_del(&page
->lru
);
1509 if (unlikely(!page_evictable(page
))) {
1510 spin_unlock_irq(&zone
->lru_lock
);
1511 putback_lru_page(page
);
1512 spin_lock_irq(&zone
->lru_lock
);
1516 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1519 lru
= page_lru(page
);
1520 add_page_to_lru_list(page
, lruvec
, lru
);
1522 if (is_active_lru(lru
)) {
1523 int file
= is_file_lru(lru
);
1524 int numpages
= hpage_nr_pages(page
);
1525 reclaim_stat
->recent_rotated
[file
] += numpages
;
1527 if (put_page_testzero(page
)) {
1528 __ClearPageLRU(page
);
1529 __ClearPageActive(page
);
1530 del_page_from_lru_list(page
, lruvec
, lru
);
1532 if (unlikely(PageCompound(page
))) {
1533 spin_unlock_irq(&zone
->lru_lock
);
1534 mem_cgroup_uncharge(page
);
1535 (*get_compound_page_dtor(page
))(page
);
1536 spin_lock_irq(&zone
->lru_lock
);
1538 list_add(&page
->lru
, &pages_to_free
);
1543 * To save our caller's stack, now use input list for pages to free.
1545 list_splice(&pages_to_free
, page_list
);
1549 * If a kernel thread (such as nfsd for loop-back mounts) services
1550 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1551 * In that case we should only throttle if the backing device it is
1552 * writing to is congested. In other cases it is safe to throttle.
1554 static int current_may_throttle(void)
1556 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1557 current
->backing_dev_info
== NULL
||
1558 bdi_write_congested(current
->backing_dev_info
);
1562 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1563 * of reclaimed pages
1565 static noinline_for_stack
unsigned long
1566 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1567 struct scan_control
*sc
, enum lru_list lru
)
1569 LIST_HEAD(page_list
);
1570 unsigned long nr_scanned
;
1571 unsigned long nr_reclaimed
= 0;
1572 unsigned long nr_taken
;
1573 unsigned long nr_dirty
= 0;
1574 unsigned long nr_congested
= 0;
1575 unsigned long nr_unqueued_dirty
= 0;
1576 unsigned long nr_writeback
= 0;
1577 unsigned long nr_immediate
= 0;
1578 isolate_mode_t isolate_mode
= 0;
1579 int file
= is_file_lru(lru
);
1580 struct zone
*zone
= lruvec_zone(lruvec
);
1581 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1583 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1584 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1586 /* We are about to die and free our memory. Return now. */
1587 if (fatal_signal_pending(current
))
1588 return SWAP_CLUSTER_MAX
;
1594 isolate_mode
|= ISOLATE_UNMAPPED
;
1595 if (!sc
->may_writepage
)
1596 isolate_mode
|= ISOLATE_CLEAN
;
1598 spin_lock_irq(&zone
->lru_lock
);
1600 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1601 &nr_scanned
, sc
, isolate_mode
, lru
);
1603 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1604 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1606 if (global_reclaim(sc
)) {
1607 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, nr_scanned
);
1608 if (current_is_kswapd())
1609 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scanned
);
1611 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scanned
);
1613 spin_unlock_irq(&zone
->lru_lock
);
1618 nr_reclaimed
= shrink_page_list(&page_list
, zone
, sc
, TTU_UNMAP
,
1619 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1620 &nr_writeback
, &nr_immediate
,
1623 spin_lock_irq(&zone
->lru_lock
);
1625 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1627 if (global_reclaim(sc
)) {
1628 if (current_is_kswapd())
1629 __count_zone_vm_events(PGSTEAL_KSWAPD
, zone
,
1632 __count_zone_vm_events(PGSTEAL_DIRECT
, zone
,
1636 putback_inactive_pages(lruvec
, &page_list
);
1638 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1640 spin_unlock_irq(&zone
->lru_lock
);
1642 mem_cgroup_uncharge_list(&page_list
);
1643 free_hot_cold_page_list(&page_list
, true);
1646 * If reclaim is isolating dirty pages under writeback, it implies
1647 * that the long-lived page allocation rate is exceeding the page
1648 * laundering rate. Either the global limits are not being effective
1649 * at throttling processes due to the page distribution throughout
1650 * zones or there is heavy usage of a slow backing device. The
1651 * only option is to throttle from reclaim context which is not ideal
1652 * as there is no guarantee the dirtying process is throttled in the
1653 * same way balance_dirty_pages() manages.
1655 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1656 * of pages under pages flagged for immediate reclaim and stall if any
1657 * are encountered in the nr_immediate check below.
1659 if (nr_writeback
&& nr_writeback
== nr_taken
)
1660 set_bit(ZONE_WRITEBACK
, &zone
->flags
);
1663 * Legacy memcg will stall in page writeback so avoid forcibly
1666 if (sane_reclaim(sc
)) {
1668 * Tag a zone as congested if all the dirty pages scanned were
1669 * backed by a congested BDI and wait_iff_congested will stall.
1671 if (nr_dirty
&& nr_dirty
== nr_congested
)
1672 set_bit(ZONE_CONGESTED
, &zone
->flags
);
1675 * If dirty pages are scanned that are not queued for IO, it
1676 * implies that flushers are not keeping up. In this case, flag
1677 * the zone ZONE_DIRTY and kswapd will start writing pages from
1680 if (nr_unqueued_dirty
== nr_taken
)
1681 set_bit(ZONE_DIRTY
, &zone
->flags
);
1684 * If kswapd scans pages marked marked for immediate
1685 * reclaim and under writeback (nr_immediate), it implies
1686 * that pages are cycling through the LRU faster than
1687 * they are written so also forcibly stall.
1689 if (nr_immediate
&& current_may_throttle())
1690 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1694 * Stall direct reclaim for IO completions if underlying BDIs or zone
1695 * is congested. Allow kswapd to continue until it starts encountering
1696 * unqueued dirty pages or cycling through the LRU too quickly.
1698 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1699 current_may_throttle())
1700 wait_iff_congested(zone
, BLK_RW_ASYNC
, HZ
/10);
1702 trace_mm_vmscan_lru_shrink_inactive(zone
->zone_pgdat
->node_id
,
1704 nr_scanned
, nr_reclaimed
,
1706 trace_shrink_flags(file
));
1707 return nr_reclaimed
;
1711 * This moves pages from the active list to the inactive list.
1713 * We move them the other way if the page is referenced by one or more
1714 * processes, from rmap.
1716 * If the pages are mostly unmapped, the processing is fast and it is
1717 * appropriate to hold zone->lru_lock across the whole operation. But if
1718 * the pages are mapped, the processing is slow (page_referenced()) so we
1719 * should drop zone->lru_lock around each page. It's impossible to balance
1720 * this, so instead we remove the pages from the LRU while processing them.
1721 * It is safe to rely on PG_active against the non-LRU pages in here because
1722 * nobody will play with that bit on a non-LRU page.
1724 * The downside is that we have to touch page->_count against each page.
1725 * But we had to alter page->flags anyway.
1728 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1729 struct list_head
*list
,
1730 struct list_head
*pages_to_free
,
1733 struct zone
*zone
= lruvec_zone(lruvec
);
1734 unsigned long pgmoved
= 0;
1738 while (!list_empty(list
)) {
1739 page
= lru_to_page(list
);
1740 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1742 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1745 nr_pages
= hpage_nr_pages(page
);
1746 mem_cgroup_update_lru_size(lruvec
, lru
, nr_pages
);
1747 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1748 pgmoved
+= nr_pages
;
1750 if (put_page_testzero(page
)) {
1751 __ClearPageLRU(page
);
1752 __ClearPageActive(page
);
1753 del_page_from_lru_list(page
, lruvec
, lru
);
1755 if (unlikely(PageCompound(page
))) {
1756 spin_unlock_irq(&zone
->lru_lock
);
1757 mem_cgroup_uncharge(page
);
1758 (*get_compound_page_dtor(page
))(page
);
1759 spin_lock_irq(&zone
->lru_lock
);
1761 list_add(&page
->lru
, pages_to_free
);
1764 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1765 if (!is_active_lru(lru
))
1766 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1769 static void shrink_active_list(unsigned long nr_to_scan
,
1770 struct lruvec
*lruvec
,
1771 struct scan_control
*sc
,
1774 unsigned long nr_taken
;
1775 unsigned long nr_scanned
;
1776 unsigned long vm_flags
;
1777 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1778 LIST_HEAD(l_active
);
1779 LIST_HEAD(l_inactive
);
1781 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1782 unsigned long nr_rotated
= 0;
1783 isolate_mode_t isolate_mode
= 0;
1784 int file
= is_file_lru(lru
);
1785 struct zone
*zone
= lruvec_zone(lruvec
);
1790 isolate_mode
|= ISOLATE_UNMAPPED
;
1791 if (!sc
->may_writepage
)
1792 isolate_mode
|= ISOLATE_CLEAN
;
1794 spin_lock_irq(&zone
->lru_lock
);
1796 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1797 &nr_scanned
, sc
, isolate_mode
, lru
);
1798 if (global_reclaim(sc
))
1799 __mod_zone_page_state(zone
, NR_PAGES_SCANNED
, nr_scanned
);
1801 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1803 __count_zone_vm_events(PGREFILL
, zone
, nr_scanned
);
1804 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, -nr_taken
);
1805 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1806 spin_unlock_irq(&zone
->lru_lock
);
1808 while (!list_empty(&l_hold
)) {
1810 page
= lru_to_page(&l_hold
);
1811 list_del(&page
->lru
);
1813 if (unlikely(!page_evictable(page
))) {
1814 putback_lru_page(page
);
1818 if (unlikely(buffer_heads_over_limit
)) {
1819 if (page_has_private(page
) && trylock_page(page
)) {
1820 if (page_has_private(page
))
1821 try_to_release_page(page
, 0);
1826 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1828 nr_rotated
+= hpage_nr_pages(page
);
1830 * Identify referenced, file-backed active pages and
1831 * give them one more trip around the active list. So
1832 * that executable code get better chances to stay in
1833 * memory under moderate memory pressure. Anon pages
1834 * are not likely to be evicted by use-once streaming
1835 * IO, plus JVM can create lots of anon VM_EXEC pages,
1836 * so we ignore them here.
1838 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1839 list_add(&page
->lru
, &l_active
);
1844 ClearPageActive(page
); /* we are de-activating */
1845 list_add(&page
->lru
, &l_inactive
);
1849 * Move pages back to the lru list.
1851 spin_lock_irq(&zone
->lru_lock
);
1853 * Count referenced pages from currently used mappings as rotated,
1854 * even though only some of them are actually re-activated. This
1855 * helps balance scan pressure between file and anonymous pages in
1858 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1860 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
1861 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
1862 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1863 spin_unlock_irq(&zone
->lru_lock
);
1865 mem_cgroup_uncharge_list(&l_hold
);
1866 free_hot_cold_page_list(&l_hold
, true);
1870 static bool inactive_anon_is_low_global(struct zone
*zone
)
1872 unsigned long active
, inactive
;
1874 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1875 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1877 return inactive
* zone
->inactive_ratio
< active
;
1881 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1882 * @lruvec: LRU vector to check
1884 * Returns true if the zone does not have enough inactive anon pages,
1885 * meaning some active anon pages need to be deactivated.
1887 static bool inactive_anon_is_low(struct lruvec
*lruvec
)
1890 * If we don't have swap space, anonymous page deactivation
1893 if (!total_swap_pages
)
1896 if (!mem_cgroup_disabled())
1897 return mem_cgroup_inactive_anon_is_low(lruvec
);
1899 return inactive_anon_is_low_global(lruvec_zone(lruvec
));
1902 static inline bool inactive_anon_is_low(struct lruvec
*lruvec
)
1909 * inactive_file_is_low - check if file pages need to be deactivated
1910 * @lruvec: LRU vector to check
1912 * When the system is doing streaming IO, memory pressure here
1913 * ensures that active file pages get deactivated, until more
1914 * than half of the file pages are on the inactive list.
1916 * Once we get to that situation, protect the system's working
1917 * set from being evicted by disabling active file page aging.
1919 * This uses a different ratio than the anonymous pages, because
1920 * the page cache uses a use-once replacement algorithm.
1922 static bool inactive_file_is_low(struct lruvec
*lruvec
)
1924 unsigned long inactive
;
1925 unsigned long active
;
1927 inactive
= get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1928 active
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1930 return active
> inactive
;
1933 static bool inactive_list_is_low(struct lruvec
*lruvec
, enum lru_list lru
)
1935 if (is_file_lru(lru
))
1936 return inactive_file_is_low(lruvec
);
1938 return inactive_anon_is_low(lruvec
);
1941 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1942 struct lruvec
*lruvec
, struct scan_control
*sc
)
1944 if (is_active_lru(lru
)) {
1945 if (inactive_list_is_low(lruvec
, lru
))
1946 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
1950 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
1961 * Determine how aggressively the anon and file LRU lists should be
1962 * scanned. The relative value of each set of LRU lists is determined
1963 * by looking at the fraction of the pages scanned we did rotate back
1964 * onto the active list instead of evict.
1966 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1967 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1969 static void get_scan_count(struct lruvec
*lruvec
, int swappiness
,
1970 struct scan_control
*sc
, unsigned long *nr
,
1971 unsigned long *lru_pages
)
1973 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1975 u64 denominator
= 0; /* gcc */
1976 struct zone
*zone
= lruvec_zone(lruvec
);
1977 unsigned long anon_prio
, file_prio
;
1978 enum scan_balance scan_balance
;
1979 unsigned long anon
, file
;
1980 bool force_scan
= false;
1981 unsigned long ap
, fp
;
1987 * If the zone or memcg is small, nr[l] can be 0. This
1988 * results in no scanning on this priority and a potential
1989 * priority drop. Global direct reclaim can go to the next
1990 * zone and tends to have no problems. Global kswapd is for
1991 * zone balancing and it needs to scan a minimum amount. When
1992 * reclaiming for a memcg, a priority drop can cause high
1993 * latencies, so it's better to scan a minimum amount there as
1996 if (current_is_kswapd()) {
1997 if (!zone_reclaimable(zone
))
1999 if (!mem_cgroup_lruvec_online(lruvec
))
2002 if (!global_reclaim(sc
))
2005 /* If we have no swap space, do not bother scanning anon pages. */
2006 if (!sc
->may_swap
|| (get_nr_swap_pages() <= 0)) {
2007 scan_balance
= SCAN_FILE
;
2012 * Global reclaim will swap to prevent OOM even with no
2013 * swappiness, but memcg users want to use this knob to
2014 * disable swapping for individual groups completely when
2015 * using the memory controller's swap limit feature would be
2018 if (!global_reclaim(sc
) && !swappiness
) {
2019 scan_balance
= SCAN_FILE
;
2024 * Do not apply any pressure balancing cleverness when the
2025 * system is close to OOM, scan both anon and file equally
2026 * (unless the swappiness setting disagrees with swapping).
2028 if (!sc
->priority
&& swappiness
) {
2029 scan_balance
= SCAN_EQUAL
;
2034 * Prevent the reclaimer from falling into the cache trap: as
2035 * cache pages start out inactive, every cache fault will tip
2036 * the scan balance towards the file LRU. And as the file LRU
2037 * shrinks, so does the window for rotation from references.
2038 * This means we have a runaway feedback loop where a tiny
2039 * thrashing file LRU becomes infinitely more attractive than
2040 * anon pages. Try to detect this based on file LRU size.
2042 if (global_reclaim(sc
)) {
2043 unsigned long zonefile
;
2044 unsigned long zonefree
;
2046 zonefree
= zone_page_state(zone
, NR_FREE_PAGES
);
2047 zonefile
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2048 zone_page_state(zone
, NR_INACTIVE_FILE
);
2050 if (unlikely(zonefile
+ zonefree
<= high_wmark_pages(zone
))) {
2051 scan_balance
= SCAN_ANON
;
2057 * There is enough inactive page cache, do not reclaim
2058 * anything from the anonymous working set right now.
2060 if (!inactive_file_is_low(lruvec
)) {
2061 scan_balance
= SCAN_FILE
;
2065 scan_balance
= SCAN_FRACT
;
2068 * With swappiness at 100, anonymous and file have the same priority.
2069 * This scanning priority is essentially the inverse of IO cost.
2071 anon_prio
= swappiness
;
2072 file_prio
= 200 - anon_prio
;
2075 * OK, so we have swap space and a fair amount of page cache
2076 * pages. We use the recently rotated / recently scanned
2077 * ratios to determine how valuable each cache is.
2079 * Because workloads change over time (and to avoid overflow)
2080 * we keep these statistics as a floating average, which ends
2081 * up weighing recent references more than old ones.
2083 * anon in [0], file in [1]
2086 anon
= get_lru_size(lruvec
, LRU_ACTIVE_ANON
) +
2087 get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
2088 file
= get_lru_size(lruvec
, LRU_ACTIVE_FILE
) +
2089 get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
2091 spin_lock_irq(&zone
->lru_lock
);
2092 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2093 reclaim_stat
->recent_scanned
[0] /= 2;
2094 reclaim_stat
->recent_rotated
[0] /= 2;
2097 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2098 reclaim_stat
->recent_scanned
[1] /= 2;
2099 reclaim_stat
->recent_rotated
[1] /= 2;
2103 * The amount of pressure on anon vs file pages is inversely
2104 * proportional to the fraction of recently scanned pages on
2105 * each list that were recently referenced and in active use.
2107 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2108 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2110 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2111 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2112 spin_unlock_irq(&zone
->lru_lock
);
2116 denominator
= ap
+ fp
+ 1;
2118 some_scanned
= false;
2119 /* Only use force_scan on second pass. */
2120 for (pass
= 0; !some_scanned
&& pass
< 2; pass
++) {
2122 for_each_evictable_lru(lru
) {
2123 int file
= is_file_lru(lru
);
2127 size
= get_lru_size(lruvec
, lru
);
2128 scan
= size
>> sc
->priority
;
2130 if (!scan
&& pass
&& force_scan
)
2131 scan
= min(size
, SWAP_CLUSTER_MAX
);
2133 switch (scan_balance
) {
2135 /* Scan lists relative to size */
2139 * Scan types proportional to swappiness and
2140 * their relative recent reclaim efficiency.
2142 scan
= div64_u64(scan
* fraction
[file
],
2147 /* Scan one type exclusively */
2148 if ((scan_balance
== SCAN_FILE
) != file
) {
2154 /* Look ma, no brain */
2162 * Skip the second pass and don't force_scan,
2163 * if we found something to scan.
2165 some_scanned
|= !!scan
;
2171 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2173 static void shrink_lruvec(struct lruvec
*lruvec
, int swappiness
,
2174 struct scan_control
*sc
, unsigned long *lru_pages
)
2176 unsigned long nr
[NR_LRU_LISTS
];
2177 unsigned long targets
[NR_LRU_LISTS
];
2178 unsigned long nr_to_scan
;
2180 unsigned long nr_reclaimed
= 0;
2181 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2182 struct blk_plug plug
;
2185 get_scan_count(lruvec
, swappiness
, sc
, nr
, lru_pages
);
2187 /* Record the original scan target for proportional adjustments later */
2188 memcpy(targets
, nr
, sizeof(nr
));
2191 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2192 * event that can occur when there is little memory pressure e.g.
2193 * multiple streaming readers/writers. Hence, we do not abort scanning
2194 * when the requested number of pages are reclaimed when scanning at
2195 * DEF_PRIORITY on the assumption that the fact we are direct
2196 * reclaiming implies that kswapd is not keeping up and it is best to
2197 * do a batch of work at once. For memcg reclaim one check is made to
2198 * abort proportional reclaim if either the file or anon lru has already
2199 * dropped to zero at the first pass.
2201 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2202 sc
->priority
== DEF_PRIORITY
);
2204 blk_start_plug(&plug
);
2205 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2206 nr
[LRU_INACTIVE_FILE
]) {
2207 unsigned long nr_anon
, nr_file
, percentage
;
2208 unsigned long nr_scanned
;
2210 for_each_evictable_lru(lru
) {
2212 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2213 nr
[lru
] -= nr_to_scan
;
2215 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2220 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2224 * For kswapd and memcg, reclaim at least the number of pages
2225 * requested. Ensure that the anon and file LRUs are scanned
2226 * proportionally what was requested by get_scan_count(). We
2227 * stop reclaiming one LRU and reduce the amount scanning
2228 * proportional to the original scan target.
2230 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2231 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2234 * It's just vindictive to attack the larger once the smaller
2235 * has gone to zero. And given the way we stop scanning the
2236 * smaller below, this makes sure that we only make one nudge
2237 * towards proportionality once we've got nr_to_reclaim.
2239 if (!nr_file
|| !nr_anon
)
2242 if (nr_file
> nr_anon
) {
2243 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2244 targets
[LRU_ACTIVE_ANON
] + 1;
2246 percentage
= nr_anon
* 100 / scan_target
;
2248 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2249 targets
[LRU_ACTIVE_FILE
] + 1;
2251 percentage
= nr_file
* 100 / scan_target
;
2254 /* Stop scanning the smaller of the LRU */
2256 nr
[lru
+ LRU_ACTIVE
] = 0;
2259 * Recalculate the other LRU scan count based on its original
2260 * scan target and the percentage scanning already complete
2262 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2263 nr_scanned
= targets
[lru
] - nr
[lru
];
2264 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2265 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2268 nr_scanned
= targets
[lru
] - nr
[lru
];
2269 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2270 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2272 scan_adjusted
= true;
2274 blk_finish_plug(&plug
);
2275 sc
->nr_reclaimed
+= nr_reclaimed
;
2278 * Even if we did not try to evict anon pages at all, we want to
2279 * rebalance the anon lru active/inactive ratio.
2281 if (inactive_anon_is_low(lruvec
))
2282 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2283 sc
, LRU_ACTIVE_ANON
);
2285 throttle_vm_writeout(sc
->gfp_mask
);
2288 /* Use reclaim/compaction for costly allocs or under memory pressure */
2289 static bool in_reclaim_compaction(struct scan_control
*sc
)
2291 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2292 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2293 sc
->priority
< DEF_PRIORITY
- 2))
2300 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2301 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2302 * true if more pages should be reclaimed such that when the page allocator
2303 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2304 * It will give up earlier than that if there is difficulty reclaiming pages.
2306 static inline bool should_continue_reclaim(struct zone
*zone
,
2307 unsigned long nr_reclaimed
,
2308 unsigned long nr_scanned
,
2309 struct scan_control
*sc
)
2311 unsigned long pages_for_compaction
;
2312 unsigned long inactive_lru_pages
;
2314 /* If not in reclaim/compaction mode, stop */
2315 if (!in_reclaim_compaction(sc
))
2318 /* Consider stopping depending on scan and reclaim activity */
2319 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2321 * For __GFP_REPEAT allocations, stop reclaiming if the
2322 * full LRU list has been scanned and we are still failing
2323 * to reclaim pages. This full LRU scan is potentially
2324 * expensive but a __GFP_REPEAT caller really wants to succeed
2326 if (!nr_reclaimed
&& !nr_scanned
)
2330 * For non-__GFP_REPEAT allocations which can presumably
2331 * fail without consequence, stop if we failed to reclaim
2332 * any pages from the last SWAP_CLUSTER_MAX number of
2333 * pages that were scanned. This will return to the
2334 * caller faster at the risk reclaim/compaction and
2335 * the resulting allocation attempt fails
2342 * If we have not reclaimed enough pages for compaction and the
2343 * inactive lists are large enough, continue reclaiming
2345 pages_for_compaction
= (2UL << sc
->order
);
2346 inactive_lru_pages
= zone_page_state(zone
, NR_INACTIVE_FILE
);
2347 if (get_nr_swap_pages() > 0)
2348 inactive_lru_pages
+= zone_page_state(zone
, NR_INACTIVE_ANON
);
2349 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2350 inactive_lru_pages
> pages_for_compaction
)
2353 /* If compaction would go ahead or the allocation would succeed, stop */
2354 switch (compaction_suitable(zone
, sc
->order
, 0, 0)) {
2355 case COMPACT_PARTIAL
:
2356 case COMPACT_CONTINUE
:
2363 static bool shrink_zone(struct zone
*zone
, struct scan_control
*sc
,
2366 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2367 unsigned long nr_reclaimed
, nr_scanned
;
2368 bool reclaimable
= false;
2371 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2372 struct mem_cgroup_reclaim_cookie reclaim
= {
2374 .priority
= sc
->priority
,
2376 unsigned long zone_lru_pages
= 0;
2377 struct mem_cgroup
*memcg
;
2379 nr_reclaimed
= sc
->nr_reclaimed
;
2380 nr_scanned
= sc
->nr_scanned
;
2382 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2384 unsigned long lru_pages
;
2385 unsigned long scanned
;
2386 struct lruvec
*lruvec
;
2389 if (mem_cgroup_low(root
, memcg
)) {
2390 if (!sc
->may_thrash
)
2392 mem_cgroup_events(memcg
, MEMCG_LOW
, 1);
2395 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2396 swappiness
= mem_cgroup_swappiness(memcg
);
2397 scanned
= sc
->nr_scanned
;
2399 shrink_lruvec(lruvec
, swappiness
, sc
, &lru_pages
);
2400 zone_lru_pages
+= lru_pages
;
2402 if (memcg
&& is_classzone
)
2403 shrink_slab(sc
->gfp_mask
, zone_to_nid(zone
),
2404 memcg
, sc
->nr_scanned
- scanned
,
2408 * Direct reclaim and kswapd have to scan all memory
2409 * cgroups to fulfill the overall scan target for the
2412 * Limit reclaim, on the other hand, only cares about
2413 * nr_to_reclaim pages to be reclaimed and it will
2414 * retry with decreasing priority if one round over the
2415 * whole hierarchy is not sufficient.
2417 if (!global_reclaim(sc
) &&
2418 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2419 mem_cgroup_iter_break(root
, memcg
);
2422 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2425 * Shrink the slab caches in the same proportion that
2426 * the eligible LRU pages were scanned.
2428 if (global_reclaim(sc
) && is_classzone
)
2429 shrink_slab(sc
->gfp_mask
, zone_to_nid(zone
), NULL
,
2430 sc
->nr_scanned
- nr_scanned
,
2433 if (reclaim_state
) {
2434 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2435 reclaim_state
->reclaimed_slab
= 0;
2438 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2439 sc
->nr_scanned
- nr_scanned
,
2440 sc
->nr_reclaimed
- nr_reclaimed
);
2442 if (sc
->nr_reclaimed
- nr_reclaimed
)
2445 } while (should_continue_reclaim(zone
, sc
->nr_reclaimed
- nr_reclaimed
,
2446 sc
->nr_scanned
- nr_scanned
, sc
));
2452 * Returns true if compaction should go ahead for a high-order request, or
2453 * the high-order allocation would succeed without compaction.
2455 static inline bool compaction_ready(struct zone
*zone
, int order
)
2457 unsigned long balance_gap
, watermark
;
2461 * Compaction takes time to run and there are potentially other
2462 * callers using the pages just freed. Continue reclaiming until
2463 * there is a buffer of free pages available to give compaction
2464 * a reasonable chance of completing and allocating the page
2466 balance_gap
= min(low_wmark_pages(zone
), DIV_ROUND_UP(
2467 zone
->managed_pages
, KSWAPD_ZONE_BALANCE_GAP_RATIO
));
2468 watermark
= high_wmark_pages(zone
) + balance_gap
+ (2UL << order
);
2469 watermark_ok
= zone_watermark_ok_safe(zone
, 0, watermark
, 0);
2472 * If compaction is deferred, reclaim up to a point where
2473 * compaction will have a chance of success when re-enabled
2475 if (compaction_deferred(zone
, order
))
2476 return watermark_ok
;
2479 * If compaction is not ready to start and allocation is not likely
2480 * to succeed without it, then keep reclaiming.
2482 if (compaction_suitable(zone
, order
, 0, 0) == COMPACT_SKIPPED
)
2485 return watermark_ok
;
2489 * This is the direct reclaim path, for page-allocating processes. We only
2490 * try to reclaim pages from zones which will satisfy the caller's allocation
2493 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2495 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2497 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2498 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2499 * zone defense algorithm.
2501 * If a zone is deemed to be full of pinned pages then just give it a light
2502 * scan then give up on it.
2504 * Returns true if a zone was reclaimable.
2506 static bool shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2510 unsigned long nr_soft_reclaimed
;
2511 unsigned long nr_soft_scanned
;
2513 enum zone_type requested_highidx
= gfp_zone(sc
->gfp_mask
);
2514 bool reclaimable
= false;
2517 * If the number of buffer_heads in the machine exceeds the maximum
2518 * allowed level, force direct reclaim to scan the highmem zone as
2519 * highmem pages could be pinning lowmem pages storing buffer_heads
2521 orig_mask
= sc
->gfp_mask
;
2522 if (buffer_heads_over_limit
)
2523 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2525 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2526 gfp_zone(sc
->gfp_mask
), sc
->nodemask
) {
2527 enum zone_type classzone_idx
;
2529 if (!populated_zone(zone
))
2532 classzone_idx
= gfp_zone(sc
->gfp_mask
);
2533 while (!populated_zone(zone
->zone_pgdat
->node_zones
+
2538 * Take care memory controller reclaiming has small influence
2541 if (global_reclaim(sc
)) {
2542 if (!cpuset_zone_allowed(zone
,
2543 GFP_KERNEL
| __GFP_HARDWALL
))
2546 if (sc
->priority
!= DEF_PRIORITY
&&
2547 !zone_reclaimable(zone
))
2548 continue; /* Let kswapd poll it */
2551 * If we already have plenty of memory free for
2552 * compaction in this zone, don't free any more.
2553 * Even though compaction is invoked for any
2554 * non-zero order, only frequent costly order
2555 * reclamation is disruptive enough to become a
2556 * noticeable problem, like transparent huge
2559 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2560 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2561 zonelist_zone_idx(z
) <= requested_highidx
&&
2562 compaction_ready(zone
, sc
->order
)) {
2563 sc
->compaction_ready
= true;
2568 * This steals pages from memory cgroups over softlimit
2569 * and returns the number of reclaimed pages and
2570 * scanned pages. This works for global memory pressure
2571 * and balancing, not for a memcg's limit.
2573 nr_soft_scanned
= 0;
2574 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
2575 sc
->order
, sc
->gfp_mask
,
2577 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2578 sc
->nr_scanned
+= nr_soft_scanned
;
2579 if (nr_soft_reclaimed
)
2581 /* need some check for avoid more shrink_zone() */
2584 if (shrink_zone(zone
, sc
, zone_idx(zone
) == classzone_idx
))
2587 if (global_reclaim(sc
) &&
2588 !reclaimable
&& zone_reclaimable(zone
))
2593 * Restore to original mask to avoid the impact on the caller if we
2594 * promoted it to __GFP_HIGHMEM.
2596 sc
->gfp_mask
= orig_mask
;
2602 * This is the main entry point to direct page reclaim.
2604 * If a full scan of the inactive list fails to free enough memory then we
2605 * are "out of memory" and something needs to be killed.
2607 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2608 * high - the zone may be full of dirty or under-writeback pages, which this
2609 * caller can't do much about. We kick the writeback threads and take explicit
2610 * naps in the hope that some of these pages can be written. But if the
2611 * allocating task holds filesystem locks which prevent writeout this might not
2612 * work, and the allocation attempt will fail.
2614 * returns: 0, if no pages reclaimed
2615 * else, the number of pages reclaimed
2617 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2618 struct scan_control
*sc
)
2620 int initial_priority
= sc
->priority
;
2621 unsigned long total_scanned
= 0;
2622 unsigned long writeback_threshold
;
2623 bool zones_reclaimable
;
2625 delayacct_freepages_start();
2627 if (global_reclaim(sc
))
2628 count_vm_event(ALLOCSTALL
);
2631 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2634 zones_reclaimable
= shrink_zones(zonelist
, sc
);
2636 total_scanned
+= sc
->nr_scanned
;
2637 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2640 if (sc
->compaction_ready
)
2644 * If we're getting trouble reclaiming, start doing
2645 * writepage even in laptop mode.
2647 if (sc
->priority
< DEF_PRIORITY
- 2)
2648 sc
->may_writepage
= 1;
2651 * Try to write back as many pages as we just scanned. This
2652 * tends to cause slow streaming writers to write data to the
2653 * disk smoothly, at the dirtying rate, which is nice. But
2654 * that's undesirable in laptop mode, where we *want* lumpy
2655 * writeout. So in laptop mode, write out the whole world.
2657 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2658 if (total_scanned
> writeback_threshold
) {
2659 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2660 WB_REASON_TRY_TO_FREE_PAGES
);
2661 sc
->may_writepage
= 1;
2663 } while (--sc
->priority
>= 0);
2665 delayacct_freepages_end();
2667 if (sc
->nr_reclaimed
)
2668 return sc
->nr_reclaimed
;
2670 /* Aborted reclaim to try compaction? don't OOM, then */
2671 if (sc
->compaction_ready
)
2674 /* Untapped cgroup reserves? Don't OOM, retry. */
2675 if (!sc
->may_thrash
) {
2676 sc
->priority
= initial_priority
;
2681 /* Any of the zones still reclaimable? Don't OOM. */
2682 if (zones_reclaimable
)
2688 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2691 unsigned long pfmemalloc_reserve
= 0;
2692 unsigned long free_pages
= 0;
2696 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2697 zone
= &pgdat
->node_zones
[i
];
2698 if (!populated_zone(zone
) ||
2699 zone_reclaimable_pages(zone
) == 0)
2702 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2703 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2706 /* If there are no reserves (unexpected config) then do not throttle */
2707 if (!pfmemalloc_reserve
)
2710 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2712 /* kswapd must be awake if processes are being throttled */
2713 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2714 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
,
2715 (enum zone_type
)ZONE_NORMAL
);
2716 wake_up_interruptible(&pgdat
->kswapd_wait
);
2723 * Throttle direct reclaimers if backing storage is backed by the network
2724 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2725 * depleted. kswapd will continue to make progress and wake the processes
2726 * when the low watermark is reached.
2728 * Returns true if a fatal signal was delivered during throttling. If this
2729 * happens, the page allocator should not consider triggering the OOM killer.
2731 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2732 nodemask_t
*nodemask
)
2736 pg_data_t
*pgdat
= NULL
;
2739 * Kernel threads should not be throttled as they may be indirectly
2740 * responsible for cleaning pages necessary for reclaim to make forward
2741 * progress. kjournald for example may enter direct reclaim while
2742 * committing a transaction where throttling it could forcing other
2743 * processes to block on log_wait_commit().
2745 if (current
->flags
& PF_KTHREAD
)
2749 * If a fatal signal is pending, this process should not throttle.
2750 * It should return quickly so it can exit and free its memory
2752 if (fatal_signal_pending(current
))
2756 * Check if the pfmemalloc reserves are ok by finding the first node
2757 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2758 * GFP_KERNEL will be required for allocating network buffers when
2759 * swapping over the network so ZONE_HIGHMEM is unusable.
2761 * Throttling is based on the first usable node and throttled processes
2762 * wait on a queue until kswapd makes progress and wakes them. There
2763 * is an affinity then between processes waking up and where reclaim
2764 * progress has been made assuming the process wakes on the same node.
2765 * More importantly, processes running on remote nodes will not compete
2766 * for remote pfmemalloc reserves and processes on different nodes
2767 * should make reasonable progress.
2769 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2770 gfp_zone(gfp_mask
), nodemask
) {
2771 if (zone_idx(zone
) > ZONE_NORMAL
)
2774 /* Throttle based on the first usable node */
2775 pgdat
= zone
->zone_pgdat
;
2776 if (pfmemalloc_watermark_ok(pgdat
))
2781 /* If no zone was usable by the allocation flags then do not throttle */
2785 /* Account for the throttling */
2786 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2789 * If the caller cannot enter the filesystem, it's possible that it
2790 * is due to the caller holding an FS lock or performing a journal
2791 * transaction in the case of a filesystem like ext[3|4]. In this case,
2792 * it is not safe to block on pfmemalloc_wait as kswapd could be
2793 * blocked waiting on the same lock. Instead, throttle for up to a
2794 * second before continuing.
2796 if (!(gfp_mask
& __GFP_FS
)) {
2797 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2798 pfmemalloc_watermark_ok(pgdat
), HZ
);
2803 /* Throttle until kswapd wakes the process */
2804 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2805 pfmemalloc_watermark_ok(pgdat
));
2808 if (fatal_signal_pending(current
))
2815 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2816 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2818 unsigned long nr_reclaimed
;
2819 struct scan_control sc
= {
2820 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2821 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2823 .nodemask
= nodemask
,
2824 .priority
= DEF_PRIORITY
,
2825 .may_writepage
= !laptop_mode
,
2831 * Do not enter reclaim if fatal signal was delivered while throttled.
2832 * 1 is returned so that the page allocator does not OOM kill at this
2835 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2838 trace_mm_vmscan_direct_reclaim_begin(order
,
2842 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2844 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2846 return nr_reclaimed
;
2851 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*memcg
,
2852 gfp_t gfp_mask
, bool noswap
,
2854 unsigned long *nr_scanned
)
2856 struct scan_control sc
= {
2857 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2858 .target_mem_cgroup
= memcg
,
2859 .may_writepage
= !laptop_mode
,
2861 .may_swap
= !noswap
,
2863 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2864 int swappiness
= mem_cgroup_swappiness(memcg
);
2865 unsigned long lru_pages
;
2867 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2868 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
2870 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
2875 * NOTE: Although we can get the priority field, using it
2876 * here is not a good idea, since it limits the pages we can scan.
2877 * if we don't reclaim here, the shrink_zone from balance_pgdat
2878 * will pick up pages from other mem cgroup's as well. We hack
2879 * the priority and make it zero.
2881 shrink_lruvec(lruvec
, swappiness
, &sc
, &lru_pages
);
2883 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
2885 *nr_scanned
= sc
.nr_scanned
;
2886 return sc
.nr_reclaimed
;
2889 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
2890 unsigned long nr_pages
,
2894 struct zonelist
*zonelist
;
2895 unsigned long nr_reclaimed
;
2897 struct scan_control sc
= {
2898 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
2899 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
2900 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
2901 .target_mem_cgroup
= memcg
,
2902 .priority
= DEF_PRIORITY
,
2903 .may_writepage
= !laptop_mode
,
2905 .may_swap
= may_swap
,
2909 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2910 * take care of from where we get pages. So the node where we start the
2911 * scan does not need to be the current node.
2913 nid
= mem_cgroup_select_victim_node(memcg
);
2915 zonelist
= NODE_DATA(nid
)->node_zonelists
;
2917 trace_mm_vmscan_memcg_reclaim_begin(0,
2921 current
->flags
|= PF_MEMALLOC
;
2922 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2923 current
->flags
&= ~PF_MEMALLOC
;
2925 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
2927 return nr_reclaimed
;
2931 static void age_active_anon(struct zone
*zone
, struct scan_control
*sc
)
2933 struct mem_cgroup
*memcg
;
2935 if (!total_swap_pages
)
2938 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
2940 struct lruvec
*lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
2942 if (inactive_anon_is_low(lruvec
))
2943 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2944 sc
, LRU_ACTIVE_ANON
);
2946 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
2950 static bool zone_balanced(struct zone
*zone
, int order
,
2951 unsigned long balance_gap
, int classzone_idx
)
2953 if (!zone_watermark_ok_safe(zone
, order
, high_wmark_pages(zone
) +
2954 balance_gap
, classzone_idx
))
2957 if (IS_ENABLED(CONFIG_COMPACTION
) && order
&& compaction_suitable(zone
,
2958 order
, 0, classzone_idx
) == COMPACT_SKIPPED
)
2965 * pgdat_balanced() is used when checking if a node is balanced.
2967 * For order-0, all zones must be balanced!
2969 * For high-order allocations only zones that meet watermarks and are in a
2970 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2971 * total of balanced pages must be at least 25% of the zones allowed by
2972 * classzone_idx for the node to be considered balanced. Forcing all zones to
2973 * be balanced for high orders can cause excessive reclaim when there are
2975 * The choice of 25% is due to
2976 * o a 16M DMA zone that is balanced will not balance a zone on any
2977 * reasonable sized machine
2978 * o On all other machines, the top zone must be at least a reasonable
2979 * percentage of the middle zones. For example, on 32-bit x86, highmem
2980 * would need to be at least 256M for it to be balance a whole node.
2981 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2982 * to balance a node on its own. These seemed like reasonable ratios.
2984 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
2986 unsigned long managed_pages
= 0;
2987 unsigned long balanced_pages
= 0;
2990 /* Check the watermark levels */
2991 for (i
= 0; i
<= classzone_idx
; i
++) {
2992 struct zone
*zone
= pgdat
->node_zones
+ i
;
2994 if (!populated_zone(zone
))
2997 managed_pages
+= zone
->managed_pages
;
3000 * A special case here:
3002 * balance_pgdat() skips over all_unreclaimable after
3003 * DEF_PRIORITY. Effectively, it considers them balanced so
3004 * they must be considered balanced here as well!
3006 if (!zone_reclaimable(zone
)) {
3007 balanced_pages
+= zone
->managed_pages
;
3011 if (zone_balanced(zone
, order
, 0, i
))
3012 balanced_pages
+= zone
->managed_pages
;
3018 return balanced_pages
>= (managed_pages
>> 2);
3024 * Prepare kswapd for sleeping. This verifies that there are no processes
3025 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3027 * Returns true if kswapd is ready to sleep
3029 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, long remaining
,
3032 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3037 * The throttled processes are normally woken up in balance_pgdat() as
3038 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3039 * race between when kswapd checks the watermarks and a process gets
3040 * throttled. There is also a potential race if processes get
3041 * throttled, kswapd wakes, a large process exits thereby balancing the
3042 * zones, which causes kswapd to exit balance_pgdat() before reaching
3043 * the wake up checks. If kswapd is going to sleep, no process should
3044 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3045 * the wake up is premature, processes will wake kswapd and get
3046 * throttled again. The difference from wake ups in balance_pgdat() is
3047 * that here we are under prepare_to_wait().
3049 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3050 wake_up_all(&pgdat
->pfmemalloc_wait
);
3052 return pgdat_balanced(pgdat
, order
, classzone_idx
);
3056 * kswapd shrinks the zone by the number of pages required to reach
3057 * the high watermark.
3059 * Returns true if kswapd scanned at least the requested number of pages to
3060 * reclaim or if the lack of progress was due to pages under writeback.
3061 * This is used to determine if the scanning priority needs to be raised.
3063 static bool kswapd_shrink_zone(struct zone
*zone
,
3065 struct scan_control
*sc
,
3066 unsigned long *nr_attempted
)
3068 int testorder
= sc
->order
;
3069 unsigned long balance_gap
;
3070 bool lowmem_pressure
;
3072 /* Reclaim above the high watermark. */
3073 sc
->nr_to_reclaim
= max(SWAP_CLUSTER_MAX
, high_wmark_pages(zone
));
3076 * Kswapd reclaims only single pages with compaction enabled. Trying
3077 * too hard to reclaim until contiguous free pages have become
3078 * available can hurt performance by evicting too much useful data
3079 * from memory. Do not reclaim more than needed for compaction.
3081 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
3082 compaction_suitable(zone
, sc
->order
, 0, classzone_idx
)
3087 * We put equal pressure on every zone, unless one zone has way too
3088 * many pages free already. The "too many pages" is defined as the
3089 * high wmark plus a "gap" where the gap is either the low
3090 * watermark or 1% of the zone, whichever is smaller.
3092 balance_gap
= min(low_wmark_pages(zone
), DIV_ROUND_UP(
3093 zone
->managed_pages
, KSWAPD_ZONE_BALANCE_GAP_RATIO
));
3096 * If there is no low memory pressure or the zone is balanced then no
3097 * reclaim is necessary
3099 lowmem_pressure
= (buffer_heads_over_limit
&& is_highmem(zone
));
3100 if (!lowmem_pressure
&& zone_balanced(zone
, testorder
,
3101 balance_gap
, classzone_idx
))
3104 shrink_zone(zone
, sc
, zone_idx(zone
) == classzone_idx
);
3106 /* Account for the number of pages attempted to reclaim */
3107 *nr_attempted
+= sc
->nr_to_reclaim
;
3109 clear_bit(ZONE_WRITEBACK
, &zone
->flags
);
3112 * If a zone reaches its high watermark, consider it to be no longer
3113 * congested. It's possible there are dirty pages backed by congested
3114 * BDIs but as pressure is relieved, speculatively avoid congestion
3117 if (zone_reclaimable(zone
) &&
3118 zone_balanced(zone
, testorder
, 0, classzone_idx
)) {
3119 clear_bit(ZONE_CONGESTED
, &zone
->flags
);
3120 clear_bit(ZONE_DIRTY
, &zone
->flags
);
3123 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3127 * For kswapd, balance_pgdat() will work across all this node's zones until
3128 * they are all at high_wmark_pages(zone).
3130 * Returns the final order kswapd was reclaiming at
3132 * There is special handling here for zones which are full of pinned pages.
3133 * This can happen if the pages are all mlocked, or if they are all used by
3134 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3135 * What we do is to detect the case where all pages in the zone have been
3136 * scanned twice and there has been zero successful reclaim. Mark the zone as
3137 * dead and from now on, only perform a short scan. Basically we're polling
3138 * the zone for when the problem goes away.
3140 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3141 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3142 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3143 * lower zones regardless of the number of free pages in the lower zones. This
3144 * interoperates with the page allocator fallback scheme to ensure that aging
3145 * of pages is balanced across the zones.
3147 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
,
3151 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
3152 unsigned long nr_soft_reclaimed
;
3153 unsigned long nr_soft_scanned
;
3154 struct scan_control sc
= {
3155 .gfp_mask
= GFP_KERNEL
,
3157 .priority
= DEF_PRIORITY
,
3158 .may_writepage
= !laptop_mode
,
3162 count_vm_event(PAGEOUTRUN
);
3165 unsigned long nr_attempted
= 0;
3166 bool raise_priority
= true;
3167 bool pgdat_needs_compaction
= (order
> 0);
3169 sc
.nr_reclaimed
= 0;
3172 * Scan in the highmem->dma direction for the highest
3173 * zone which needs scanning
3175 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
3176 struct zone
*zone
= pgdat
->node_zones
+ i
;
3178 if (!populated_zone(zone
))
3181 if (sc
.priority
!= DEF_PRIORITY
&&
3182 !zone_reclaimable(zone
))
3186 * Do some background aging of the anon list, to give
3187 * pages a chance to be referenced before reclaiming.
3189 age_active_anon(zone
, &sc
);
3192 * If the number of buffer_heads in the machine
3193 * exceeds the maximum allowed level and this node
3194 * has a highmem zone, force kswapd to reclaim from
3195 * it to relieve lowmem pressure.
3197 if (buffer_heads_over_limit
&& is_highmem_idx(i
)) {
3202 if (!zone_balanced(zone
, order
, 0, 0)) {
3207 * If balanced, clear the dirty and congested
3210 clear_bit(ZONE_CONGESTED
, &zone
->flags
);
3211 clear_bit(ZONE_DIRTY
, &zone
->flags
);
3218 for (i
= 0; i
<= end_zone
; i
++) {
3219 struct zone
*zone
= pgdat
->node_zones
+ i
;
3221 if (!populated_zone(zone
))
3225 * If any zone is currently balanced then kswapd will
3226 * not call compaction as it is expected that the
3227 * necessary pages are already available.
3229 if (pgdat_needs_compaction
&&
3230 zone_watermark_ok(zone
, order
,
3231 low_wmark_pages(zone
),
3233 pgdat_needs_compaction
= false;
3237 * If we're getting trouble reclaiming, start doing writepage
3238 * even in laptop mode.
3240 if (sc
.priority
< DEF_PRIORITY
- 2)
3241 sc
.may_writepage
= 1;
3244 * Now scan the zone in the dma->highmem direction, stopping
3245 * at the last zone which needs scanning.
3247 * We do this because the page allocator works in the opposite
3248 * direction. This prevents the page allocator from allocating
3249 * pages behind kswapd's direction of progress, which would
3250 * cause too much scanning of the lower zones.
3252 for (i
= 0; i
<= end_zone
; i
++) {
3253 struct zone
*zone
= pgdat
->node_zones
+ i
;
3255 if (!populated_zone(zone
))
3258 if (sc
.priority
!= DEF_PRIORITY
&&
3259 !zone_reclaimable(zone
))
3264 nr_soft_scanned
= 0;
3266 * Call soft limit reclaim before calling shrink_zone.
3268 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
,
3271 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3274 * There should be no need to raise the scanning
3275 * priority if enough pages are already being scanned
3276 * that that high watermark would be met at 100%
3279 if (kswapd_shrink_zone(zone
, end_zone
,
3280 &sc
, &nr_attempted
))
3281 raise_priority
= false;
3285 * If the low watermark is met there is no need for processes
3286 * to be throttled on pfmemalloc_wait as they should not be
3287 * able to safely make forward progress. Wake them
3289 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3290 pfmemalloc_watermark_ok(pgdat
))
3291 wake_up_all(&pgdat
->pfmemalloc_wait
);
3294 * Fragmentation may mean that the system cannot be rebalanced
3295 * for high-order allocations in all zones. If twice the
3296 * allocation size has been reclaimed and the zones are still
3297 * not balanced then recheck the watermarks at order-0 to
3298 * prevent kswapd reclaiming excessively. Assume that a
3299 * process requested a high-order can direct reclaim/compact.
3301 if (order
&& sc
.nr_reclaimed
>= 2UL << order
)
3302 order
= sc
.order
= 0;
3304 /* Check if kswapd should be suspending */
3305 if (try_to_freeze() || kthread_should_stop())
3309 * Compact if necessary and kswapd is reclaiming at least the
3310 * high watermark number of pages as requsted
3312 if (pgdat_needs_compaction
&& sc
.nr_reclaimed
> nr_attempted
)
3313 compact_pgdat(pgdat
, order
);
3316 * Raise priority if scanning rate is too low or there was no
3317 * progress in reclaiming pages
3319 if (raise_priority
|| !sc
.nr_reclaimed
)
3321 } while (sc
.priority
>= 1 &&
3322 !pgdat_balanced(pgdat
, order
, *classzone_idx
));
3326 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3327 * makes a decision on the order we were last reclaiming at. However,
3328 * if another caller entered the allocator slow path while kswapd
3329 * was awake, order will remain at the higher level
3331 *classzone_idx
= end_zone
;
3335 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3340 if (freezing(current
) || kthread_should_stop())
3343 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3345 /* Try to sleep for a short interval */
3346 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3347 remaining
= schedule_timeout(HZ
/10);
3348 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3349 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3353 * After a short sleep, check if it was a premature sleep. If not, then
3354 * go fully to sleep until explicitly woken up.
3356 if (prepare_kswapd_sleep(pgdat
, order
, remaining
, classzone_idx
)) {
3357 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3360 * vmstat counters are not perfectly accurate and the estimated
3361 * value for counters such as NR_FREE_PAGES can deviate from the
3362 * true value by nr_online_cpus * threshold. To avoid the zone
3363 * watermarks being breached while under pressure, we reduce the
3364 * per-cpu vmstat threshold while kswapd is awake and restore
3365 * them before going back to sleep.
3367 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3370 * Compaction records what page blocks it recently failed to
3371 * isolate pages from and skips them in the future scanning.
3372 * When kswapd is going to sleep, it is reasonable to assume
3373 * that pages and compaction may succeed so reset the cache.
3375 reset_isolation_suitable(pgdat
);
3377 if (!kthread_should_stop())
3380 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3383 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3385 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3387 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3391 * The background pageout daemon, started as a kernel thread
3392 * from the init process.
3394 * This basically trickles out pages so that we have _some_
3395 * free memory available even if there is no other activity
3396 * that frees anything up. This is needed for things like routing
3397 * etc, where we otherwise might have all activity going on in
3398 * asynchronous contexts that cannot page things out.
3400 * If there are applications that are active memory-allocators
3401 * (most normal use), this basically shouldn't matter.
3403 static int kswapd(void *p
)
3405 unsigned long order
, new_order
;
3406 unsigned balanced_order
;
3407 int classzone_idx
, new_classzone_idx
;
3408 int balanced_classzone_idx
;
3409 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3410 struct task_struct
*tsk
= current
;
3412 struct reclaim_state reclaim_state
= {
3413 .reclaimed_slab
= 0,
3415 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3417 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3419 if (!cpumask_empty(cpumask
))
3420 set_cpus_allowed_ptr(tsk
, cpumask
);
3421 current
->reclaim_state
= &reclaim_state
;
3424 * Tell the memory management that we're a "memory allocator",
3425 * and that if we need more memory we should get access to it
3426 * regardless (see "__alloc_pages()"). "kswapd" should
3427 * never get caught in the normal page freeing logic.
3429 * (Kswapd normally doesn't need memory anyway, but sometimes
3430 * you need a small amount of memory in order to be able to
3431 * page out something else, and this flag essentially protects
3432 * us from recursively trying to free more memory as we're
3433 * trying to free the first piece of memory in the first place).
3435 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3438 order
= new_order
= 0;
3440 classzone_idx
= new_classzone_idx
= pgdat
->nr_zones
- 1;
3441 balanced_classzone_idx
= classzone_idx
;
3446 * If the last balance_pgdat was unsuccessful it's unlikely a
3447 * new request of a similar or harder type will succeed soon
3448 * so consider going to sleep on the basis we reclaimed at
3450 if (balanced_classzone_idx
>= new_classzone_idx
&&
3451 balanced_order
== new_order
) {
3452 new_order
= pgdat
->kswapd_max_order
;
3453 new_classzone_idx
= pgdat
->classzone_idx
;
3454 pgdat
->kswapd_max_order
= 0;
3455 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3458 if (order
< new_order
|| classzone_idx
> new_classzone_idx
) {
3460 * Don't sleep if someone wants a larger 'order'
3461 * allocation or has tigher zone constraints
3464 classzone_idx
= new_classzone_idx
;
3466 kswapd_try_to_sleep(pgdat
, balanced_order
,
3467 balanced_classzone_idx
);
3468 order
= pgdat
->kswapd_max_order
;
3469 classzone_idx
= pgdat
->classzone_idx
;
3471 new_classzone_idx
= classzone_idx
;
3472 pgdat
->kswapd_max_order
= 0;
3473 pgdat
->classzone_idx
= pgdat
->nr_zones
- 1;
3476 ret
= try_to_freeze();
3477 if (kthread_should_stop())
3481 * We can speed up thawing tasks if we don't call balance_pgdat
3482 * after returning from the refrigerator
3485 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, order
);
3486 balanced_classzone_idx
= classzone_idx
;
3487 balanced_order
= balance_pgdat(pgdat
, order
,
3488 &balanced_classzone_idx
);
3492 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3493 current
->reclaim_state
= NULL
;
3494 lockdep_clear_current_reclaim_state();
3500 * A zone is low on free memory, so wake its kswapd task to service it.
3502 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3506 if (!populated_zone(zone
))
3509 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3511 pgdat
= zone
->zone_pgdat
;
3512 if (pgdat
->kswapd_max_order
< order
) {
3513 pgdat
->kswapd_max_order
= order
;
3514 pgdat
->classzone_idx
= min(pgdat
->classzone_idx
, classzone_idx
);
3516 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3518 if (zone_balanced(zone
, order
, 0, 0))
3521 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3522 wake_up_interruptible(&pgdat
->kswapd_wait
);
3525 #ifdef CONFIG_HIBERNATION
3527 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3530 * Rather than trying to age LRUs the aim is to preserve the overall
3531 * LRU order by reclaiming preferentially
3532 * inactive > active > active referenced > active mapped
3534 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3536 struct reclaim_state reclaim_state
;
3537 struct scan_control sc
= {
3538 .nr_to_reclaim
= nr_to_reclaim
,
3539 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3540 .priority
= DEF_PRIORITY
,
3544 .hibernation_mode
= 1,
3546 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3547 struct task_struct
*p
= current
;
3548 unsigned long nr_reclaimed
;
3550 p
->flags
|= PF_MEMALLOC
;
3551 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3552 reclaim_state
.reclaimed_slab
= 0;
3553 p
->reclaim_state
= &reclaim_state
;
3555 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3557 p
->reclaim_state
= NULL
;
3558 lockdep_clear_current_reclaim_state();
3559 p
->flags
&= ~PF_MEMALLOC
;
3561 return nr_reclaimed
;
3563 #endif /* CONFIG_HIBERNATION */
3565 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3566 not required for correctness. So if the last cpu in a node goes
3567 away, we get changed to run anywhere: as the first one comes back,
3568 restore their cpu bindings. */
3569 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3574 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3575 for_each_node_state(nid
, N_MEMORY
) {
3576 pg_data_t
*pgdat
= NODE_DATA(nid
);
3577 const struct cpumask
*mask
;
3579 mask
= cpumask_of_node(pgdat
->node_id
);
3581 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3582 /* One of our CPUs online: restore mask */
3583 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3590 * This kswapd start function will be called by init and node-hot-add.
3591 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3593 int kswapd_run(int nid
)
3595 pg_data_t
*pgdat
= NODE_DATA(nid
);
3601 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3602 if (IS_ERR(pgdat
->kswapd
)) {
3603 /* failure at boot is fatal */
3604 BUG_ON(system_state
== SYSTEM_BOOTING
);
3605 pr_err("Failed to start kswapd on node %d\n", nid
);
3606 ret
= PTR_ERR(pgdat
->kswapd
);
3607 pgdat
->kswapd
= NULL
;
3613 * Called by memory hotplug when all memory in a node is offlined. Caller must
3614 * hold mem_hotplug_begin/end().
3616 void kswapd_stop(int nid
)
3618 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3621 kthread_stop(kswapd
);
3622 NODE_DATA(nid
)->kswapd
= NULL
;
3626 static int __init
kswapd_init(void)
3631 for_each_node_state(nid
, N_MEMORY
)
3633 hotcpu_notifier(cpu_callback
, 0);
3637 module_init(kswapd_init
)
3643 * If non-zero call zone_reclaim when the number of free pages falls below
3646 int zone_reclaim_mode __read_mostly
;
3648 #define RECLAIM_OFF 0
3649 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3650 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3651 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3654 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3655 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3658 #define ZONE_RECLAIM_PRIORITY 4
3661 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3664 int sysctl_min_unmapped_ratio
= 1;
3667 * If the number of slab pages in a zone grows beyond this percentage then
3668 * slab reclaim needs to occur.
3670 int sysctl_min_slab_ratio
= 5;
3672 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
3674 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
3675 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
3676 zone_page_state(zone
, NR_ACTIVE_FILE
);
3679 * It's possible for there to be more file mapped pages than
3680 * accounted for by the pages on the file LRU lists because
3681 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3683 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3686 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3687 static unsigned long zone_pagecache_reclaimable(struct zone
*zone
)
3689 unsigned long nr_pagecache_reclaimable
;
3690 unsigned long delta
= 0;
3693 * If RECLAIM_UNMAP is set, then all file pages are considered
3694 * potentially reclaimable. Otherwise, we have to worry about
3695 * pages like swapcache and zone_unmapped_file_pages() provides
3698 if (zone_reclaim_mode
& RECLAIM_UNMAP
)
3699 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
3701 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
3703 /* If we can't clean pages, remove dirty pages from consideration */
3704 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
3705 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
3707 /* Watch for any possible underflows due to delta */
3708 if (unlikely(delta
> nr_pagecache_reclaimable
))
3709 delta
= nr_pagecache_reclaimable
;
3711 return nr_pagecache_reclaimable
- delta
;
3715 * Try to free up some pages from this zone through reclaim.
3717 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3719 /* Minimum pages needed in order to stay on node */
3720 const unsigned long nr_pages
= 1 << order
;
3721 struct task_struct
*p
= current
;
3722 struct reclaim_state reclaim_state
;
3723 struct scan_control sc
= {
3724 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3725 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3727 .priority
= ZONE_RECLAIM_PRIORITY
,
3728 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
3729 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_UNMAP
),
3735 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3736 * and we also need to be able to write out pages for RECLAIM_WRITE
3737 * and RECLAIM_UNMAP.
3739 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3740 lockdep_set_current_reclaim_state(gfp_mask
);
3741 reclaim_state
.reclaimed_slab
= 0;
3742 p
->reclaim_state
= &reclaim_state
;
3744 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
3746 * Free memory by calling shrink zone with increasing
3747 * priorities until we have enough memory freed.
3750 shrink_zone(zone
, &sc
, true);
3751 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3754 p
->reclaim_state
= NULL
;
3755 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3756 lockdep_clear_current_reclaim_state();
3757 return sc
.nr_reclaimed
>= nr_pages
;
3760 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
3766 * Zone reclaim reclaims unmapped file backed pages and
3767 * slab pages if we are over the defined limits.
3769 * A small portion of unmapped file backed pages is needed for
3770 * file I/O otherwise pages read by file I/O will be immediately
3771 * thrown out if the zone is overallocated. So we do not reclaim
3772 * if less than a specified percentage of the zone is used by
3773 * unmapped file backed pages.
3775 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
3776 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
3777 return ZONE_RECLAIM_FULL
;
3779 if (!zone_reclaimable(zone
))
3780 return ZONE_RECLAIM_FULL
;
3783 * Do not scan if the allocation should not be delayed.
3785 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3786 return ZONE_RECLAIM_NOSCAN
;
3789 * Only run zone reclaim on the local zone or on zones that do not
3790 * have associated processors. This will favor the local processor
3791 * over remote processors and spread off node memory allocations
3792 * as wide as possible.
3794 node_id
= zone_to_nid(zone
);
3795 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
3796 return ZONE_RECLAIM_NOSCAN
;
3798 if (test_and_set_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
))
3799 return ZONE_RECLAIM_NOSCAN
;
3801 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
3802 clear_bit(ZONE_RECLAIM_LOCKED
, &zone
->flags
);
3805 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3812 * page_evictable - test whether a page is evictable
3813 * @page: the page to test
3815 * Test whether page is evictable--i.e., should be placed on active/inactive
3816 * lists vs unevictable list.
3818 * Reasons page might not be evictable:
3819 * (1) page's mapping marked unevictable
3820 * (2) page is part of an mlocked VMA
3823 int page_evictable(struct page
*page
)
3825 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3830 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3831 * @pages: array of pages to check
3832 * @nr_pages: number of pages to check
3834 * Checks pages for evictability and moves them to the appropriate lru list.
3836 * This function is only used for SysV IPC SHM_UNLOCK.
3838 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3840 struct lruvec
*lruvec
;
3841 struct zone
*zone
= NULL
;
3846 for (i
= 0; i
< nr_pages
; i
++) {
3847 struct page
*page
= pages
[i
];
3848 struct zone
*pagezone
;
3851 pagezone
= page_zone(page
);
3852 if (pagezone
!= zone
) {
3854 spin_unlock_irq(&zone
->lru_lock
);
3856 spin_lock_irq(&zone
->lru_lock
);
3858 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
3860 if (!PageLRU(page
) || !PageUnevictable(page
))
3863 if (page_evictable(page
)) {
3864 enum lru_list lru
= page_lru_base_type(page
);
3866 VM_BUG_ON_PAGE(PageActive(page
), page
);
3867 ClearPageUnevictable(page
);
3868 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3869 add_page_to_lru_list(page
, lruvec
, lru
);
3875 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3876 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3877 spin_unlock_irq(&zone
->lru_lock
);
3880 #endif /* CONFIG_SHMEM */