1 // SPDX-License-Identifier: GPL-2.0
3 * SuperH Timer Support - CMT
5 * Copyright (C) 2008 Magnus Damm
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
29 #include <asm/platform_early.h>
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
72 enum sh_cmt_model model
;
74 unsigned int channels_mask
;
76 unsigned long width
; /* 16 or 32 bit version of hardware block */
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control
)(void __iomem
*base
, unsigned long offs
);
82 void (*write_control
)(void __iomem
*base
, unsigned long offs
,
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count
)(void __iomem
*base
, unsigned long offs
);
87 void (*write_count
)(void __iomem
*base
, unsigned long offs
, u32 value
);
90 struct sh_cmt_channel
{
91 struct sh_cmt_device
*cmt
;
93 unsigned int index
; /* Index in the documentation */
94 unsigned int hwidx
; /* Real hardware index */
96 void __iomem
*iostart
;
99 unsigned int timer_bit
;
102 u32 next_match_value
;
105 struct clock_event_device ced
;
106 struct clocksource cs
;
111 struct sh_cmt_device
{
112 struct platform_device
*pdev
;
114 const struct sh_cmt_info
*info
;
116 void __iomem
*mapbase
;
120 raw_spinlock_t lock
; /* Protect the shared start/stop register */
122 struct sh_cmt_channel
*channels
;
123 unsigned int num_channels
;
124 unsigned int hw_channels
;
127 bool has_clocksource
;
130 #define SH_CMT16_CMCSR_CMF (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
138 #define SH_CMT32_CMCSR_CMF (1 << 15)
139 #define SH_CMT32_CMCSR_OVF (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
141 #define SH_CMT32_CMCSR_STTF (1 << 12)
142 #define SH_CMT32_CMCSR_STPF (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE (1 << 10)
144 #define SH_CMT32_CMCSR_CMS (1 << 9)
145 #define SH_CMT32_CMCSR_CMM (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
158 static u32
sh_cmt_read16(void __iomem
*base
, unsigned long offs
)
160 return ioread16(base
+ (offs
<< 1));
163 static u32
sh_cmt_read32(void __iomem
*base
, unsigned long offs
)
165 return ioread32(base
+ (offs
<< 2));
168 static void sh_cmt_write16(void __iomem
*base
, unsigned long offs
, u32 value
)
170 iowrite16(value
, base
+ (offs
<< 1));
173 static void sh_cmt_write32(void __iomem
*base
, unsigned long offs
, u32 value
)
175 iowrite32(value
, base
+ (offs
<< 2));
178 static const struct sh_cmt_info sh_cmt_info
[] = {
180 .model
= SH_CMT_16BIT
,
182 .overflow_bit
= SH_CMT16_CMCSR_CMF
,
183 .clear_bits
= ~SH_CMT16_CMCSR_CMF
,
184 .read_control
= sh_cmt_read16
,
185 .write_control
= sh_cmt_write16
,
186 .read_count
= sh_cmt_read16
,
187 .write_count
= sh_cmt_write16
,
190 .model
= SH_CMT_32BIT
,
192 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
193 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
194 .read_control
= sh_cmt_read16
,
195 .write_control
= sh_cmt_write16
,
196 .read_count
= sh_cmt_read32
,
197 .write_count
= sh_cmt_write32
,
200 .model
= SH_CMT_48BIT
,
201 .channels_mask
= 0x3f,
203 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
204 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
205 .read_control
= sh_cmt_read32
,
206 .write_control
= sh_cmt_write32
,
207 .read_count
= sh_cmt_read32
,
208 .write_count
= sh_cmt_write32
,
210 [SH_CMT0_RCAR_GEN2
] = {
211 .model
= SH_CMT0_RCAR_GEN2
,
212 .channels_mask
= 0x60,
214 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
215 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
216 .read_control
= sh_cmt_read32
,
217 .write_control
= sh_cmt_write32
,
218 .read_count
= sh_cmt_read32
,
219 .write_count
= sh_cmt_write32
,
221 [SH_CMT1_RCAR_GEN2
] = {
222 .model
= SH_CMT1_RCAR_GEN2
,
223 .channels_mask
= 0xff,
225 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
226 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
227 .read_control
= sh_cmt_read32
,
228 .write_control
= sh_cmt_write32
,
229 .read_count
= sh_cmt_read32
,
230 .write_count
= sh_cmt_write32
,
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
238 static inline u32
sh_cmt_read_cmstr(struct sh_cmt_channel
*ch
)
241 return ch
->cmt
->info
->read_control(ch
->iostart
, 0);
243 return ch
->cmt
->info
->read_control(ch
->cmt
->mapbase
, 0);
246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel
*ch
, u32 value
)
249 ch
->cmt
->info
->write_control(ch
->iostart
, 0, value
);
251 ch
->cmt
->info
->write_control(ch
->cmt
->mapbase
, 0, value
);
254 static inline u32
sh_cmt_read_cmcsr(struct sh_cmt_channel
*ch
)
256 return ch
->cmt
->info
->read_control(ch
->ioctrl
, CMCSR
);
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel
*ch
, u32 value
)
261 ch
->cmt
->info
->write_control(ch
->ioctrl
, CMCSR
, value
);
264 static inline u32
sh_cmt_read_cmcnt(struct sh_cmt_channel
*ch
)
266 return ch
->cmt
->info
->read_count(ch
->ioctrl
, CMCNT
);
269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel
*ch
, u32 value
)
271 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCNT
, value
);
274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel
*ch
, u32 value
)
276 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCOR
, value
);
279 static u32
sh_cmt_get_counter(struct sh_cmt_channel
*ch
, u32
*has_wrapped
)
284 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
286 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
289 v1
= sh_cmt_read_cmcnt(ch
);
290 v2
= sh_cmt_read_cmcnt(ch
);
291 v3
= sh_cmt_read_cmcnt(ch
);
292 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
293 } while (unlikely((o1
!= o2
) || (v1
> v2
&& v1
< v3
)
294 || (v2
> v3
&& v2
< v1
) || (v3
> v1
&& v3
< v2
)));
300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel
*ch
, int start
)
305 /* start stop register shared by multiple timer channels */
306 raw_spin_lock_irqsave(&ch
->cmt
->lock
, flags
);
307 value
= sh_cmt_read_cmstr(ch
);
310 value
|= 1 << ch
->timer_bit
;
312 value
&= ~(1 << ch
->timer_bit
);
314 sh_cmt_write_cmstr(ch
, value
);
315 raw_spin_unlock_irqrestore(&ch
->cmt
->lock
, flags
);
318 static int sh_cmt_enable(struct sh_cmt_channel
*ch
)
322 pm_runtime_get_sync(&ch
->cmt
->pdev
->dev
);
323 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, true);
326 ret
= clk_enable(ch
->cmt
->clk
);
328 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot enable clock\n",
333 /* make sure channel is disabled */
334 sh_cmt_start_stop_ch(ch
, 0);
336 /* configure channel, periodic mode and maximum timeout */
337 if (ch
->cmt
->info
->width
== 16) {
338 sh_cmt_write_cmcsr(ch
, SH_CMT16_CMCSR_CMIE
|
339 SH_CMT16_CMCSR_CKS512
);
341 sh_cmt_write_cmcsr(ch
, SH_CMT32_CMCSR_CMM
|
342 SH_CMT32_CMCSR_CMTOUT_IE
|
343 SH_CMT32_CMCSR_CMR_IRQ
|
344 SH_CMT32_CMCSR_CKS_RCLK8
);
347 sh_cmt_write_cmcor(ch
, 0xffffffff);
348 sh_cmt_write_cmcnt(ch
, 0);
351 * According to the sh73a0 user's manual, as CMCNT can be operated
352 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
353 * modifying CMCNT register; two RCLK cycles are necessary before
354 * this register is either read or any modification of the value
355 * it holds is reflected in the LSI's actual operation.
357 * While at it, we're supposed to clear out the CMCNT as of this
358 * moment, so make sure it's processed properly here. This will
359 * take RCLKx2 at maximum.
361 for (k
= 0; k
< 100; k
++) {
362 if (!sh_cmt_read_cmcnt(ch
))
367 if (sh_cmt_read_cmcnt(ch
)) {
368 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot clear CMCNT\n",
375 sh_cmt_start_stop_ch(ch
, 1);
379 clk_disable(ch
->cmt
->clk
);
385 static void sh_cmt_disable(struct sh_cmt_channel
*ch
)
387 /* disable channel */
388 sh_cmt_start_stop_ch(ch
, 0);
390 /* disable interrupts in CMT block */
391 sh_cmt_write_cmcsr(ch
, 0);
394 clk_disable(ch
->cmt
->clk
);
396 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, false);
397 pm_runtime_put(&ch
->cmt
->pdev
->dev
);
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel
*ch
,
410 u32 value
= ch
->next_match_value
;
416 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
417 ch
->flags
|= FLAG_REPROGRAM
; /* force reprogram */
420 /* we're competing with the interrupt handler.
421 * -> let the interrupt handler reprogram the timer.
422 * -> interrupt number two handles the event.
424 ch
->flags
|= FLAG_SKIPEVENT
;
432 /* reprogram the timer hardware,
433 * but don't save the new match value yet.
435 new_match
= now
+ value
+ delay
;
436 if (new_match
> ch
->max_match_value
)
437 new_match
= ch
->max_match_value
;
439 sh_cmt_write_cmcor(ch
, new_match
);
441 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
442 if (has_wrapped
&& (new_match
> ch
->match_value
)) {
443 /* we are changing to a greater match value,
444 * so this wrap must be caused by the counter
445 * matching the old value.
446 * -> first interrupt reprograms the timer.
447 * -> interrupt number two handles the event.
449 ch
->flags
|= FLAG_SKIPEVENT
;
454 /* we are changing to a smaller match value,
455 * so the wrap must be caused by the counter
456 * matching the new value.
457 * -> save programmed match value.
458 * -> let isr handle the event.
460 ch
->match_value
= new_match
;
464 /* be safe: verify hardware settings */
465 if (now
< new_match
) {
466 /* timer value is below match value, all good.
467 * this makes sure we won't miss any match events.
468 * -> save programmed match value.
469 * -> let isr handle the event.
471 ch
->match_value
= new_match
;
475 /* the counter has reached a value greater
476 * than our new match value. and since the
477 * has_wrapped flag isn't set we must have
478 * programmed a too close event.
479 * -> increase delay and retry.
487 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: too long delay\n",
493 static void __sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
495 if (delta
> ch
->max_match_value
)
496 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: delta out of range\n",
499 ch
->next_match_value
= delta
;
500 sh_cmt_clock_event_program_verify(ch
, 0);
503 static void sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
507 raw_spin_lock_irqsave(&ch
->lock
, flags
);
508 __sh_cmt_set_next(ch
, delta
);
509 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
512 static irqreturn_t
sh_cmt_interrupt(int irq
, void *dev_id
)
514 struct sh_cmt_channel
*ch
= dev_id
;
517 sh_cmt_write_cmcsr(ch
, sh_cmt_read_cmcsr(ch
) &
518 ch
->cmt
->info
->clear_bits
);
520 /* update clock source counter to begin with if enabled
521 * the wrap flag should be cleared by the timer specific
522 * isr before we end up here.
524 if (ch
->flags
& FLAG_CLOCKSOURCE
)
525 ch
->total_cycles
+= ch
->match_value
+ 1;
527 if (!(ch
->flags
& FLAG_REPROGRAM
))
528 ch
->next_match_value
= ch
->max_match_value
;
530 ch
->flags
|= FLAG_IRQCONTEXT
;
532 if (ch
->flags
& FLAG_CLOCKEVENT
) {
533 if (!(ch
->flags
& FLAG_SKIPEVENT
)) {
534 if (clockevent_state_oneshot(&ch
->ced
)) {
535 ch
->next_match_value
= ch
->max_match_value
;
536 ch
->flags
|= FLAG_REPROGRAM
;
539 ch
->ced
.event_handler(&ch
->ced
);
543 ch
->flags
&= ~FLAG_SKIPEVENT
;
545 if (ch
->flags
& FLAG_REPROGRAM
) {
546 ch
->flags
&= ~FLAG_REPROGRAM
;
547 sh_cmt_clock_event_program_verify(ch
, 1);
549 if (ch
->flags
& FLAG_CLOCKEVENT
)
550 if ((clockevent_state_shutdown(&ch
->ced
))
551 || (ch
->match_value
== ch
->next_match_value
))
552 ch
->flags
&= ~FLAG_REPROGRAM
;
555 ch
->flags
&= ~FLAG_IRQCONTEXT
;
560 static int sh_cmt_start(struct sh_cmt_channel
*ch
, unsigned long flag
)
565 raw_spin_lock_irqsave(&ch
->lock
, flags
);
567 if (!(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
)))
568 ret
= sh_cmt_enable(ch
);
574 /* setup timeout if no clockevent */
575 if ((flag
== FLAG_CLOCKSOURCE
) && (!(ch
->flags
& FLAG_CLOCKEVENT
)))
576 __sh_cmt_set_next(ch
, ch
->max_match_value
);
578 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
583 static void sh_cmt_stop(struct sh_cmt_channel
*ch
, unsigned long flag
)
588 raw_spin_lock_irqsave(&ch
->lock
, flags
);
590 f
= ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
);
593 if (f
&& !(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
)))
596 /* adjust the timeout to maximum if only clocksource left */
597 if ((flag
== FLAG_CLOCKEVENT
) && (ch
->flags
& FLAG_CLOCKSOURCE
))
598 __sh_cmt_set_next(ch
, ch
->max_match_value
);
600 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
603 static struct sh_cmt_channel
*cs_to_sh_cmt(struct clocksource
*cs
)
605 return container_of(cs
, struct sh_cmt_channel
, cs
);
608 static u64
sh_cmt_clocksource_read(struct clocksource
*cs
)
610 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
616 raw_spin_lock_irqsave(&ch
->lock
, flags
);
617 value
= ch
->total_cycles
;
618 raw
= sh_cmt_get_counter(ch
, &has_wrapped
);
620 if (unlikely(has_wrapped
))
621 raw
+= ch
->match_value
+ 1;
622 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
627 static int sh_cmt_clocksource_enable(struct clocksource
*cs
)
630 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
632 WARN_ON(ch
->cs_enabled
);
634 ch
->total_cycles
= 0;
636 ret
= sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
638 ch
->cs_enabled
= true;
643 static void sh_cmt_clocksource_disable(struct clocksource
*cs
)
645 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
647 WARN_ON(!ch
->cs_enabled
);
649 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
650 ch
->cs_enabled
= false;
653 static void sh_cmt_clocksource_suspend(struct clocksource
*cs
)
655 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
660 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
661 pm_genpd_syscore_poweroff(&ch
->cmt
->pdev
->dev
);
664 static void sh_cmt_clocksource_resume(struct clocksource
*cs
)
666 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
671 pm_genpd_syscore_poweron(&ch
->cmt
->pdev
->dev
);
672 sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
675 static int sh_cmt_register_clocksource(struct sh_cmt_channel
*ch
,
678 struct clocksource
*cs
= &ch
->cs
;
682 cs
->read
= sh_cmt_clocksource_read
;
683 cs
->enable
= sh_cmt_clocksource_enable
;
684 cs
->disable
= sh_cmt_clocksource_disable
;
685 cs
->suspend
= sh_cmt_clocksource_suspend
;
686 cs
->resume
= sh_cmt_clocksource_resume
;
687 cs
->mask
= CLOCKSOURCE_MASK(sizeof(u64
) * 8);
688 cs
->flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
690 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used as clock source\n",
693 clocksource_register_hz(cs
, ch
->cmt
->rate
);
697 static struct sh_cmt_channel
*ced_to_sh_cmt(struct clock_event_device
*ced
)
699 return container_of(ced
, struct sh_cmt_channel
, ced
);
702 static void sh_cmt_clock_event_start(struct sh_cmt_channel
*ch
, int periodic
)
704 sh_cmt_start(ch
, FLAG_CLOCKEVENT
);
707 sh_cmt_set_next(ch
, ((ch
->cmt
->rate
+ HZ
/2) / HZ
) - 1);
709 sh_cmt_set_next(ch
, ch
->max_match_value
);
712 static int sh_cmt_clock_event_shutdown(struct clock_event_device
*ced
)
714 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
716 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
720 static int sh_cmt_clock_event_set_state(struct clock_event_device
*ced
,
723 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
725 /* deal with old setting first */
726 if (clockevent_state_oneshot(ced
) || clockevent_state_periodic(ced
))
727 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
729 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for %s clock events\n",
730 ch
->index
, periodic
? "periodic" : "oneshot");
731 sh_cmt_clock_event_start(ch
, periodic
);
735 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device
*ced
)
737 return sh_cmt_clock_event_set_state(ced
, 0);
740 static int sh_cmt_clock_event_set_periodic(struct clock_event_device
*ced
)
742 return sh_cmt_clock_event_set_state(ced
, 1);
745 static int sh_cmt_clock_event_next(unsigned long delta
,
746 struct clock_event_device
*ced
)
748 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
750 BUG_ON(!clockevent_state_oneshot(ced
));
751 if (likely(ch
->flags
& FLAG_IRQCONTEXT
))
752 ch
->next_match_value
= delta
- 1;
754 sh_cmt_set_next(ch
, delta
- 1);
759 static void sh_cmt_clock_event_suspend(struct clock_event_device
*ced
)
761 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
763 pm_genpd_syscore_poweroff(&ch
->cmt
->pdev
->dev
);
764 clk_unprepare(ch
->cmt
->clk
);
767 static void sh_cmt_clock_event_resume(struct clock_event_device
*ced
)
769 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
771 clk_prepare(ch
->cmt
->clk
);
772 pm_genpd_syscore_poweron(&ch
->cmt
->pdev
->dev
);
775 static int sh_cmt_register_clockevent(struct sh_cmt_channel
*ch
,
778 struct clock_event_device
*ced
= &ch
->ced
;
782 irq
= platform_get_irq(ch
->cmt
->pdev
, ch
->index
);
786 ret
= request_irq(irq
, sh_cmt_interrupt
,
787 IRQF_TIMER
| IRQF_IRQPOLL
| IRQF_NOBALANCING
,
788 dev_name(&ch
->cmt
->pdev
->dev
), ch
);
790 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: failed to request irq %d\n",
796 ced
->features
= CLOCK_EVT_FEAT_PERIODIC
;
797 ced
->features
|= CLOCK_EVT_FEAT_ONESHOT
;
799 ced
->cpumask
= cpu_possible_mask
;
800 ced
->set_next_event
= sh_cmt_clock_event_next
;
801 ced
->set_state_shutdown
= sh_cmt_clock_event_shutdown
;
802 ced
->set_state_periodic
= sh_cmt_clock_event_set_periodic
;
803 ced
->set_state_oneshot
= sh_cmt_clock_event_set_oneshot
;
804 ced
->suspend
= sh_cmt_clock_event_suspend
;
805 ced
->resume
= sh_cmt_clock_event_resume
;
807 /* TODO: calculate good shift from rate and counter bit width */
809 ced
->mult
= div_sc(ch
->cmt
->rate
, NSEC_PER_SEC
, ced
->shift
);
810 ced
->max_delta_ns
= clockevent_delta2ns(ch
->max_match_value
, ced
);
811 ced
->max_delta_ticks
= ch
->max_match_value
;
812 ced
->min_delta_ns
= clockevent_delta2ns(0x1f, ced
);
813 ced
->min_delta_ticks
= 0x1f;
815 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for clock events\n",
817 clockevents_register_device(ced
);
822 static int sh_cmt_register(struct sh_cmt_channel
*ch
, const char *name
,
823 bool clockevent
, bool clocksource
)
828 ch
->cmt
->has_clockevent
= true;
829 ret
= sh_cmt_register_clockevent(ch
, name
);
835 ch
->cmt
->has_clocksource
= true;
836 sh_cmt_register_clocksource(ch
, name
);
842 static int sh_cmt_setup_channel(struct sh_cmt_channel
*ch
, unsigned int index
,
843 unsigned int hwidx
, bool clockevent
,
844 bool clocksource
, struct sh_cmt_device
*cmt
)
848 /* Skip unused channels. */
849 if (!clockevent
&& !clocksource
)
855 ch
->timer_bit
= hwidx
;
858 * Compute the address of the channel control register block. For the
859 * timers with a per-channel start/stop register, compute its address
862 switch (cmt
->info
->model
) {
864 ch
->ioctrl
= cmt
->mapbase
+ 2 + ch
->hwidx
* 6;
868 ch
->ioctrl
= cmt
->mapbase
+ 0x10 + ch
->hwidx
* 0x10;
870 case SH_CMT0_RCAR_GEN2
:
871 case SH_CMT1_RCAR_GEN2
:
872 ch
->iostart
= cmt
->mapbase
+ ch
->hwidx
* 0x100;
873 ch
->ioctrl
= ch
->iostart
+ 0x10;
878 if (cmt
->info
->width
== (sizeof(ch
->max_match_value
) * 8))
879 ch
->max_match_value
= ~0;
881 ch
->max_match_value
= (1 << cmt
->info
->width
) - 1;
883 ch
->match_value
= ch
->max_match_value
;
884 raw_spin_lock_init(&ch
->lock
);
886 ret
= sh_cmt_register(ch
, dev_name(&cmt
->pdev
->dev
),
887 clockevent
, clocksource
);
889 dev_err(&cmt
->pdev
->dev
, "ch%u: registration failed\n",
893 ch
->cs_enabled
= false;
898 static int sh_cmt_map_memory(struct sh_cmt_device
*cmt
)
900 struct resource
*mem
;
902 mem
= platform_get_resource(cmt
->pdev
, IORESOURCE_MEM
, 0);
904 dev_err(&cmt
->pdev
->dev
, "failed to get I/O memory\n");
908 cmt
->mapbase
= ioremap(mem
->start
, resource_size(mem
));
909 if (cmt
->mapbase
== NULL
) {
910 dev_err(&cmt
->pdev
->dev
, "failed to remap I/O memory\n");
917 static const struct platform_device_id sh_cmt_id_table
[] = {
918 { "sh-cmt-16", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_16BIT
] },
919 { "sh-cmt-32", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_32BIT
] },
922 MODULE_DEVICE_TABLE(platform
, sh_cmt_id_table
);
924 static const struct of_device_id sh_cmt_of_table
[] __maybe_unused
= {
926 /* deprecated, preserved for backward compatibility */
927 .compatible
= "renesas,cmt-48",
928 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
931 /* deprecated, preserved for backward compatibility */
932 .compatible
= "renesas,cmt-48-gen2",
933 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
936 .compatible
= "renesas,r8a7740-cmt1",
937 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
940 .compatible
= "renesas,sh73a0-cmt1",
941 .data
= &sh_cmt_info
[SH_CMT_48BIT
]
944 .compatible
= "renesas,rcar-gen2-cmt0",
945 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
948 .compatible
= "renesas,rcar-gen2-cmt1",
949 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
952 .compatible
= "renesas,rcar-gen3-cmt0",
953 .data
= &sh_cmt_info
[SH_CMT0_RCAR_GEN2
]
956 .compatible
= "renesas,rcar-gen3-cmt1",
957 .data
= &sh_cmt_info
[SH_CMT1_RCAR_GEN2
]
961 MODULE_DEVICE_TABLE(of
, sh_cmt_of_table
);
963 static int sh_cmt_setup(struct sh_cmt_device
*cmt
, struct platform_device
*pdev
)
970 raw_spin_lock_init(&cmt
->lock
);
972 if (IS_ENABLED(CONFIG_OF
) && pdev
->dev
.of_node
) {
973 cmt
->info
= of_device_get_match_data(&pdev
->dev
);
974 cmt
->hw_channels
= cmt
->info
->channels_mask
;
975 } else if (pdev
->dev
.platform_data
) {
976 struct sh_timer_config
*cfg
= pdev
->dev
.platform_data
;
977 const struct platform_device_id
*id
= pdev
->id_entry
;
979 cmt
->info
= (const struct sh_cmt_info
*)id
->driver_data
;
980 cmt
->hw_channels
= cfg
->channels_mask
;
982 dev_err(&cmt
->pdev
->dev
, "missing platform data\n");
986 /* Get hold of clock. */
987 cmt
->clk
= clk_get(&cmt
->pdev
->dev
, "fck");
988 if (IS_ERR(cmt
->clk
)) {
989 dev_err(&cmt
->pdev
->dev
, "cannot get clock\n");
990 return PTR_ERR(cmt
->clk
);
993 ret
= clk_prepare(cmt
->clk
);
997 /* Determine clock rate. */
998 ret
= clk_enable(cmt
->clk
);
1000 goto err_clk_unprepare
;
1002 if (cmt
->info
->width
== 16)
1003 cmt
->rate
= clk_get_rate(cmt
->clk
) / 512;
1005 cmt
->rate
= clk_get_rate(cmt
->clk
) / 8;
1007 clk_disable(cmt
->clk
);
1009 /* Map the memory resource(s). */
1010 ret
= sh_cmt_map_memory(cmt
);
1012 goto err_clk_unprepare
;
1014 /* Allocate and setup the channels. */
1015 cmt
->num_channels
= hweight8(cmt
->hw_channels
);
1016 cmt
->channels
= kcalloc(cmt
->num_channels
, sizeof(*cmt
->channels
),
1018 if (cmt
->channels
== NULL
) {
1024 * Use the first channel as a clock event device and the second channel
1025 * as a clock source. If only one channel is available use it for both.
1027 for (i
= 0, mask
= cmt
->hw_channels
; i
< cmt
->num_channels
; ++i
) {
1028 unsigned int hwidx
= ffs(mask
) - 1;
1029 bool clocksource
= i
== 1 || cmt
->num_channels
== 1;
1030 bool clockevent
= i
== 0;
1032 ret
= sh_cmt_setup_channel(&cmt
->channels
[i
], i
, hwidx
,
1033 clockevent
, clocksource
, cmt
);
1037 mask
&= ~(1 << hwidx
);
1040 platform_set_drvdata(pdev
, cmt
);
1045 kfree(cmt
->channels
);
1046 iounmap(cmt
->mapbase
);
1048 clk_unprepare(cmt
->clk
);
1054 static int sh_cmt_probe(struct platform_device
*pdev
)
1056 struct sh_cmt_device
*cmt
= platform_get_drvdata(pdev
);
1059 if (!is_sh_early_platform_device(pdev
)) {
1060 pm_runtime_set_active(&pdev
->dev
);
1061 pm_runtime_enable(&pdev
->dev
);
1065 dev_info(&pdev
->dev
, "kept as earlytimer\n");
1069 cmt
= kzalloc(sizeof(*cmt
), GFP_KERNEL
);
1073 ret
= sh_cmt_setup(cmt
, pdev
);
1076 pm_runtime_idle(&pdev
->dev
);
1079 if (is_sh_early_platform_device(pdev
))
1083 if (cmt
->has_clockevent
|| cmt
->has_clocksource
)
1084 pm_runtime_irq_safe(&pdev
->dev
);
1086 pm_runtime_idle(&pdev
->dev
);
1091 static int sh_cmt_remove(struct platform_device
*pdev
)
1093 return -EBUSY
; /* cannot unregister clockevent and clocksource */
1096 static struct platform_driver sh_cmt_device_driver
= {
1097 .probe
= sh_cmt_probe
,
1098 .remove
= sh_cmt_remove
,
1101 .of_match_table
= of_match_ptr(sh_cmt_of_table
),
1103 .id_table
= sh_cmt_id_table
,
1106 static int __init
sh_cmt_init(void)
1108 return platform_driver_register(&sh_cmt_device_driver
);
1111 static void __exit
sh_cmt_exit(void)
1113 platform_driver_unregister(&sh_cmt_device_driver
);
1116 #ifdef CONFIG_SUPERH
1117 sh_early_platform_init("earlytimer", &sh_cmt_device_driver
);
1120 subsys_initcall(sh_cmt_init
);
1121 module_exit(sh_cmt_exit
);
1123 MODULE_AUTHOR("Magnus Damm");
1124 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125 MODULE_LICENSE("GPL v2");