Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / clocksource / sh_cmt.c
blob12ac75f7571f279e9effc339e53162cccfad77b0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH Timer Support - CMT
5 * Copyright (C) 2008 Magnus Damm
6 */
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
32 struct sh_cmt_device;
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
63 enum sh_cmt_model {
64 SH_CMT_16BIT,
65 SH_CMT_32BIT,
66 SH_CMT_48BIT,
67 SH_CMT0_RCAR_GEN2,
68 SH_CMT1_RCAR_GEN2,
71 struct sh_cmt_info {
72 enum sh_cmt_model model;
74 unsigned int channels_mask;
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 u32 overflow_bit;
78 u32 clear_bits;
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 u32 value);
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
90 struct sh_cmt_channel {
91 struct sh_cmt_device *cmt;
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
96 void __iomem *iostart;
97 void __iomem *ioctrl;
99 unsigned int timer_bit;
100 unsigned long flags;
101 u32 match_value;
102 u32 next_match_value;
103 u32 max_match_value;
104 raw_spinlock_t lock;
105 struct clock_event_device ced;
106 struct clocksource cs;
107 u64 total_cycles;
108 bool cs_enabled;
111 struct sh_cmt_device {
112 struct platform_device *pdev;
114 const struct sh_cmt_info *info;
116 void __iomem *mapbase;
117 struct clk *clk;
118 unsigned long rate;
120 raw_spinlock_t lock; /* Protect the shared start/stop register */
122 struct sh_cmt_channel *channels;
123 unsigned int num_channels;
124 unsigned int hw_channels;
126 bool has_clockevent;
127 bool has_clocksource;
130 #define SH_CMT16_CMCSR_CMF (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
138 #define SH_CMT32_CMCSR_CMF (1 << 15)
139 #define SH_CMT32_CMCSR_OVF (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
141 #define SH_CMT32_CMCSR_STTF (1 << 12)
142 #define SH_CMT32_CMCSR_STPF (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE (1 << 10)
144 #define SH_CMT32_CMCSR_CMS (1 << 9)
145 #define SH_CMT32_CMCSR_CMM (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
160 return ioread16(base + (offs << 1));
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
165 return ioread32(base + (offs << 2));
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
170 iowrite16(value, base + (offs << 1));
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
175 iowrite32(value, base + (offs << 2));
178 static const struct sh_cmt_info sh_cmt_info[] = {
179 [SH_CMT_16BIT] = {
180 .model = SH_CMT_16BIT,
181 .width = 16,
182 .overflow_bit = SH_CMT16_CMCSR_CMF,
183 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184 .read_control = sh_cmt_read16,
185 .write_control = sh_cmt_write16,
186 .read_count = sh_cmt_read16,
187 .write_count = sh_cmt_write16,
189 [SH_CMT_32BIT] = {
190 .model = SH_CMT_32BIT,
191 .width = 32,
192 .overflow_bit = SH_CMT32_CMCSR_CMF,
193 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 .read_control = sh_cmt_read16,
195 .write_control = sh_cmt_write16,
196 .read_count = sh_cmt_read32,
197 .write_count = sh_cmt_write32,
199 [SH_CMT_48BIT] = {
200 .model = SH_CMT_48BIT,
201 .channels_mask = 0x3f,
202 .width = 32,
203 .overflow_bit = SH_CMT32_CMCSR_CMF,
204 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 .read_control = sh_cmt_read32,
206 .write_control = sh_cmt_write32,
207 .read_count = sh_cmt_read32,
208 .write_count = sh_cmt_write32,
210 [SH_CMT0_RCAR_GEN2] = {
211 .model = SH_CMT0_RCAR_GEN2,
212 .channels_mask = 0x60,
213 .width = 32,
214 .overflow_bit = SH_CMT32_CMCSR_CMF,
215 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 .read_control = sh_cmt_read32,
217 .write_control = sh_cmt_write32,
218 .read_count = sh_cmt_read32,
219 .write_count = sh_cmt_write32,
221 [SH_CMT1_RCAR_GEN2] = {
222 .model = SH_CMT1_RCAR_GEN2,
223 .channels_mask = 0xff,
224 .width = 32,
225 .overflow_bit = SH_CMT32_CMCSR_CMF,
226 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 .read_control = sh_cmt_read32,
228 .write_control = sh_cmt_write32,
229 .read_count = sh_cmt_read32,
230 .write_count = sh_cmt_write32,
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
238 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
240 if (ch->iostart)
241 return ch->cmt->info->read_control(ch->iostart, 0);
242 else
243 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
246 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
248 if (ch->iostart)
249 ch->cmt->info->write_control(ch->iostart, 0, value);
250 else
251 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
256 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
261 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
264 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
266 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
269 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
271 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
274 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
276 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
279 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
281 u32 v1, v2, v3;
282 u32 o1, o2;
284 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
286 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
287 do {
288 o2 = o1;
289 v1 = sh_cmt_read_cmcnt(ch);
290 v2 = sh_cmt_read_cmcnt(ch);
291 v3 = sh_cmt_read_cmcnt(ch);
292 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
296 *has_wrapped = o1;
297 return v2;
300 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
302 unsigned long flags;
303 u32 value;
305 /* start stop register shared by multiple timer channels */
306 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307 value = sh_cmt_read_cmstr(ch);
309 if (start)
310 value |= 1 << ch->timer_bit;
311 else
312 value &= ~(1 << ch->timer_bit);
314 sh_cmt_write_cmstr(ch, value);
315 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
318 static int sh_cmt_enable(struct sh_cmt_channel *ch)
320 int k, ret;
322 pm_runtime_get_sync(&ch->cmt->pdev->dev);
323 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
325 /* enable clock */
326 ret = clk_enable(ch->cmt->clk);
327 if (ret) {
328 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329 ch->index);
330 goto err0;
333 /* make sure channel is disabled */
334 sh_cmt_start_stop_ch(ch, 0);
336 /* configure channel, periodic mode and maximum timeout */
337 if (ch->cmt->info->width == 16) {
338 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339 SH_CMT16_CMCSR_CKS512);
340 } else {
341 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342 SH_CMT32_CMCSR_CMTOUT_IE |
343 SH_CMT32_CMCSR_CMR_IRQ |
344 SH_CMT32_CMCSR_CKS_RCLK8);
347 sh_cmt_write_cmcor(ch, 0xffffffff);
348 sh_cmt_write_cmcnt(ch, 0);
351 * According to the sh73a0 user's manual, as CMCNT can be operated
352 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
353 * modifying CMCNT register; two RCLK cycles are necessary before
354 * this register is either read or any modification of the value
355 * it holds is reflected in the LSI's actual operation.
357 * While at it, we're supposed to clear out the CMCNT as of this
358 * moment, so make sure it's processed properly here. This will
359 * take RCLKx2 at maximum.
361 for (k = 0; k < 100; k++) {
362 if (!sh_cmt_read_cmcnt(ch))
363 break;
364 udelay(1);
367 if (sh_cmt_read_cmcnt(ch)) {
368 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369 ch->index);
370 ret = -ETIMEDOUT;
371 goto err1;
374 /* enable channel */
375 sh_cmt_start_stop_ch(ch, 1);
376 return 0;
377 err1:
378 /* stop clock */
379 clk_disable(ch->cmt->clk);
381 err0:
382 return ret;
385 static void sh_cmt_disable(struct sh_cmt_channel *ch)
387 /* disable channel */
388 sh_cmt_start_stop_ch(ch, 0);
390 /* disable interrupts in CMT block */
391 sh_cmt_write_cmcsr(ch, 0);
393 /* stop clock */
394 clk_disable(ch->cmt->clk);
396 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397 pm_runtime_put(&ch->cmt->pdev->dev);
400 /* private flags */
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408 int absolute)
410 u32 value = ch->next_match_value;
411 u32 new_match;
412 u32 delay = 0;
413 u32 now = 0;
414 u32 has_wrapped;
416 now = sh_cmt_get_counter(ch, &has_wrapped);
417 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
419 if (has_wrapped) {
420 /* we're competing with the interrupt handler.
421 * -> let the interrupt handler reprogram the timer.
422 * -> interrupt number two handles the event.
424 ch->flags |= FLAG_SKIPEVENT;
425 return;
428 if (absolute)
429 now = 0;
431 do {
432 /* reprogram the timer hardware,
433 * but don't save the new match value yet.
435 new_match = now + value + delay;
436 if (new_match > ch->max_match_value)
437 new_match = ch->max_match_value;
439 sh_cmt_write_cmcor(ch, new_match);
441 now = sh_cmt_get_counter(ch, &has_wrapped);
442 if (has_wrapped && (new_match > ch->match_value)) {
443 /* we are changing to a greater match value,
444 * so this wrap must be caused by the counter
445 * matching the old value.
446 * -> first interrupt reprograms the timer.
447 * -> interrupt number two handles the event.
449 ch->flags |= FLAG_SKIPEVENT;
450 break;
453 if (has_wrapped) {
454 /* we are changing to a smaller match value,
455 * so the wrap must be caused by the counter
456 * matching the new value.
457 * -> save programmed match value.
458 * -> let isr handle the event.
460 ch->match_value = new_match;
461 break;
464 /* be safe: verify hardware settings */
465 if (now < new_match) {
466 /* timer value is below match value, all good.
467 * this makes sure we won't miss any match events.
468 * -> save programmed match value.
469 * -> let isr handle the event.
471 ch->match_value = new_match;
472 break;
475 /* the counter has reached a value greater
476 * than our new match value. and since the
477 * has_wrapped flag isn't set we must have
478 * programmed a too close event.
479 * -> increase delay and retry.
481 if (delay)
482 delay <<= 1;
483 else
484 delay = 1;
486 if (!delay)
487 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488 ch->index);
490 } while (delay);
493 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
495 if (delta > ch->max_match_value)
496 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497 ch->index);
499 ch->next_match_value = delta;
500 sh_cmt_clock_event_program_verify(ch, 0);
503 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
505 unsigned long flags;
507 raw_spin_lock_irqsave(&ch->lock, flags);
508 __sh_cmt_set_next(ch, delta);
509 raw_spin_unlock_irqrestore(&ch->lock, flags);
512 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
514 struct sh_cmt_channel *ch = dev_id;
516 /* clear flags */
517 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518 ch->cmt->info->clear_bits);
520 /* update clock source counter to begin with if enabled
521 * the wrap flag should be cleared by the timer specific
522 * isr before we end up here.
524 if (ch->flags & FLAG_CLOCKSOURCE)
525 ch->total_cycles += ch->match_value + 1;
527 if (!(ch->flags & FLAG_REPROGRAM))
528 ch->next_match_value = ch->max_match_value;
530 ch->flags |= FLAG_IRQCONTEXT;
532 if (ch->flags & FLAG_CLOCKEVENT) {
533 if (!(ch->flags & FLAG_SKIPEVENT)) {
534 if (clockevent_state_oneshot(&ch->ced)) {
535 ch->next_match_value = ch->max_match_value;
536 ch->flags |= FLAG_REPROGRAM;
539 ch->ced.event_handler(&ch->ced);
543 ch->flags &= ~FLAG_SKIPEVENT;
545 if (ch->flags & FLAG_REPROGRAM) {
546 ch->flags &= ~FLAG_REPROGRAM;
547 sh_cmt_clock_event_program_verify(ch, 1);
549 if (ch->flags & FLAG_CLOCKEVENT)
550 if ((clockevent_state_shutdown(&ch->ced))
551 || (ch->match_value == ch->next_match_value))
552 ch->flags &= ~FLAG_REPROGRAM;
555 ch->flags &= ~FLAG_IRQCONTEXT;
557 return IRQ_HANDLED;
560 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
562 int ret = 0;
563 unsigned long flags;
565 raw_spin_lock_irqsave(&ch->lock, flags);
567 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568 ret = sh_cmt_enable(ch);
570 if (ret)
571 goto out;
572 ch->flags |= flag;
574 /* setup timeout if no clockevent */
575 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
576 __sh_cmt_set_next(ch, ch->max_match_value);
577 out:
578 raw_spin_unlock_irqrestore(&ch->lock, flags);
580 return ret;
583 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
585 unsigned long flags;
586 unsigned long f;
588 raw_spin_lock_irqsave(&ch->lock, flags);
590 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
591 ch->flags &= ~flag;
593 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
594 sh_cmt_disable(ch);
596 /* adjust the timeout to maximum if only clocksource left */
597 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
598 __sh_cmt_set_next(ch, ch->max_match_value);
600 raw_spin_unlock_irqrestore(&ch->lock, flags);
603 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
605 return container_of(cs, struct sh_cmt_channel, cs);
608 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
610 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
611 unsigned long flags;
612 u32 has_wrapped;
613 u64 value;
614 u32 raw;
616 raw_spin_lock_irqsave(&ch->lock, flags);
617 value = ch->total_cycles;
618 raw = sh_cmt_get_counter(ch, &has_wrapped);
620 if (unlikely(has_wrapped))
621 raw += ch->match_value + 1;
622 raw_spin_unlock_irqrestore(&ch->lock, flags);
624 return value + raw;
627 static int sh_cmt_clocksource_enable(struct clocksource *cs)
629 int ret;
630 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
632 WARN_ON(ch->cs_enabled);
634 ch->total_cycles = 0;
636 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
637 if (!ret)
638 ch->cs_enabled = true;
640 return ret;
643 static void sh_cmt_clocksource_disable(struct clocksource *cs)
645 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
647 WARN_ON(!ch->cs_enabled);
649 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
650 ch->cs_enabled = false;
653 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
655 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
657 if (!ch->cs_enabled)
658 return;
660 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
661 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
664 static void sh_cmt_clocksource_resume(struct clocksource *cs)
666 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
668 if (!ch->cs_enabled)
669 return;
671 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
672 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
675 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
676 const char *name)
678 struct clocksource *cs = &ch->cs;
680 cs->name = name;
681 cs->rating = 125;
682 cs->read = sh_cmt_clocksource_read;
683 cs->enable = sh_cmt_clocksource_enable;
684 cs->disable = sh_cmt_clocksource_disable;
685 cs->suspend = sh_cmt_clocksource_suspend;
686 cs->resume = sh_cmt_clocksource_resume;
687 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
688 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
690 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
691 ch->index);
693 clocksource_register_hz(cs, ch->cmt->rate);
694 return 0;
697 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
699 return container_of(ced, struct sh_cmt_channel, ced);
702 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
704 sh_cmt_start(ch, FLAG_CLOCKEVENT);
706 if (periodic)
707 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
708 else
709 sh_cmt_set_next(ch, ch->max_match_value);
712 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
714 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
716 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
717 return 0;
720 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
721 int periodic)
723 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
725 /* deal with old setting first */
726 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
727 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
729 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
730 ch->index, periodic ? "periodic" : "oneshot");
731 sh_cmt_clock_event_start(ch, periodic);
732 return 0;
735 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
737 return sh_cmt_clock_event_set_state(ced, 0);
740 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
742 return sh_cmt_clock_event_set_state(ced, 1);
745 static int sh_cmt_clock_event_next(unsigned long delta,
746 struct clock_event_device *ced)
748 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
750 BUG_ON(!clockevent_state_oneshot(ced));
751 if (likely(ch->flags & FLAG_IRQCONTEXT))
752 ch->next_match_value = delta - 1;
753 else
754 sh_cmt_set_next(ch, delta - 1);
756 return 0;
759 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
761 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
763 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
764 clk_unprepare(ch->cmt->clk);
767 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
769 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
771 clk_prepare(ch->cmt->clk);
772 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
775 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
776 const char *name)
778 struct clock_event_device *ced = &ch->ced;
779 int irq;
780 int ret;
782 irq = platform_get_irq(ch->cmt->pdev, ch->index);
783 if (irq < 0)
784 return irq;
786 ret = request_irq(irq, sh_cmt_interrupt,
787 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
788 dev_name(&ch->cmt->pdev->dev), ch);
789 if (ret) {
790 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
791 ch->index, irq);
792 return ret;
795 ced->name = name;
796 ced->features = CLOCK_EVT_FEAT_PERIODIC;
797 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
798 ced->rating = 125;
799 ced->cpumask = cpu_possible_mask;
800 ced->set_next_event = sh_cmt_clock_event_next;
801 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
802 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
803 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
804 ced->suspend = sh_cmt_clock_event_suspend;
805 ced->resume = sh_cmt_clock_event_resume;
807 /* TODO: calculate good shift from rate and counter bit width */
808 ced->shift = 32;
809 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
810 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
811 ced->max_delta_ticks = ch->max_match_value;
812 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
813 ced->min_delta_ticks = 0x1f;
815 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
816 ch->index);
817 clockevents_register_device(ced);
819 return 0;
822 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
823 bool clockevent, bool clocksource)
825 int ret;
827 if (clockevent) {
828 ch->cmt->has_clockevent = true;
829 ret = sh_cmt_register_clockevent(ch, name);
830 if (ret < 0)
831 return ret;
834 if (clocksource) {
835 ch->cmt->has_clocksource = true;
836 sh_cmt_register_clocksource(ch, name);
839 return 0;
842 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
843 unsigned int hwidx, bool clockevent,
844 bool clocksource, struct sh_cmt_device *cmt)
846 int ret;
848 /* Skip unused channels. */
849 if (!clockevent && !clocksource)
850 return 0;
852 ch->cmt = cmt;
853 ch->index = index;
854 ch->hwidx = hwidx;
855 ch->timer_bit = hwidx;
858 * Compute the address of the channel control register block. For the
859 * timers with a per-channel start/stop register, compute its address
860 * as well.
862 switch (cmt->info->model) {
863 case SH_CMT_16BIT:
864 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
865 break;
866 case SH_CMT_32BIT:
867 case SH_CMT_48BIT:
868 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
869 break;
870 case SH_CMT0_RCAR_GEN2:
871 case SH_CMT1_RCAR_GEN2:
872 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
873 ch->ioctrl = ch->iostart + 0x10;
874 ch->timer_bit = 0;
875 break;
878 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
879 ch->max_match_value = ~0;
880 else
881 ch->max_match_value = (1 << cmt->info->width) - 1;
883 ch->match_value = ch->max_match_value;
884 raw_spin_lock_init(&ch->lock);
886 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
887 clockevent, clocksource);
888 if (ret) {
889 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
890 ch->index);
891 return ret;
893 ch->cs_enabled = false;
895 return 0;
898 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
900 struct resource *mem;
902 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
903 if (!mem) {
904 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
905 return -ENXIO;
908 cmt->mapbase = ioremap(mem->start, resource_size(mem));
909 if (cmt->mapbase == NULL) {
910 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
911 return -ENXIO;
914 return 0;
917 static const struct platform_device_id sh_cmt_id_table[] = {
918 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
919 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
922 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
924 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
926 /* deprecated, preserved for backward compatibility */
927 .compatible = "renesas,cmt-48",
928 .data = &sh_cmt_info[SH_CMT_48BIT]
931 /* deprecated, preserved for backward compatibility */
932 .compatible = "renesas,cmt-48-gen2",
933 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
936 .compatible = "renesas,r8a7740-cmt1",
937 .data = &sh_cmt_info[SH_CMT_48BIT]
940 .compatible = "renesas,sh73a0-cmt1",
941 .data = &sh_cmt_info[SH_CMT_48BIT]
944 .compatible = "renesas,rcar-gen2-cmt0",
945 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
948 .compatible = "renesas,rcar-gen2-cmt1",
949 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
952 .compatible = "renesas,rcar-gen3-cmt0",
953 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
956 .compatible = "renesas,rcar-gen3-cmt1",
957 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
961 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
963 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
965 unsigned int mask;
966 unsigned int i;
967 int ret;
969 cmt->pdev = pdev;
970 raw_spin_lock_init(&cmt->lock);
972 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
973 cmt->info = of_device_get_match_data(&pdev->dev);
974 cmt->hw_channels = cmt->info->channels_mask;
975 } else if (pdev->dev.platform_data) {
976 struct sh_timer_config *cfg = pdev->dev.platform_data;
977 const struct platform_device_id *id = pdev->id_entry;
979 cmt->info = (const struct sh_cmt_info *)id->driver_data;
980 cmt->hw_channels = cfg->channels_mask;
981 } else {
982 dev_err(&cmt->pdev->dev, "missing platform data\n");
983 return -ENXIO;
986 /* Get hold of clock. */
987 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
988 if (IS_ERR(cmt->clk)) {
989 dev_err(&cmt->pdev->dev, "cannot get clock\n");
990 return PTR_ERR(cmt->clk);
993 ret = clk_prepare(cmt->clk);
994 if (ret < 0)
995 goto err_clk_put;
997 /* Determine clock rate. */
998 ret = clk_enable(cmt->clk);
999 if (ret < 0)
1000 goto err_clk_unprepare;
1002 if (cmt->info->width == 16)
1003 cmt->rate = clk_get_rate(cmt->clk) / 512;
1004 else
1005 cmt->rate = clk_get_rate(cmt->clk) / 8;
1007 clk_disable(cmt->clk);
1009 /* Map the memory resource(s). */
1010 ret = sh_cmt_map_memory(cmt);
1011 if (ret < 0)
1012 goto err_clk_unprepare;
1014 /* Allocate and setup the channels. */
1015 cmt->num_channels = hweight8(cmt->hw_channels);
1016 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017 GFP_KERNEL);
1018 if (cmt->channels == NULL) {
1019 ret = -ENOMEM;
1020 goto err_unmap;
1024 * Use the first channel as a clock event device and the second channel
1025 * as a clock source. If only one channel is available use it for both.
1027 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028 unsigned int hwidx = ffs(mask) - 1;
1029 bool clocksource = i == 1 || cmt->num_channels == 1;
1030 bool clockevent = i == 0;
1032 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033 clockevent, clocksource, cmt);
1034 if (ret < 0)
1035 goto err_unmap;
1037 mask &= ~(1 << hwidx);
1040 platform_set_drvdata(pdev, cmt);
1042 return 0;
1044 err_unmap:
1045 kfree(cmt->channels);
1046 iounmap(cmt->mapbase);
1047 err_clk_unprepare:
1048 clk_unprepare(cmt->clk);
1049 err_clk_put:
1050 clk_put(cmt->clk);
1051 return ret;
1054 static int sh_cmt_probe(struct platform_device *pdev)
1056 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1057 int ret;
1059 if (!is_sh_early_platform_device(pdev)) {
1060 pm_runtime_set_active(&pdev->dev);
1061 pm_runtime_enable(&pdev->dev);
1064 if (cmt) {
1065 dev_info(&pdev->dev, "kept as earlytimer\n");
1066 goto out;
1069 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070 if (cmt == NULL)
1071 return -ENOMEM;
1073 ret = sh_cmt_setup(cmt, pdev);
1074 if (ret) {
1075 kfree(cmt);
1076 pm_runtime_idle(&pdev->dev);
1077 return ret;
1079 if (is_sh_early_platform_device(pdev))
1080 return 0;
1082 out:
1083 if (cmt->has_clockevent || cmt->has_clocksource)
1084 pm_runtime_irq_safe(&pdev->dev);
1085 else
1086 pm_runtime_idle(&pdev->dev);
1088 return 0;
1091 static int sh_cmt_remove(struct platform_device *pdev)
1093 return -EBUSY; /* cannot unregister clockevent and clocksource */
1096 static struct platform_driver sh_cmt_device_driver = {
1097 .probe = sh_cmt_probe,
1098 .remove = sh_cmt_remove,
1099 .driver = {
1100 .name = "sh_cmt",
1101 .of_match_table = of_match_ptr(sh_cmt_of_table),
1103 .id_table = sh_cmt_id_table,
1106 static int __init sh_cmt_init(void)
1108 return platform_driver_register(&sh_cmt_device_driver);
1111 static void __exit sh_cmt_exit(void)
1113 platform_driver_unregister(&sh_cmt_device_driver);
1116 #ifdef CONFIG_SUPERH
1117 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118 #endif
1120 subsys_initcall(sh_cmt_init);
1121 module_exit(sh_cmt_exit);
1123 MODULE_AUTHOR("Magnus Damm");
1124 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125 MODULE_LICENSE("GPL v2");