Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / crypto / padlock-sha.c
blobc826abe79e794d51c025989c3df7cd0a01f7b12f
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Cryptographic API.
5 * Support for VIA PadLock hardware crypto engine.
7 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
8 */
10 #include <crypto/internal/hash.h>
11 #include <crypto/padlock.h>
12 #include <crypto/sha.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/scatterlist.h>
20 #include <asm/cpu_device_id.h>
21 #include <asm/fpu/api.h>
23 struct padlock_sha_desc {
24 struct shash_desc fallback;
27 struct padlock_sha_ctx {
28 struct crypto_shash *fallback;
31 static int padlock_sha_init(struct shash_desc *desc)
33 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
34 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
36 dctx->fallback.tfm = ctx->fallback;
37 return crypto_shash_init(&dctx->fallback);
40 static int padlock_sha_update(struct shash_desc *desc,
41 const u8 *data, unsigned int length)
43 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
45 return crypto_shash_update(&dctx->fallback, data, length);
48 static int padlock_sha_export(struct shash_desc *desc, void *out)
50 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
52 return crypto_shash_export(&dctx->fallback, out);
55 static int padlock_sha_import(struct shash_desc *desc, const void *in)
57 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
58 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
60 dctx->fallback.tfm = ctx->fallback;
61 return crypto_shash_import(&dctx->fallback, in);
64 static inline void padlock_output_block(uint32_t *src,
65 uint32_t *dst, size_t count)
67 while (count--)
68 *dst++ = swab32(*src++);
71 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
72 unsigned int count, u8 *out)
74 /* We can't store directly to *out as it may be unaligned. */
75 /* BTW Don't reduce the buffer size below 128 Bytes!
76 * PadLock microcode needs it that big. */
77 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
78 ((aligned(STACK_ALIGN)));
79 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
80 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
81 struct sha1_state state;
82 unsigned int space;
83 unsigned int leftover;
84 int err;
86 err = crypto_shash_export(&dctx->fallback, &state);
87 if (err)
88 goto out;
90 if (state.count + count > ULONG_MAX)
91 return crypto_shash_finup(&dctx->fallback, in, count, out);
93 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
94 space = SHA1_BLOCK_SIZE - leftover;
95 if (space) {
96 if (count > space) {
97 err = crypto_shash_update(&dctx->fallback, in, space) ?:
98 crypto_shash_export(&dctx->fallback, &state);
99 if (err)
100 goto out;
101 count -= space;
102 in += space;
103 } else {
104 memcpy(state.buffer + leftover, in, count);
105 in = state.buffer;
106 count += leftover;
107 state.count &= ~(SHA1_BLOCK_SIZE - 1);
111 memcpy(result, &state.state, SHA1_DIGEST_SIZE);
113 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
115 : "c"((unsigned long)state.count + count), \
116 "a"((unsigned long)state.count), \
117 "S"(in), "D"(result));
119 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
121 out:
122 return err;
125 static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
127 u8 buf[4];
129 return padlock_sha1_finup(desc, buf, 0, out);
132 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
133 unsigned int count, u8 *out)
135 /* We can't store directly to *out as it may be unaligned. */
136 /* BTW Don't reduce the buffer size below 128 Bytes!
137 * PadLock microcode needs it that big. */
138 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
139 ((aligned(STACK_ALIGN)));
140 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
141 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
142 struct sha256_state state;
143 unsigned int space;
144 unsigned int leftover;
145 int err;
147 err = crypto_shash_export(&dctx->fallback, &state);
148 if (err)
149 goto out;
151 if (state.count + count > ULONG_MAX)
152 return crypto_shash_finup(&dctx->fallback, in, count, out);
154 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
155 space = SHA256_BLOCK_SIZE - leftover;
156 if (space) {
157 if (count > space) {
158 err = crypto_shash_update(&dctx->fallback, in, space) ?:
159 crypto_shash_export(&dctx->fallback, &state);
160 if (err)
161 goto out;
162 count -= space;
163 in += space;
164 } else {
165 memcpy(state.buf + leftover, in, count);
166 in = state.buf;
167 count += leftover;
168 state.count &= ~(SHA1_BLOCK_SIZE - 1);
172 memcpy(result, &state.state, SHA256_DIGEST_SIZE);
174 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
176 : "c"((unsigned long)state.count + count), \
177 "a"((unsigned long)state.count), \
178 "S"(in), "D"(result));
180 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
182 out:
183 return err;
186 static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
188 u8 buf[4];
190 return padlock_sha256_finup(desc, buf, 0, out);
193 static int padlock_init_tfm(struct crypto_shash *hash)
195 const char *fallback_driver_name = crypto_shash_alg_name(hash);
196 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
197 struct crypto_shash *fallback_tfm;
199 /* Allocate a fallback and abort if it failed. */
200 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
201 CRYPTO_ALG_NEED_FALLBACK);
202 if (IS_ERR(fallback_tfm)) {
203 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
204 fallback_driver_name);
205 return PTR_ERR(fallback_tfm);
208 ctx->fallback = fallback_tfm;
209 hash->descsize += crypto_shash_descsize(fallback_tfm);
210 return 0;
213 static void padlock_exit_tfm(struct crypto_shash *hash)
215 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
217 crypto_free_shash(ctx->fallback);
220 static struct shash_alg sha1_alg = {
221 .digestsize = SHA1_DIGEST_SIZE,
222 .init = padlock_sha_init,
223 .update = padlock_sha_update,
224 .finup = padlock_sha1_finup,
225 .final = padlock_sha1_final,
226 .export = padlock_sha_export,
227 .import = padlock_sha_import,
228 .init_tfm = padlock_init_tfm,
229 .exit_tfm = padlock_exit_tfm,
230 .descsize = sizeof(struct padlock_sha_desc),
231 .statesize = sizeof(struct sha1_state),
232 .base = {
233 .cra_name = "sha1",
234 .cra_driver_name = "sha1-padlock",
235 .cra_priority = PADLOCK_CRA_PRIORITY,
236 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
237 .cra_blocksize = SHA1_BLOCK_SIZE,
238 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
239 .cra_module = THIS_MODULE,
243 static struct shash_alg sha256_alg = {
244 .digestsize = SHA256_DIGEST_SIZE,
245 .init = padlock_sha_init,
246 .update = padlock_sha_update,
247 .finup = padlock_sha256_finup,
248 .final = padlock_sha256_final,
249 .export = padlock_sha_export,
250 .import = padlock_sha_import,
251 .init_tfm = padlock_init_tfm,
252 .exit_tfm = padlock_exit_tfm,
253 .descsize = sizeof(struct padlock_sha_desc),
254 .statesize = sizeof(struct sha256_state),
255 .base = {
256 .cra_name = "sha256",
257 .cra_driver_name = "sha256-padlock",
258 .cra_priority = PADLOCK_CRA_PRIORITY,
259 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
260 .cra_blocksize = SHA256_BLOCK_SIZE,
261 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
262 .cra_module = THIS_MODULE,
266 /* Add two shash_alg instance for hardware-implemented *
267 * multiple-parts hash supported by VIA Nano Processor.*/
268 static int padlock_sha1_init_nano(struct shash_desc *desc)
270 struct sha1_state *sctx = shash_desc_ctx(desc);
272 *sctx = (struct sha1_state){
273 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
276 return 0;
279 static int padlock_sha1_update_nano(struct shash_desc *desc,
280 const u8 *data, unsigned int len)
282 struct sha1_state *sctx = shash_desc_ctx(desc);
283 unsigned int partial, done;
284 const u8 *src;
285 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
286 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
287 ((aligned(STACK_ALIGN)));
288 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
290 partial = sctx->count & 0x3f;
291 sctx->count += len;
292 done = 0;
293 src = data;
294 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
296 if ((partial + len) >= SHA1_BLOCK_SIZE) {
298 /* Append the bytes in state's buffer to a block to handle */
299 if (partial) {
300 done = -partial;
301 memcpy(sctx->buffer + partial, data,
302 done + SHA1_BLOCK_SIZE);
303 src = sctx->buffer;
304 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
305 : "+S"(src), "+D"(dst) \
306 : "a"((long)-1), "c"((unsigned long)1));
307 done += SHA1_BLOCK_SIZE;
308 src = data + done;
311 /* Process the left bytes from the input data */
312 if (len - done >= SHA1_BLOCK_SIZE) {
313 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
314 : "+S"(src), "+D"(dst)
315 : "a"((long)-1),
316 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
317 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
318 src = data + done;
320 partial = 0;
322 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
323 memcpy(sctx->buffer + partial, src, len - done);
325 return 0;
328 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
330 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
331 unsigned int partial, padlen;
332 __be64 bits;
333 static const u8 padding[64] = { 0x80, };
335 bits = cpu_to_be64(state->count << 3);
337 /* Pad out to 56 mod 64 */
338 partial = state->count & 0x3f;
339 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
340 padlock_sha1_update_nano(desc, padding, padlen);
342 /* Append length field bytes */
343 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
345 /* Swap to output */
346 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
348 return 0;
351 static int padlock_sha256_init_nano(struct shash_desc *desc)
353 struct sha256_state *sctx = shash_desc_ctx(desc);
355 *sctx = (struct sha256_state){
356 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
357 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
360 return 0;
363 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
364 unsigned int len)
366 struct sha256_state *sctx = shash_desc_ctx(desc);
367 unsigned int partial, done;
368 const u8 *src;
369 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
370 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
371 ((aligned(STACK_ALIGN)));
372 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
374 partial = sctx->count & 0x3f;
375 sctx->count += len;
376 done = 0;
377 src = data;
378 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
380 if ((partial + len) >= SHA256_BLOCK_SIZE) {
382 /* Append the bytes in state's buffer to a block to handle */
383 if (partial) {
384 done = -partial;
385 memcpy(sctx->buf + partial, data,
386 done + SHA256_BLOCK_SIZE);
387 src = sctx->buf;
388 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
389 : "+S"(src), "+D"(dst)
390 : "a"((long)-1), "c"((unsigned long)1));
391 done += SHA256_BLOCK_SIZE;
392 src = data + done;
395 /* Process the left bytes from input data*/
396 if (len - done >= SHA256_BLOCK_SIZE) {
397 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
398 : "+S"(src), "+D"(dst)
399 : "a"((long)-1),
400 "c"((unsigned long)((len - done) / 64)));
401 done += ((len - done) - (len - done) % 64);
402 src = data + done;
404 partial = 0;
406 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
407 memcpy(sctx->buf + partial, src, len - done);
409 return 0;
412 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
414 struct sha256_state *state =
415 (struct sha256_state *)shash_desc_ctx(desc);
416 unsigned int partial, padlen;
417 __be64 bits;
418 static const u8 padding[64] = { 0x80, };
420 bits = cpu_to_be64(state->count << 3);
422 /* Pad out to 56 mod 64 */
423 partial = state->count & 0x3f;
424 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
425 padlock_sha256_update_nano(desc, padding, padlen);
427 /* Append length field bytes */
428 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
430 /* Swap to output */
431 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
433 return 0;
436 static int padlock_sha_export_nano(struct shash_desc *desc,
437 void *out)
439 int statesize = crypto_shash_statesize(desc->tfm);
440 void *sctx = shash_desc_ctx(desc);
442 memcpy(out, sctx, statesize);
443 return 0;
446 static int padlock_sha_import_nano(struct shash_desc *desc,
447 const void *in)
449 int statesize = crypto_shash_statesize(desc->tfm);
450 void *sctx = shash_desc_ctx(desc);
452 memcpy(sctx, in, statesize);
453 return 0;
456 static struct shash_alg sha1_alg_nano = {
457 .digestsize = SHA1_DIGEST_SIZE,
458 .init = padlock_sha1_init_nano,
459 .update = padlock_sha1_update_nano,
460 .final = padlock_sha1_final_nano,
461 .export = padlock_sha_export_nano,
462 .import = padlock_sha_import_nano,
463 .descsize = sizeof(struct sha1_state),
464 .statesize = sizeof(struct sha1_state),
465 .base = {
466 .cra_name = "sha1",
467 .cra_driver_name = "sha1-padlock-nano",
468 .cra_priority = PADLOCK_CRA_PRIORITY,
469 .cra_blocksize = SHA1_BLOCK_SIZE,
470 .cra_module = THIS_MODULE,
474 static struct shash_alg sha256_alg_nano = {
475 .digestsize = SHA256_DIGEST_SIZE,
476 .init = padlock_sha256_init_nano,
477 .update = padlock_sha256_update_nano,
478 .final = padlock_sha256_final_nano,
479 .export = padlock_sha_export_nano,
480 .import = padlock_sha_import_nano,
481 .descsize = sizeof(struct sha256_state),
482 .statesize = sizeof(struct sha256_state),
483 .base = {
484 .cra_name = "sha256",
485 .cra_driver_name = "sha256-padlock-nano",
486 .cra_priority = PADLOCK_CRA_PRIORITY,
487 .cra_blocksize = SHA256_BLOCK_SIZE,
488 .cra_module = THIS_MODULE,
492 static const struct x86_cpu_id padlock_sha_ids[] = {
493 X86_FEATURE_MATCH(X86_FEATURE_PHE),
496 MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
498 static int __init padlock_init(void)
500 int rc = -ENODEV;
501 struct cpuinfo_x86 *c = &cpu_data(0);
502 struct shash_alg *sha1;
503 struct shash_alg *sha256;
505 if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
506 return -ENODEV;
508 /* Register the newly added algorithm module if on *
509 * VIA Nano processor, or else just do as before */
510 if (c->x86_model < 0x0f) {
511 sha1 = &sha1_alg;
512 sha256 = &sha256_alg;
513 } else {
514 sha1 = &sha1_alg_nano;
515 sha256 = &sha256_alg_nano;
518 rc = crypto_register_shash(sha1);
519 if (rc)
520 goto out;
522 rc = crypto_register_shash(sha256);
523 if (rc)
524 goto out_unreg1;
526 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
528 return 0;
530 out_unreg1:
531 crypto_unregister_shash(sha1);
533 out:
534 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
535 return rc;
538 static void __exit padlock_fini(void)
540 struct cpuinfo_x86 *c = &cpu_data(0);
542 if (c->x86_model >= 0x0f) {
543 crypto_unregister_shash(&sha1_alg_nano);
544 crypto_unregister_shash(&sha256_alg_nano);
545 } else {
546 crypto_unregister_shash(&sha1_alg);
547 crypto_unregister_shash(&sha256_alg);
551 module_init(padlock_init);
552 module_exit(padlock_fini);
554 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
555 MODULE_LICENSE("GPL");
556 MODULE_AUTHOR("Michal Ludvig");
558 MODULE_ALIAS_CRYPTO("sha1-all");
559 MODULE_ALIAS_CRYPTO("sha256-all");
560 MODULE_ALIAS_CRYPTO("sha1-padlock");
561 MODULE_ALIAS_CRYPTO("sha256-padlock");