Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / display / intel_dp.c
blobc7424e2a04a358068624fab83a5a53a79c8c0f62
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
35 #include <asm/byteorder.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
69 #define DP_DPRX_ESI_LEN 14
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE 2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261
79 /* Compliance test status bits */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
81 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
85 struct dp_link_dpll {
86 int clock;
87 struct dpll dpll;
90 static const struct dp_link_dpll g4x_dpll[] = {
91 { 162000,
92 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93 { 270000,
94 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
97 static const struct dp_link_dpll pch_dpll[] = {
98 { 162000,
99 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100 { 270000,
101 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
104 static const struct dp_link_dpll vlv_dpll[] = {
105 { 162000,
106 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107 { 270000,
108 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
112 * CHV supports eDP 1.4 that have more link rates.
113 * Below only provides the fixed rate but exclude variable rate.
115 static const struct dp_link_dpll chv_dpll[] = {
117 * CHV requires to program fractional division for m2.
118 * m2 is stored in fixed point format using formula below
119 * (m2_int << 22) | m2_fraction
121 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
122 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123 { 270000, /* m2_int = 27, m2_fraction = 0 */
124 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
130 /* With Single pipe configuration, HW is capable of supporting maximum
131 * of 4 slices per line.
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
136 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137 * @intel_dp: DP struct
139 * If a CPU or PCH DP output is attached to an eDP panel, this function
140 * will return true, and false otherwise.
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
146 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
149 static struct intel_dp *intel_attached_dp(struct intel_connector *connector)
151 return enc_to_intel_dp(intel_attached_encoder(connector));
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155 const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159 const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161 enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
167 static const int dp_rates[] = {
168 162000, 270000, 540000, 810000
170 int i, max_rate;
172 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
174 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175 if (dp_rates[i] > max_rate)
176 break;
177 intel_dp->sink_rates[i] = dp_rates[i];
180 intel_dp->num_sink_rates = i;
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
186 int i;
188 /* Limit results by potentially reduced max rate */
189 for (i = 0; i < len; i++) {
190 if (rates[len - i - 1] <= max_rate)
191 return len - i;
194 return 0;
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199 int max_rate)
201 return intel_dp_rate_limit_len(intel_dp->common_rates,
202 intel_dp->num_common_rates, max_rate);
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
208 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
214 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215 int source_max = intel_dig_port->max_lanes;
216 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
219 return min3(source_max, sink_max, fia_max);
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
224 return intel_dp->max_link_lane_count;
228 intel_dp_link_required(int pixel_clock, int bpp)
230 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231 return DIV_ROUND_UP(pixel_clock * bpp, 8);
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
237 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238 * link rate that is generally expressed in Gbps. Since, 8 bits of data
239 * is transmitted every LS_Clk per lane, there is no need to account for
240 * the channel encoding that is done in the PHY layer here.
243 return max_link_clock * max_lanes;
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250 struct intel_encoder *encoder = &intel_dig_port->base;
251 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252 int max_dotclk = dev_priv->max_dotclk_freq;
253 int ds_max_dotclk;
255 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
257 if (type != DP_DS_PORT_TYPE_VGA)
258 return max_dotclk;
260 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261 intel_dp->downstream_ports);
263 if (ds_max_dotclk != 0)
264 max_dotclk = min(max_dotclk, ds_max_dotclk);
266 return max_dotclk;
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
271 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273 enum port port = dig_port->base.port;
275 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
277 /* Low voltage SKUs are limited to max of 5.4G */
278 if (voltage == VOLTAGE_INFO_0_85V)
279 return 540000;
281 /* For this SKU 8.1G is supported in all ports */
282 if (IS_CNL_WITH_PORT_F(dev_priv))
283 return 810000;
285 /* For other SKUs, max rate on ports A and D is 5.4G */
286 if (port == PORT_A || port == PORT_D)
287 return 540000;
289 return 810000;
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
294 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
298 if (intel_phy_is_combo(dev_priv, phy) &&
299 !IS_ELKHARTLAKE(dev_priv) &&
300 !intel_dp_is_edp(intel_dp))
301 return 540000;
303 return 810000;
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
309 /* The values must be in increasing order */
310 static const int cnl_rates[] = {
311 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
313 static const int bxt_rates[] = {
314 162000, 216000, 243000, 270000, 324000, 432000, 540000
316 static const int skl_rates[] = {
317 162000, 216000, 270000, 324000, 432000, 540000
319 static const int hsw_rates[] = {
320 162000, 270000, 540000
322 static const int g4x_rates[] = {
323 162000, 270000
325 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327 const struct ddi_vbt_port_info *info =
328 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
329 const int *source_rates;
330 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
332 /* This should only be done once */
333 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
335 if (INTEL_GEN(dev_priv) >= 10) {
336 source_rates = cnl_rates;
337 size = ARRAY_SIZE(cnl_rates);
338 if (IS_GEN(dev_priv, 10))
339 max_rate = cnl_max_source_rate(intel_dp);
340 else
341 max_rate = icl_max_source_rate(intel_dp);
342 } else if (IS_GEN9_LP(dev_priv)) {
343 source_rates = bxt_rates;
344 size = ARRAY_SIZE(bxt_rates);
345 } else if (IS_GEN9_BC(dev_priv)) {
346 source_rates = skl_rates;
347 size = ARRAY_SIZE(skl_rates);
348 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349 IS_BROADWELL(dev_priv)) {
350 source_rates = hsw_rates;
351 size = ARRAY_SIZE(hsw_rates);
352 } else {
353 source_rates = g4x_rates;
354 size = ARRAY_SIZE(g4x_rates);
357 if (max_rate && vbt_max_rate)
358 max_rate = min(max_rate, vbt_max_rate);
359 else if (vbt_max_rate)
360 max_rate = vbt_max_rate;
362 if (max_rate)
363 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
365 intel_dp->source_rates = source_rates;
366 intel_dp->num_source_rates = size;
369 static int intersect_rates(const int *source_rates, int source_len,
370 const int *sink_rates, int sink_len,
371 int *common_rates)
373 int i = 0, j = 0, k = 0;
375 while (i < source_len && j < sink_len) {
376 if (source_rates[i] == sink_rates[j]) {
377 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378 return k;
379 common_rates[k] = source_rates[i];
380 ++k;
381 ++i;
382 ++j;
383 } else if (source_rates[i] < sink_rates[j]) {
384 ++i;
385 } else {
386 ++j;
389 return k;
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
395 int i;
397 for (i = 0; i < len; i++)
398 if (rate == rates[i])
399 return i;
401 return -1;
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
406 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
408 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409 intel_dp->num_source_rates,
410 intel_dp->sink_rates,
411 intel_dp->num_sink_rates,
412 intel_dp->common_rates);
414 /* Paranoia, there should always be something in common. */
415 if (WARN_ON(intel_dp->num_common_rates == 0)) {
416 intel_dp->common_rates[0] = 162000;
417 intel_dp->num_common_rates = 1;
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422 u8 lane_count)
425 * FIXME: we need to synchronize the current link parameters with
426 * hardware readout. Currently fast link training doesn't work on
427 * boot-up.
429 if (link_rate == 0 ||
430 link_rate > intel_dp->max_link_rate)
431 return false;
433 if (lane_count == 0 ||
434 lane_count > intel_dp_max_lane_count(intel_dp))
435 return false;
437 return true;
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441 int link_rate,
442 u8 lane_count)
444 const struct drm_display_mode *fixed_mode =
445 intel_dp->attached_connector->panel.fixed_mode;
446 int mode_rate, max_rate;
448 mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449 max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450 if (mode_rate > max_rate)
451 return false;
453 return true;
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457 int link_rate, u8 lane_count)
459 int index;
461 index = intel_dp_rate_index(intel_dp->common_rates,
462 intel_dp->num_common_rates,
463 link_rate);
464 if (index > 0) {
465 if (intel_dp_is_edp(intel_dp) &&
466 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467 intel_dp->common_rates[index - 1],
468 lane_count)) {
469 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470 return 0;
472 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473 intel_dp->max_link_lane_count = lane_count;
474 } else if (lane_count > 1) {
475 if (intel_dp_is_edp(intel_dp) &&
476 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477 intel_dp_max_common_rate(intel_dp),
478 lane_count >> 1)) {
479 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480 return 0;
482 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483 intel_dp->max_link_lane_count = lane_count >> 1;
484 } else {
485 DRM_ERROR("Link Training Unsuccessful\n");
486 return -1;
489 return 0;
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
494 return div_u64(mul_u32_u32(mode_clock, 1000000U),
495 DP_DSC_FEC_OVERHEAD_FACTOR);
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
501 if (INTEL_GEN(i915) >= 11)
502 return 7680 * 8;
503 else
504 return 6144 * 8;
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508 u32 link_clock, u32 lane_count,
509 u32 mode_clock, u32 mode_hdisplay)
511 u32 bits_per_pixel, max_bpp_small_joiner_ram;
512 int i;
515 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517 * for SST -> TimeSlotsPerMTP is 1,
518 * for MST -> TimeSlotsPerMTP has to be calculated
520 bits_per_pixel = (link_clock * lane_count * 8) /
521 intel_dp_mode_to_fec_clock(mode_clock);
522 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
524 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526 mode_hdisplay;
527 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
530 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531 * check, output bpp from small joiner RAM check)
533 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
535 /* Error out if the max bpp is less than smallest allowed valid bpp */
536 if (bits_per_pixel < valid_dsc_bpp[0]) {
537 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538 bits_per_pixel, valid_dsc_bpp[0]);
539 return 0;
542 /* Find the nearest match in the array of known BPPs from VESA */
543 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544 if (bits_per_pixel < valid_dsc_bpp[i + 1])
545 break;
547 bits_per_pixel = valid_dsc_bpp[i];
550 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551 * fractional part is 0
553 return bits_per_pixel << 4;
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557 int mode_clock, int mode_hdisplay)
559 u8 min_slice_count, i;
560 int max_slice_width;
562 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563 min_slice_count = DIV_ROUND_UP(mode_clock,
564 DP_DSC_MAX_ENC_THROUGHPUT_0);
565 else
566 min_slice_count = DIV_ROUND_UP(mode_clock,
567 DP_DSC_MAX_ENC_THROUGHPUT_1);
569 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572 max_slice_width);
573 return 0;
575 /* Also take into account max slice width */
576 min_slice_count = min_t(u8, min_slice_count,
577 DIV_ROUND_UP(mode_hdisplay,
578 max_slice_width));
580 /* Find the closest match to the valid slice count values */
581 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582 if (valid_dsc_slicecount[i] >
583 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584 false))
585 break;
586 if (min_slice_count <= valid_dsc_slicecount[i])
587 return valid_dsc_slicecount[i];
590 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591 return 0;
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
595 int hdisplay)
598 * Older platforms don't like hdisplay==4096 with DP.
600 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601 * and frame counter increment), but we don't get vblank interrupts,
602 * and the pipe underruns immediately. The link also doesn't seem
603 * to get trained properly.
605 * On CHV the vblank interrupts don't seem to disappear but
606 * otherwise the symptoms are similar.
608 * TODO: confirm the behaviour on HSW+
610 return hdisplay == 4096 && !HAS_DDI(dev_priv);
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector *connector,
615 struct drm_display_mode *mode)
617 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
618 struct intel_connector *intel_connector = to_intel_connector(connector);
619 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620 struct drm_i915_private *dev_priv = to_i915(connector->dev);
621 int target_clock = mode->clock;
622 int max_rate, mode_rate, max_lanes, max_link_clock;
623 int max_dotclk;
624 u16 dsc_max_output_bpp = 0;
625 u8 dsc_slice_count = 0;
627 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
628 return MODE_NO_DBLESCAN;
630 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
632 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633 if (mode->hdisplay > fixed_mode->hdisplay)
634 return MODE_PANEL;
636 if (mode->vdisplay > fixed_mode->vdisplay)
637 return MODE_PANEL;
639 target_clock = fixed_mode->clock;
642 max_link_clock = intel_dp_max_link_rate(intel_dp);
643 max_lanes = intel_dp_max_lane_count(intel_dp);
645 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
646 mode_rate = intel_dp_link_required(target_clock, 18);
648 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
649 return MODE_H_ILLEGAL;
652 * Output bpp is stored in 6.4 format so right shift by 4 to get the
653 * integer value since we support only integer values of bpp.
655 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
656 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
657 if (intel_dp_is_edp(intel_dp)) {
658 dsc_max_output_bpp =
659 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
660 dsc_slice_count =
661 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
662 true);
663 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664 dsc_max_output_bpp =
665 intel_dp_dsc_get_output_bpp(dev_priv,
666 max_link_clock,
667 max_lanes,
668 target_clock,
669 mode->hdisplay) >> 4;
670 dsc_slice_count =
671 intel_dp_dsc_get_slice_count(intel_dp,
672 target_clock,
673 mode->hdisplay);
677 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
678 target_clock > max_dotclk)
679 return MODE_CLOCK_HIGH;
681 if (mode->clock < 10000)
682 return MODE_CLOCK_LOW;
684 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
685 return MODE_H_ILLEGAL;
687 return intel_mode_valid_max_plane_size(dev_priv, mode);
690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
692 int i;
693 u32 v = 0;
695 if (src_bytes > 4)
696 src_bytes = 4;
697 for (i = 0; i < src_bytes; i++)
698 v |= ((u32)src[i]) << ((3 - i) * 8);
699 return v;
702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
704 int i;
705 if (dst_bytes > 4)
706 dst_bytes = 4;
707 for (i = 0; i < dst_bytes; i++)
708 dst[i] = src >> ((3-i) * 8);
711 static void
712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713 static void
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715 bool force_disable_vdd);
716 static void
717 intel_dp_pps_init(struct intel_dp *intel_dp);
719 static intel_wakeref_t
720 pps_lock(struct intel_dp *intel_dp)
722 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723 intel_wakeref_t wakeref;
726 * See intel_power_sequencer_reset() why we need
727 * a power domain reference here.
729 wakeref = intel_display_power_get(dev_priv,
730 intel_aux_power_domain(dp_to_dig_port(intel_dp)));
732 mutex_lock(&dev_priv->pps_mutex);
734 return wakeref;
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
740 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
742 mutex_unlock(&dev_priv->pps_mutex);
743 intel_display_power_put(dev_priv,
744 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
745 wakeref);
746 return 0;
749 #define with_pps_lock(dp, wf) \
750 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
752 static void
753 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
755 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 enum pipe pipe = intel_dp->pps_pipe;
758 bool pll_enabled, release_cl_override = false;
759 enum dpio_phy phy = DPIO_PHY(pipe);
760 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761 u32 DP;
763 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765 pipe_name(pipe), intel_dig_port->base.base.base.id,
766 intel_dig_port->base.base.name))
767 return;
769 DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770 pipe_name(pipe), intel_dig_port->base.base.base.id,
771 intel_dig_port->base.base.name);
773 /* Preserve the BIOS-computed detected bit. This is
774 * supposed to be read-only.
776 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
777 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778 DP |= DP_PORT_WIDTH(1);
779 DP |= DP_LINK_TRAIN_PAT_1;
781 if (IS_CHERRYVIEW(dev_priv))
782 DP |= DP_PIPE_SEL_CHV(pipe);
783 else
784 DP |= DP_PIPE_SEL(pipe);
786 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
789 * The DPLL for the pipe must be enabled for this to work.
790 * So enable temporarily it if it's not already enabled.
792 if (!pll_enabled) {
793 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
796 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798 DRM_ERROR("Failed to force on pll for pipe %c!\n",
799 pipe_name(pipe));
800 return;
805 * Similar magic as in intel_dp_enable_port().
806 * We _must_ do this port enable + disable trick
807 * to make this power sequencer lock onto the port.
808 * Otherwise even VDD force bit won't work.
810 I915_WRITE(intel_dp->output_reg, DP);
811 POSTING_READ(intel_dp->output_reg);
813 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
814 POSTING_READ(intel_dp->output_reg);
816 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
817 POSTING_READ(intel_dp->output_reg);
819 if (!pll_enabled) {
820 vlv_force_pll_off(dev_priv, pipe);
822 if (release_cl_override)
823 chv_phy_powergate_ch(dev_priv, phy, ch, false);
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
829 struct intel_encoder *encoder;
830 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
833 * We don't have power sequencer currently.
834 * Pick one that's not used by other ports.
836 for_each_intel_dp(&dev_priv->drm, encoder) {
837 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
839 if (encoder->type == INTEL_OUTPUT_EDP) {
840 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841 intel_dp->active_pipe != intel_dp->pps_pipe);
843 if (intel_dp->pps_pipe != INVALID_PIPE)
844 pipes &= ~(1 << intel_dp->pps_pipe);
845 } else {
846 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
848 if (intel_dp->active_pipe != INVALID_PIPE)
849 pipes &= ~(1 << intel_dp->active_pipe);
853 if (pipes == 0)
854 return INVALID_PIPE;
856 return ffs(pipes) - 1;
859 static enum pipe
860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
862 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864 enum pipe pipe;
866 lockdep_assert_held(&dev_priv->pps_mutex);
868 /* We should never land here with regular DP ports */
869 WARN_ON(!intel_dp_is_edp(intel_dp));
871 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
872 intel_dp->active_pipe != intel_dp->pps_pipe);
874 if (intel_dp->pps_pipe != INVALID_PIPE)
875 return intel_dp->pps_pipe;
877 pipe = vlv_find_free_pps(dev_priv);
880 * Didn't find one. This should not happen since there
881 * are two power sequencers and up to two eDP ports.
883 if (WARN_ON(pipe == INVALID_PIPE))
884 pipe = PIPE_A;
886 vlv_steal_power_sequencer(dev_priv, pipe);
887 intel_dp->pps_pipe = pipe;
889 DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890 pipe_name(intel_dp->pps_pipe),
891 intel_dig_port->base.base.base.id,
892 intel_dig_port->base.base.name);
894 /* init power sequencer on this pipe and port */
895 intel_dp_init_panel_power_sequencer(intel_dp);
896 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
899 * Even vdd force doesn't work until we've made
900 * the power sequencer lock in on the port.
902 vlv_power_sequencer_kick(intel_dp);
904 return intel_dp->pps_pipe;
907 static int
908 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
910 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911 int backlight_controller = dev_priv->vbt.backlight.controller;
913 lockdep_assert_held(&dev_priv->pps_mutex);
915 /* We should never land here with regular DP ports */
916 WARN_ON(!intel_dp_is_edp(intel_dp));
918 if (!intel_dp->pps_reset)
919 return backlight_controller;
921 intel_dp->pps_reset = false;
924 * Only the HW needs to be reprogrammed, the SW state is fixed and
925 * has been setup during connector init.
927 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
929 return backlight_controller;
932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
933 enum pipe pipe);
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
936 enum pipe pipe)
938 return I915_READ(PP_STATUS(pipe)) & PP_ON;
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
942 enum pipe pipe)
944 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
948 enum pipe pipe)
950 return true;
953 static enum pipe
954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
955 enum port port,
956 vlv_pipe_check pipe_check)
958 enum pipe pipe;
960 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962 PANEL_PORT_SELECT_MASK;
964 if (port_sel != PANEL_PORT_SELECT_VLV(port))
965 continue;
967 if (!pipe_check(dev_priv, pipe))
968 continue;
970 return pipe;
973 return INVALID_PIPE;
976 static void
977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
979 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981 enum port port = intel_dig_port->base.port;
983 lockdep_assert_held(&dev_priv->pps_mutex);
985 /* try to find a pipe with this port selected */
986 /* first pick one where the panel is on */
987 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
988 vlv_pipe_has_pp_on);
989 /* didn't find one? pick one where vdd is on */
990 if (intel_dp->pps_pipe == INVALID_PIPE)
991 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992 vlv_pipe_has_vdd_on);
993 /* didn't find one? pick one with just the correct port */
994 if (intel_dp->pps_pipe == INVALID_PIPE)
995 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996 vlv_pipe_any);
998 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999 if (intel_dp->pps_pipe == INVALID_PIPE) {
1000 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001 intel_dig_port->base.base.base.id,
1002 intel_dig_port->base.base.name);
1003 return;
1006 DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007 intel_dig_port->base.base.base.id,
1008 intel_dig_port->base.base.name,
1009 pipe_name(intel_dp->pps_pipe));
1011 intel_dp_init_panel_power_sequencer(intel_dp);
1012 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1017 struct intel_encoder *encoder;
1019 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020 !IS_GEN9_LP(dev_priv)))
1021 return;
1024 * We can't grab pps_mutex here due to deadlock with power_domain
1025 * mutex when power_domain functions are called while holding pps_mutex.
1026 * That also means that in order to use pps_pipe the code needs to
1027 * hold both a power domain reference and pps_mutex, and the power domain
1028 * reference get/put must be done while _not_ holding pps_mutex.
1029 * pps_{lock,unlock}() do these steps in the correct order, so one
1030 * should use them always.
1033 for_each_intel_dp(&dev_priv->drm, encoder) {
1034 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1036 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1038 if (encoder->type != INTEL_OUTPUT_EDP)
1039 continue;
1041 if (IS_GEN9_LP(dev_priv))
1042 intel_dp->pps_reset = true;
1043 else
1044 intel_dp->pps_pipe = INVALID_PIPE;
1048 struct pps_registers {
1049 i915_reg_t pp_ctrl;
1050 i915_reg_t pp_stat;
1051 i915_reg_t pp_on;
1052 i915_reg_t pp_off;
1053 i915_reg_t pp_div;
1056 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057 struct pps_registers *regs)
1059 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060 int pps_idx = 0;
1062 memset(regs, 0, sizeof(*regs));
1064 if (IS_GEN9_LP(dev_priv))
1065 pps_idx = bxt_power_sequencer_idx(intel_dp);
1066 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1067 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1069 regs->pp_ctrl = PP_CONTROL(pps_idx);
1070 regs->pp_stat = PP_STATUS(pps_idx);
1071 regs->pp_on = PP_ON_DELAYS(pps_idx);
1072 regs->pp_off = PP_OFF_DELAYS(pps_idx);
1074 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076 regs->pp_div = INVALID_MMIO_REG;
1077 else
1078 regs->pp_div = PP_DIVISOR(pps_idx);
1081 static i915_reg_t
1082 _pp_ctrl_reg(struct intel_dp *intel_dp)
1084 struct pps_registers regs;
1086 intel_pps_get_registers(intel_dp, &regs);
1088 return regs.pp_ctrl;
1091 static i915_reg_t
1092 _pp_stat_reg(struct intel_dp *intel_dp)
1094 struct pps_registers regs;
1096 intel_pps_get_registers(intel_dp, &regs);
1098 return regs.pp_stat;
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102 This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1104 void *unused)
1106 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1107 edp_notifier);
1108 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109 intel_wakeref_t wakeref;
1111 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112 return 0;
1114 with_pps_lock(intel_dp, wakeref) {
1115 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1116 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1117 i915_reg_t pp_ctrl_reg, pp_div_reg;
1118 u32 pp_div;
1120 pp_ctrl_reg = PP_CONTROL(pipe);
1121 pp_div_reg = PP_DIVISOR(pipe);
1122 pp_div = I915_READ(pp_div_reg);
1123 pp_div &= PP_REFERENCE_DIVIDER_MASK;
1125 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1126 I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128 msleep(intel_dp->panel_power_cycle_delay);
1132 return 0;
1135 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1137 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1139 lockdep_assert_held(&dev_priv->pps_mutex);
1141 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142 intel_dp->pps_pipe == INVALID_PIPE)
1143 return false;
1145 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1150 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1152 lockdep_assert_held(&dev_priv->pps_mutex);
1154 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155 intel_dp->pps_pipe == INVALID_PIPE)
1156 return false;
1158 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1161 static void
1162 intel_dp_check_edp(struct intel_dp *intel_dp)
1164 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1166 if (!intel_dp_is_edp(intel_dp))
1167 return;
1169 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172 I915_READ(_pp_stat_reg(intel_dp)),
1173 I915_READ(_pp_ctrl_reg(intel_dp)));
1177 static u32
1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1180 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182 const unsigned int timeout_ms = 10;
1183 u32 status;
1184 bool done;
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187 done = wait_event_timeout(i915->gmbus_wait_queue, C,
1188 msecs_to_jiffies_timeout(timeout_ms));
1190 /* just trace the final value */
1191 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1193 if (!done)
1194 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195 intel_dp->aux.name, timeout_ms, status);
1196 #undef C
1198 return status;
1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1203 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1205 if (index)
1206 return 0;
1209 * The clock divider is based off the hrawclk, and would like to run at
1210 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1212 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1217 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1220 if (index)
1221 return 0;
1224 * The clock divider is based off the cdclk or PCH rawclk, and would
1225 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1226 * divide by 2000 and use that
1228 if (dig_port->aux_ch == AUX_CH_A)
1229 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1230 else
1231 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1236 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1237 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1239 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1240 /* Workaround for non-ULT HSW */
1241 switch (index) {
1242 case 0: return 63;
1243 case 1: return 72;
1244 default: return 0;
1248 return ilk_get_aux_clock_divider(intel_dp, index);
1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1254 * SKL doesn't need us to program the AUX clock divider (Hardware will
1255 * derive the clock from CDCLK automatically). We still implement the
1256 * get_aux_clock_divider vfunc to plug-in into the existing code.
1258 return index ? 0 : 1;
1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1262 int send_bytes,
1263 u32 aux_clock_divider)
1265 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1266 struct drm_i915_private *dev_priv =
1267 to_i915(intel_dig_port->base.base.dev);
1268 u32 precharge, timeout;
1270 if (IS_GEN(dev_priv, 6))
1271 precharge = 3;
1272 else
1273 precharge = 5;
1275 if (IS_BROADWELL(dev_priv))
1276 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1277 else
1278 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1280 return DP_AUX_CH_CTL_SEND_BUSY |
1281 DP_AUX_CH_CTL_DONE |
1282 DP_AUX_CH_CTL_INTERRUPT |
1283 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1284 timeout |
1285 DP_AUX_CH_CTL_RECEIVE_ERROR |
1286 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1287 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1288 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1292 int send_bytes,
1293 u32 unused)
1295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296 struct drm_i915_private *i915 =
1297 to_i915(intel_dig_port->base.base.dev);
1298 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1299 u32 ret;
1301 ret = DP_AUX_CH_CTL_SEND_BUSY |
1302 DP_AUX_CH_CTL_DONE |
1303 DP_AUX_CH_CTL_INTERRUPT |
1304 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1305 DP_AUX_CH_CTL_TIME_OUT_MAX |
1306 DP_AUX_CH_CTL_RECEIVE_ERROR |
1307 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1308 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1311 if (intel_phy_is_tc(i915, phy) &&
1312 intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1313 ret |= DP_AUX_CH_CTL_TBT_IO;
1315 return ret;
1318 static int
1319 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1320 const u8 *send, int send_bytes,
1321 u8 *recv, int recv_size,
1322 u32 aux_send_ctl_flags)
1324 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325 struct drm_i915_private *i915 =
1326 to_i915(intel_dig_port->base.base.dev);
1327 struct intel_uncore *uncore = &i915->uncore;
1328 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329 bool is_tc_port = intel_phy_is_tc(i915, phy);
1330 i915_reg_t ch_ctl, ch_data[5];
1331 u32 aux_clock_divider;
1332 enum intel_display_power_domain aux_domain =
1333 intel_aux_power_domain(intel_dig_port);
1334 intel_wakeref_t aux_wakeref;
1335 intel_wakeref_t pps_wakeref;
1336 int i, ret, recv_bytes;
1337 int try, clock = 0;
1338 u32 status;
1339 bool vdd;
1341 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1342 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1343 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1345 if (is_tc_port)
1346 intel_tc_port_lock(intel_dig_port);
1348 aux_wakeref = intel_display_power_get(i915, aux_domain);
1349 pps_wakeref = pps_lock(intel_dp);
1352 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353 * In such cases we want to leave VDD enabled and it's up to upper layers
1354 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1355 * ourselves.
1357 vdd = edp_panel_vdd_on(intel_dp);
1359 /* dp aux is extremely sensitive to irq latency, hence request the
1360 * lowest possible wakeup latency and so prevent the cpu from going into
1361 * deep sleep states.
1363 pm_qos_update_request(&i915->pm_qos, 0);
1365 intel_dp_check_edp(intel_dp);
1367 /* Try to wait for any previous AUX channel activity */
1368 for (try = 0; try < 3; try++) {
1369 status = intel_uncore_read_notrace(uncore, ch_ctl);
1370 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1371 break;
1372 msleep(1);
1374 /* just trace the final value */
1375 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1377 if (try == 3) {
1378 const u32 status = intel_uncore_read(uncore, ch_ctl);
1380 if (status != intel_dp->aux_busy_last_status) {
1381 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1382 status);
1383 intel_dp->aux_busy_last_status = status;
1386 ret = -EBUSY;
1387 goto out;
1390 /* Only 5 data registers! */
1391 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1392 ret = -E2BIG;
1393 goto out;
1396 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1397 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1398 send_bytes,
1399 aux_clock_divider);
1401 send_ctl |= aux_send_ctl_flags;
1403 /* Must try at least 3 times according to DP spec */
1404 for (try = 0; try < 5; try++) {
1405 /* Load the send data into the aux channel data registers */
1406 for (i = 0; i < send_bytes; i += 4)
1407 intel_uncore_write(uncore,
1408 ch_data[i >> 2],
1409 intel_dp_pack_aux(send + i,
1410 send_bytes - i));
1412 /* Send the command and wait for it to complete */
1413 intel_uncore_write(uncore, ch_ctl, send_ctl);
1415 status = intel_dp_aux_wait_done(intel_dp);
1417 /* Clear done status and any errors */
1418 intel_uncore_write(uncore,
1419 ch_ctl,
1420 status |
1421 DP_AUX_CH_CTL_DONE |
1422 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1423 DP_AUX_CH_CTL_RECEIVE_ERROR);
1425 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426 * 400us delay required for errors and timeouts
1427 * Timeout errors from the HW already meet this
1428 * requirement so skip to next iteration
1430 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1431 continue;
1433 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1434 usleep_range(400, 500);
1435 continue;
1437 if (status & DP_AUX_CH_CTL_DONE)
1438 goto done;
1442 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1443 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1444 ret = -EBUSY;
1445 goto out;
1448 done:
1449 /* Check for timeout or receive error.
1450 * Timeouts occur when the sink is not connected
1452 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1453 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1454 ret = -EIO;
1455 goto out;
1458 /* Timeouts occur when the device isn't connected, so they're
1459 * "normal" -- don't fill the kernel log with these */
1460 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1461 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1462 ret = -ETIMEDOUT;
1463 goto out;
1466 /* Unload any bytes sent back from the other side */
1467 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1468 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1471 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472 * We have no idea of what happened so we return -EBUSY so
1473 * drm layer takes care for the necessary retries.
1475 if (recv_bytes == 0 || recv_bytes > 20) {
1476 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1477 recv_bytes);
1478 ret = -EBUSY;
1479 goto out;
1482 if (recv_bytes > recv_size)
1483 recv_bytes = recv_size;
1485 for (i = 0; i < recv_bytes; i += 4)
1486 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1487 recv + i, recv_bytes - i);
1489 ret = recv_bytes;
1490 out:
1491 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1493 if (vdd)
1494 edp_panel_vdd_off(intel_dp, false);
1496 pps_unlock(intel_dp, pps_wakeref);
1497 intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1499 if (is_tc_port)
1500 intel_tc_port_unlock(intel_dig_port);
1502 return ret;
1505 #define BARE_ADDRESS_SIZE 3
1506 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1508 static void
1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1510 const struct drm_dp_aux_msg *msg)
1512 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1513 txbuf[1] = (msg->address >> 8) & 0xff;
1514 txbuf[2] = msg->address & 0xff;
1515 txbuf[3] = msg->size - 1;
1518 static ssize_t
1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1521 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1522 u8 txbuf[20], rxbuf[20];
1523 size_t txsize, rxsize;
1524 int ret;
1526 intel_dp_aux_header(txbuf, msg);
1528 switch (msg->request & ~DP_AUX_I2C_MOT) {
1529 case DP_AUX_NATIVE_WRITE:
1530 case DP_AUX_I2C_WRITE:
1531 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1532 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1533 rxsize = 2; /* 0 or 1 data bytes */
1535 if (WARN_ON(txsize > 20))
1536 return -E2BIG;
1538 WARN_ON(!msg->buffer != !msg->size);
1540 if (msg->buffer)
1541 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1543 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1544 rxbuf, rxsize, 0);
1545 if (ret > 0) {
1546 msg->reply = rxbuf[0] >> 4;
1548 if (ret > 1) {
1549 /* Number of bytes written in a short write. */
1550 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1551 } else {
1552 /* Return payload size. */
1553 ret = msg->size;
1556 break;
1558 case DP_AUX_NATIVE_READ:
1559 case DP_AUX_I2C_READ:
1560 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1561 rxsize = msg->size + 1;
1563 if (WARN_ON(rxsize > 20))
1564 return -E2BIG;
1566 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1567 rxbuf, rxsize, 0);
1568 if (ret > 0) {
1569 msg->reply = rxbuf[0] >> 4;
1571 * Assume happy day, and copy the data. The caller is
1572 * expected to check msg->reply before touching it.
1574 * Return payload size.
1576 ret--;
1577 memcpy(msg->buffer, rxbuf + 1, ret);
1579 break;
1581 default:
1582 ret = -EINVAL;
1583 break;
1586 return ret;
1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1592 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1593 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1594 enum aux_ch aux_ch = dig_port->aux_ch;
1596 switch (aux_ch) {
1597 case AUX_CH_B:
1598 case AUX_CH_C:
1599 case AUX_CH_D:
1600 return DP_AUX_CH_CTL(aux_ch);
1601 default:
1602 MISSING_CASE(aux_ch);
1603 return DP_AUX_CH_CTL(AUX_CH_B);
1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1609 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611 enum aux_ch aux_ch = dig_port->aux_ch;
1613 switch (aux_ch) {
1614 case AUX_CH_B:
1615 case AUX_CH_C:
1616 case AUX_CH_D:
1617 return DP_AUX_CH_DATA(aux_ch, index);
1618 default:
1619 MISSING_CASE(aux_ch);
1620 return DP_AUX_CH_DATA(AUX_CH_B, index);
1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1626 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1627 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1628 enum aux_ch aux_ch = dig_port->aux_ch;
1630 switch (aux_ch) {
1631 case AUX_CH_A:
1632 return DP_AUX_CH_CTL(aux_ch);
1633 case AUX_CH_B:
1634 case AUX_CH_C:
1635 case AUX_CH_D:
1636 return PCH_DP_AUX_CH_CTL(aux_ch);
1637 default:
1638 MISSING_CASE(aux_ch);
1639 return DP_AUX_CH_CTL(AUX_CH_A);
1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1645 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647 enum aux_ch aux_ch = dig_port->aux_ch;
1649 switch (aux_ch) {
1650 case AUX_CH_A:
1651 return DP_AUX_CH_DATA(aux_ch, index);
1652 case AUX_CH_B:
1653 case AUX_CH_C:
1654 case AUX_CH_D:
1655 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1656 default:
1657 MISSING_CASE(aux_ch);
1658 return DP_AUX_CH_DATA(AUX_CH_A, index);
1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1664 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666 enum aux_ch aux_ch = dig_port->aux_ch;
1668 switch (aux_ch) {
1669 case AUX_CH_A:
1670 case AUX_CH_B:
1671 case AUX_CH_C:
1672 case AUX_CH_D:
1673 case AUX_CH_E:
1674 case AUX_CH_F:
1675 case AUX_CH_G:
1676 return DP_AUX_CH_CTL(aux_ch);
1677 default:
1678 MISSING_CASE(aux_ch);
1679 return DP_AUX_CH_CTL(AUX_CH_A);
1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1685 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687 enum aux_ch aux_ch = dig_port->aux_ch;
1689 switch (aux_ch) {
1690 case AUX_CH_A:
1691 case AUX_CH_B:
1692 case AUX_CH_C:
1693 case AUX_CH_D:
1694 case AUX_CH_E:
1695 case AUX_CH_F:
1696 case AUX_CH_G:
1697 return DP_AUX_CH_DATA(aux_ch, index);
1698 default:
1699 MISSING_CASE(aux_ch);
1700 return DP_AUX_CH_DATA(AUX_CH_A, index);
1704 static void
1705 intel_dp_aux_fini(struct intel_dp *intel_dp)
1707 kfree(intel_dp->aux.name);
1710 static void
1711 intel_dp_aux_init(struct intel_dp *intel_dp)
1713 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715 struct intel_encoder *encoder = &dig_port->base;
1717 if (INTEL_GEN(dev_priv) >= 9) {
1718 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1719 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1720 } else if (HAS_PCH_SPLIT(dev_priv)) {
1721 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1722 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1723 } else {
1724 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1725 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1728 if (INTEL_GEN(dev_priv) >= 9)
1729 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1730 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1731 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1732 else if (HAS_PCH_SPLIT(dev_priv))
1733 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1734 else
1735 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1737 if (INTEL_GEN(dev_priv) >= 9)
1738 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1739 else
1740 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1742 drm_dp_aux_init(&intel_dp->aux);
1744 /* Failure to allocate our preferred name is not critical */
1745 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1746 port_name(encoder->port));
1747 intel_dp->aux.transfer = intel_dp_aux_transfer;
1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1752 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1754 return max_rate >= 540000;
1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1759 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1761 return max_rate >= 810000;
1764 static void
1765 intel_dp_set_clock(struct intel_encoder *encoder,
1766 struct intel_crtc_state *pipe_config)
1768 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769 const struct dp_link_dpll *divisor = NULL;
1770 int i, count = 0;
1772 if (IS_G4X(dev_priv)) {
1773 divisor = g4x_dpll;
1774 count = ARRAY_SIZE(g4x_dpll);
1775 } else if (HAS_PCH_SPLIT(dev_priv)) {
1776 divisor = pch_dpll;
1777 count = ARRAY_SIZE(pch_dpll);
1778 } else if (IS_CHERRYVIEW(dev_priv)) {
1779 divisor = chv_dpll;
1780 count = ARRAY_SIZE(chv_dpll);
1781 } else if (IS_VALLEYVIEW(dev_priv)) {
1782 divisor = vlv_dpll;
1783 count = ARRAY_SIZE(vlv_dpll);
1786 if (divisor && count) {
1787 for (i = 0; i < count; i++) {
1788 if (pipe_config->port_clock == divisor[i].clock) {
1789 pipe_config->dpll = divisor[i].dpll;
1790 pipe_config->clock_set = true;
1791 break;
1797 static void snprintf_int_array(char *str, size_t len,
1798 const int *array, int nelem)
1800 int i;
1802 str[0] = '\0';
1804 for (i = 0; i < nelem; i++) {
1805 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1806 if (r >= len)
1807 return;
1808 str += r;
1809 len -= r;
1813 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1815 char str[128]; /* FIXME: too big for stack? */
1817 if (!drm_debug_enabled(DRM_UT_KMS))
1818 return;
1820 snprintf_int_array(str, sizeof(str),
1821 intel_dp->source_rates, intel_dp->num_source_rates);
1822 DRM_DEBUG_KMS("source rates: %s\n", str);
1824 snprintf_int_array(str, sizeof(str),
1825 intel_dp->sink_rates, intel_dp->num_sink_rates);
1826 DRM_DEBUG_KMS("sink rates: %s\n", str);
1828 snprintf_int_array(str, sizeof(str),
1829 intel_dp->common_rates, intel_dp->num_common_rates);
1830 DRM_DEBUG_KMS("common rates: %s\n", str);
1834 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1836 int len;
1838 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1839 if (WARN_ON(len <= 0))
1840 return 162000;
1842 return intel_dp->common_rates[len - 1];
1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1847 int i = intel_dp_rate_index(intel_dp->sink_rates,
1848 intel_dp->num_sink_rates, rate);
1850 if (WARN_ON(i < 0))
1851 i = 0;
1853 return i;
1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1857 u8 *link_bw, u8 *rate_select)
1859 /* eDP 1.4 rate select method. */
1860 if (intel_dp->use_rate_select) {
1861 *link_bw = 0;
1862 *rate_select =
1863 intel_dp_rate_select(intel_dp, port_clock);
1864 } else {
1865 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1866 *rate_select = 0;
1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1871 const struct intel_crtc_state *pipe_config)
1873 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1875 /* On TGL, FEC is supported on all Pipes */
1876 if (INTEL_GEN(dev_priv) >= 12)
1877 return true;
1879 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1880 return true;
1882 return false;
1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1886 const struct intel_crtc_state *pipe_config)
1888 return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1889 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1892 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1893 const struct intel_crtc_state *crtc_state)
1895 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1897 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1898 return false;
1900 return intel_dsc_source_support(encoder, crtc_state) &&
1901 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1904 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1905 struct intel_crtc_state *pipe_config)
1907 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1908 struct intel_connector *intel_connector = intel_dp->attached_connector;
1909 int bpp, bpc;
1911 bpp = pipe_config->pipe_bpp;
1912 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1914 if (bpc > 0)
1915 bpp = min(bpp, 3*bpc);
1917 if (intel_dp_is_edp(intel_dp)) {
1918 /* Get bpp from vbt only for panels that dont have bpp in edid */
1919 if (intel_connector->base.display_info.bpc == 0 &&
1920 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1921 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1922 dev_priv->vbt.edp.bpp);
1923 bpp = dev_priv->vbt.edp.bpp;
1927 return bpp;
1930 /* Adjust link config limits based on compliance test requests. */
1931 void
1932 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1933 struct intel_crtc_state *pipe_config,
1934 struct link_config_limits *limits)
1936 /* For DP Compliance we override the computed bpp for the pipe */
1937 if (intel_dp->compliance.test_data.bpc != 0) {
1938 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1940 limits->min_bpp = limits->max_bpp = bpp;
1941 pipe_config->dither_force_disable = bpp == 6 * 3;
1943 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1946 /* Use values requested by Compliance Test Request */
1947 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1948 int index;
1950 /* Validate the compliance test data since max values
1951 * might have changed due to link train fallback.
1953 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1954 intel_dp->compliance.test_lane_count)) {
1955 index = intel_dp_rate_index(intel_dp->common_rates,
1956 intel_dp->num_common_rates,
1957 intel_dp->compliance.test_link_rate);
1958 if (index >= 0)
1959 limits->min_clock = limits->max_clock = index;
1960 limits->min_lane_count = limits->max_lane_count =
1961 intel_dp->compliance.test_lane_count;
1966 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1969 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1970 * format of the number of bytes per pixel will be half the number
1971 * of bytes of RGB pixel.
1973 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1974 bpp /= 2;
1976 return bpp;
1979 /* Optimize link config in order: max bpp, min clock, min lanes */
1980 static int
1981 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1982 struct intel_crtc_state *pipe_config,
1983 const struct link_config_limits *limits)
1985 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
1986 int bpp, clock, lane_count;
1987 int mode_rate, link_clock, link_avail;
1989 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1990 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
1992 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1993 output_bpp);
1995 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1996 for (lane_count = limits->min_lane_count;
1997 lane_count <= limits->max_lane_count;
1998 lane_count <<= 1) {
1999 link_clock = intel_dp->common_rates[clock];
2000 link_avail = intel_dp_max_data_rate(link_clock,
2001 lane_count);
2003 if (mode_rate <= link_avail) {
2004 pipe_config->lane_count = lane_count;
2005 pipe_config->pipe_bpp = bpp;
2006 pipe_config->port_clock = link_clock;
2008 return 0;
2014 return -EINVAL;
2017 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2019 int i, num_bpc;
2020 u8 dsc_bpc[3] = {0};
2022 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2023 dsc_bpc);
2024 for (i = 0; i < num_bpc; i++) {
2025 if (dsc_max_bpc >= dsc_bpc[i])
2026 return dsc_bpc[i] * 3;
2029 return 0;
2032 #define DSC_SUPPORTED_VERSION_MIN 1
2034 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2035 struct intel_crtc_state *crtc_state)
2037 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2038 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2039 u8 line_buf_depth;
2040 int ret;
2042 ret = intel_dsc_compute_params(encoder, crtc_state);
2043 if (ret)
2044 return ret;
2047 * Slice Height of 8 works for all currently available panels. So start
2048 * with that if pic_height is an integral multiple of 8. Eventually add
2049 * logic to try multiple slice heights.
2051 if (vdsc_cfg->pic_height % 8 == 0)
2052 vdsc_cfg->slice_height = 8;
2053 else if (vdsc_cfg->pic_height % 4 == 0)
2054 vdsc_cfg->slice_height = 4;
2055 else
2056 vdsc_cfg->slice_height = 2;
2058 vdsc_cfg->dsc_version_major =
2059 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2060 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2061 vdsc_cfg->dsc_version_minor =
2062 min(DSC_SUPPORTED_VERSION_MIN,
2063 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2064 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2066 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2067 DP_DSC_RGB;
2069 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2070 if (!line_buf_depth) {
2071 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2072 return -EINVAL;
2075 if (vdsc_cfg->dsc_version_minor == 2)
2076 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2077 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2078 else
2079 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2080 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2082 vdsc_cfg->block_pred_enable =
2083 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2084 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2086 return drm_dsc_compute_rc_parameters(vdsc_cfg);
2089 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2090 struct intel_crtc_state *pipe_config,
2091 struct drm_connector_state *conn_state,
2092 struct link_config_limits *limits)
2094 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2095 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2096 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2097 u8 dsc_max_bpc;
2098 int pipe_bpp;
2099 int ret;
2101 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2102 intel_dp_supports_fec(intel_dp, pipe_config);
2104 if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2105 return -EINVAL;
2107 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2108 if (INTEL_GEN(dev_priv) >= 12)
2109 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2110 else
2111 dsc_max_bpc = min_t(u8, 10,
2112 conn_state->max_requested_bpc);
2114 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2116 /* Min Input BPC for ICL+ is 8 */
2117 if (pipe_bpp < 8 * 3) {
2118 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2119 return -EINVAL;
2123 * For now enable DSC for max bpp, max link rate, max lane count.
2124 * Optimize this later for the minimum possible link rate/lane count
2125 * with DSC enabled for the requested mode.
2127 pipe_config->pipe_bpp = pipe_bpp;
2128 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2129 pipe_config->lane_count = limits->max_lane_count;
2131 if (intel_dp_is_edp(intel_dp)) {
2132 pipe_config->dsc.compressed_bpp =
2133 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2134 pipe_config->pipe_bpp);
2135 pipe_config->dsc.slice_count =
2136 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2137 true);
2138 } else {
2139 u16 dsc_max_output_bpp;
2140 u8 dsc_dp_slice_count;
2142 dsc_max_output_bpp =
2143 intel_dp_dsc_get_output_bpp(dev_priv,
2144 pipe_config->port_clock,
2145 pipe_config->lane_count,
2146 adjusted_mode->crtc_clock,
2147 adjusted_mode->crtc_hdisplay);
2148 dsc_dp_slice_count =
2149 intel_dp_dsc_get_slice_count(intel_dp,
2150 adjusted_mode->crtc_clock,
2151 adjusted_mode->crtc_hdisplay);
2152 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2153 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2154 return -EINVAL;
2156 pipe_config->dsc.compressed_bpp = min_t(u16,
2157 dsc_max_output_bpp >> 4,
2158 pipe_config->pipe_bpp);
2159 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2162 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2163 * is greater than the maximum Cdclock and if slice count is even
2164 * then we need to use 2 VDSC instances.
2166 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2167 if (pipe_config->dsc.slice_count > 1) {
2168 pipe_config->dsc.dsc_split = true;
2169 } else {
2170 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2171 return -EINVAL;
2175 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2176 if (ret < 0) {
2177 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2178 "Compressed BPP = %d\n",
2179 pipe_config->pipe_bpp,
2180 pipe_config->dsc.compressed_bpp);
2181 return ret;
2184 pipe_config->dsc.compression_enable = true;
2185 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2186 "Compressed Bpp = %d Slice Count = %d\n",
2187 pipe_config->pipe_bpp,
2188 pipe_config->dsc.compressed_bpp,
2189 pipe_config->dsc.slice_count);
2191 return 0;
2194 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2196 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2197 return 6 * 3;
2198 else
2199 return 8 * 3;
2202 static int
2203 intel_dp_compute_link_config(struct intel_encoder *encoder,
2204 struct intel_crtc_state *pipe_config,
2205 struct drm_connector_state *conn_state)
2207 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2208 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2209 struct link_config_limits limits;
2210 int common_len;
2211 int ret;
2213 common_len = intel_dp_common_len_rate_limit(intel_dp,
2214 intel_dp->max_link_rate);
2216 /* No common link rates between source and sink */
2217 WARN_ON(common_len <= 0);
2219 limits.min_clock = 0;
2220 limits.max_clock = common_len - 1;
2222 limits.min_lane_count = 1;
2223 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2225 limits.min_bpp = intel_dp_min_bpp(pipe_config);
2226 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2228 if (intel_dp_is_edp(intel_dp)) {
2230 * Use the maximum clock and number of lanes the eDP panel
2231 * advertizes being capable of. The panels are generally
2232 * designed to support only a single clock and lane
2233 * configuration, and typically these values correspond to the
2234 * native resolution of the panel.
2236 limits.min_lane_count = limits.max_lane_count;
2237 limits.min_clock = limits.max_clock;
2240 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2242 DRM_DEBUG_KMS("DP link computation with max lane count %i "
2243 "max rate %d max bpp %d pixel clock %iKHz\n",
2244 limits.max_lane_count,
2245 intel_dp->common_rates[limits.max_clock],
2246 limits.max_bpp, adjusted_mode->crtc_clock);
2249 * Optimize for slow and wide. This is the place to add alternative
2250 * optimization policy.
2252 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2254 /* enable compression if the mode doesn't fit available BW */
2255 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2256 if (ret || intel_dp->force_dsc_en) {
2257 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2258 conn_state, &limits);
2259 if (ret < 0)
2260 return ret;
2263 if (pipe_config->dsc.compression_enable) {
2264 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2265 pipe_config->lane_count, pipe_config->port_clock,
2266 pipe_config->pipe_bpp,
2267 pipe_config->dsc.compressed_bpp);
2269 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2270 intel_dp_link_required(adjusted_mode->crtc_clock,
2271 pipe_config->dsc.compressed_bpp),
2272 intel_dp_max_data_rate(pipe_config->port_clock,
2273 pipe_config->lane_count));
2274 } else {
2275 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2276 pipe_config->lane_count, pipe_config->port_clock,
2277 pipe_config->pipe_bpp);
2279 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2280 intel_dp_link_required(adjusted_mode->crtc_clock,
2281 pipe_config->pipe_bpp),
2282 intel_dp_max_data_rate(pipe_config->port_clock,
2283 pipe_config->lane_count));
2285 return 0;
2288 static int
2289 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2290 struct drm_connector *connector,
2291 struct intel_crtc_state *crtc_state)
2293 const struct drm_display_info *info = &connector->display_info;
2294 const struct drm_display_mode *adjusted_mode =
2295 &crtc_state->hw.adjusted_mode;
2296 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2297 int ret;
2299 if (!drm_mode_is_420_only(info, adjusted_mode) ||
2300 !intel_dp_get_colorimetry_status(intel_dp) ||
2301 !connector->ycbcr_420_allowed)
2302 return 0;
2304 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2306 /* YCBCR 420 output conversion needs a scaler */
2307 ret = skl_update_scaler_crtc(crtc_state);
2308 if (ret) {
2309 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2310 return ret;
2313 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2315 return 0;
2318 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2319 const struct drm_connector_state *conn_state)
2321 const struct intel_digital_connector_state *intel_conn_state =
2322 to_intel_digital_connector_state(conn_state);
2323 const struct drm_display_mode *adjusted_mode =
2324 &crtc_state->hw.adjusted_mode;
2327 * Our YCbCr output is always limited range.
2328 * crtc_state->limited_color_range only applies to RGB,
2329 * and it must never be set for YCbCr or we risk setting
2330 * some conflicting bits in PIPECONF which will mess up
2331 * the colors on the monitor.
2333 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2334 return false;
2336 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2338 * See:
2339 * CEA-861-E - 5.1 Default Encoding Parameters
2340 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2342 return crtc_state->pipe_bpp != 18 &&
2343 drm_default_rgb_quant_range(adjusted_mode) ==
2344 HDMI_QUANTIZATION_RANGE_LIMITED;
2345 } else {
2346 return intel_conn_state->broadcast_rgb ==
2347 INTEL_BROADCAST_RGB_LIMITED;
2351 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2352 enum port port)
2354 if (IS_G4X(dev_priv))
2355 return false;
2356 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2357 return false;
2359 return true;
2363 intel_dp_compute_config(struct intel_encoder *encoder,
2364 struct intel_crtc_state *pipe_config,
2365 struct drm_connector_state *conn_state)
2367 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2368 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2369 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2370 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2371 enum port port = encoder->port;
2372 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2373 struct intel_connector *intel_connector = intel_dp->attached_connector;
2374 struct intel_digital_connector_state *intel_conn_state =
2375 to_intel_digital_connector_state(conn_state);
2376 bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2377 DP_DPCD_QUIRK_CONSTANT_N);
2378 int ret = 0, output_bpp;
2380 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2381 pipe_config->has_pch_encoder = true;
2383 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2385 if (lspcon->active)
2386 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2387 else
2388 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2389 pipe_config);
2391 if (ret)
2392 return ret;
2394 pipe_config->has_drrs = false;
2395 if (!intel_dp_port_has_audio(dev_priv, port))
2396 pipe_config->has_audio = false;
2397 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2398 pipe_config->has_audio = intel_dp->has_audio;
2399 else
2400 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2402 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2403 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2404 adjusted_mode);
2406 if (INTEL_GEN(dev_priv) >= 9) {
2407 ret = skl_update_scaler_crtc(pipe_config);
2408 if (ret)
2409 return ret;
2412 if (HAS_GMCH(dev_priv))
2413 intel_gmch_panel_fitting(intel_crtc, pipe_config,
2414 conn_state->scaling_mode);
2415 else
2416 intel_pch_panel_fitting(intel_crtc, pipe_config,
2417 conn_state->scaling_mode);
2420 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2421 return -EINVAL;
2423 if (HAS_GMCH(dev_priv) &&
2424 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2425 return -EINVAL;
2427 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2428 return -EINVAL;
2430 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2431 return -EINVAL;
2433 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2434 if (ret < 0)
2435 return ret;
2437 pipe_config->limited_color_range =
2438 intel_dp_limited_color_range(pipe_config, conn_state);
2440 if (pipe_config->dsc.compression_enable)
2441 output_bpp = pipe_config->dsc.compressed_bpp;
2442 else
2443 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2445 intel_link_compute_m_n(output_bpp,
2446 pipe_config->lane_count,
2447 adjusted_mode->crtc_clock,
2448 pipe_config->port_clock,
2449 &pipe_config->dp_m_n,
2450 constant_n, pipe_config->fec_enable);
2452 if (intel_connector->panel.downclock_mode != NULL &&
2453 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2454 pipe_config->has_drrs = true;
2455 intel_link_compute_m_n(output_bpp,
2456 pipe_config->lane_count,
2457 intel_connector->panel.downclock_mode->clock,
2458 pipe_config->port_clock,
2459 &pipe_config->dp_m2_n2,
2460 constant_n, pipe_config->fec_enable);
2463 if (!HAS_DDI(dev_priv))
2464 intel_dp_set_clock(encoder, pipe_config);
2466 intel_psr_compute_config(intel_dp, pipe_config);
2468 return 0;
2471 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2472 int link_rate, u8 lane_count,
2473 bool link_mst)
2475 intel_dp->link_trained = false;
2476 intel_dp->link_rate = link_rate;
2477 intel_dp->lane_count = lane_count;
2478 intel_dp->link_mst = link_mst;
2481 static void intel_dp_prepare(struct intel_encoder *encoder,
2482 const struct intel_crtc_state *pipe_config)
2484 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2485 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2486 enum port port = encoder->port;
2487 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2488 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2490 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2491 pipe_config->lane_count,
2492 intel_crtc_has_type(pipe_config,
2493 INTEL_OUTPUT_DP_MST));
2495 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2496 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2499 * There are four kinds of DP registers:
2501 * IBX PCH
2502 * SNB CPU
2503 * IVB CPU
2504 * CPT PCH
2506 * IBX PCH and CPU are the same for almost everything,
2507 * except that the CPU DP PLL is configured in this
2508 * register
2510 * CPT PCH is quite different, having many bits moved
2511 * to the TRANS_DP_CTL register instead. That
2512 * configuration happens (oddly) in ilk_pch_enable
2515 /* Preserve the BIOS-computed detected bit. This is
2516 * supposed to be read-only.
2518 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2520 /* Handle DP bits in common between all three register formats */
2521 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2522 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2524 /* Split out the IBX/CPU vs CPT settings */
2526 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2527 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2528 intel_dp->DP |= DP_SYNC_HS_HIGH;
2529 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2530 intel_dp->DP |= DP_SYNC_VS_HIGH;
2531 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2533 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2534 intel_dp->DP |= DP_ENHANCED_FRAMING;
2536 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2537 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2538 u32 trans_dp;
2540 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2542 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2543 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2544 trans_dp |= TRANS_DP_ENH_FRAMING;
2545 else
2546 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2547 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2548 } else {
2549 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2550 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2552 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2553 intel_dp->DP |= DP_SYNC_HS_HIGH;
2554 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2555 intel_dp->DP |= DP_SYNC_VS_HIGH;
2556 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2558 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2559 intel_dp->DP |= DP_ENHANCED_FRAMING;
2561 if (IS_CHERRYVIEW(dev_priv))
2562 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2563 else
2564 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2568 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2569 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2571 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2572 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2574 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2575 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2577 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2579 static void wait_panel_status(struct intel_dp *intel_dp,
2580 u32 mask,
2581 u32 value)
2583 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2584 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2586 lockdep_assert_held(&dev_priv->pps_mutex);
2588 intel_pps_verify_state(intel_dp);
2590 pp_stat_reg = _pp_stat_reg(intel_dp);
2591 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2593 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2594 mask, value,
2595 I915_READ(pp_stat_reg),
2596 I915_READ(pp_ctrl_reg));
2598 if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2599 mask, value, 5000))
2600 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2601 I915_READ(pp_stat_reg),
2602 I915_READ(pp_ctrl_reg));
2604 DRM_DEBUG_KMS("Wait complete\n");
2607 static void wait_panel_on(struct intel_dp *intel_dp)
2609 DRM_DEBUG_KMS("Wait for panel power on\n");
2610 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2613 static void wait_panel_off(struct intel_dp *intel_dp)
2615 DRM_DEBUG_KMS("Wait for panel power off time\n");
2616 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2619 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2621 ktime_t panel_power_on_time;
2622 s64 panel_power_off_duration;
2624 DRM_DEBUG_KMS("Wait for panel power cycle\n");
2626 /* take the difference of currrent time and panel power off time
2627 * and then make panel wait for t11_t12 if needed. */
2628 panel_power_on_time = ktime_get_boottime();
2629 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2631 /* When we disable the VDD override bit last we have to do the manual
2632 * wait. */
2633 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2634 wait_remaining_ms_from_jiffies(jiffies,
2635 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2637 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2640 static void wait_backlight_on(struct intel_dp *intel_dp)
2642 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2643 intel_dp->backlight_on_delay);
2646 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2648 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2649 intel_dp->backlight_off_delay);
2652 /* Read the current pp_control value, unlocking the register if it
2653 * is locked
2656 static u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2658 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2659 u32 control;
2661 lockdep_assert_held(&dev_priv->pps_mutex);
2663 control = I915_READ(_pp_ctrl_reg(intel_dp));
2664 if (WARN_ON(!HAS_DDI(dev_priv) &&
2665 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2666 control &= ~PANEL_UNLOCK_MASK;
2667 control |= PANEL_UNLOCK_REGS;
2669 return control;
2673 * Must be paired with edp_panel_vdd_off().
2674 * Must hold pps_mutex around the whole on/off sequence.
2675 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2677 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2679 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2680 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2681 u32 pp;
2682 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2683 bool need_to_disable = !intel_dp->want_panel_vdd;
2685 lockdep_assert_held(&dev_priv->pps_mutex);
2687 if (!intel_dp_is_edp(intel_dp))
2688 return false;
2690 cancel_delayed_work(&intel_dp->panel_vdd_work);
2691 intel_dp->want_panel_vdd = true;
2693 if (edp_have_panel_vdd(intel_dp))
2694 return need_to_disable;
2696 intel_display_power_get(dev_priv,
2697 intel_aux_power_domain(intel_dig_port));
2699 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2700 intel_dig_port->base.base.base.id,
2701 intel_dig_port->base.base.name);
2703 if (!edp_have_panel_power(intel_dp))
2704 wait_panel_power_cycle(intel_dp);
2706 pp = ilk_get_pp_control(intel_dp);
2707 pp |= EDP_FORCE_VDD;
2709 pp_stat_reg = _pp_stat_reg(intel_dp);
2710 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2712 I915_WRITE(pp_ctrl_reg, pp);
2713 POSTING_READ(pp_ctrl_reg);
2714 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2715 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2717 * If the panel wasn't on, delay before accessing aux channel
2719 if (!edp_have_panel_power(intel_dp)) {
2720 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2721 intel_dig_port->base.base.base.id,
2722 intel_dig_port->base.base.name);
2723 msleep(intel_dp->panel_power_up_delay);
2726 return need_to_disable;
2730 * Must be paired with intel_edp_panel_vdd_off() or
2731 * intel_edp_panel_off().
2732 * Nested calls to these functions are not allowed since
2733 * we drop the lock. Caller must use some higher level
2734 * locking to prevent nested calls from other threads.
2736 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2738 intel_wakeref_t wakeref;
2739 bool vdd;
2741 if (!intel_dp_is_edp(intel_dp))
2742 return;
2744 vdd = false;
2745 with_pps_lock(intel_dp, wakeref)
2746 vdd = edp_panel_vdd_on(intel_dp);
2747 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2748 dp_to_dig_port(intel_dp)->base.base.base.id,
2749 dp_to_dig_port(intel_dp)->base.base.name);
2752 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2754 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2755 struct intel_digital_port *intel_dig_port =
2756 dp_to_dig_port(intel_dp);
2757 u32 pp;
2758 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2760 lockdep_assert_held(&dev_priv->pps_mutex);
2762 WARN_ON(intel_dp->want_panel_vdd);
2764 if (!edp_have_panel_vdd(intel_dp))
2765 return;
2767 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2768 intel_dig_port->base.base.base.id,
2769 intel_dig_port->base.base.name);
2771 pp = ilk_get_pp_control(intel_dp);
2772 pp &= ~EDP_FORCE_VDD;
2774 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2775 pp_stat_reg = _pp_stat_reg(intel_dp);
2777 I915_WRITE(pp_ctrl_reg, pp);
2778 POSTING_READ(pp_ctrl_reg);
2780 /* Make sure sequencer is idle before allowing subsequent activity */
2781 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2782 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2784 if ((pp & PANEL_POWER_ON) == 0)
2785 intel_dp->panel_power_off_time = ktime_get_boottime();
2787 intel_display_power_put_unchecked(dev_priv,
2788 intel_aux_power_domain(intel_dig_port));
2791 static void edp_panel_vdd_work(struct work_struct *__work)
2793 struct intel_dp *intel_dp =
2794 container_of(to_delayed_work(__work),
2795 struct intel_dp, panel_vdd_work);
2796 intel_wakeref_t wakeref;
2798 with_pps_lock(intel_dp, wakeref) {
2799 if (!intel_dp->want_panel_vdd)
2800 edp_panel_vdd_off_sync(intel_dp);
2804 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2806 unsigned long delay;
2809 * Queue the timer to fire a long time from now (relative to the power
2810 * down delay) to keep the panel power up across a sequence of
2811 * operations.
2813 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2814 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2818 * Must be paired with edp_panel_vdd_on().
2819 * Must hold pps_mutex around the whole on/off sequence.
2820 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2822 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2824 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2826 lockdep_assert_held(&dev_priv->pps_mutex);
2828 if (!intel_dp_is_edp(intel_dp))
2829 return;
2831 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2832 dp_to_dig_port(intel_dp)->base.base.base.id,
2833 dp_to_dig_port(intel_dp)->base.base.name);
2835 intel_dp->want_panel_vdd = false;
2837 if (sync)
2838 edp_panel_vdd_off_sync(intel_dp);
2839 else
2840 edp_panel_vdd_schedule_off(intel_dp);
2843 static void edp_panel_on(struct intel_dp *intel_dp)
2845 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2846 u32 pp;
2847 i915_reg_t pp_ctrl_reg;
2849 lockdep_assert_held(&dev_priv->pps_mutex);
2851 if (!intel_dp_is_edp(intel_dp))
2852 return;
2854 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2855 dp_to_dig_port(intel_dp)->base.base.base.id,
2856 dp_to_dig_port(intel_dp)->base.base.name);
2858 if (WARN(edp_have_panel_power(intel_dp),
2859 "[ENCODER:%d:%s] panel power already on\n",
2860 dp_to_dig_port(intel_dp)->base.base.base.id,
2861 dp_to_dig_port(intel_dp)->base.base.name))
2862 return;
2864 wait_panel_power_cycle(intel_dp);
2866 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2867 pp = ilk_get_pp_control(intel_dp);
2868 if (IS_GEN(dev_priv, 5)) {
2869 /* ILK workaround: disable reset around power sequence */
2870 pp &= ~PANEL_POWER_RESET;
2871 I915_WRITE(pp_ctrl_reg, pp);
2872 POSTING_READ(pp_ctrl_reg);
2875 pp |= PANEL_POWER_ON;
2876 if (!IS_GEN(dev_priv, 5))
2877 pp |= PANEL_POWER_RESET;
2879 I915_WRITE(pp_ctrl_reg, pp);
2880 POSTING_READ(pp_ctrl_reg);
2882 wait_panel_on(intel_dp);
2883 intel_dp->last_power_on = jiffies;
2885 if (IS_GEN(dev_priv, 5)) {
2886 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2887 I915_WRITE(pp_ctrl_reg, pp);
2888 POSTING_READ(pp_ctrl_reg);
2892 void intel_edp_panel_on(struct intel_dp *intel_dp)
2894 intel_wakeref_t wakeref;
2896 if (!intel_dp_is_edp(intel_dp))
2897 return;
2899 with_pps_lock(intel_dp, wakeref)
2900 edp_panel_on(intel_dp);
2904 static void edp_panel_off(struct intel_dp *intel_dp)
2906 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2907 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2908 u32 pp;
2909 i915_reg_t pp_ctrl_reg;
2911 lockdep_assert_held(&dev_priv->pps_mutex);
2913 if (!intel_dp_is_edp(intel_dp))
2914 return;
2916 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2917 dig_port->base.base.base.id, dig_port->base.base.name);
2919 WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2920 dig_port->base.base.base.id, dig_port->base.base.name);
2922 pp = ilk_get_pp_control(intel_dp);
2923 /* We need to switch off panel power _and_ force vdd, for otherwise some
2924 * panels get very unhappy and cease to work. */
2925 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2926 EDP_BLC_ENABLE);
2928 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2930 intel_dp->want_panel_vdd = false;
2932 I915_WRITE(pp_ctrl_reg, pp);
2933 POSTING_READ(pp_ctrl_reg);
2935 wait_panel_off(intel_dp);
2936 intel_dp->panel_power_off_time = ktime_get_boottime();
2938 /* We got a reference when we enabled the VDD. */
2939 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2942 void intel_edp_panel_off(struct intel_dp *intel_dp)
2944 intel_wakeref_t wakeref;
2946 if (!intel_dp_is_edp(intel_dp))
2947 return;
2949 with_pps_lock(intel_dp, wakeref)
2950 edp_panel_off(intel_dp);
2953 /* Enable backlight in the panel power control. */
2954 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2956 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2957 intel_wakeref_t wakeref;
2960 * If we enable the backlight right away following a panel power
2961 * on, we may see slight flicker as the panel syncs with the eDP
2962 * link. So delay a bit to make sure the image is solid before
2963 * allowing it to appear.
2965 wait_backlight_on(intel_dp);
2967 with_pps_lock(intel_dp, wakeref) {
2968 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2969 u32 pp;
2971 pp = ilk_get_pp_control(intel_dp);
2972 pp |= EDP_BLC_ENABLE;
2974 I915_WRITE(pp_ctrl_reg, pp);
2975 POSTING_READ(pp_ctrl_reg);
2979 /* Enable backlight PWM and backlight PP control. */
2980 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2981 const struct drm_connector_state *conn_state)
2983 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
2985 if (!intel_dp_is_edp(intel_dp))
2986 return;
2988 DRM_DEBUG_KMS("\n");
2990 intel_panel_enable_backlight(crtc_state, conn_state);
2991 _intel_edp_backlight_on(intel_dp);
2994 /* Disable backlight in the panel power control. */
2995 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2997 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2998 intel_wakeref_t wakeref;
3000 if (!intel_dp_is_edp(intel_dp))
3001 return;
3003 with_pps_lock(intel_dp, wakeref) {
3004 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3005 u32 pp;
3007 pp = ilk_get_pp_control(intel_dp);
3008 pp &= ~EDP_BLC_ENABLE;
3010 I915_WRITE(pp_ctrl_reg, pp);
3011 POSTING_READ(pp_ctrl_reg);
3014 intel_dp->last_backlight_off = jiffies;
3015 edp_wait_backlight_off(intel_dp);
3018 /* Disable backlight PP control and backlight PWM. */
3019 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3021 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3023 if (!intel_dp_is_edp(intel_dp))
3024 return;
3026 DRM_DEBUG_KMS("\n");
3028 _intel_edp_backlight_off(intel_dp);
3029 intel_panel_disable_backlight(old_conn_state);
3033 * Hook for controlling the panel power control backlight through the bl_power
3034 * sysfs attribute. Take care to handle multiple calls.
3036 static void intel_edp_backlight_power(struct intel_connector *connector,
3037 bool enable)
3039 struct intel_dp *intel_dp = intel_attached_dp(connector);
3040 intel_wakeref_t wakeref;
3041 bool is_enabled;
3043 is_enabled = false;
3044 with_pps_lock(intel_dp, wakeref)
3045 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3046 if (is_enabled == enable)
3047 return;
3049 DRM_DEBUG_KMS("panel power control backlight %s\n",
3050 enable ? "enable" : "disable");
3052 if (enable)
3053 _intel_edp_backlight_on(intel_dp);
3054 else
3055 _intel_edp_backlight_off(intel_dp);
3058 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3060 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3061 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3062 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3064 I915_STATE_WARN(cur_state != state,
3065 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3066 dig_port->base.base.base.id, dig_port->base.base.name,
3067 onoff(state), onoff(cur_state));
3069 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3071 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3073 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3075 I915_STATE_WARN(cur_state != state,
3076 "eDP PLL state assertion failure (expected %s, current %s)\n",
3077 onoff(state), onoff(cur_state));
3079 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3080 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3082 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3083 const struct intel_crtc_state *pipe_config)
3085 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3086 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3088 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3089 assert_dp_port_disabled(intel_dp);
3090 assert_edp_pll_disabled(dev_priv);
3092 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3093 pipe_config->port_clock);
3095 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3097 if (pipe_config->port_clock == 162000)
3098 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3099 else
3100 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3102 I915_WRITE(DP_A, intel_dp->DP);
3103 POSTING_READ(DP_A);
3104 udelay(500);
3107 * [DevILK] Work around required when enabling DP PLL
3108 * while a pipe is enabled going to FDI:
3109 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3110 * 2. Program DP PLL enable
3112 if (IS_GEN(dev_priv, 5))
3113 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3115 intel_dp->DP |= DP_PLL_ENABLE;
3117 I915_WRITE(DP_A, intel_dp->DP);
3118 POSTING_READ(DP_A);
3119 udelay(200);
3122 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3123 const struct intel_crtc_state *old_crtc_state)
3125 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3126 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3128 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3129 assert_dp_port_disabled(intel_dp);
3130 assert_edp_pll_enabled(dev_priv);
3132 DRM_DEBUG_KMS("disabling eDP PLL\n");
3134 intel_dp->DP &= ~DP_PLL_ENABLE;
3136 I915_WRITE(DP_A, intel_dp->DP);
3137 POSTING_READ(DP_A);
3138 udelay(200);
3141 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3144 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3145 * be capable of signalling downstream hpd with a long pulse.
3146 * Whether or not that means D3 is safe to use is not clear,
3147 * but let's assume so until proven otherwise.
3149 * FIXME should really check all downstream ports...
3151 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3152 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3153 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3156 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3157 const struct intel_crtc_state *crtc_state,
3158 bool enable)
3160 int ret;
3162 if (!crtc_state->dsc.compression_enable)
3163 return;
3165 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3166 enable ? DP_DECOMPRESSION_EN : 0);
3167 if (ret < 0)
3168 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3169 enable ? "enable" : "disable");
3172 /* If the sink supports it, try to set the power state appropriately */
3173 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3175 int ret, i;
3177 /* Should have a valid DPCD by this point */
3178 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3179 return;
3181 if (mode != DRM_MODE_DPMS_ON) {
3182 if (downstream_hpd_needs_d0(intel_dp))
3183 return;
3185 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3186 DP_SET_POWER_D3);
3187 } else {
3188 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3191 * When turning on, we need to retry for 1ms to give the sink
3192 * time to wake up.
3194 for (i = 0; i < 3; i++) {
3195 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3196 DP_SET_POWER_D0);
3197 if (ret == 1)
3198 break;
3199 msleep(1);
3202 if (ret == 1 && lspcon->active)
3203 lspcon_wait_pcon_mode(lspcon);
3206 if (ret != 1)
3207 DRM_DEBUG_KMS("failed to %s sink power state\n",
3208 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3211 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3212 enum port port, enum pipe *pipe)
3214 enum pipe p;
3216 for_each_pipe(dev_priv, p) {
3217 u32 val = I915_READ(TRANS_DP_CTL(p));
3219 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3220 *pipe = p;
3221 return true;
3225 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3227 /* must initialize pipe to something for the asserts */
3228 *pipe = PIPE_A;
3230 return false;
3233 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3234 i915_reg_t dp_reg, enum port port,
3235 enum pipe *pipe)
3237 bool ret;
3238 u32 val;
3240 val = I915_READ(dp_reg);
3242 ret = val & DP_PORT_EN;
3244 /* asserts want to know the pipe even if the port is disabled */
3245 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3246 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3247 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3248 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3249 else if (IS_CHERRYVIEW(dev_priv))
3250 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3251 else
3252 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3254 return ret;
3257 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3258 enum pipe *pipe)
3260 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3261 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3262 intel_wakeref_t wakeref;
3263 bool ret;
3265 wakeref = intel_display_power_get_if_enabled(dev_priv,
3266 encoder->power_domain);
3267 if (!wakeref)
3268 return false;
3270 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3271 encoder->port, pipe);
3273 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3275 return ret;
3278 static void intel_dp_get_config(struct intel_encoder *encoder,
3279 struct intel_crtc_state *pipe_config)
3281 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3282 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3283 u32 tmp, flags = 0;
3284 enum port port = encoder->port;
3285 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3287 if (encoder->type == INTEL_OUTPUT_EDP)
3288 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3289 else
3290 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3292 tmp = I915_READ(intel_dp->output_reg);
3294 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3296 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3297 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3299 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3300 flags |= DRM_MODE_FLAG_PHSYNC;
3301 else
3302 flags |= DRM_MODE_FLAG_NHSYNC;
3304 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3305 flags |= DRM_MODE_FLAG_PVSYNC;
3306 else
3307 flags |= DRM_MODE_FLAG_NVSYNC;
3308 } else {
3309 if (tmp & DP_SYNC_HS_HIGH)
3310 flags |= DRM_MODE_FLAG_PHSYNC;
3311 else
3312 flags |= DRM_MODE_FLAG_NHSYNC;
3314 if (tmp & DP_SYNC_VS_HIGH)
3315 flags |= DRM_MODE_FLAG_PVSYNC;
3316 else
3317 flags |= DRM_MODE_FLAG_NVSYNC;
3320 pipe_config->hw.adjusted_mode.flags |= flags;
3322 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3323 pipe_config->limited_color_range = true;
3325 pipe_config->lane_count =
3326 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3328 intel_dp_get_m_n(crtc, pipe_config);
3330 if (port == PORT_A) {
3331 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3332 pipe_config->port_clock = 162000;
3333 else
3334 pipe_config->port_clock = 270000;
3337 pipe_config->hw.adjusted_mode.crtc_clock =
3338 intel_dotclock_calculate(pipe_config->port_clock,
3339 &pipe_config->dp_m_n);
3341 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3342 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3344 * This is a big fat ugly hack.
3346 * Some machines in UEFI boot mode provide us a VBT that has 18
3347 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3348 * unknown we fail to light up. Yet the same BIOS boots up with
3349 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3350 * max, not what it tells us to use.
3352 * Note: This will still be broken if the eDP panel is not lit
3353 * up by the BIOS, and thus we can't get the mode at module
3354 * load.
3356 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3357 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3358 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3362 static void intel_disable_dp(struct intel_encoder *encoder,
3363 const struct intel_crtc_state *old_crtc_state,
3364 const struct drm_connector_state *old_conn_state)
3366 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3368 intel_dp->link_trained = false;
3370 if (old_crtc_state->has_audio)
3371 intel_audio_codec_disable(encoder,
3372 old_crtc_state, old_conn_state);
3374 /* Make sure the panel is off before trying to change the mode. But also
3375 * ensure that we have vdd while we switch off the panel. */
3376 intel_edp_panel_vdd_on(intel_dp);
3377 intel_edp_backlight_off(old_conn_state);
3378 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3379 intel_edp_panel_off(intel_dp);
3382 static void g4x_disable_dp(struct intel_encoder *encoder,
3383 const struct intel_crtc_state *old_crtc_state,
3384 const struct drm_connector_state *old_conn_state)
3386 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3389 static void vlv_disable_dp(struct intel_encoder *encoder,
3390 const struct intel_crtc_state *old_crtc_state,
3391 const struct drm_connector_state *old_conn_state)
3393 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3396 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3397 const struct intel_crtc_state *old_crtc_state,
3398 const struct drm_connector_state *old_conn_state)
3400 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3401 enum port port = encoder->port;
3404 * Bspec does not list a specific disable sequence for g4x DP.
3405 * Follow the ilk+ sequence (disable pipe before the port) for
3406 * g4x DP as it does not suffer from underruns like the normal
3407 * g4x modeset sequence (disable pipe after the port).
3409 intel_dp_link_down(encoder, old_crtc_state);
3411 /* Only ilk+ has port A */
3412 if (port == PORT_A)
3413 ilk_edp_pll_off(intel_dp, old_crtc_state);
3416 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3417 const struct intel_crtc_state *old_crtc_state,
3418 const struct drm_connector_state *old_conn_state)
3420 intel_dp_link_down(encoder, old_crtc_state);
3423 static void chv_post_disable_dp(struct intel_encoder *encoder,
3424 const struct intel_crtc_state *old_crtc_state,
3425 const struct drm_connector_state *old_conn_state)
3427 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3429 intel_dp_link_down(encoder, old_crtc_state);
3431 vlv_dpio_get(dev_priv);
3433 /* Assert data lane reset */
3434 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3436 vlv_dpio_put(dev_priv);
3439 static void
3440 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3441 u32 *DP,
3442 u8 dp_train_pat)
3444 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3445 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3446 enum port port = intel_dig_port->base.port;
3447 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3449 if (dp_train_pat & train_pat_mask)
3450 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3451 dp_train_pat & train_pat_mask);
3453 if (HAS_DDI(dev_priv)) {
3454 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3456 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3457 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3458 else
3459 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3461 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3462 switch (dp_train_pat & train_pat_mask) {
3463 case DP_TRAINING_PATTERN_DISABLE:
3464 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3466 break;
3467 case DP_TRAINING_PATTERN_1:
3468 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3469 break;
3470 case DP_TRAINING_PATTERN_2:
3471 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3472 break;
3473 case DP_TRAINING_PATTERN_3:
3474 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3475 break;
3476 case DP_TRAINING_PATTERN_4:
3477 temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3478 break;
3480 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3482 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3483 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3484 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3486 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3487 case DP_TRAINING_PATTERN_DISABLE:
3488 *DP |= DP_LINK_TRAIN_OFF_CPT;
3489 break;
3490 case DP_TRAINING_PATTERN_1:
3491 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3492 break;
3493 case DP_TRAINING_PATTERN_2:
3494 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3495 break;
3496 case DP_TRAINING_PATTERN_3:
3497 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3498 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3499 break;
3502 } else {
3503 *DP &= ~DP_LINK_TRAIN_MASK;
3505 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3506 case DP_TRAINING_PATTERN_DISABLE:
3507 *DP |= DP_LINK_TRAIN_OFF;
3508 break;
3509 case DP_TRAINING_PATTERN_1:
3510 *DP |= DP_LINK_TRAIN_PAT_1;
3511 break;
3512 case DP_TRAINING_PATTERN_2:
3513 *DP |= DP_LINK_TRAIN_PAT_2;
3514 break;
3515 case DP_TRAINING_PATTERN_3:
3516 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3517 *DP |= DP_LINK_TRAIN_PAT_2;
3518 break;
3523 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3524 const struct intel_crtc_state *old_crtc_state)
3526 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3528 /* enable with pattern 1 (as per spec) */
3530 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3533 * Magic for VLV/CHV. We _must_ first set up the register
3534 * without actually enabling the port, and then do another
3535 * write to enable the port. Otherwise link training will
3536 * fail when the power sequencer is freshly used for this port.
3538 intel_dp->DP |= DP_PORT_EN;
3539 if (old_crtc_state->has_audio)
3540 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3542 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3543 POSTING_READ(intel_dp->output_reg);
3546 static void intel_enable_dp(struct intel_encoder *encoder,
3547 const struct intel_crtc_state *pipe_config,
3548 const struct drm_connector_state *conn_state)
3550 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3551 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3552 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3553 u32 dp_reg = I915_READ(intel_dp->output_reg);
3554 enum pipe pipe = crtc->pipe;
3555 intel_wakeref_t wakeref;
3557 if (WARN_ON(dp_reg & DP_PORT_EN))
3558 return;
3560 with_pps_lock(intel_dp, wakeref) {
3561 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3562 vlv_init_panel_power_sequencer(encoder, pipe_config);
3564 intel_dp_enable_port(intel_dp, pipe_config);
3566 edp_panel_vdd_on(intel_dp);
3567 edp_panel_on(intel_dp);
3568 edp_panel_vdd_off(intel_dp, true);
3571 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3572 unsigned int lane_mask = 0x0;
3574 if (IS_CHERRYVIEW(dev_priv))
3575 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3577 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3578 lane_mask);
3581 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3582 intel_dp_start_link_train(intel_dp);
3583 intel_dp_stop_link_train(intel_dp);
3585 if (pipe_config->has_audio) {
3586 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3587 pipe_name(pipe));
3588 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3592 static void g4x_enable_dp(struct intel_encoder *encoder,
3593 const struct intel_crtc_state *pipe_config,
3594 const struct drm_connector_state *conn_state)
3596 intel_enable_dp(encoder, pipe_config, conn_state);
3597 intel_edp_backlight_on(pipe_config, conn_state);
3600 static void vlv_enable_dp(struct intel_encoder *encoder,
3601 const struct intel_crtc_state *pipe_config,
3602 const struct drm_connector_state *conn_state)
3604 intel_edp_backlight_on(pipe_config, conn_state);
3607 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3608 const struct intel_crtc_state *pipe_config,
3609 const struct drm_connector_state *conn_state)
3611 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3612 enum port port = encoder->port;
3614 intel_dp_prepare(encoder, pipe_config);
3616 /* Only ilk+ has port A */
3617 if (port == PORT_A)
3618 ilk_edp_pll_on(intel_dp, pipe_config);
3621 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3623 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3624 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3625 enum pipe pipe = intel_dp->pps_pipe;
3626 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3628 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3630 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3631 return;
3633 edp_panel_vdd_off_sync(intel_dp);
3636 * VLV seems to get confused when multiple power sequencers
3637 * have the same port selected (even if only one has power/vdd
3638 * enabled). The failure manifests as vlv_wait_port_ready() failing
3639 * CHV on the other hand doesn't seem to mind having the same port
3640 * selected in multiple power sequencers, but let's clear the
3641 * port select always when logically disconnecting a power sequencer
3642 * from a port.
3644 DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3645 pipe_name(pipe), intel_dig_port->base.base.base.id,
3646 intel_dig_port->base.base.name);
3647 I915_WRITE(pp_on_reg, 0);
3648 POSTING_READ(pp_on_reg);
3650 intel_dp->pps_pipe = INVALID_PIPE;
3653 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3654 enum pipe pipe)
3656 struct intel_encoder *encoder;
3658 lockdep_assert_held(&dev_priv->pps_mutex);
3660 for_each_intel_dp(&dev_priv->drm, encoder) {
3661 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3663 WARN(intel_dp->active_pipe == pipe,
3664 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3665 pipe_name(pipe), encoder->base.base.id,
3666 encoder->base.name);
3668 if (intel_dp->pps_pipe != pipe)
3669 continue;
3671 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3672 pipe_name(pipe), encoder->base.base.id,
3673 encoder->base.name);
3675 /* make sure vdd is off before we steal it */
3676 vlv_detach_power_sequencer(intel_dp);
3680 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3681 const struct intel_crtc_state *crtc_state)
3683 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3684 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3685 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3687 lockdep_assert_held(&dev_priv->pps_mutex);
3689 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3691 if (intel_dp->pps_pipe != INVALID_PIPE &&
3692 intel_dp->pps_pipe != crtc->pipe) {
3694 * If another power sequencer was being used on this
3695 * port previously make sure to turn off vdd there while
3696 * we still have control of it.
3698 vlv_detach_power_sequencer(intel_dp);
3702 * We may be stealing the power
3703 * sequencer from another port.
3705 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3707 intel_dp->active_pipe = crtc->pipe;
3709 if (!intel_dp_is_edp(intel_dp))
3710 return;
3712 /* now it's all ours */
3713 intel_dp->pps_pipe = crtc->pipe;
3715 DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3716 pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3717 encoder->base.name);
3719 /* init power sequencer on this pipe and port */
3720 intel_dp_init_panel_power_sequencer(intel_dp);
3721 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3724 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3725 const struct intel_crtc_state *pipe_config,
3726 const struct drm_connector_state *conn_state)
3728 vlv_phy_pre_encoder_enable(encoder, pipe_config);
3730 intel_enable_dp(encoder, pipe_config, conn_state);
3733 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3734 const struct intel_crtc_state *pipe_config,
3735 const struct drm_connector_state *conn_state)
3737 intel_dp_prepare(encoder, pipe_config);
3739 vlv_phy_pre_pll_enable(encoder, pipe_config);
3742 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3743 const struct intel_crtc_state *pipe_config,
3744 const struct drm_connector_state *conn_state)
3746 chv_phy_pre_encoder_enable(encoder, pipe_config);
3748 intel_enable_dp(encoder, pipe_config, conn_state);
3750 /* Second common lane will stay alive on its own now */
3751 chv_phy_release_cl2_override(encoder);
3754 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3755 const struct intel_crtc_state *pipe_config,
3756 const struct drm_connector_state *conn_state)
3758 intel_dp_prepare(encoder, pipe_config);
3760 chv_phy_pre_pll_enable(encoder, pipe_config);
3763 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3764 const struct intel_crtc_state *old_crtc_state,
3765 const struct drm_connector_state *old_conn_state)
3767 chv_phy_post_pll_disable(encoder, old_crtc_state);
3771 * Fetch AUX CH registers 0x202 - 0x207 which contain
3772 * link status information
3774 bool
3775 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3777 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3778 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3781 /* These are source-specific values. */
3783 intel_dp_voltage_max(struct intel_dp *intel_dp)
3785 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3786 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3787 enum port port = encoder->port;
3789 if (HAS_DDI(dev_priv))
3790 return intel_ddi_dp_voltage_max(encoder);
3791 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3792 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3793 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3794 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3795 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3796 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3797 else
3798 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3802 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3804 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3805 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3806 enum port port = encoder->port;
3808 if (HAS_DDI(dev_priv)) {
3809 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3810 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3811 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3812 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3813 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3814 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3815 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3816 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3817 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3818 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3819 default:
3820 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3822 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3823 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3824 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3825 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3826 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3827 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3828 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3829 default:
3830 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3832 } else {
3833 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3834 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3835 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3836 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3837 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3838 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3839 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3840 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3841 default:
3842 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3847 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3849 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3850 unsigned long demph_reg_value, preemph_reg_value,
3851 uniqtranscale_reg_value;
3852 u8 train_set = intel_dp->train_set[0];
3854 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3855 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3856 preemph_reg_value = 0x0004000;
3857 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3858 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3859 demph_reg_value = 0x2B405555;
3860 uniqtranscale_reg_value = 0x552AB83A;
3861 break;
3862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3863 demph_reg_value = 0x2B404040;
3864 uniqtranscale_reg_value = 0x5548B83A;
3865 break;
3866 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3867 demph_reg_value = 0x2B245555;
3868 uniqtranscale_reg_value = 0x5560B83A;
3869 break;
3870 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3871 demph_reg_value = 0x2B405555;
3872 uniqtranscale_reg_value = 0x5598DA3A;
3873 break;
3874 default:
3875 return 0;
3877 break;
3878 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3879 preemph_reg_value = 0x0002000;
3880 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3881 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3882 demph_reg_value = 0x2B404040;
3883 uniqtranscale_reg_value = 0x5552B83A;
3884 break;
3885 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3886 demph_reg_value = 0x2B404848;
3887 uniqtranscale_reg_value = 0x5580B83A;
3888 break;
3889 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3890 demph_reg_value = 0x2B404040;
3891 uniqtranscale_reg_value = 0x55ADDA3A;
3892 break;
3893 default:
3894 return 0;
3896 break;
3897 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3898 preemph_reg_value = 0x0000000;
3899 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3900 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3901 demph_reg_value = 0x2B305555;
3902 uniqtranscale_reg_value = 0x5570B83A;
3903 break;
3904 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3905 demph_reg_value = 0x2B2B4040;
3906 uniqtranscale_reg_value = 0x55ADDA3A;
3907 break;
3908 default:
3909 return 0;
3911 break;
3912 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3913 preemph_reg_value = 0x0006000;
3914 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3915 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3916 demph_reg_value = 0x1B405555;
3917 uniqtranscale_reg_value = 0x55ADDA3A;
3918 break;
3919 default:
3920 return 0;
3922 break;
3923 default:
3924 return 0;
3927 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3928 uniqtranscale_reg_value, 0);
3930 return 0;
3933 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3935 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3936 u32 deemph_reg_value, margin_reg_value;
3937 bool uniq_trans_scale = false;
3938 u8 train_set = intel_dp->train_set[0];
3940 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3941 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3942 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3943 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3944 deemph_reg_value = 128;
3945 margin_reg_value = 52;
3946 break;
3947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3948 deemph_reg_value = 128;
3949 margin_reg_value = 77;
3950 break;
3951 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3952 deemph_reg_value = 128;
3953 margin_reg_value = 102;
3954 break;
3955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3956 deemph_reg_value = 128;
3957 margin_reg_value = 154;
3958 uniq_trans_scale = true;
3959 break;
3960 default:
3961 return 0;
3963 break;
3964 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3965 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3966 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3967 deemph_reg_value = 85;
3968 margin_reg_value = 78;
3969 break;
3970 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3971 deemph_reg_value = 85;
3972 margin_reg_value = 116;
3973 break;
3974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3975 deemph_reg_value = 85;
3976 margin_reg_value = 154;
3977 break;
3978 default:
3979 return 0;
3981 break;
3982 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3983 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3984 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3985 deemph_reg_value = 64;
3986 margin_reg_value = 104;
3987 break;
3988 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3989 deemph_reg_value = 64;
3990 margin_reg_value = 154;
3991 break;
3992 default:
3993 return 0;
3995 break;
3996 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3997 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3998 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3999 deemph_reg_value = 43;
4000 margin_reg_value = 154;
4001 break;
4002 default:
4003 return 0;
4005 break;
4006 default:
4007 return 0;
4010 chv_set_phy_signal_level(encoder, deemph_reg_value,
4011 margin_reg_value, uniq_trans_scale);
4013 return 0;
4016 static u32
4017 g4x_signal_levels(u8 train_set)
4019 u32 signal_levels = 0;
4021 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4023 default:
4024 signal_levels |= DP_VOLTAGE_0_4;
4025 break;
4026 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4027 signal_levels |= DP_VOLTAGE_0_6;
4028 break;
4029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4030 signal_levels |= DP_VOLTAGE_0_8;
4031 break;
4032 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4033 signal_levels |= DP_VOLTAGE_1_2;
4034 break;
4036 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4037 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4038 default:
4039 signal_levels |= DP_PRE_EMPHASIS_0;
4040 break;
4041 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4042 signal_levels |= DP_PRE_EMPHASIS_3_5;
4043 break;
4044 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4045 signal_levels |= DP_PRE_EMPHASIS_6;
4046 break;
4047 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4048 signal_levels |= DP_PRE_EMPHASIS_9_5;
4049 break;
4051 return signal_levels;
4054 /* SNB CPU eDP voltage swing and pre-emphasis control */
4055 static u32
4056 snb_cpu_edp_signal_levels(u8 train_set)
4058 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4059 DP_TRAIN_PRE_EMPHASIS_MASK);
4060 switch (signal_levels) {
4061 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4063 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4065 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4066 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4067 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4068 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4069 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4070 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4071 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4073 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4074 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4075 default:
4076 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4077 "0x%x\n", signal_levels);
4078 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4082 /* IVB CPU eDP voltage swing and pre-emphasis control */
4083 static u32
4084 ivb_cpu_edp_signal_levels(u8 train_set)
4086 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4087 DP_TRAIN_PRE_EMPHASIS_MASK);
4088 switch (signal_levels) {
4089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4090 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4092 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4094 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4096 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4097 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4098 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4099 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4101 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4102 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4103 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4104 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4106 default:
4107 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4108 "0x%x\n", signal_levels);
4109 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4113 void
4114 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4116 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4117 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4118 enum port port = intel_dig_port->base.port;
4119 u32 signal_levels, mask = 0;
4120 u8 train_set = intel_dp->train_set[0];
4122 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4123 signal_levels = bxt_signal_levels(intel_dp);
4124 } else if (HAS_DDI(dev_priv)) {
4125 signal_levels = ddi_signal_levels(intel_dp);
4126 mask = DDI_BUF_EMP_MASK;
4127 } else if (IS_CHERRYVIEW(dev_priv)) {
4128 signal_levels = chv_signal_levels(intel_dp);
4129 } else if (IS_VALLEYVIEW(dev_priv)) {
4130 signal_levels = vlv_signal_levels(intel_dp);
4131 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4132 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4133 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4134 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4135 signal_levels = snb_cpu_edp_signal_levels(train_set);
4136 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4137 } else {
4138 signal_levels = g4x_signal_levels(train_set);
4139 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4142 if (mask)
4143 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4145 DRM_DEBUG_KMS("Using vswing level %d\n",
4146 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4147 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4148 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4149 DP_TRAIN_PRE_EMPHASIS_SHIFT);
4151 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4153 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4154 POSTING_READ(intel_dp->output_reg);
4157 void
4158 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4159 u8 dp_train_pat)
4161 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4162 struct drm_i915_private *dev_priv =
4163 to_i915(intel_dig_port->base.base.dev);
4165 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4167 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4168 POSTING_READ(intel_dp->output_reg);
4171 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4173 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4174 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4175 enum port port = intel_dig_port->base.port;
4176 u32 val;
4178 if (!HAS_DDI(dev_priv))
4179 return;
4181 val = I915_READ(intel_dp->regs.dp_tp_ctl);
4182 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4183 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4184 I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4187 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4188 * reason we need to set idle transmission mode is to work around a HW
4189 * issue where we enable the pipe while not in idle link-training mode.
4190 * In this case there is requirement to wait for a minimum number of
4191 * idle patterns to be sent.
4193 if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4194 return;
4196 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4197 DP_TP_STATUS_IDLE_DONE, 1))
4198 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4201 static void
4202 intel_dp_link_down(struct intel_encoder *encoder,
4203 const struct intel_crtc_state *old_crtc_state)
4205 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4206 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4207 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4208 enum port port = encoder->port;
4209 u32 DP = intel_dp->DP;
4211 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4212 return;
4214 DRM_DEBUG_KMS("\n");
4216 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4217 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4218 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4219 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4220 } else {
4221 DP &= ~DP_LINK_TRAIN_MASK;
4222 DP |= DP_LINK_TRAIN_PAT_IDLE;
4224 I915_WRITE(intel_dp->output_reg, DP);
4225 POSTING_READ(intel_dp->output_reg);
4227 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4228 I915_WRITE(intel_dp->output_reg, DP);
4229 POSTING_READ(intel_dp->output_reg);
4232 * HW workaround for IBX, we need to move the port
4233 * to transcoder A after disabling it to allow the
4234 * matching HDMI port to be enabled on transcoder A.
4236 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4238 * We get CPU/PCH FIFO underruns on the other pipe when
4239 * doing the workaround. Sweep them under the rug.
4241 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4242 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4244 /* always enable with pattern 1 (as per spec) */
4245 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4246 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4247 DP_LINK_TRAIN_PAT_1;
4248 I915_WRITE(intel_dp->output_reg, DP);
4249 POSTING_READ(intel_dp->output_reg);
4251 DP &= ~DP_PORT_EN;
4252 I915_WRITE(intel_dp->output_reg, DP);
4253 POSTING_READ(intel_dp->output_reg);
4255 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4256 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4257 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4260 msleep(intel_dp->panel_power_down_delay);
4262 intel_dp->DP = DP;
4264 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4265 intel_wakeref_t wakeref;
4267 with_pps_lock(intel_dp, wakeref)
4268 intel_dp->active_pipe = INVALID_PIPE;
4272 static void
4273 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4275 u8 dpcd_ext[6];
4278 * Prior to DP1.3 the bit represented by
4279 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4280 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4281 * the true capability of the panel. The only way to check is to
4282 * then compare 0000h and 2200h.
4284 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4285 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4286 return;
4288 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4289 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4290 DRM_ERROR("DPCD failed read at extended capabilities\n");
4291 return;
4294 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4295 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4296 return;
4299 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4300 return;
4302 DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4303 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4305 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4308 bool
4309 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4311 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4312 sizeof(intel_dp->dpcd)) < 0)
4313 return false; /* aux transfer failed */
4315 intel_dp_extended_receiver_capabilities(intel_dp);
4317 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4319 return intel_dp->dpcd[DP_DPCD_REV] != 0;
4322 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4324 u8 dprx = 0;
4326 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4327 &dprx) != 1)
4328 return false;
4329 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4332 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4335 * Clear the cached register set to avoid using stale values
4336 * for the sinks that do not support DSC.
4338 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4340 /* Clear fec_capable to avoid using stale values */
4341 intel_dp->fec_capable = 0;
4343 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4344 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4345 intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4346 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4347 intel_dp->dsc_dpcd,
4348 sizeof(intel_dp->dsc_dpcd)) < 0)
4349 DRM_ERROR("Failed to read DPCD register 0x%x\n",
4350 DP_DSC_SUPPORT);
4352 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4353 (int)sizeof(intel_dp->dsc_dpcd),
4354 intel_dp->dsc_dpcd);
4356 /* FEC is supported only on DP 1.4 */
4357 if (!intel_dp_is_edp(intel_dp) &&
4358 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4359 &intel_dp->fec_capable) < 0)
4360 DRM_ERROR("Failed to read FEC DPCD register\n");
4362 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4366 static bool
4367 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4369 struct drm_i915_private *dev_priv =
4370 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4372 /* this function is meant to be called only once */
4373 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4375 if (!intel_dp_read_dpcd(intel_dp))
4376 return false;
4378 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4379 drm_dp_is_branch(intel_dp->dpcd));
4382 * Read the eDP display control registers.
4384 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4385 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4386 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4387 * method). The display control registers should read zero if they're
4388 * not supported anyway.
4390 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4391 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4392 sizeof(intel_dp->edp_dpcd))
4393 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4394 intel_dp->edp_dpcd);
4397 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4398 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4400 intel_psr_init_dpcd(intel_dp);
4402 /* Read the eDP 1.4+ supported link rates. */
4403 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4404 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4405 int i;
4407 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4408 sink_rates, sizeof(sink_rates));
4410 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4411 int val = le16_to_cpu(sink_rates[i]);
4413 if (val == 0)
4414 break;
4416 /* Value read multiplied by 200kHz gives the per-lane
4417 * link rate in kHz. The source rates are, however,
4418 * stored in terms of LS_Clk kHz. The full conversion
4419 * back to symbols is
4420 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4422 intel_dp->sink_rates[i] = (val * 200) / 10;
4424 intel_dp->num_sink_rates = i;
4428 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4429 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4431 if (intel_dp->num_sink_rates)
4432 intel_dp->use_rate_select = true;
4433 else
4434 intel_dp_set_sink_rates(intel_dp);
4436 intel_dp_set_common_rates(intel_dp);
4438 /* Read the eDP DSC DPCD registers */
4439 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4440 intel_dp_get_dsc_sink_cap(intel_dp);
4442 return true;
4446 static bool
4447 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4449 if (!intel_dp_read_dpcd(intel_dp))
4450 return false;
4453 * Don't clobber cached eDP rates. Also skip re-reading
4454 * the OUI/ID since we know it won't change.
4456 if (!intel_dp_is_edp(intel_dp)) {
4457 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4458 drm_dp_is_branch(intel_dp->dpcd));
4460 intel_dp_set_sink_rates(intel_dp);
4461 intel_dp_set_common_rates(intel_dp);
4465 * Some eDP panels do not set a valid value for sink count, that is why
4466 * it don't care about read it here and in intel_edp_init_dpcd().
4468 if (!intel_dp_is_edp(intel_dp) &&
4469 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4470 u8 count;
4471 ssize_t r;
4473 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4474 if (r < 1)
4475 return false;
4478 * Sink count can change between short pulse hpd hence
4479 * a member variable in intel_dp will track any changes
4480 * between short pulse interrupts.
4482 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4485 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4486 * a dongle is present but no display. Unless we require to know
4487 * if a dongle is present or not, we don't need to update
4488 * downstream port information. So, an early return here saves
4489 * time from performing other operations which are not required.
4491 if (!intel_dp->sink_count)
4492 return false;
4495 if (!drm_dp_is_branch(intel_dp->dpcd))
4496 return true; /* native DP sink */
4498 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4499 return true; /* no per-port downstream info */
4501 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4502 intel_dp->downstream_ports,
4503 DP_MAX_DOWNSTREAM_PORTS) < 0)
4504 return false; /* downstream port status fetch failed */
4506 return true;
4509 static bool
4510 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4512 u8 mstm_cap;
4514 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4515 return false;
4517 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4518 return false;
4520 return mstm_cap & DP_MST_CAP;
4523 static bool
4524 intel_dp_can_mst(struct intel_dp *intel_dp)
4526 return i915_modparams.enable_dp_mst &&
4527 intel_dp->can_mst &&
4528 intel_dp_sink_can_mst(intel_dp);
4531 static void
4532 intel_dp_configure_mst(struct intel_dp *intel_dp)
4534 struct intel_encoder *encoder =
4535 &dp_to_dig_port(intel_dp)->base;
4536 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4538 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4539 encoder->base.base.id, encoder->base.name,
4540 yesno(intel_dp->can_mst), yesno(sink_can_mst),
4541 yesno(i915_modparams.enable_dp_mst));
4543 if (!intel_dp->can_mst)
4544 return;
4546 intel_dp->is_mst = sink_can_mst &&
4547 i915_modparams.enable_dp_mst;
4549 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4550 intel_dp->is_mst);
4553 static bool
4554 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4556 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4557 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4558 DP_DPRX_ESI_LEN;
4561 bool
4562 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4563 const struct drm_connector_state *conn_state)
4566 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4567 * of Color Encoding Format and Content Color Gamut], in order to
4568 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4570 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4571 return true;
4573 switch (conn_state->colorspace) {
4574 case DRM_MODE_COLORIMETRY_SYCC_601:
4575 case DRM_MODE_COLORIMETRY_OPYCC_601:
4576 case DRM_MODE_COLORIMETRY_BT2020_YCC:
4577 case DRM_MODE_COLORIMETRY_BT2020_RGB:
4578 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4579 return true;
4580 default:
4581 break;
4584 return false;
4587 static void
4588 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4589 const struct intel_crtc_state *crtc_state,
4590 const struct drm_connector_state *conn_state)
4592 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4593 struct dp_sdp vsc_sdp = {};
4595 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4596 vsc_sdp.sdp_header.HB0 = 0;
4597 vsc_sdp.sdp_header.HB1 = 0x7;
4600 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4601 * Colorimetry Format indication.
4603 vsc_sdp.sdp_header.HB2 = 0x5;
4606 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4607 * Colorimetry Format indication (HB2 = 05h).
4609 vsc_sdp.sdp_header.HB3 = 0x13;
4611 /* DP 1.4a spec, Table 2-120 */
4612 switch (crtc_state->output_format) {
4613 case INTEL_OUTPUT_FORMAT_YCBCR444:
4614 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4615 break;
4616 case INTEL_OUTPUT_FORMAT_YCBCR420:
4617 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4618 break;
4619 case INTEL_OUTPUT_FORMAT_RGB:
4620 default:
4621 /* RGB: DB16[7:4] = 0h */
4622 break;
4625 switch (conn_state->colorspace) {
4626 case DRM_MODE_COLORIMETRY_BT709_YCC:
4627 vsc_sdp.db[16] |= 0x1;
4628 break;
4629 case DRM_MODE_COLORIMETRY_XVYCC_601:
4630 vsc_sdp.db[16] |= 0x2;
4631 break;
4632 case DRM_MODE_COLORIMETRY_XVYCC_709:
4633 vsc_sdp.db[16] |= 0x3;
4634 break;
4635 case DRM_MODE_COLORIMETRY_SYCC_601:
4636 vsc_sdp.db[16] |= 0x4;
4637 break;
4638 case DRM_MODE_COLORIMETRY_OPYCC_601:
4639 vsc_sdp.db[16] |= 0x5;
4640 break;
4641 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4642 case DRM_MODE_COLORIMETRY_BT2020_RGB:
4643 vsc_sdp.db[16] |= 0x6;
4644 break;
4645 case DRM_MODE_COLORIMETRY_BT2020_YCC:
4646 vsc_sdp.db[16] |= 0x7;
4647 break;
4648 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4649 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4650 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4651 break;
4652 default:
4653 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4655 /* RGB->YCBCR color conversion uses the BT.709 color space. */
4656 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4657 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4658 break;
4662 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4663 * the following Component Bit Depth values are defined:
4664 * 001b = 8bpc.
4665 * 010b = 10bpc.
4666 * 011b = 12bpc.
4667 * 100b = 16bpc.
4669 switch (crtc_state->pipe_bpp) {
4670 case 24: /* 8bpc */
4671 vsc_sdp.db[17] = 0x1;
4672 break;
4673 case 30: /* 10bpc */
4674 vsc_sdp.db[17] = 0x2;
4675 break;
4676 case 36: /* 12bpc */
4677 vsc_sdp.db[17] = 0x3;
4678 break;
4679 case 48: /* 16bpc */
4680 vsc_sdp.db[17] = 0x4;
4681 break;
4682 default:
4683 MISSING_CASE(crtc_state->pipe_bpp);
4684 break;
4688 * Dynamic Range (Bit 7)
4689 * 0 = VESA range, 1 = CTA range.
4690 * all YCbCr are always limited range
4692 vsc_sdp.db[17] |= 0x80;
4695 * Content Type (Bits 2:0)
4696 * 000b = Not defined.
4697 * 001b = Graphics.
4698 * 010b = Photo.
4699 * 011b = Video.
4700 * 100b = Game
4701 * All other values are RESERVED.
4702 * Note: See CTA-861-G for the definition and expected
4703 * processing by a stream sink for the above contect types.
4705 vsc_sdp.db[18] = 0;
4707 intel_dig_port->write_infoframe(&intel_dig_port->base,
4708 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4711 static void
4712 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4713 const struct intel_crtc_state *crtc_state,
4714 const struct drm_connector_state *conn_state)
4716 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4717 struct dp_sdp infoframe_sdp = {};
4718 struct hdmi_drm_infoframe drm_infoframe = {};
4719 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4720 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4721 ssize_t len;
4722 int ret;
4724 ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4725 if (ret) {
4726 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4727 return;
4730 len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4731 if (len < 0) {
4732 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4733 return;
4736 if (len != infoframe_size) {
4737 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4738 return;
4742 * Set up the infoframe sdp packet for HDR static metadata.
4743 * Prepare VSC Header for SU as per DP 1.4a spec,
4744 * Table 2-100 and Table 2-101
4747 /* Packet ID, 00h for non-Audio INFOFRAME */
4748 infoframe_sdp.sdp_header.HB0 = 0;
4750 * Packet Type 80h + Non-audio INFOFRAME Type value
4751 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4753 infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4755 * Least Significant Eight Bits of (Data Byte Count – 1)
4756 * infoframe_size - 1,
4758 infoframe_sdp.sdp_header.HB2 = 0x1D;
4759 /* INFOFRAME SDP Version Number */
4760 infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4761 /* CTA Header Byte 2 (INFOFRAME Version Number) */
4762 infoframe_sdp.db[0] = drm_infoframe.version;
4763 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4764 infoframe_sdp.db[1] = drm_infoframe.length;
4766 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4767 * HDMI_INFOFRAME_HEADER_SIZE
4769 BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4770 memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4771 HDMI_DRM_INFOFRAME_SIZE);
4774 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4775 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4776 * - Two Data Blocks: 2 bytes
4777 * CTA Header Byte2 (INFOFRAME Version Number)
4778 * CTA Header Byte3 (Length of INFOFRAME)
4779 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4781 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4782 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4783 * will pad rest of the size.
4785 intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4786 HDMI_PACKET_TYPE_GAMUT_METADATA,
4787 &infoframe_sdp,
4788 sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4791 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4792 const struct intel_crtc_state *crtc_state,
4793 const struct drm_connector_state *conn_state)
4795 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4796 return;
4798 intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4801 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4802 const struct intel_crtc_state *crtc_state,
4803 const struct drm_connector_state *conn_state)
4805 if (!conn_state->hdr_output_metadata)
4806 return;
4808 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4809 crtc_state,
4810 conn_state);
4813 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4815 int status = 0;
4816 int test_link_rate;
4817 u8 test_lane_count, test_link_bw;
4818 /* (DP CTS 1.2)
4819 * 4.3.1.11
4821 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4822 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4823 &test_lane_count);
4825 if (status <= 0) {
4826 DRM_DEBUG_KMS("Lane count read failed\n");
4827 return DP_TEST_NAK;
4829 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4831 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4832 &test_link_bw);
4833 if (status <= 0) {
4834 DRM_DEBUG_KMS("Link Rate read failed\n");
4835 return DP_TEST_NAK;
4837 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4839 /* Validate the requested link rate and lane count */
4840 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4841 test_lane_count))
4842 return DP_TEST_NAK;
4844 intel_dp->compliance.test_lane_count = test_lane_count;
4845 intel_dp->compliance.test_link_rate = test_link_rate;
4847 return DP_TEST_ACK;
4850 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4852 u8 test_pattern;
4853 u8 test_misc;
4854 __be16 h_width, v_height;
4855 int status = 0;
4857 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4858 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4859 &test_pattern);
4860 if (status <= 0) {
4861 DRM_DEBUG_KMS("Test pattern read failed\n");
4862 return DP_TEST_NAK;
4864 if (test_pattern != DP_COLOR_RAMP)
4865 return DP_TEST_NAK;
4867 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4868 &h_width, 2);
4869 if (status <= 0) {
4870 DRM_DEBUG_KMS("H Width read failed\n");
4871 return DP_TEST_NAK;
4874 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4875 &v_height, 2);
4876 if (status <= 0) {
4877 DRM_DEBUG_KMS("V Height read failed\n");
4878 return DP_TEST_NAK;
4881 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4882 &test_misc);
4883 if (status <= 0) {
4884 DRM_DEBUG_KMS("TEST MISC read failed\n");
4885 return DP_TEST_NAK;
4887 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4888 return DP_TEST_NAK;
4889 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4890 return DP_TEST_NAK;
4891 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4892 case DP_TEST_BIT_DEPTH_6:
4893 intel_dp->compliance.test_data.bpc = 6;
4894 break;
4895 case DP_TEST_BIT_DEPTH_8:
4896 intel_dp->compliance.test_data.bpc = 8;
4897 break;
4898 default:
4899 return DP_TEST_NAK;
4902 intel_dp->compliance.test_data.video_pattern = test_pattern;
4903 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4904 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4905 /* Set test active flag here so userspace doesn't interrupt things */
4906 intel_dp->compliance.test_active = true;
4908 return DP_TEST_ACK;
4911 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4913 u8 test_result = DP_TEST_ACK;
4914 struct intel_connector *intel_connector = intel_dp->attached_connector;
4915 struct drm_connector *connector = &intel_connector->base;
4917 if (intel_connector->detect_edid == NULL ||
4918 connector->edid_corrupt ||
4919 intel_dp->aux.i2c_defer_count > 6) {
4920 /* Check EDID read for NACKs, DEFERs and corruption
4921 * (DP CTS 1.2 Core r1.1)
4922 * 4.2.2.4 : Failed EDID read, I2C_NAK
4923 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4924 * 4.2.2.6 : EDID corruption detected
4925 * Use failsafe mode for all cases
4927 if (intel_dp->aux.i2c_nack_count > 0 ||
4928 intel_dp->aux.i2c_defer_count > 0)
4929 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4930 intel_dp->aux.i2c_nack_count,
4931 intel_dp->aux.i2c_defer_count);
4932 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4933 } else {
4934 struct edid *block = intel_connector->detect_edid;
4936 /* We have to write the checksum
4937 * of the last block read
4939 block += intel_connector->detect_edid->extensions;
4941 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4942 block->checksum) <= 0)
4943 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4945 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4946 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4949 /* Set test active flag here so userspace doesn't interrupt things */
4950 intel_dp->compliance.test_active = true;
4952 return test_result;
4955 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4957 u8 test_result = DP_TEST_NAK;
4958 return test_result;
4961 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4963 u8 response = DP_TEST_NAK;
4964 u8 request = 0;
4965 int status;
4967 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4968 if (status <= 0) {
4969 DRM_DEBUG_KMS("Could not read test request from sink\n");
4970 goto update_status;
4973 switch (request) {
4974 case DP_TEST_LINK_TRAINING:
4975 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4976 response = intel_dp_autotest_link_training(intel_dp);
4977 break;
4978 case DP_TEST_LINK_VIDEO_PATTERN:
4979 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4980 response = intel_dp_autotest_video_pattern(intel_dp);
4981 break;
4982 case DP_TEST_LINK_EDID_READ:
4983 DRM_DEBUG_KMS("EDID test requested\n");
4984 response = intel_dp_autotest_edid(intel_dp);
4985 break;
4986 case DP_TEST_LINK_PHY_TEST_PATTERN:
4987 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4988 response = intel_dp_autotest_phy_pattern(intel_dp);
4989 break;
4990 default:
4991 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4992 break;
4995 if (response & DP_TEST_ACK)
4996 intel_dp->compliance.test_type = request;
4998 update_status:
4999 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5000 if (status <= 0)
5001 DRM_DEBUG_KMS("Could not write test response to sink\n");
5004 static int
5005 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5007 bool bret;
5009 if (intel_dp->is_mst) {
5010 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5011 int ret = 0;
5012 int retry;
5013 bool handled;
5015 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5016 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5017 go_again:
5018 if (bret == true) {
5020 /* check link status - esi[10] = 0x200c */
5021 if (intel_dp->active_mst_links > 0 &&
5022 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5023 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5024 intel_dp_start_link_train(intel_dp);
5025 intel_dp_stop_link_train(intel_dp);
5028 DRM_DEBUG_KMS("got esi %3ph\n", esi);
5029 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5031 if (handled) {
5032 for (retry = 0; retry < 3; retry++) {
5033 int wret;
5034 wret = drm_dp_dpcd_write(&intel_dp->aux,
5035 DP_SINK_COUNT_ESI+1,
5036 &esi[1], 3);
5037 if (wret == 3) {
5038 break;
5042 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5043 if (bret == true) {
5044 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5045 goto go_again;
5047 } else
5048 ret = 0;
5050 return ret;
5051 } else {
5052 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5053 intel_dp->is_mst = false;
5054 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5055 intel_dp->is_mst);
5058 return -EINVAL;
5061 static bool
5062 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5064 u8 link_status[DP_LINK_STATUS_SIZE];
5066 if (!intel_dp->link_trained)
5067 return false;
5070 * While PSR source HW is enabled, it will control main-link sending
5071 * frames, enabling and disabling it so trying to do a retrain will fail
5072 * as the link would or not be on or it could mix training patterns
5073 * and frame data at the same time causing retrain to fail.
5074 * Also when exiting PSR, HW will retrain the link anyways fixing
5075 * any link status error.
5077 if (intel_psr_enabled(intel_dp))
5078 return false;
5080 if (!intel_dp_get_link_status(intel_dp, link_status))
5081 return false;
5084 * Validate the cached values of intel_dp->link_rate and
5085 * intel_dp->lane_count before attempting to retrain.
5087 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5088 intel_dp->lane_count))
5089 return false;
5091 /* Retrain if Channel EQ or CR not ok */
5092 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5095 int intel_dp_retrain_link(struct intel_encoder *encoder,
5096 struct drm_modeset_acquire_ctx *ctx)
5098 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5099 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5100 struct intel_connector *connector = intel_dp->attached_connector;
5101 struct drm_connector_state *conn_state;
5102 struct intel_crtc_state *crtc_state;
5103 struct intel_crtc *crtc;
5104 int ret;
5106 /* FIXME handle the MST connectors as well */
5108 if (!connector || connector->base.status != connector_status_connected)
5109 return 0;
5111 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5112 ctx);
5113 if (ret)
5114 return ret;
5116 conn_state = connector->base.state;
5118 crtc = to_intel_crtc(conn_state->crtc);
5119 if (!crtc)
5120 return 0;
5122 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5123 if (ret)
5124 return ret;
5126 crtc_state = to_intel_crtc_state(crtc->base.state);
5128 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5130 if (!crtc_state->hw.active)
5131 return 0;
5133 if (conn_state->commit &&
5134 !try_wait_for_completion(&conn_state->commit->hw_done))
5135 return 0;
5137 if (!intel_dp_needs_link_retrain(intel_dp))
5138 return 0;
5140 /* Suppress underruns caused by re-training */
5141 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5142 if (crtc_state->has_pch_encoder)
5143 intel_set_pch_fifo_underrun_reporting(dev_priv,
5144 intel_crtc_pch_transcoder(crtc), false);
5146 intel_dp_start_link_train(intel_dp);
5147 intel_dp_stop_link_train(intel_dp);
5149 /* Keep underrun reporting disabled until things are stable */
5150 intel_wait_for_vblank(dev_priv, crtc->pipe);
5152 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5153 if (crtc_state->has_pch_encoder)
5154 intel_set_pch_fifo_underrun_reporting(dev_priv,
5155 intel_crtc_pch_transcoder(crtc), true);
5157 return 0;
5161 * If display is now connected check links status,
5162 * there has been known issues of link loss triggering
5163 * long pulse.
5165 * Some sinks (eg. ASUS PB287Q) seem to perform some
5166 * weird HPD ping pong during modesets. So we can apparently
5167 * end up with HPD going low during a modeset, and then
5168 * going back up soon after. And once that happens we must
5169 * retrain the link to get a picture. That's in case no
5170 * userspace component reacted to intermittent HPD dip.
5172 static enum intel_hotplug_state
5173 intel_dp_hotplug(struct intel_encoder *encoder,
5174 struct intel_connector *connector,
5175 bool irq_received)
5177 struct drm_modeset_acquire_ctx ctx;
5178 enum intel_hotplug_state state;
5179 int ret;
5181 state = intel_encoder_hotplug(encoder, connector, irq_received);
5183 drm_modeset_acquire_init(&ctx, 0);
5185 for (;;) {
5186 ret = intel_dp_retrain_link(encoder, &ctx);
5188 if (ret == -EDEADLK) {
5189 drm_modeset_backoff(&ctx);
5190 continue;
5193 break;
5196 drm_modeset_drop_locks(&ctx);
5197 drm_modeset_acquire_fini(&ctx);
5198 WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5201 * Keeping it consistent with intel_ddi_hotplug() and
5202 * intel_hdmi_hotplug().
5204 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5205 state = INTEL_HOTPLUG_RETRY;
5207 return state;
5210 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5212 u8 val;
5214 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5215 return;
5217 if (drm_dp_dpcd_readb(&intel_dp->aux,
5218 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5219 return;
5221 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5223 if (val & DP_AUTOMATED_TEST_REQUEST)
5224 intel_dp_handle_test_request(intel_dp);
5226 if (val & DP_CP_IRQ)
5227 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5229 if (val & DP_SINK_SPECIFIC_IRQ)
5230 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5234 * According to DP spec
5235 * 5.1.2:
5236 * 1. Read DPCD
5237 * 2. Configure link according to Receiver Capabilities
5238 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
5239 * 4. Check link status on receipt of hot-plug interrupt
5241 * intel_dp_short_pulse - handles short pulse interrupts
5242 * when full detection is not required.
5243 * Returns %true if short pulse is handled and full detection
5244 * is NOT required and %false otherwise.
5246 static bool
5247 intel_dp_short_pulse(struct intel_dp *intel_dp)
5249 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5250 u8 old_sink_count = intel_dp->sink_count;
5251 bool ret;
5254 * Clearing compliance test variables to allow capturing
5255 * of values for next automated test request.
5257 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5260 * Now read the DPCD to see if it's actually running
5261 * If the current value of sink count doesn't match with
5262 * the value that was stored earlier or dpcd read failed
5263 * we need to do full detection
5265 ret = intel_dp_get_dpcd(intel_dp);
5267 if ((old_sink_count != intel_dp->sink_count) || !ret) {
5268 /* No need to proceed if we are going to do full detect */
5269 return false;
5272 intel_dp_check_service_irq(intel_dp);
5274 /* Handle CEC interrupts, if any */
5275 drm_dp_cec_irq(&intel_dp->aux);
5277 /* defer to the hotplug work for link retraining if needed */
5278 if (intel_dp_needs_link_retrain(intel_dp))
5279 return false;
5281 intel_psr_short_pulse(intel_dp);
5283 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5284 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5285 /* Send a Hotplug Uevent to userspace to start modeset */
5286 drm_kms_helper_hotplug_event(&dev_priv->drm);
5289 return true;
5292 /* XXX this is probably wrong for multiple downstream ports */
5293 static enum drm_connector_status
5294 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5296 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5297 u8 *dpcd = intel_dp->dpcd;
5298 u8 type;
5300 if (WARN_ON(intel_dp_is_edp(intel_dp)))
5301 return connector_status_connected;
5303 if (lspcon->active)
5304 lspcon_resume(lspcon);
5306 if (!intel_dp_get_dpcd(intel_dp))
5307 return connector_status_disconnected;
5309 /* if there's no downstream port, we're done */
5310 if (!drm_dp_is_branch(dpcd))
5311 return connector_status_connected;
5313 /* If we're HPD-aware, SINK_COUNT changes dynamically */
5314 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5315 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5317 return intel_dp->sink_count ?
5318 connector_status_connected : connector_status_disconnected;
5321 if (intel_dp_can_mst(intel_dp))
5322 return connector_status_connected;
5324 /* If no HPD, poke DDC gently */
5325 if (drm_probe_ddc(&intel_dp->aux.ddc))
5326 return connector_status_connected;
5328 /* Well we tried, say unknown for unreliable port types */
5329 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5330 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5331 if (type == DP_DS_PORT_TYPE_VGA ||
5332 type == DP_DS_PORT_TYPE_NON_EDID)
5333 return connector_status_unknown;
5334 } else {
5335 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5336 DP_DWN_STRM_PORT_TYPE_MASK;
5337 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5338 type == DP_DWN_STRM_PORT_TYPE_OTHER)
5339 return connector_status_unknown;
5342 /* Anything else is out of spec, warn and ignore */
5343 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5344 return connector_status_disconnected;
5347 static enum drm_connector_status
5348 edp_detect(struct intel_dp *intel_dp)
5350 return connector_status_connected;
5353 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5355 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5356 u32 bit;
5358 switch (encoder->hpd_pin) {
5359 case HPD_PORT_B:
5360 bit = SDE_PORTB_HOTPLUG;
5361 break;
5362 case HPD_PORT_C:
5363 bit = SDE_PORTC_HOTPLUG;
5364 break;
5365 case HPD_PORT_D:
5366 bit = SDE_PORTD_HOTPLUG;
5367 break;
5368 default:
5369 MISSING_CASE(encoder->hpd_pin);
5370 return false;
5373 return I915_READ(SDEISR) & bit;
5376 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5378 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5379 u32 bit;
5381 switch (encoder->hpd_pin) {
5382 case HPD_PORT_B:
5383 bit = SDE_PORTB_HOTPLUG_CPT;
5384 break;
5385 case HPD_PORT_C:
5386 bit = SDE_PORTC_HOTPLUG_CPT;
5387 break;
5388 case HPD_PORT_D:
5389 bit = SDE_PORTD_HOTPLUG_CPT;
5390 break;
5391 default:
5392 MISSING_CASE(encoder->hpd_pin);
5393 return false;
5396 return I915_READ(SDEISR) & bit;
5399 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5401 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5402 u32 bit;
5404 switch (encoder->hpd_pin) {
5405 case HPD_PORT_A:
5406 bit = SDE_PORTA_HOTPLUG_SPT;
5407 break;
5408 case HPD_PORT_E:
5409 bit = SDE_PORTE_HOTPLUG_SPT;
5410 break;
5411 default:
5412 return cpt_digital_port_connected(encoder);
5415 return I915_READ(SDEISR) & bit;
5418 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5420 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5421 u32 bit;
5423 switch (encoder->hpd_pin) {
5424 case HPD_PORT_B:
5425 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5426 break;
5427 case HPD_PORT_C:
5428 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5429 break;
5430 case HPD_PORT_D:
5431 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5432 break;
5433 default:
5434 MISSING_CASE(encoder->hpd_pin);
5435 return false;
5438 return I915_READ(PORT_HOTPLUG_STAT) & bit;
5441 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5443 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5444 u32 bit;
5446 switch (encoder->hpd_pin) {
5447 case HPD_PORT_B:
5448 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5449 break;
5450 case HPD_PORT_C:
5451 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5452 break;
5453 case HPD_PORT_D:
5454 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5455 break;
5456 default:
5457 MISSING_CASE(encoder->hpd_pin);
5458 return false;
5461 return I915_READ(PORT_HOTPLUG_STAT) & bit;
5464 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5466 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5468 if (encoder->hpd_pin == HPD_PORT_A)
5469 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5470 else
5471 return ibx_digital_port_connected(encoder);
5474 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5476 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5478 if (encoder->hpd_pin == HPD_PORT_A)
5479 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5480 else
5481 return cpt_digital_port_connected(encoder);
5484 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5486 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5488 if (encoder->hpd_pin == HPD_PORT_A)
5489 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5490 else
5491 return cpt_digital_port_connected(encoder);
5494 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5496 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5498 if (encoder->hpd_pin == HPD_PORT_A)
5499 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5500 else
5501 return cpt_digital_port_connected(encoder);
5504 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5506 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5507 u32 bit;
5509 switch (encoder->hpd_pin) {
5510 case HPD_PORT_A:
5511 bit = BXT_DE_PORT_HP_DDIA;
5512 break;
5513 case HPD_PORT_B:
5514 bit = BXT_DE_PORT_HP_DDIB;
5515 break;
5516 case HPD_PORT_C:
5517 bit = BXT_DE_PORT_HP_DDIC;
5518 break;
5519 default:
5520 MISSING_CASE(encoder->hpd_pin);
5521 return false;
5524 return I915_READ(GEN8_DE_PORT_ISR) & bit;
5527 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5528 enum phy phy)
5530 if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5531 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5533 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5536 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5538 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5539 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5540 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5542 if (intel_phy_is_combo(dev_priv, phy))
5543 return intel_combo_phy_connected(dev_priv, phy);
5544 else if (intel_phy_is_tc(dev_priv, phy))
5545 return intel_tc_port_connected(dig_port);
5546 else
5547 MISSING_CASE(encoder->hpd_pin);
5549 return false;
5553 * intel_digital_port_connected - is the specified port connected?
5554 * @encoder: intel_encoder
5556 * In cases where there's a connector physically connected but it can't be used
5557 * by our hardware we also return false, since the rest of the driver should
5558 * pretty much treat the port as disconnected. This is relevant for type-C
5559 * (starting on ICL) where there's ownership involved.
5561 * Return %true if port is connected, %false otherwise.
5563 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5565 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5567 if (HAS_GMCH(dev_priv)) {
5568 if (IS_GM45(dev_priv))
5569 return gm45_digital_port_connected(encoder);
5570 else
5571 return g4x_digital_port_connected(encoder);
5574 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5575 return icp_digital_port_connected(encoder);
5576 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5577 return spt_digital_port_connected(encoder);
5578 else if (IS_GEN9_LP(dev_priv))
5579 return bxt_digital_port_connected(encoder);
5580 else if (IS_GEN(dev_priv, 8))
5581 return bdw_digital_port_connected(encoder);
5582 else if (IS_GEN(dev_priv, 7))
5583 return ivb_digital_port_connected(encoder);
5584 else if (IS_GEN(dev_priv, 6))
5585 return snb_digital_port_connected(encoder);
5586 else if (IS_GEN(dev_priv, 5))
5587 return ilk_digital_port_connected(encoder);
5589 MISSING_CASE(INTEL_GEN(dev_priv));
5590 return false;
5593 bool intel_digital_port_connected(struct intel_encoder *encoder)
5595 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5596 bool is_connected = false;
5597 intel_wakeref_t wakeref;
5599 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5600 is_connected = __intel_digital_port_connected(encoder);
5602 return is_connected;
5605 static struct edid *
5606 intel_dp_get_edid(struct intel_dp *intel_dp)
5608 struct intel_connector *intel_connector = intel_dp->attached_connector;
5610 /* use cached edid if we have one */
5611 if (intel_connector->edid) {
5612 /* invalid edid */
5613 if (IS_ERR(intel_connector->edid))
5614 return NULL;
5616 return drm_edid_duplicate(intel_connector->edid);
5617 } else
5618 return drm_get_edid(&intel_connector->base,
5619 &intel_dp->aux.ddc);
5622 static void
5623 intel_dp_set_edid(struct intel_dp *intel_dp)
5625 struct intel_connector *intel_connector = intel_dp->attached_connector;
5626 struct edid *edid;
5628 intel_dp_unset_edid(intel_dp);
5629 edid = intel_dp_get_edid(intel_dp);
5630 intel_connector->detect_edid = edid;
5632 intel_dp->has_audio = drm_detect_monitor_audio(edid);
5633 drm_dp_cec_set_edid(&intel_dp->aux, edid);
5636 static void
5637 intel_dp_unset_edid(struct intel_dp *intel_dp)
5639 struct intel_connector *intel_connector = intel_dp->attached_connector;
5641 drm_dp_cec_unset_edid(&intel_dp->aux);
5642 kfree(intel_connector->detect_edid);
5643 intel_connector->detect_edid = NULL;
5645 intel_dp->has_audio = false;
5648 static int
5649 intel_dp_detect(struct drm_connector *connector,
5650 struct drm_modeset_acquire_ctx *ctx,
5651 bool force)
5653 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5654 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5655 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5656 struct intel_encoder *encoder = &dig_port->base;
5657 enum drm_connector_status status;
5659 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5660 connector->base.id, connector->name);
5661 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5663 /* Can't disconnect eDP */
5664 if (intel_dp_is_edp(intel_dp))
5665 status = edp_detect(intel_dp);
5666 else if (intel_digital_port_connected(encoder))
5667 status = intel_dp_detect_dpcd(intel_dp);
5668 else
5669 status = connector_status_disconnected;
5671 if (status == connector_status_disconnected) {
5672 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5673 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5675 if (intel_dp->is_mst) {
5676 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5677 intel_dp->is_mst,
5678 intel_dp->mst_mgr.mst_state);
5679 intel_dp->is_mst = false;
5680 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5681 intel_dp->is_mst);
5684 goto out;
5687 if (intel_dp->reset_link_params) {
5688 /* Initial max link lane count */
5689 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5691 /* Initial max link rate */
5692 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5694 intel_dp->reset_link_params = false;
5697 intel_dp_print_rates(intel_dp);
5699 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5700 if (INTEL_GEN(dev_priv) >= 11)
5701 intel_dp_get_dsc_sink_cap(intel_dp);
5703 intel_dp_configure_mst(intel_dp);
5705 if (intel_dp->is_mst) {
5707 * If we are in MST mode then this connector
5708 * won't appear connected or have anything
5709 * with EDID on it
5711 status = connector_status_disconnected;
5712 goto out;
5716 * Some external monitors do not signal loss of link synchronization
5717 * with an IRQ_HPD, so force a link status check.
5719 if (!intel_dp_is_edp(intel_dp)) {
5720 int ret;
5722 ret = intel_dp_retrain_link(encoder, ctx);
5723 if (ret)
5724 return ret;
5728 * Clearing NACK and defer counts to get their exact values
5729 * while reading EDID which are required by Compliance tests
5730 * 4.2.2.4 and 4.2.2.5
5732 intel_dp->aux.i2c_nack_count = 0;
5733 intel_dp->aux.i2c_defer_count = 0;
5735 intel_dp_set_edid(intel_dp);
5736 if (intel_dp_is_edp(intel_dp) ||
5737 to_intel_connector(connector)->detect_edid)
5738 status = connector_status_connected;
5740 intel_dp_check_service_irq(intel_dp);
5742 out:
5743 if (status != connector_status_connected && !intel_dp->is_mst)
5744 intel_dp_unset_edid(intel_dp);
5747 * Make sure the refs for power wells enabled during detect are
5748 * dropped to avoid a new detect cycle triggered by HPD polling.
5750 intel_display_power_flush_work(dev_priv);
5752 return status;
5755 static void
5756 intel_dp_force(struct drm_connector *connector)
5758 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5759 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5760 struct intel_encoder *intel_encoder = &dig_port->base;
5761 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5762 enum intel_display_power_domain aux_domain =
5763 intel_aux_power_domain(dig_port);
5764 intel_wakeref_t wakeref;
5766 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5767 connector->base.id, connector->name);
5768 intel_dp_unset_edid(intel_dp);
5770 if (connector->status != connector_status_connected)
5771 return;
5773 wakeref = intel_display_power_get(dev_priv, aux_domain);
5775 intel_dp_set_edid(intel_dp);
5777 intel_display_power_put(dev_priv, aux_domain, wakeref);
5780 static int intel_dp_get_modes(struct drm_connector *connector)
5782 struct intel_connector *intel_connector = to_intel_connector(connector);
5783 struct edid *edid;
5785 edid = intel_connector->detect_edid;
5786 if (edid) {
5787 int ret = intel_connector_update_modes(connector, edid);
5788 if (ret)
5789 return ret;
5792 /* if eDP has no EDID, fall back to fixed mode */
5793 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5794 intel_connector->panel.fixed_mode) {
5795 struct drm_display_mode *mode;
5797 mode = drm_mode_duplicate(connector->dev,
5798 intel_connector->panel.fixed_mode);
5799 if (mode) {
5800 drm_mode_probed_add(connector, mode);
5801 return 1;
5805 return 0;
5808 static int
5809 intel_dp_connector_register(struct drm_connector *connector)
5811 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5812 int ret;
5814 ret = intel_connector_register(connector);
5815 if (ret)
5816 return ret;
5818 i915_debugfs_connector_add(connector);
5820 DRM_DEBUG_KMS("registering %s bus for %s\n",
5821 intel_dp->aux.name, connector->kdev->kobj.name);
5823 intel_dp->aux.dev = connector->kdev;
5824 ret = drm_dp_aux_register(&intel_dp->aux);
5825 if (!ret)
5826 drm_dp_cec_register_connector(&intel_dp->aux, connector);
5827 return ret;
5830 static void
5831 intel_dp_connector_unregister(struct drm_connector *connector)
5833 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5835 drm_dp_cec_unregister_connector(&intel_dp->aux);
5836 drm_dp_aux_unregister(&intel_dp->aux);
5837 intel_connector_unregister(connector);
5840 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5842 struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5843 struct intel_dp *intel_dp = &intel_dig_port->dp;
5845 intel_dp_mst_encoder_cleanup(intel_dig_port);
5846 if (intel_dp_is_edp(intel_dp)) {
5847 intel_wakeref_t wakeref;
5849 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5851 * vdd might still be enabled do to the delayed vdd off.
5852 * Make sure vdd is actually turned off here.
5854 with_pps_lock(intel_dp, wakeref)
5855 edp_panel_vdd_off_sync(intel_dp);
5857 if (intel_dp->edp_notifier.notifier_call) {
5858 unregister_reboot_notifier(&intel_dp->edp_notifier);
5859 intel_dp->edp_notifier.notifier_call = NULL;
5863 intel_dp_aux_fini(intel_dp);
5866 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5868 intel_dp_encoder_flush_work(encoder);
5870 drm_encoder_cleanup(encoder);
5871 kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5874 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5876 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5877 intel_wakeref_t wakeref;
5879 if (!intel_dp_is_edp(intel_dp))
5880 return;
5883 * vdd might still be enabled do to the delayed vdd off.
5884 * Make sure vdd is actually turned off here.
5886 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5887 with_pps_lock(intel_dp, wakeref)
5888 edp_panel_vdd_off_sync(intel_dp);
5891 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5893 long ret;
5895 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5896 ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5897 msecs_to_jiffies(timeout));
5899 if (!ret)
5900 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5903 static
5904 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5905 u8 *an)
5907 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5908 static const struct drm_dp_aux_msg msg = {
5909 .request = DP_AUX_NATIVE_WRITE,
5910 .address = DP_AUX_HDCP_AKSV,
5911 .size = DRM_HDCP_KSV_LEN,
5913 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5914 ssize_t dpcd_ret;
5915 int ret;
5917 /* Output An first, that's easy */
5918 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5919 an, DRM_HDCP_AN_LEN);
5920 if (dpcd_ret != DRM_HDCP_AN_LEN) {
5921 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5922 dpcd_ret);
5923 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5927 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5928 * order to get it on the wire, we need to create the AUX header as if
5929 * we were writing the data, and then tickle the hardware to output the
5930 * data once the header is sent out.
5932 intel_dp_aux_header(txbuf, &msg);
5934 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5935 rxbuf, sizeof(rxbuf),
5936 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5937 if (ret < 0) {
5938 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5939 return ret;
5940 } else if (ret == 0) {
5941 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5942 return -EIO;
5945 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5946 if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5947 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5948 reply);
5949 return -EIO;
5951 return 0;
5954 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5955 u8 *bksv)
5957 ssize_t ret;
5958 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5959 DRM_HDCP_KSV_LEN);
5960 if (ret != DRM_HDCP_KSV_LEN) {
5961 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5962 return ret >= 0 ? -EIO : ret;
5964 return 0;
5967 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5968 u8 *bstatus)
5970 ssize_t ret;
5972 * For some reason the HDMI and DP HDCP specs call this register
5973 * definition by different names. In the HDMI spec, it's called BSTATUS,
5974 * but in DP it's called BINFO.
5976 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5977 bstatus, DRM_HDCP_BSTATUS_LEN);
5978 if (ret != DRM_HDCP_BSTATUS_LEN) {
5979 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5980 return ret >= 0 ? -EIO : ret;
5982 return 0;
5985 static
5986 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5987 u8 *bcaps)
5989 ssize_t ret;
5991 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5992 bcaps, 1);
5993 if (ret != 1) {
5994 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5995 return ret >= 0 ? -EIO : ret;
5998 return 0;
6001 static
6002 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6003 bool *repeater_present)
6005 ssize_t ret;
6006 u8 bcaps;
6008 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6009 if (ret)
6010 return ret;
6012 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6013 return 0;
6016 static
6017 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6018 u8 *ri_prime)
6020 ssize_t ret;
6021 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6022 ri_prime, DRM_HDCP_RI_LEN);
6023 if (ret != DRM_HDCP_RI_LEN) {
6024 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6025 return ret >= 0 ? -EIO : ret;
6027 return 0;
6030 static
6031 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6032 bool *ksv_ready)
6034 ssize_t ret;
6035 u8 bstatus;
6036 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6037 &bstatus, 1);
6038 if (ret != 1) {
6039 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6040 return ret >= 0 ? -EIO : ret;
6042 *ksv_ready = bstatus & DP_BSTATUS_READY;
6043 return 0;
6046 static
6047 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6048 int num_downstream, u8 *ksv_fifo)
6050 ssize_t ret;
6051 int i;
6053 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6054 for (i = 0; i < num_downstream; i += 3) {
6055 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6056 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6057 DP_AUX_HDCP_KSV_FIFO,
6058 ksv_fifo + i * DRM_HDCP_KSV_LEN,
6059 len);
6060 if (ret != len) {
6061 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6062 i, ret);
6063 return ret >= 0 ? -EIO : ret;
6066 return 0;
6069 static
6070 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6071 int i, u32 *part)
6073 ssize_t ret;
6075 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6076 return -EINVAL;
6078 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6079 DP_AUX_HDCP_V_PRIME(i), part,
6080 DRM_HDCP_V_PRIME_PART_LEN);
6081 if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6082 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6083 return ret >= 0 ? -EIO : ret;
6085 return 0;
6088 static
6089 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6090 bool enable)
6092 /* Not used for single stream DisplayPort setups */
6093 return 0;
6096 static
6097 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6099 ssize_t ret;
6100 u8 bstatus;
6102 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6103 &bstatus, 1);
6104 if (ret != 1) {
6105 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6106 return false;
6109 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6112 static
6113 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6114 bool *hdcp_capable)
6116 ssize_t ret;
6117 u8 bcaps;
6119 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6120 if (ret)
6121 return ret;
6123 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6124 return 0;
6127 struct hdcp2_dp_errata_stream_type {
6128 u8 msg_id;
6129 u8 stream_type;
6130 } __packed;
6132 struct hdcp2_dp_msg_data {
6133 u8 msg_id;
6134 u32 offset;
6135 bool msg_detectable;
6136 u32 timeout;
6137 u32 timeout2; /* Added for non_paired situation */
6140 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6141 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6142 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6143 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6144 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6145 false, 0, 0 },
6146 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6147 false, 0, 0 },
6148 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6149 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6150 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6151 { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6152 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6153 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6154 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6155 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6156 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6157 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6158 0, 0 },
6159 { HDCP_2_2_REP_SEND_RECVID_LIST,
6160 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6161 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6162 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6163 0, 0 },
6164 { HDCP_2_2_REP_STREAM_MANAGE,
6165 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6166 0, 0 },
6167 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6168 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6169 /* local define to shovel this through the write_2_2 interface */
6170 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50
6171 { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6172 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6173 0, 0 },
6176 static inline
6177 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6178 u8 *rx_status)
6180 ssize_t ret;
6182 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6183 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6184 HDCP_2_2_DP_RXSTATUS_LEN);
6185 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6186 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6187 return ret >= 0 ? -EIO : ret;
6190 return 0;
6193 static
6194 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6195 u8 msg_id, bool *msg_ready)
6197 u8 rx_status;
6198 int ret;
6200 *msg_ready = false;
6201 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6202 if (ret < 0)
6203 return ret;
6205 switch (msg_id) {
6206 case HDCP_2_2_AKE_SEND_HPRIME:
6207 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6208 *msg_ready = true;
6209 break;
6210 case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6211 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6212 *msg_ready = true;
6213 break;
6214 case HDCP_2_2_REP_SEND_RECVID_LIST:
6215 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6216 *msg_ready = true;
6217 break;
6218 default:
6219 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6220 return -EINVAL;
6223 return 0;
6226 static ssize_t
6227 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6228 const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6230 struct intel_dp *dp = &intel_dig_port->dp;
6231 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6232 u8 msg_id = hdcp2_msg_data->msg_id;
6233 int ret, timeout;
6234 bool msg_ready = false;
6236 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6237 timeout = hdcp2_msg_data->timeout2;
6238 else
6239 timeout = hdcp2_msg_data->timeout;
6242 * There is no way to detect the CERT, LPRIME and STREAM_READY
6243 * availability. So Wait for timeout and read the msg.
6245 if (!hdcp2_msg_data->msg_detectable) {
6246 mdelay(timeout);
6247 ret = 0;
6248 } else {
6250 * As we want to check the msg availability at timeout, Ignoring
6251 * the timeout at wait for CP_IRQ.
6253 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6254 ret = hdcp2_detect_msg_availability(intel_dig_port,
6255 msg_id, &msg_ready);
6256 if (!msg_ready)
6257 ret = -ETIMEDOUT;
6260 if (ret)
6261 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6262 hdcp2_msg_data->msg_id, ret, timeout);
6264 return ret;
6267 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6269 int i;
6271 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6272 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6273 return &hdcp2_dp_msg_data[i];
6275 return NULL;
6278 static
6279 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6280 void *buf, size_t size)
6282 struct intel_dp *dp = &intel_dig_port->dp;
6283 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6284 unsigned int offset;
6285 u8 *byte = buf;
6286 ssize_t ret, bytes_to_write, len;
6287 const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6289 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6290 if (!hdcp2_msg_data)
6291 return -EINVAL;
6293 offset = hdcp2_msg_data->offset;
6295 /* No msg_id in DP HDCP2.2 msgs */
6296 bytes_to_write = size - 1;
6297 byte++;
6299 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6301 while (bytes_to_write) {
6302 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6303 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6305 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6306 offset, (void *)byte, len);
6307 if (ret < 0)
6308 return ret;
6310 bytes_to_write -= ret;
6311 byte += ret;
6312 offset += ret;
6315 return size;
6318 static
6319 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6321 u8 rx_info[HDCP_2_2_RXINFO_LEN];
6322 u32 dev_cnt;
6323 ssize_t ret;
6325 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6326 DP_HDCP_2_2_REG_RXINFO_OFFSET,
6327 (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6328 if (ret != HDCP_2_2_RXINFO_LEN)
6329 return ret >= 0 ? -EIO : ret;
6331 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6332 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6334 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6335 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6337 ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6338 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6339 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6341 return ret;
6344 static
6345 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6346 u8 msg_id, void *buf, size_t size)
6348 unsigned int offset;
6349 u8 *byte = buf;
6350 ssize_t ret, bytes_to_recv, len;
6351 const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6353 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6354 if (!hdcp2_msg_data)
6355 return -EINVAL;
6356 offset = hdcp2_msg_data->offset;
6358 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6359 if (ret < 0)
6360 return ret;
6362 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6363 ret = get_receiver_id_list_size(intel_dig_port);
6364 if (ret < 0)
6365 return ret;
6367 size = ret;
6369 bytes_to_recv = size - 1;
6371 /* DP adaptation msgs has no msg_id */
6372 byte++;
6374 while (bytes_to_recv) {
6375 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6376 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6378 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6379 (void *)byte, len);
6380 if (ret < 0) {
6381 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6382 return ret;
6385 bytes_to_recv -= ret;
6386 byte += ret;
6387 offset += ret;
6389 byte = buf;
6390 *byte = msg_id;
6392 return size;
6395 static
6396 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6397 bool is_repeater, u8 content_type)
6399 struct hdcp2_dp_errata_stream_type stream_type_msg;
6401 if (is_repeater)
6402 return 0;
6405 * Errata for DP: As Stream type is used for encryption, Receiver
6406 * should be communicated with stream type for the decryption of the
6407 * content.
6408 * Repeater will be communicated with stream type as a part of it's
6409 * auth later in time.
6411 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6412 stream_type_msg.stream_type = content_type;
6414 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6415 sizeof(stream_type_msg));
6418 static
6419 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6421 u8 rx_status;
6422 int ret;
6424 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6425 if (ret)
6426 return ret;
6428 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6429 ret = HDCP_REAUTH_REQUEST;
6430 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6431 ret = HDCP_LINK_INTEGRITY_FAILURE;
6432 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6433 ret = HDCP_TOPOLOGY_CHANGE;
6435 return ret;
6438 static
6439 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6440 bool *capable)
6442 u8 rx_caps[3];
6443 int ret;
6445 *capable = false;
6446 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6447 DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6448 rx_caps, HDCP_2_2_RXCAPS_LEN);
6449 if (ret != HDCP_2_2_RXCAPS_LEN)
6450 return ret >= 0 ? -EIO : ret;
6452 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6453 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6454 *capable = true;
6456 return 0;
6459 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6460 .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6461 .read_bksv = intel_dp_hdcp_read_bksv,
6462 .read_bstatus = intel_dp_hdcp_read_bstatus,
6463 .repeater_present = intel_dp_hdcp_repeater_present,
6464 .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6465 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6466 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6467 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6468 .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6469 .check_link = intel_dp_hdcp_check_link,
6470 .hdcp_capable = intel_dp_hdcp_capable,
6471 .write_2_2_msg = intel_dp_hdcp2_write_msg,
6472 .read_2_2_msg = intel_dp_hdcp2_read_msg,
6473 .config_stream_type = intel_dp_hdcp2_config_stream_type,
6474 .check_2_2_link = intel_dp_hdcp2_check_link,
6475 .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6476 .protocol = HDCP_PROTOCOL_DP,
6479 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6481 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6482 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6484 lockdep_assert_held(&dev_priv->pps_mutex);
6486 if (!edp_have_panel_vdd(intel_dp))
6487 return;
6490 * The VDD bit needs a power domain reference, so if the bit is
6491 * already enabled when we boot or resume, grab this reference and
6492 * schedule a vdd off, so we don't hold on to the reference
6493 * indefinitely.
6495 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6496 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6498 edp_panel_vdd_schedule_off(intel_dp);
6501 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6503 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6504 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6505 enum pipe pipe;
6507 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6508 encoder->port, &pipe))
6509 return pipe;
6511 return INVALID_PIPE;
6514 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6516 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6517 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6518 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6519 intel_wakeref_t wakeref;
6521 if (!HAS_DDI(dev_priv))
6522 intel_dp->DP = I915_READ(intel_dp->output_reg);
6524 if (lspcon->active)
6525 lspcon_resume(lspcon);
6527 intel_dp->reset_link_params = true;
6529 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6530 !intel_dp_is_edp(intel_dp))
6531 return;
6533 with_pps_lock(intel_dp, wakeref) {
6534 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6535 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6537 if (intel_dp_is_edp(intel_dp)) {
6539 * Reinit the power sequencer, in case BIOS did
6540 * something nasty with it.
6542 intel_dp_pps_init(intel_dp);
6543 intel_edp_panel_vdd_sanitize(intel_dp);
6548 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6549 .force = intel_dp_force,
6550 .fill_modes = drm_helper_probe_single_connector_modes,
6551 .atomic_get_property = intel_digital_connector_atomic_get_property,
6552 .atomic_set_property = intel_digital_connector_atomic_set_property,
6553 .late_register = intel_dp_connector_register,
6554 .early_unregister = intel_dp_connector_unregister,
6555 .destroy = intel_connector_destroy,
6556 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6557 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6560 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6561 .detect_ctx = intel_dp_detect,
6562 .get_modes = intel_dp_get_modes,
6563 .mode_valid = intel_dp_mode_valid,
6564 .atomic_check = intel_digital_connector_atomic_check,
6567 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6568 .reset = intel_dp_encoder_reset,
6569 .destroy = intel_dp_encoder_destroy,
6572 enum irqreturn
6573 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6575 struct intel_dp *intel_dp = &intel_dig_port->dp;
6577 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6579 * vdd off can generate a long pulse on eDP which
6580 * would require vdd on to handle it, and thus we
6581 * would end up in an endless cycle of
6582 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6584 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6585 intel_dig_port->base.base.base.id,
6586 intel_dig_port->base.base.name);
6587 return IRQ_HANDLED;
6590 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6591 intel_dig_port->base.base.base.id,
6592 intel_dig_port->base.base.name,
6593 long_hpd ? "long" : "short");
6595 if (long_hpd) {
6596 intel_dp->reset_link_params = true;
6597 return IRQ_NONE;
6600 if (intel_dp->is_mst) {
6601 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6603 * If we were in MST mode, and device is not
6604 * there, get out of MST mode
6606 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6607 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6608 intel_dp->is_mst = false;
6609 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6610 intel_dp->is_mst);
6612 return IRQ_NONE;
6616 if (!intel_dp->is_mst) {
6617 bool handled;
6619 handled = intel_dp_short_pulse(intel_dp);
6621 if (!handled)
6622 return IRQ_NONE;
6625 return IRQ_HANDLED;
6628 /* check the VBT to see whether the eDP is on another port */
6629 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6632 * eDP not supported on g4x. so bail out early just
6633 * for a bit extra safety in case the VBT is bonkers.
6635 if (INTEL_GEN(dev_priv) < 5)
6636 return false;
6638 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6639 return true;
6641 return intel_bios_is_port_edp(dev_priv, port);
6644 static void
6645 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6647 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6648 enum port port = dp_to_dig_port(intel_dp)->base.port;
6650 if (!IS_G4X(dev_priv) && port != PORT_A)
6651 intel_attach_force_audio_property(connector);
6653 intel_attach_broadcast_rgb_property(connector);
6654 if (HAS_GMCH(dev_priv))
6655 drm_connector_attach_max_bpc_property(connector, 6, 10);
6656 else if (INTEL_GEN(dev_priv) >= 5)
6657 drm_connector_attach_max_bpc_property(connector, 6, 12);
6659 intel_attach_colorspace_property(connector);
6661 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6662 drm_object_attach_property(&connector->base,
6663 connector->dev->mode_config.hdr_output_metadata_property,
6666 if (intel_dp_is_edp(intel_dp)) {
6667 u32 allowed_scalers;
6669 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6670 if (!HAS_GMCH(dev_priv))
6671 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6673 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6675 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6680 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6682 intel_dp->panel_power_off_time = ktime_get_boottime();
6683 intel_dp->last_power_on = jiffies;
6684 intel_dp->last_backlight_off = jiffies;
6687 static void
6688 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6690 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6691 u32 pp_on, pp_off, pp_ctl;
6692 struct pps_registers regs;
6694 intel_pps_get_registers(intel_dp, &regs);
6696 pp_ctl = ilk_get_pp_control(intel_dp);
6698 /* Ensure PPS is unlocked */
6699 if (!HAS_DDI(dev_priv))
6700 I915_WRITE(regs.pp_ctrl, pp_ctl);
6702 pp_on = I915_READ(regs.pp_on);
6703 pp_off = I915_READ(regs.pp_off);
6705 /* Pull timing values out of registers */
6706 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6707 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6708 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6709 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6711 if (i915_mmio_reg_valid(regs.pp_div)) {
6712 u32 pp_div;
6714 pp_div = I915_READ(regs.pp_div);
6716 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6717 } else {
6718 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6722 static void
6723 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6725 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6726 state_name,
6727 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6730 static void
6731 intel_pps_verify_state(struct intel_dp *intel_dp)
6733 struct edp_power_seq hw;
6734 struct edp_power_seq *sw = &intel_dp->pps_delays;
6736 intel_pps_readout_hw_state(intel_dp, &hw);
6738 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6739 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6740 DRM_ERROR("PPS state mismatch\n");
6741 intel_pps_dump_state("sw", sw);
6742 intel_pps_dump_state("hw", &hw);
6746 static void
6747 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6749 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6750 struct edp_power_seq cur, vbt, spec,
6751 *final = &intel_dp->pps_delays;
6753 lockdep_assert_held(&dev_priv->pps_mutex);
6755 /* already initialized? */
6756 if (final->t11_t12 != 0)
6757 return;
6759 intel_pps_readout_hw_state(intel_dp, &cur);
6761 intel_pps_dump_state("cur", &cur);
6763 vbt = dev_priv->vbt.edp.pps;
6764 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6765 * of 500ms appears to be too short. Ocassionally the panel
6766 * just fails to power back on. Increasing the delay to 800ms
6767 * seems sufficient to avoid this problem.
6769 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6770 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6771 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6772 vbt.t11_t12);
6774 /* T11_T12 delay is special and actually in units of 100ms, but zero
6775 * based in the hw (so we need to add 100 ms). But the sw vbt
6776 * table multiplies it with 1000 to make it in units of 100usec,
6777 * too. */
6778 vbt.t11_t12 += 100 * 10;
6780 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6781 * our hw here, which are all in 100usec. */
6782 spec.t1_t3 = 210 * 10;
6783 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6784 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6785 spec.t10 = 500 * 10;
6786 /* This one is special and actually in units of 100ms, but zero
6787 * based in the hw (so we need to add 100 ms). But the sw vbt
6788 * table multiplies it with 1000 to make it in units of 100usec,
6789 * too. */
6790 spec.t11_t12 = (510 + 100) * 10;
6792 intel_pps_dump_state("vbt", &vbt);
6794 /* Use the max of the register settings and vbt. If both are
6795 * unset, fall back to the spec limits. */
6796 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
6797 spec.field : \
6798 max(cur.field, vbt.field))
6799 assign_final(t1_t3);
6800 assign_final(t8);
6801 assign_final(t9);
6802 assign_final(t10);
6803 assign_final(t11_t12);
6804 #undef assign_final
6806 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
6807 intel_dp->panel_power_up_delay = get_delay(t1_t3);
6808 intel_dp->backlight_on_delay = get_delay(t8);
6809 intel_dp->backlight_off_delay = get_delay(t9);
6810 intel_dp->panel_power_down_delay = get_delay(t10);
6811 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6812 #undef get_delay
6814 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6815 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6816 intel_dp->panel_power_cycle_delay);
6818 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6819 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6822 * We override the HW backlight delays to 1 because we do manual waits
6823 * on them. For T8, even BSpec recommends doing it. For T9, if we
6824 * don't do this, we'll end up waiting for the backlight off delay
6825 * twice: once when we do the manual sleep, and once when we disable
6826 * the panel and wait for the PP_STATUS bit to become zero.
6828 final->t8 = 1;
6829 final->t9 = 1;
6832 * HW has only a 100msec granularity for t11_t12 so round it up
6833 * accordingly.
6835 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6838 static void
6839 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6840 bool force_disable_vdd)
6842 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6843 u32 pp_on, pp_off, port_sel = 0;
6844 int div = dev_priv->rawclk_freq / 1000;
6845 struct pps_registers regs;
6846 enum port port = dp_to_dig_port(intel_dp)->base.port;
6847 const struct edp_power_seq *seq = &intel_dp->pps_delays;
6849 lockdep_assert_held(&dev_priv->pps_mutex);
6851 intel_pps_get_registers(intel_dp, &regs);
6854 * On some VLV machines the BIOS can leave the VDD
6855 * enabled even on power sequencers which aren't
6856 * hooked up to any port. This would mess up the
6857 * power domain tracking the first time we pick
6858 * one of these power sequencers for use since
6859 * edp_panel_vdd_on() would notice that the VDD was
6860 * already on and therefore wouldn't grab the power
6861 * domain reference. Disable VDD first to avoid this.
6862 * This also avoids spuriously turning the VDD on as
6863 * soon as the new power sequencer gets initialized.
6865 if (force_disable_vdd) {
6866 u32 pp = ilk_get_pp_control(intel_dp);
6868 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6870 if (pp & EDP_FORCE_VDD)
6871 DRM_DEBUG_KMS("VDD already on, disabling first\n");
6873 pp &= ~EDP_FORCE_VDD;
6875 I915_WRITE(regs.pp_ctrl, pp);
6878 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6879 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6880 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6881 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6883 /* Haswell doesn't have any port selection bits for the panel
6884 * power sequencer any more. */
6885 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6886 port_sel = PANEL_PORT_SELECT_VLV(port);
6887 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6888 switch (port) {
6889 case PORT_A:
6890 port_sel = PANEL_PORT_SELECT_DPA;
6891 break;
6892 case PORT_C:
6893 port_sel = PANEL_PORT_SELECT_DPC;
6894 break;
6895 case PORT_D:
6896 port_sel = PANEL_PORT_SELECT_DPD;
6897 break;
6898 default:
6899 MISSING_CASE(port);
6900 break;
6904 pp_on |= port_sel;
6906 I915_WRITE(regs.pp_on, pp_on);
6907 I915_WRITE(regs.pp_off, pp_off);
6910 * Compute the divisor for the pp clock, simply match the Bspec formula.
6912 if (i915_mmio_reg_valid(regs.pp_div)) {
6913 I915_WRITE(regs.pp_div,
6914 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6915 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6916 } else {
6917 u32 pp_ctl;
6919 pp_ctl = I915_READ(regs.pp_ctrl);
6920 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6921 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6922 I915_WRITE(regs.pp_ctrl, pp_ctl);
6925 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6926 I915_READ(regs.pp_on),
6927 I915_READ(regs.pp_off),
6928 i915_mmio_reg_valid(regs.pp_div) ?
6929 I915_READ(regs.pp_div) :
6930 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6933 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6935 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6937 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6938 vlv_initial_power_sequencer_setup(intel_dp);
6939 } else {
6940 intel_dp_init_panel_power_sequencer(intel_dp);
6941 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6946 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6947 * @dev_priv: i915 device
6948 * @crtc_state: a pointer to the active intel_crtc_state
6949 * @refresh_rate: RR to be programmed
6951 * This function gets called when refresh rate (RR) has to be changed from
6952 * one frequency to another. Switches can be between high and low RR
6953 * supported by the panel or to any other RR based on media playback (in
6954 * this case, RR value needs to be passed from user space).
6956 * The caller of this function needs to take a lock on dev_priv->drrs.
6958 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6959 const struct intel_crtc_state *crtc_state,
6960 int refresh_rate)
6962 struct intel_dp *intel_dp = dev_priv->drrs.dp;
6963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
6964 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6966 if (refresh_rate <= 0) {
6967 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6968 return;
6971 if (intel_dp == NULL) {
6972 DRM_DEBUG_KMS("DRRS not supported.\n");
6973 return;
6976 if (!intel_crtc) {
6977 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6978 return;
6981 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6982 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6983 return;
6986 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6987 refresh_rate)
6988 index = DRRS_LOW_RR;
6990 if (index == dev_priv->drrs.refresh_rate_type) {
6991 DRM_DEBUG_KMS(
6992 "DRRS requested for previously set RR...ignoring\n");
6993 return;
6996 if (!crtc_state->hw.active) {
6997 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6998 return;
7001 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7002 switch (index) {
7003 case DRRS_HIGH_RR:
7004 intel_dp_set_m_n(crtc_state, M1_N1);
7005 break;
7006 case DRRS_LOW_RR:
7007 intel_dp_set_m_n(crtc_state, M2_N2);
7008 break;
7009 case DRRS_MAX_RR:
7010 default:
7011 DRM_ERROR("Unsupported refreshrate type\n");
7013 } else if (INTEL_GEN(dev_priv) > 6) {
7014 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7015 u32 val;
7017 val = I915_READ(reg);
7018 if (index > DRRS_HIGH_RR) {
7019 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7020 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7021 else
7022 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7023 } else {
7024 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7025 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7026 else
7027 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7029 I915_WRITE(reg, val);
7032 dev_priv->drrs.refresh_rate_type = index;
7034 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
7038 * intel_edp_drrs_enable - init drrs struct if supported
7039 * @intel_dp: DP struct
7040 * @crtc_state: A pointer to the active crtc state.
7042 * Initializes frontbuffer_bits and drrs.dp
7044 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7045 const struct intel_crtc_state *crtc_state)
7047 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7049 if (!crtc_state->has_drrs) {
7050 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7051 return;
7054 if (dev_priv->psr.enabled) {
7055 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7056 return;
7059 mutex_lock(&dev_priv->drrs.mutex);
7060 if (dev_priv->drrs.dp) {
7061 DRM_DEBUG_KMS("DRRS already enabled\n");
7062 goto unlock;
7065 dev_priv->drrs.busy_frontbuffer_bits = 0;
7067 dev_priv->drrs.dp = intel_dp;
7069 unlock:
7070 mutex_unlock(&dev_priv->drrs.mutex);
7074 * intel_edp_drrs_disable - Disable DRRS
7075 * @intel_dp: DP struct
7076 * @old_crtc_state: Pointer to old crtc_state.
7079 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7080 const struct intel_crtc_state *old_crtc_state)
7082 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7084 if (!old_crtc_state->has_drrs)
7085 return;
7087 mutex_lock(&dev_priv->drrs.mutex);
7088 if (!dev_priv->drrs.dp) {
7089 mutex_unlock(&dev_priv->drrs.mutex);
7090 return;
7093 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7094 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7095 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7097 dev_priv->drrs.dp = NULL;
7098 mutex_unlock(&dev_priv->drrs.mutex);
7100 cancel_delayed_work_sync(&dev_priv->drrs.work);
7103 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7105 struct drm_i915_private *dev_priv =
7106 container_of(work, typeof(*dev_priv), drrs.work.work);
7107 struct intel_dp *intel_dp;
7109 mutex_lock(&dev_priv->drrs.mutex);
7111 intel_dp = dev_priv->drrs.dp;
7113 if (!intel_dp)
7114 goto unlock;
7117 * The delayed work can race with an invalidate hence we need to
7118 * recheck.
7121 if (dev_priv->drrs.busy_frontbuffer_bits)
7122 goto unlock;
7124 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7125 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7127 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7128 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7131 unlock:
7132 mutex_unlock(&dev_priv->drrs.mutex);
7136 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7137 * @dev_priv: i915 device
7138 * @frontbuffer_bits: frontbuffer plane tracking bits
7140 * This function gets called everytime rendering on the given planes start.
7141 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7143 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7145 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7146 unsigned int frontbuffer_bits)
7148 struct drm_crtc *crtc;
7149 enum pipe pipe;
7151 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7152 return;
7154 cancel_delayed_work(&dev_priv->drrs.work);
7156 mutex_lock(&dev_priv->drrs.mutex);
7157 if (!dev_priv->drrs.dp) {
7158 mutex_unlock(&dev_priv->drrs.mutex);
7159 return;
7162 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7163 pipe = to_intel_crtc(crtc)->pipe;
7165 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7166 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7168 /* invalidate means busy screen hence upclock */
7169 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7170 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7171 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7173 mutex_unlock(&dev_priv->drrs.mutex);
7177 * intel_edp_drrs_flush - Restart Idleness DRRS
7178 * @dev_priv: i915 device
7179 * @frontbuffer_bits: frontbuffer plane tracking bits
7181 * This function gets called every time rendering on the given planes has
7182 * completed or flip on a crtc is completed. So DRRS should be upclocked
7183 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7184 * if no other planes are dirty.
7186 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7188 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7189 unsigned int frontbuffer_bits)
7191 struct drm_crtc *crtc;
7192 enum pipe pipe;
7194 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7195 return;
7197 cancel_delayed_work(&dev_priv->drrs.work);
7199 mutex_lock(&dev_priv->drrs.mutex);
7200 if (!dev_priv->drrs.dp) {
7201 mutex_unlock(&dev_priv->drrs.mutex);
7202 return;
7205 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7206 pipe = to_intel_crtc(crtc)->pipe;
7208 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7209 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7211 /* flush means busy screen hence upclock */
7212 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7213 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7214 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7217 * flush also means no more activity hence schedule downclock, if all
7218 * other fbs are quiescent too
7220 if (!dev_priv->drrs.busy_frontbuffer_bits)
7221 schedule_delayed_work(&dev_priv->drrs.work,
7222 msecs_to_jiffies(1000));
7223 mutex_unlock(&dev_priv->drrs.mutex);
7227 * DOC: Display Refresh Rate Switching (DRRS)
7229 * Display Refresh Rate Switching (DRRS) is a power conservation feature
7230 * which enables swtching between low and high refresh rates,
7231 * dynamically, based on the usage scenario. This feature is applicable
7232 * for internal panels.
7234 * Indication that the panel supports DRRS is given by the panel EDID, which
7235 * would list multiple refresh rates for one resolution.
7237 * DRRS is of 2 types - static and seamless.
7238 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7239 * (may appear as a blink on screen) and is used in dock-undock scenario.
7240 * Seamless DRRS involves changing RR without any visual effect to the user
7241 * and can be used during normal system usage. This is done by programming
7242 * certain registers.
7244 * Support for static/seamless DRRS may be indicated in the VBT based on
7245 * inputs from the panel spec.
7247 * DRRS saves power by switching to low RR based on usage scenarios.
7249 * The implementation is based on frontbuffer tracking implementation. When
7250 * there is a disturbance on the screen triggered by user activity or a periodic
7251 * system activity, DRRS is disabled (RR is changed to high RR). When there is
7252 * no movement on screen, after a timeout of 1 second, a switch to low RR is
7253 * made.
7255 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7256 * and intel_edp_drrs_flush() are called.
7258 * DRRS can be further extended to support other internal panels and also
7259 * the scenario of video playback wherein RR is set based on the rate
7260 * requested by userspace.
7264 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7265 * @connector: eDP connector
7266 * @fixed_mode: preferred mode of panel
7268 * This function is called only once at driver load to initialize basic
7269 * DRRS stuff.
7271 * Returns:
7272 * Downclock mode if panel supports it, else return NULL.
7273 * DRRS support is determined by the presence of downclock mode (apart
7274 * from VBT setting).
7276 static struct drm_display_mode *
7277 intel_dp_drrs_init(struct intel_connector *connector,
7278 struct drm_display_mode *fixed_mode)
7280 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7281 struct drm_display_mode *downclock_mode = NULL;
7283 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7284 mutex_init(&dev_priv->drrs.mutex);
7286 if (INTEL_GEN(dev_priv) <= 6) {
7287 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7288 return NULL;
7291 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7292 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7293 return NULL;
7296 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7297 if (!downclock_mode) {
7298 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7299 return NULL;
7302 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7304 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7305 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7306 return downclock_mode;
7309 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7310 struct intel_connector *intel_connector)
7312 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7313 struct drm_device *dev = &dev_priv->drm;
7314 struct drm_connector *connector = &intel_connector->base;
7315 struct drm_display_mode *fixed_mode = NULL;
7316 struct drm_display_mode *downclock_mode = NULL;
7317 bool has_dpcd;
7318 enum pipe pipe = INVALID_PIPE;
7319 intel_wakeref_t wakeref;
7320 struct edid *edid;
7322 if (!intel_dp_is_edp(intel_dp))
7323 return true;
7325 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7328 * On IBX/CPT we may get here with LVDS already registered. Since the
7329 * driver uses the only internal power sequencer available for both
7330 * eDP and LVDS bail out early in this case to prevent interfering
7331 * with an already powered-on LVDS power sequencer.
7333 if (intel_get_lvds_encoder(dev_priv)) {
7334 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7335 DRM_INFO("LVDS was detected, not registering eDP\n");
7337 return false;
7340 with_pps_lock(intel_dp, wakeref) {
7341 intel_dp_init_panel_power_timestamps(intel_dp);
7342 intel_dp_pps_init(intel_dp);
7343 intel_edp_panel_vdd_sanitize(intel_dp);
7346 /* Cache DPCD and EDID for edp. */
7347 has_dpcd = intel_edp_init_dpcd(intel_dp);
7349 if (!has_dpcd) {
7350 /* if this fails, presume the device is a ghost */
7351 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7352 goto out_vdd_off;
7355 mutex_lock(&dev->mode_config.mutex);
7356 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7357 if (edid) {
7358 if (drm_add_edid_modes(connector, edid)) {
7359 drm_connector_update_edid_property(connector,
7360 edid);
7361 } else {
7362 kfree(edid);
7363 edid = ERR_PTR(-EINVAL);
7365 } else {
7366 edid = ERR_PTR(-ENOENT);
7368 intel_connector->edid = edid;
7370 fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7371 if (fixed_mode)
7372 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7374 /* fallback to VBT if available for eDP */
7375 if (!fixed_mode)
7376 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7377 mutex_unlock(&dev->mode_config.mutex);
7379 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7380 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7381 register_reboot_notifier(&intel_dp->edp_notifier);
7384 * Figure out the current pipe for the initial backlight setup.
7385 * If the current pipe isn't valid, try the PPS pipe, and if that
7386 * fails just assume pipe A.
7388 pipe = vlv_active_pipe(intel_dp);
7390 if (pipe != PIPE_A && pipe != PIPE_B)
7391 pipe = intel_dp->pps_pipe;
7393 if (pipe != PIPE_A && pipe != PIPE_B)
7394 pipe = PIPE_A;
7396 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7397 pipe_name(pipe));
7400 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7401 intel_connector->panel.backlight.power = intel_edp_backlight_power;
7402 intel_panel_setup_backlight(connector, pipe);
7404 if (fixed_mode)
7405 drm_connector_init_panel_orientation_property(
7406 connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7408 return true;
7410 out_vdd_off:
7411 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7413 * vdd might still be enabled do to the delayed vdd off.
7414 * Make sure vdd is actually turned off here.
7416 with_pps_lock(intel_dp, wakeref)
7417 edp_panel_vdd_off_sync(intel_dp);
7419 return false;
7422 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7424 struct intel_connector *intel_connector;
7425 struct drm_connector *connector;
7427 intel_connector = container_of(work, typeof(*intel_connector),
7428 modeset_retry_work);
7429 connector = &intel_connector->base;
7430 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7431 connector->name);
7433 /* Grab the locks before changing connector property*/
7434 mutex_lock(&connector->dev->mode_config.mutex);
7435 /* Set connector link status to BAD and send a Uevent to notify
7436 * userspace to do a modeset.
7438 drm_connector_set_link_status_property(connector,
7439 DRM_MODE_LINK_STATUS_BAD);
7440 mutex_unlock(&connector->dev->mode_config.mutex);
7441 /* Send Hotplug uevent so userspace can reprobe */
7442 drm_kms_helper_hotplug_event(connector->dev);
7445 bool
7446 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7447 struct intel_connector *intel_connector)
7449 struct drm_connector *connector = &intel_connector->base;
7450 struct intel_dp *intel_dp = &intel_dig_port->dp;
7451 struct intel_encoder *intel_encoder = &intel_dig_port->base;
7452 struct drm_device *dev = intel_encoder->base.dev;
7453 struct drm_i915_private *dev_priv = to_i915(dev);
7454 enum port port = intel_encoder->port;
7455 enum phy phy = intel_port_to_phy(dev_priv, port);
7456 int type;
7458 /* Initialize the work for modeset in case of link train failure */
7459 INIT_WORK(&intel_connector->modeset_retry_work,
7460 intel_dp_modeset_retry_work_fn);
7462 if (WARN(intel_dig_port->max_lanes < 1,
7463 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7464 intel_dig_port->max_lanes, intel_encoder->base.base.id,
7465 intel_encoder->base.name))
7466 return false;
7468 intel_dp_set_source_rates(intel_dp);
7470 intel_dp->reset_link_params = true;
7471 intel_dp->pps_pipe = INVALID_PIPE;
7472 intel_dp->active_pipe = INVALID_PIPE;
7474 /* Preserve the current hw state. */
7475 intel_dp->DP = I915_READ(intel_dp->output_reg);
7476 intel_dp->attached_connector = intel_connector;
7478 if (intel_dp_is_port_edp(dev_priv, port)) {
7480 * Currently we don't support eDP on TypeC ports, although in
7481 * theory it could work on TypeC legacy ports.
7483 WARN_ON(intel_phy_is_tc(dev_priv, phy));
7484 type = DRM_MODE_CONNECTOR_eDP;
7485 } else {
7486 type = DRM_MODE_CONNECTOR_DisplayPort;
7489 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7490 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7493 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7494 * for DP the encoder type can be set by the caller to
7495 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7497 if (type == DRM_MODE_CONNECTOR_eDP)
7498 intel_encoder->type = INTEL_OUTPUT_EDP;
7500 /* eDP only on port B and/or C on vlv/chv */
7501 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7502 intel_dp_is_edp(intel_dp) &&
7503 port != PORT_B && port != PORT_C))
7504 return false;
7506 DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7507 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7508 intel_encoder->base.base.id, intel_encoder->base.name);
7510 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7511 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7513 if (!HAS_GMCH(dev_priv))
7514 connector->interlace_allowed = true;
7515 connector->doublescan_allowed = 0;
7517 if (INTEL_GEN(dev_priv) >= 11)
7518 connector->ycbcr_420_allowed = true;
7520 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7522 intel_dp_aux_init(intel_dp);
7524 intel_connector_attach_encoder(intel_connector, intel_encoder);
7526 if (HAS_DDI(dev_priv))
7527 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7528 else
7529 intel_connector->get_hw_state = intel_connector_get_hw_state;
7531 /* init MST on ports that can support it */
7532 intel_dp_mst_encoder_init(intel_dig_port,
7533 intel_connector->base.base.id);
7535 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7536 intel_dp_aux_fini(intel_dp);
7537 intel_dp_mst_encoder_cleanup(intel_dig_port);
7538 goto fail;
7541 intel_dp_add_properties(intel_dp, connector);
7543 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7544 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7545 if (ret)
7546 DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7549 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7550 * 0xd. Failure to do so will result in spurious interrupts being
7551 * generated on the port when a cable is not attached.
7553 if (IS_G45(dev_priv)) {
7554 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7555 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7558 return true;
7560 fail:
7561 drm_connector_cleanup(connector);
7563 return false;
7566 bool intel_dp_init(struct drm_i915_private *dev_priv,
7567 i915_reg_t output_reg,
7568 enum port port)
7570 struct intel_digital_port *intel_dig_port;
7571 struct intel_encoder *intel_encoder;
7572 struct drm_encoder *encoder;
7573 struct intel_connector *intel_connector;
7575 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7576 if (!intel_dig_port)
7577 return false;
7579 intel_connector = intel_connector_alloc();
7580 if (!intel_connector)
7581 goto err_connector_alloc;
7583 intel_encoder = &intel_dig_port->base;
7584 encoder = &intel_encoder->base;
7586 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7587 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7588 "DP %c", port_name(port)))
7589 goto err_encoder_init;
7591 intel_encoder->hotplug = intel_dp_hotplug;
7592 intel_encoder->compute_config = intel_dp_compute_config;
7593 intel_encoder->get_hw_state = intel_dp_get_hw_state;
7594 intel_encoder->get_config = intel_dp_get_config;
7595 intel_encoder->update_pipe = intel_panel_update_backlight;
7596 intel_encoder->suspend = intel_dp_encoder_suspend;
7597 if (IS_CHERRYVIEW(dev_priv)) {
7598 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7599 intel_encoder->pre_enable = chv_pre_enable_dp;
7600 intel_encoder->enable = vlv_enable_dp;
7601 intel_encoder->disable = vlv_disable_dp;
7602 intel_encoder->post_disable = chv_post_disable_dp;
7603 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7604 } else if (IS_VALLEYVIEW(dev_priv)) {
7605 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7606 intel_encoder->pre_enable = vlv_pre_enable_dp;
7607 intel_encoder->enable = vlv_enable_dp;
7608 intel_encoder->disable = vlv_disable_dp;
7609 intel_encoder->post_disable = vlv_post_disable_dp;
7610 } else {
7611 intel_encoder->pre_enable = g4x_pre_enable_dp;
7612 intel_encoder->enable = g4x_enable_dp;
7613 intel_encoder->disable = g4x_disable_dp;
7614 intel_encoder->post_disable = g4x_post_disable_dp;
7617 intel_dig_port->dp.output_reg = output_reg;
7618 intel_dig_port->max_lanes = 4;
7620 intel_encoder->type = INTEL_OUTPUT_DP;
7621 intel_encoder->power_domain = intel_port_to_power_domain(port);
7622 if (IS_CHERRYVIEW(dev_priv)) {
7623 if (port == PORT_D)
7624 intel_encoder->pipe_mask = BIT(PIPE_C);
7625 else
7626 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7627 } else {
7628 intel_encoder->pipe_mask = ~0;
7630 intel_encoder->cloneable = 0;
7631 intel_encoder->port = port;
7633 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7635 if (port != PORT_A)
7636 intel_infoframe_init(intel_dig_port);
7638 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7639 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7640 goto err_init_connector;
7642 return true;
7644 err_init_connector:
7645 drm_encoder_cleanup(encoder);
7646 err_encoder_init:
7647 kfree(intel_connector);
7648 err_connector_alloc:
7649 kfree(intel_dig_port);
7650 return false;
7653 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7655 struct intel_encoder *encoder;
7657 for_each_intel_encoder(&dev_priv->drm, encoder) {
7658 struct intel_dp *intel_dp;
7660 if (encoder->type != INTEL_OUTPUT_DDI)
7661 continue;
7663 intel_dp = enc_to_intel_dp(encoder);
7665 if (!intel_dp->can_mst)
7666 continue;
7668 if (intel_dp->is_mst)
7669 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7673 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7675 struct intel_encoder *encoder;
7677 for_each_intel_encoder(&dev_priv->drm, encoder) {
7678 struct intel_dp *intel_dp;
7679 int ret;
7681 if (encoder->type != INTEL_OUTPUT_DDI)
7682 continue;
7684 intel_dp = enc_to_intel_dp(encoder);
7686 if (!intel_dp->can_mst)
7687 continue;
7689 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7690 true);
7691 if (ret) {
7692 intel_dp->is_mst = false;
7693 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7694 false);