2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Keith Packard <keithp@keithp.com>
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
35 #include <asm/byteorder.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
45 #include "i915_debugfs.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
67 #include "intel_vdsc.h"
69 #define DP_DPRX_ESI_LEN 14
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE 2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261
79 /* Compliance test status bits */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
81 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
90 static const struct dp_link_dpll g4x_dpll
[] = {
92 { .p1
= 2, .p2
= 10, .n
= 2, .m1
= 23, .m2
= 8 } },
94 { .p1
= 1, .p2
= 10, .n
= 1, .m1
= 14, .m2
= 2 } }
97 static const struct dp_link_dpll pch_dpll
[] = {
99 { .p1
= 2, .p2
= 10, .n
= 1, .m1
= 12, .m2
= 9 } },
101 { .p1
= 1, .p2
= 10, .n
= 2, .m1
= 14, .m2
= 8 } }
104 static const struct dp_link_dpll vlv_dpll
[] = {
106 { .p1
= 3, .p2
= 2, .n
= 5, .m1
= 3, .m2
= 81 } },
108 { .p1
= 2, .p2
= 2, .n
= 1, .m1
= 2, .m2
= 27 } }
112 * CHV supports eDP 1.4 that have more link rates.
113 * Below only provides the fixed rate but exclude variable rate.
115 static const struct dp_link_dpll chv_dpll
[] = {
117 * CHV requires to program fractional division for m2.
118 * m2 is stored in fixed point format using formula below
119 * (m2_int << 22) | m2_fraction
121 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
122 { .p1
= 4, .p2
= 2, .n
= 1, .m1
= 2, .m2
= 0x819999a } },
123 { 270000, /* m2_int = 27, m2_fraction = 0 */
124 { .p1
= 4, .p2
= 1, .n
= 1, .m1
= 2, .m2
= 0x6c00000 } },
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp
[] = {6, 8, 10, 12, 15};
130 /* With Single pipe configuration, HW is capable of supporting maximum
131 * of 4 slices per line.
133 static const u8 valid_dsc_slicecount
[] = {1, 2, 4};
136 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137 * @intel_dp: DP struct
139 * If a CPU or PCH DP output is attached to an eDP panel, this function
140 * will return true, and false otherwise.
142 bool intel_dp_is_edp(struct intel_dp
*intel_dp
)
144 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
146 return intel_dig_port
->base
.type
== INTEL_OUTPUT_EDP
;
149 static struct intel_dp
*intel_attached_dp(struct intel_connector
*connector
)
151 return enc_to_intel_dp(intel_attached_encoder(connector
));
154 static void intel_dp_link_down(struct intel_encoder
*encoder
,
155 const struct intel_crtc_state
*old_crtc_state
);
156 static bool edp_panel_vdd_on(struct intel_dp
*intel_dp
);
157 static void edp_panel_vdd_off(struct intel_dp
*intel_dp
, bool sync
);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder
*encoder
,
159 const struct intel_crtc_state
*crtc_state
);
160 static void vlv_steal_power_sequencer(struct drm_i915_private
*dev_priv
,
162 static void intel_dp_unset_edid(struct intel_dp
*intel_dp
);
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp
*intel_dp
)
167 static const int dp_rates
[] = {
168 162000, 270000, 540000, 810000
172 max_rate
= drm_dp_bw_code_to_link_rate(intel_dp
->dpcd
[DP_MAX_LINK_RATE
]);
174 for (i
= 0; i
< ARRAY_SIZE(dp_rates
); i
++) {
175 if (dp_rates
[i
] > max_rate
)
177 intel_dp
->sink_rates
[i
] = dp_rates
[i
];
180 intel_dp
->num_sink_rates
= i
;
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates
, int len
, int max_rate
)
188 /* Limit results by potentially reduced max rate */
189 for (i
= 0; i
< len
; i
++) {
190 if (rates
[len
- i
- 1] <= max_rate
)
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp
*intel_dp
,
201 return intel_dp_rate_limit_len(intel_dp
->common_rates
,
202 intel_dp
->num_common_rates
, max_rate
);
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp
*intel_dp
)
208 return intel_dp
->common_rates
[intel_dp
->num_common_rates
- 1];
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp
*intel_dp
)
214 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
215 int source_max
= intel_dig_port
->max_lanes
;
216 int sink_max
= drm_dp_max_lane_count(intel_dp
->dpcd
);
217 int fia_max
= intel_tc_port_fia_max_lane_count(intel_dig_port
);
219 return min3(source_max
, sink_max
, fia_max
);
222 int intel_dp_max_lane_count(struct intel_dp
*intel_dp
)
224 return intel_dp
->max_link_lane_count
;
228 intel_dp_link_required(int pixel_clock
, int bpp
)
230 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231 return DIV_ROUND_UP(pixel_clock
* bpp
, 8);
235 intel_dp_max_data_rate(int max_link_clock
, int max_lanes
)
237 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238 * link rate that is generally expressed in Gbps. Since, 8 bits of data
239 * is transmitted every LS_Clk per lane, there is no need to account for
240 * the channel encoding that is done in the PHY layer here.
243 return max_link_clock
* max_lanes
;
247 intel_dp_downstream_max_dotclock(struct intel_dp
*intel_dp
)
249 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
250 struct intel_encoder
*encoder
= &intel_dig_port
->base
;
251 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
252 int max_dotclk
= dev_priv
->max_dotclk_freq
;
255 int type
= intel_dp
->downstream_ports
[0] & DP_DS_PORT_TYPE_MASK
;
257 if (type
!= DP_DS_PORT_TYPE_VGA
)
260 ds_max_dotclk
= drm_dp_downstream_max_clock(intel_dp
->dpcd
,
261 intel_dp
->downstream_ports
);
263 if (ds_max_dotclk
!= 0)
264 max_dotclk
= min(max_dotclk
, ds_max_dotclk
);
269 static int cnl_max_source_rate(struct intel_dp
*intel_dp
)
271 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
272 struct drm_i915_private
*dev_priv
= to_i915(dig_port
->base
.base
.dev
);
273 enum port port
= dig_port
->base
.port
;
275 u32 voltage
= I915_READ(CNL_PORT_COMP_DW3
) & VOLTAGE_INFO_MASK
;
277 /* Low voltage SKUs are limited to max of 5.4G */
278 if (voltage
== VOLTAGE_INFO_0_85V
)
281 /* For this SKU 8.1G is supported in all ports */
282 if (IS_CNL_WITH_PORT_F(dev_priv
))
285 /* For other SKUs, max rate on ports A and D is 5.4G */
286 if (port
== PORT_A
|| port
== PORT_D
)
292 static int icl_max_source_rate(struct intel_dp
*intel_dp
)
294 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
295 struct drm_i915_private
*dev_priv
= to_i915(dig_port
->base
.base
.dev
);
296 enum phy phy
= intel_port_to_phy(dev_priv
, dig_port
->base
.port
);
298 if (intel_phy_is_combo(dev_priv
, phy
) &&
299 !IS_ELKHARTLAKE(dev_priv
) &&
300 !intel_dp_is_edp(intel_dp
))
307 intel_dp_set_source_rates(struct intel_dp
*intel_dp
)
309 /* The values must be in increasing order */
310 static const int cnl_rates
[] = {
311 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
313 static const int bxt_rates
[] = {
314 162000, 216000, 243000, 270000, 324000, 432000, 540000
316 static const int skl_rates
[] = {
317 162000, 216000, 270000, 324000, 432000, 540000
319 static const int hsw_rates
[] = {
320 162000, 270000, 540000
322 static const int g4x_rates
[] = {
325 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
326 struct drm_i915_private
*dev_priv
= to_i915(dig_port
->base
.base
.dev
);
327 const struct ddi_vbt_port_info
*info
=
328 &dev_priv
->vbt
.ddi_port_info
[dig_port
->base
.port
];
329 const int *source_rates
;
330 int size
, max_rate
= 0, vbt_max_rate
= info
->dp_max_link_rate
;
332 /* This should only be done once */
333 WARN_ON(intel_dp
->source_rates
|| intel_dp
->num_source_rates
);
335 if (INTEL_GEN(dev_priv
) >= 10) {
336 source_rates
= cnl_rates
;
337 size
= ARRAY_SIZE(cnl_rates
);
338 if (IS_GEN(dev_priv
, 10))
339 max_rate
= cnl_max_source_rate(intel_dp
);
341 max_rate
= icl_max_source_rate(intel_dp
);
342 } else if (IS_GEN9_LP(dev_priv
)) {
343 source_rates
= bxt_rates
;
344 size
= ARRAY_SIZE(bxt_rates
);
345 } else if (IS_GEN9_BC(dev_priv
)) {
346 source_rates
= skl_rates
;
347 size
= ARRAY_SIZE(skl_rates
);
348 } else if ((IS_HASWELL(dev_priv
) && !IS_HSW_ULX(dev_priv
)) ||
349 IS_BROADWELL(dev_priv
)) {
350 source_rates
= hsw_rates
;
351 size
= ARRAY_SIZE(hsw_rates
);
353 source_rates
= g4x_rates
;
354 size
= ARRAY_SIZE(g4x_rates
);
357 if (max_rate
&& vbt_max_rate
)
358 max_rate
= min(max_rate
, vbt_max_rate
);
359 else if (vbt_max_rate
)
360 max_rate
= vbt_max_rate
;
363 size
= intel_dp_rate_limit_len(source_rates
, size
, max_rate
);
365 intel_dp
->source_rates
= source_rates
;
366 intel_dp
->num_source_rates
= size
;
369 static int intersect_rates(const int *source_rates
, int source_len
,
370 const int *sink_rates
, int sink_len
,
373 int i
= 0, j
= 0, k
= 0;
375 while (i
< source_len
&& j
< sink_len
) {
376 if (source_rates
[i
] == sink_rates
[j
]) {
377 if (WARN_ON(k
>= DP_MAX_SUPPORTED_RATES
))
379 common_rates
[k
] = source_rates
[i
];
383 } else if (source_rates
[i
] < sink_rates
[j
]) {
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates
, int len
, int rate
)
397 for (i
= 0; i
< len
; i
++)
398 if (rate
== rates
[i
])
404 static void intel_dp_set_common_rates(struct intel_dp
*intel_dp
)
406 WARN_ON(!intel_dp
->num_source_rates
|| !intel_dp
->num_sink_rates
);
408 intel_dp
->num_common_rates
= intersect_rates(intel_dp
->source_rates
,
409 intel_dp
->num_source_rates
,
410 intel_dp
->sink_rates
,
411 intel_dp
->num_sink_rates
,
412 intel_dp
->common_rates
);
414 /* Paranoia, there should always be something in common. */
415 if (WARN_ON(intel_dp
->num_common_rates
== 0)) {
416 intel_dp
->common_rates
[0] = 162000;
417 intel_dp
->num_common_rates
= 1;
421 static bool intel_dp_link_params_valid(struct intel_dp
*intel_dp
, int link_rate
,
425 * FIXME: we need to synchronize the current link parameters with
426 * hardware readout. Currently fast link training doesn't work on
429 if (link_rate
== 0 ||
430 link_rate
> intel_dp
->max_link_rate
)
433 if (lane_count
== 0 ||
434 lane_count
> intel_dp_max_lane_count(intel_dp
))
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp
*intel_dp
,
444 const struct drm_display_mode
*fixed_mode
=
445 intel_dp
->attached_connector
->panel
.fixed_mode
;
446 int mode_rate
, max_rate
;
448 mode_rate
= intel_dp_link_required(fixed_mode
->clock
, 18);
449 max_rate
= intel_dp_max_data_rate(link_rate
, lane_count
);
450 if (mode_rate
> max_rate
)
456 int intel_dp_get_link_train_fallback_values(struct intel_dp
*intel_dp
,
457 int link_rate
, u8 lane_count
)
461 index
= intel_dp_rate_index(intel_dp
->common_rates
,
462 intel_dp
->num_common_rates
,
465 if (intel_dp_is_edp(intel_dp
) &&
466 !intel_dp_can_link_train_fallback_for_edp(intel_dp
,
467 intel_dp
->common_rates
[index
- 1],
469 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
472 intel_dp
->max_link_rate
= intel_dp
->common_rates
[index
- 1];
473 intel_dp
->max_link_lane_count
= lane_count
;
474 } else if (lane_count
> 1) {
475 if (intel_dp_is_edp(intel_dp
) &&
476 !intel_dp_can_link_train_fallback_for_edp(intel_dp
,
477 intel_dp_max_common_rate(intel_dp
),
479 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
482 intel_dp
->max_link_rate
= intel_dp_max_common_rate(intel_dp
);
483 intel_dp
->max_link_lane_count
= lane_count
>> 1;
485 DRM_ERROR("Link Training Unsuccessful\n");
492 u32
intel_dp_mode_to_fec_clock(u32 mode_clock
)
494 return div_u64(mul_u32_u32(mode_clock
, 1000000U),
495 DP_DSC_FEC_OVERHEAD_FACTOR
);
499 small_joiner_ram_size_bits(struct drm_i915_private
*i915
)
501 if (INTEL_GEN(i915
) >= 11)
507 static u16
intel_dp_dsc_get_output_bpp(struct drm_i915_private
*i915
,
508 u32 link_clock
, u32 lane_count
,
509 u32 mode_clock
, u32 mode_hdisplay
)
511 u32 bits_per_pixel
, max_bpp_small_joiner_ram
;
515 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517 * for SST -> TimeSlotsPerMTP is 1,
518 * for MST -> TimeSlotsPerMTP has to be calculated
520 bits_per_pixel
= (link_clock
* lane_count
* 8) /
521 intel_dp_mode_to_fec_clock(mode_clock
);
522 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel
);
524 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525 max_bpp_small_joiner_ram
= small_joiner_ram_size_bits(i915
) /
527 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram
);
530 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531 * check, output bpp from small joiner RAM check)
533 bits_per_pixel
= min(bits_per_pixel
, max_bpp_small_joiner_ram
);
535 /* Error out if the max bpp is less than smallest allowed valid bpp */
536 if (bits_per_pixel
< valid_dsc_bpp
[0]) {
537 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538 bits_per_pixel
, valid_dsc_bpp
[0]);
542 /* Find the nearest match in the array of known BPPs from VESA */
543 for (i
= 0; i
< ARRAY_SIZE(valid_dsc_bpp
) - 1; i
++) {
544 if (bits_per_pixel
< valid_dsc_bpp
[i
+ 1])
547 bits_per_pixel
= valid_dsc_bpp
[i
];
550 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551 * fractional part is 0
553 return bits_per_pixel
<< 4;
556 static u8
intel_dp_dsc_get_slice_count(struct intel_dp
*intel_dp
,
557 int mode_clock
, int mode_hdisplay
)
559 u8 min_slice_count
, i
;
562 if (mode_clock
<= DP_DSC_PEAK_PIXEL_RATE
)
563 min_slice_count
= DIV_ROUND_UP(mode_clock
,
564 DP_DSC_MAX_ENC_THROUGHPUT_0
);
566 min_slice_count
= DIV_ROUND_UP(mode_clock
,
567 DP_DSC_MAX_ENC_THROUGHPUT_1
);
569 max_slice_width
= drm_dp_dsc_sink_max_slice_width(intel_dp
->dsc_dpcd
);
570 if (max_slice_width
< DP_DSC_MIN_SLICE_WIDTH_VALUE
) {
571 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
575 /* Also take into account max slice width */
576 min_slice_count
= min_t(u8
, min_slice_count
,
577 DIV_ROUND_UP(mode_hdisplay
,
580 /* Find the closest match to the valid slice count values */
581 for (i
= 0; i
< ARRAY_SIZE(valid_dsc_slicecount
); i
++) {
582 if (valid_dsc_slicecount
[i
] >
583 drm_dp_dsc_sink_max_slice_count(intel_dp
->dsc_dpcd
,
586 if (min_slice_count
<= valid_dsc_slicecount
[i
])
587 return valid_dsc_slicecount
[i
];
590 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count
);
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private
*dev_priv
,
598 * Older platforms don't like hdisplay==4096 with DP.
600 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601 * and frame counter increment), but we don't get vblank interrupts,
602 * and the pipe underruns immediately. The link also doesn't seem
603 * to get trained properly.
605 * On CHV the vblank interrupts don't seem to disappear but
606 * otherwise the symptoms are similar.
608 * TODO: confirm the behaviour on HSW+
610 return hdisplay
== 4096 && !HAS_DDI(dev_priv
);
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector
*connector
,
615 struct drm_display_mode
*mode
)
617 struct intel_dp
*intel_dp
= intel_attached_dp(to_intel_connector(connector
));
618 struct intel_connector
*intel_connector
= to_intel_connector(connector
);
619 struct drm_display_mode
*fixed_mode
= intel_connector
->panel
.fixed_mode
;
620 struct drm_i915_private
*dev_priv
= to_i915(connector
->dev
);
621 int target_clock
= mode
->clock
;
622 int max_rate
, mode_rate
, max_lanes
, max_link_clock
;
624 u16 dsc_max_output_bpp
= 0;
625 u8 dsc_slice_count
= 0;
627 if (mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
628 return MODE_NO_DBLESCAN
;
630 max_dotclk
= intel_dp_downstream_max_dotclock(intel_dp
);
632 if (intel_dp_is_edp(intel_dp
) && fixed_mode
) {
633 if (mode
->hdisplay
> fixed_mode
->hdisplay
)
636 if (mode
->vdisplay
> fixed_mode
->vdisplay
)
639 target_clock
= fixed_mode
->clock
;
642 max_link_clock
= intel_dp_max_link_rate(intel_dp
);
643 max_lanes
= intel_dp_max_lane_count(intel_dp
);
645 max_rate
= intel_dp_max_data_rate(max_link_clock
, max_lanes
);
646 mode_rate
= intel_dp_link_required(target_clock
, 18);
648 if (intel_dp_hdisplay_bad(dev_priv
, mode
->hdisplay
))
649 return MODE_H_ILLEGAL
;
652 * Output bpp is stored in 6.4 format so right shift by 4 to get the
653 * integer value since we support only integer values of bpp.
655 if ((INTEL_GEN(dev_priv
) >= 10 || IS_GEMINILAKE(dev_priv
)) &&
656 drm_dp_sink_supports_dsc(intel_dp
->dsc_dpcd
)) {
657 if (intel_dp_is_edp(intel_dp
)) {
659 drm_edp_dsc_sink_output_bpp(intel_dp
->dsc_dpcd
) >> 4;
661 drm_dp_dsc_sink_max_slice_count(intel_dp
->dsc_dpcd
,
663 } else if (drm_dp_sink_supports_fec(intel_dp
->fec_capable
)) {
665 intel_dp_dsc_get_output_bpp(dev_priv
,
669 mode
->hdisplay
) >> 4;
671 intel_dp_dsc_get_slice_count(intel_dp
,
677 if ((mode_rate
> max_rate
&& !(dsc_max_output_bpp
&& dsc_slice_count
)) ||
678 target_clock
> max_dotclk
)
679 return MODE_CLOCK_HIGH
;
681 if (mode
->clock
< 10000)
682 return MODE_CLOCK_LOW
;
684 if (mode
->flags
& DRM_MODE_FLAG_DBLCLK
)
685 return MODE_H_ILLEGAL
;
687 return intel_mode_valid_max_plane_size(dev_priv
, mode
);
690 u32
intel_dp_pack_aux(const u8
*src
, int src_bytes
)
697 for (i
= 0; i
< src_bytes
; i
++)
698 v
|= ((u32
)src
[i
]) << ((3 - i
) * 8);
702 static void intel_dp_unpack_aux(u32 src
, u8
*dst
, int dst_bytes
)
707 for (i
= 0; i
< dst_bytes
; i
++)
708 dst
[i
] = src
>> ((3-i
) * 8);
712 intel_dp_init_panel_power_sequencer(struct intel_dp
*intel_dp
);
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp
*intel_dp
,
715 bool force_disable_vdd
);
717 intel_dp_pps_init(struct intel_dp
*intel_dp
);
719 static intel_wakeref_t
720 pps_lock(struct intel_dp
*intel_dp
)
722 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
723 intel_wakeref_t wakeref
;
726 * See intel_power_sequencer_reset() why we need
727 * a power domain reference here.
729 wakeref
= intel_display_power_get(dev_priv
,
730 intel_aux_power_domain(dp_to_dig_port(intel_dp
)));
732 mutex_lock(&dev_priv
->pps_mutex
);
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp
*intel_dp
, intel_wakeref_t wakeref
)
740 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
742 mutex_unlock(&dev_priv
->pps_mutex
);
743 intel_display_power_put(dev_priv
,
744 intel_aux_power_domain(dp_to_dig_port(intel_dp
)),
749 #define with_pps_lock(dp, wf) \
750 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
753 vlv_power_sequencer_kick(struct intel_dp
*intel_dp
)
755 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
756 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
757 enum pipe pipe
= intel_dp
->pps_pipe
;
758 bool pll_enabled
, release_cl_override
= false;
759 enum dpio_phy phy
= DPIO_PHY(pipe
);
760 enum dpio_channel ch
= vlv_pipe_to_channel(pipe
);
763 if (WARN(I915_READ(intel_dp
->output_reg
) & DP_PORT_EN
,
764 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765 pipe_name(pipe
), intel_dig_port
->base
.base
.base
.id
,
766 intel_dig_port
->base
.base
.name
))
769 DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770 pipe_name(pipe
), intel_dig_port
->base
.base
.base
.id
,
771 intel_dig_port
->base
.base
.name
);
773 /* Preserve the BIOS-computed detected bit. This is
774 * supposed to be read-only.
776 DP
= I915_READ(intel_dp
->output_reg
) & DP_DETECTED
;
777 DP
|= DP_VOLTAGE_0_4
| DP_PRE_EMPHASIS_0
;
778 DP
|= DP_PORT_WIDTH(1);
779 DP
|= DP_LINK_TRAIN_PAT_1
;
781 if (IS_CHERRYVIEW(dev_priv
))
782 DP
|= DP_PIPE_SEL_CHV(pipe
);
784 DP
|= DP_PIPE_SEL(pipe
);
786 pll_enabled
= I915_READ(DPLL(pipe
)) & DPLL_VCO_ENABLE
;
789 * The DPLL for the pipe must be enabled for this to work.
790 * So enable temporarily it if it's not already enabled.
793 release_cl_override
= IS_CHERRYVIEW(dev_priv
) &&
794 !chv_phy_powergate_ch(dev_priv
, phy
, ch
, true);
796 if (vlv_force_pll_on(dev_priv
, pipe
, IS_CHERRYVIEW(dev_priv
) ?
797 &chv_dpll
[0].dpll
: &vlv_dpll
[0].dpll
)) {
798 DRM_ERROR("Failed to force on pll for pipe %c!\n",
805 * Similar magic as in intel_dp_enable_port().
806 * We _must_ do this port enable + disable trick
807 * to make this power sequencer lock onto the port.
808 * Otherwise even VDD force bit won't work.
810 I915_WRITE(intel_dp
->output_reg
, DP
);
811 POSTING_READ(intel_dp
->output_reg
);
813 I915_WRITE(intel_dp
->output_reg
, DP
| DP_PORT_EN
);
814 POSTING_READ(intel_dp
->output_reg
);
816 I915_WRITE(intel_dp
->output_reg
, DP
& ~DP_PORT_EN
);
817 POSTING_READ(intel_dp
->output_reg
);
820 vlv_force_pll_off(dev_priv
, pipe
);
822 if (release_cl_override
)
823 chv_phy_powergate_ch(dev_priv
, phy
, ch
, false);
827 static enum pipe
vlv_find_free_pps(struct drm_i915_private
*dev_priv
)
829 struct intel_encoder
*encoder
;
830 unsigned int pipes
= (1 << PIPE_A
) | (1 << PIPE_B
);
833 * We don't have power sequencer currently.
834 * Pick one that's not used by other ports.
836 for_each_intel_dp(&dev_priv
->drm
, encoder
) {
837 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
839 if (encoder
->type
== INTEL_OUTPUT_EDP
) {
840 WARN_ON(intel_dp
->active_pipe
!= INVALID_PIPE
&&
841 intel_dp
->active_pipe
!= intel_dp
->pps_pipe
);
843 if (intel_dp
->pps_pipe
!= INVALID_PIPE
)
844 pipes
&= ~(1 << intel_dp
->pps_pipe
);
846 WARN_ON(intel_dp
->pps_pipe
!= INVALID_PIPE
);
848 if (intel_dp
->active_pipe
!= INVALID_PIPE
)
849 pipes
&= ~(1 << intel_dp
->active_pipe
);
856 return ffs(pipes
) - 1;
860 vlv_power_sequencer_pipe(struct intel_dp
*intel_dp
)
862 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
863 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
866 lockdep_assert_held(&dev_priv
->pps_mutex
);
868 /* We should never land here with regular DP ports */
869 WARN_ON(!intel_dp_is_edp(intel_dp
));
871 WARN_ON(intel_dp
->active_pipe
!= INVALID_PIPE
&&
872 intel_dp
->active_pipe
!= intel_dp
->pps_pipe
);
874 if (intel_dp
->pps_pipe
!= INVALID_PIPE
)
875 return intel_dp
->pps_pipe
;
877 pipe
= vlv_find_free_pps(dev_priv
);
880 * Didn't find one. This should not happen since there
881 * are two power sequencers and up to two eDP ports.
883 if (WARN_ON(pipe
== INVALID_PIPE
))
886 vlv_steal_power_sequencer(dev_priv
, pipe
);
887 intel_dp
->pps_pipe
= pipe
;
889 DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890 pipe_name(intel_dp
->pps_pipe
),
891 intel_dig_port
->base
.base
.base
.id
,
892 intel_dig_port
->base
.base
.name
);
894 /* init power sequencer on this pipe and port */
895 intel_dp_init_panel_power_sequencer(intel_dp
);
896 intel_dp_init_panel_power_sequencer_registers(intel_dp
, true);
899 * Even vdd force doesn't work until we've made
900 * the power sequencer lock in on the port.
902 vlv_power_sequencer_kick(intel_dp
);
904 return intel_dp
->pps_pipe
;
908 bxt_power_sequencer_idx(struct intel_dp
*intel_dp
)
910 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
911 int backlight_controller
= dev_priv
->vbt
.backlight
.controller
;
913 lockdep_assert_held(&dev_priv
->pps_mutex
);
915 /* We should never land here with regular DP ports */
916 WARN_ON(!intel_dp_is_edp(intel_dp
));
918 if (!intel_dp
->pps_reset
)
919 return backlight_controller
;
921 intel_dp
->pps_reset
= false;
924 * Only the HW needs to be reprogrammed, the SW state is fixed and
925 * has been setup during connector init.
927 intel_dp_init_panel_power_sequencer_registers(intel_dp
, false);
929 return backlight_controller
;
932 typedef bool (*vlv_pipe_check
)(struct drm_i915_private
*dev_priv
,
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private
*dev_priv
,
938 return I915_READ(PP_STATUS(pipe
)) & PP_ON
;
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private
*dev_priv
,
944 return I915_READ(PP_CONTROL(pipe
)) & EDP_FORCE_VDD
;
947 static bool vlv_pipe_any(struct drm_i915_private
*dev_priv
,
954 vlv_initial_pps_pipe(struct drm_i915_private
*dev_priv
,
956 vlv_pipe_check pipe_check
)
960 for (pipe
= PIPE_A
; pipe
<= PIPE_B
; pipe
++) {
961 u32 port_sel
= I915_READ(PP_ON_DELAYS(pipe
)) &
962 PANEL_PORT_SELECT_MASK
;
964 if (port_sel
!= PANEL_PORT_SELECT_VLV(port
))
967 if (!pipe_check(dev_priv
, pipe
))
977 vlv_initial_power_sequencer_setup(struct intel_dp
*intel_dp
)
979 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
980 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
981 enum port port
= intel_dig_port
->base
.port
;
983 lockdep_assert_held(&dev_priv
->pps_mutex
);
985 /* try to find a pipe with this port selected */
986 /* first pick one where the panel is on */
987 intel_dp
->pps_pipe
= vlv_initial_pps_pipe(dev_priv
, port
,
989 /* didn't find one? pick one where vdd is on */
990 if (intel_dp
->pps_pipe
== INVALID_PIPE
)
991 intel_dp
->pps_pipe
= vlv_initial_pps_pipe(dev_priv
, port
,
992 vlv_pipe_has_vdd_on
);
993 /* didn't find one? pick one with just the correct port */
994 if (intel_dp
->pps_pipe
== INVALID_PIPE
)
995 intel_dp
->pps_pipe
= vlv_initial_pps_pipe(dev_priv
, port
,
998 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999 if (intel_dp
->pps_pipe
== INVALID_PIPE
) {
1000 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001 intel_dig_port
->base
.base
.base
.id
,
1002 intel_dig_port
->base
.base
.name
);
1006 DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007 intel_dig_port
->base
.base
.base
.id
,
1008 intel_dig_port
->base
.base
.name
,
1009 pipe_name(intel_dp
->pps_pipe
));
1011 intel_dp_init_panel_power_sequencer(intel_dp
);
1012 intel_dp_init_panel_power_sequencer_registers(intel_dp
, false);
1015 void intel_power_sequencer_reset(struct drm_i915_private
*dev_priv
)
1017 struct intel_encoder
*encoder
;
1019 if (WARN_ON(!IS_VALLEYVIEW(dev_priv
) && !IS_CHERRYVIEW(dev_priv
) &&
1020 !IS_GEN9_LP(dev_priv
)))
1024 * We can't grab pps_mutex here due to deadlock with power_domain
1025 * mutex when power_domain functions are called while holding pps_mutex.
1026 * That also means that in order to use pps_pipe the code needs to
1027 * hold both a power domain reference and pps_mutex, and the power domain
1028 * reference get/put must be done while _not_ holding pps_mutex.
1029 * pps_{lock,unlock}() do these steps in the correct order, so one
1030 * should use them always.
1033 for_each_intel_dp(&dev_priv
->drm
, encoder
) {
1034 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
1036 WARN_ON(intel_dp
->active_pipe
!= INVALID_PIPE
);
1038 if (encoder
->type
!= INTEL_OUTPUT_EDP
)
1041 if (IS_GEN9_LP(dev_priv
))
1042 intel_dp
->pps_reset
= true;
1044 intel_dp
->pps_pipe
= INVALID_PIPE
;
1048 struct pps_registers
{
1056 static void intel_pps_get_registers(struct intel_dp
*intel_dp
,
1057 struct pps_registers
*regs
)
1059 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1062 memset(regs
, 0, sizeof(*regs
));
1064 if (IS_GEN9_LP(dev_priv
))
1065 pps_idx
= bxt_power_sequencer_idx(intel_dp
);
1066 else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
1067 pps_idx
= vlv_power_sequencer_pipe(intel_dp
);
1069 regs
->pp_ctrl
= PP_CONTROL(pps_idx
);
1070 regs
->pp_stat
= PP_STATUS(pps_idx
);
1071 regs
->pp_on
= PP_ON_DELAYS(pps_idx
);
1072 regs
->pp_off
= PP_OFF_DELAYS(pps_idx
);
1074 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075 if (IS_GEN9_LP(dev_priv
) || INTEL_PCH_TYPE(dev_priv
) >= PCH_CNP
)
1076 regs
->pp_div
= INVALID_MMIO_REG
;
1078 regs
->pp_div
= PP_DIVISOR(pps_idx
);
1082 _pp_ctrl_reg(struct intel_dp
*intel_dp
)
1084 struct pps_registers regs
;
1086 intel_pps_get_registers(intel_dp
, ®s
);
1088 return regs
.pp_ctrl
;
1092 _pp_stat_reg(struct intel_dp
*intel_dp
)
1094 struct pps_registers regs
;
1096 intel_pps_get_registers(intel_dp
, ®s
);
1098 return regs
.pp_stat
;
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102 This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block
*this, unsigned long code
,
1106 struct intel_dp
*intel_dp
= container_of(this, typeof(* intel_dp
),
1108 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1109 intel_wakeref_t wakeref
;
1111 if (!intel_dp_is_edp(intel_dp
) || code
!= SYS_RESTART
)
1114 with_pps_lock(intel_dp
, wakeref
) {
1115 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
1116 enum pipe pipe
= vlv_power_sequencer_pipe(intel_dp
);
1117 i915_reg_t pp_ctrl_reg
, pp_div_reg
;
1120 pp_ctrl_reg
= PP_CONTROL(pipe
);
1121 pp_div_reg
= PP_DIVISOR(pipe
);
1122 pp_div
= I915_READ(pp_div_reg
);
1123 pp_div
&= PP_REFERENCE_DIVIDER_MASK
;
1125 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1126 I915_WRITE(pp_div_reg
, pp_div
| 0x1F);
1127 I915_WRITE(pp_ctrl_reg
, PANEL_UNLOCK_REGS
);
1128 msleep(intel_dp
->panel_power_cycle_delay
);
1135 static bool edp_have_panel_power(struct intel_dp
*intel_dp
)
1137 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1139 lockdep_assert_held(&dev_priv
->pps_mutex
);
1141 if ((IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) &&
1142 intel_dp
->pps_pipe
== INVALID_PIPE
)
1145 return (I915_READ(_pp_stat_reg(intel_dp
)) & PP_ON
) != 0;
1148 static bool edp_have_panel_vdd(struct intel_dp
*intel_dp
)
1150 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1152 lockdep_assert_held(&dev_priv
->pps_mutex
);
1154 if ((IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) &&
1155 intel_dp
->pps_pipe
== INVALID_PIPE
)
1158 return I915_READ(_pp_ctrl_reg(intel_dp
)) & EDP_FORCE_VDD
;
1162 intel_dp_check_edp(struct intel_dp
*intel_dp
)
1164 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1166 if (!intel_dp_is_edp(intel_dp
))
1169 if (!edp_have_panel_power(intel_dp
) && !edp_have_panel_vdd(intel_dp
)) {
1170 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172 I915_READ(_pp_stat_reg(intel_dp
)),
1173 I915_READ(_pp_ctrl_reg(intel_dp
)));
1178 intel_dp_aux_wait_done(struct intel_dp
*intel_dp
)
1180 struct drm_i915_private
*i915
= dp_to_i915(intel_dp
);
1181 i915_reg_t ch_ctl
= intel_dp
->aux_ch_ctl_reg(intel_dp
);
1182 const unsigned int timeout_ms
= 10;
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187 done
= wait_event_timeout(i915
->gmbus_wait_queue
, C
,
1188 msecs_to_jiffies_timeout(timeout_ms
));
1190 /* just trace the final value */
1191 trace_i915_reg_rw(false, ch_ctl
, status
, sizeof(status
), true);
1194 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195 intel_dp
->aux
.name
, timeout_ms
, status
);
1201 static u32
g4x_get_aux_clock_divider(struct intel_dp
*intel_dp
, int index
)
1203 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1209 * The clock divider is based off the hrawclk, and would like to run at
1210 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1212 return DIV_ROUND_CLOSEST(dev_priv
->rawclk_freq
, 2000);
1215 static u32
ilk_get_aux_clock_divider(struct intel_dp
*intel_dp
, int index
)
1217 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1218 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1224 * The clock divider is based off the cdclk or PCH rawclk, and would
1225 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1226 * divide by 2000 and use that
1228 if (dig_port
->aux_ch
== AUX_CH_A
)
1229 return DIV_ROUND_CLOSEST(dev_priv
->cdclk
.hw
.cdclk
, 2000);
1231 return DIV_ROUND_CLOSEST(dev_priv
->rawclk_freq
, 2000);
1234 static u32
hsw_get_aux_clock_divider(struct intel_dp
*intel_dp
, int index
)
1236 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1237 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1239 if (dig_port
->aux_ch
!= AUX_CH_A
&& HAS_PCH_LPT_H(dev_priv
)) {
1240 /* Workaround for non-ULT HSW */
1248 return ilk_get_aux_clock_divider(intel_dp
, index
);
1251 static u32
skl_get_aux_clock_divider(struct intel_dp
*intel_dp
, int index
)
1254 * SKL doesn't need us to program the AUX clock divider (Hardware will
1255 * derive the clock from CDCLK automatically). We still implement the
1256 * get_aux_clock_divider vfunc to plug-in into the existing code.
1258 return index
? 0 : 1;
1261 static u32
g4x_get_aux_send_ctl(struct intel_dp
*intel_dp
,
1263 u32 aux_clock_divider
)
1265 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
1266 struct drm_i915_private
*dev_priv
=
1267 to_i915(intel_dig_port
->base
.base
.dev
);
1268 u32 precharge
, timeout
;
1270 if (IS_GEN(dev_priv
, 6))
1275 if (IS_BROADWELL(dev_priv
))
1276 timeout
= DP_AUX_CH_CTL_TIME_OUT_600us
;
1278 timeout
= DP_AUX_CH_CTL_TIME_OUT_400us
;
1280 return DP_AUX_CH_CTL_SEND_BUSY
|
1281 DP_AUX_CH_CTL_DONE
|
1282 DP_AUX_CH_CTL_INTERRUPT
|
1283 DP_AUX_CH_CTL_TIME_OUT_ERROR
|
1285 DP_AUX_CH_CTL_RECEIVE_ERROR
|
1286 (send_bytes
<< DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
) |
1287 (precharge
<< DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT
) |
1288 (aux_clock_divider
<< DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT
);
1291 static u32
skl_get_aux_send_ctl(struct intel_dp
*intel_dp
,
1295 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
1296 struct drm_i915_private
*i915
=
1297 to_i915(intel_dig_port
->base
.base
.dev
);
1298 enum phy phy
= intel_port_to_phy(i915
, intel_dig_port
->base
.port
);
1301 ret
= DP_AUX_CH_CTL_SEND_BUSY
|
1302 DP_AUX_CH_CTL_DONE
|
1303 DP_AUX_CH_CTL_INTERRUPT
|
1304 DP_AUX_CH_CTL_TIME_OUT_ERROR
|
1305 DP_AUX_CH_CTL_TIME_OUT_MAX
|
1306 DP_AUX_CH_CTL_RECEIVE_ERROR
|
1307 (send_bytes
<< DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
) |
1308 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1311 if (intel_phy_is_tc(i915
, phy
) &&
1312 intel_dig_port
->tc_mode
== TC_PORT_TBT_ALT
)
1313 ret
|= DP_AUX_CH_CTL_TBT_IO
;
1319 intel_dp_aux_xfer(struct intel_dp
*intel_dp
,
1320 const u8
*send
, int send_bytes
,
1321 u8
*recv
, int recv_size
,
1322 u32 aux_send_ctl_flags
)
1324 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
1325 struct drm_i915_private
*i915
=
1326 to_i915(intel_dig_port
->base
.base
.dev
);
1327 struct intel_uncore
*uncore
= &i915
->uncore
;
1328 enum phy phy
= intel_port_to_phy(i915
, intel_dig_port
->base
.port
);
1329 bool is_tc_port
= intel_phy_is_tc(i915
, phy
);
1330 i915_reg_t ch_ctl
, ch_data
[5];
1331 u32 aux_clock_divider
;
1332 enum intel_display_power_domain aux_domain
=
1333 intel_aux_power_domain(intel_dig_port
);
1334 intel_wakeref_t aux_wakeref
;
1335 intel_wakeref_t pps_wakeref
;
1336 int i
, ret
, recv_bytes
;
1341 ch_ctl
= intel_dp
->aux_ch_ctl_reg(intel_dp
);
1342 for (i
= 0; i
< ARRAY_SIZE(ch_data
); i
++)
1343 ch_data
[i
] = intel_dp
->aux_ch_data_reg(intel_dp
, i
);
1346 intel_tc_port_lock(intel_dig_port
);
1348 aux_wakeref
= intel_display_power_get(i915
, aux_domain
);
1349 pps_wakeref
= pps_lock(intel_dp
);
1352 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353 * In such cases we want to leave VDD enabled and it's up to upper layers
1354 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1357 vdd
= edp_panel_vdd_on(intel_dp
);
1359 /* dp aux is extremely sensitive to irq latency, hence request the
1360 * lowest possible wakeup latency and so prevent the cpu from going into
1361 * deep sleep states.
1363 pm_qos_update_request(&i915
->pm_qos
, 0);
1365 intel_dp_check_edp(intel_dp
);
1367 /* Try to wait for any previous AUX channel activity */
1368 for (try = 0; try < 3; try++) {
1369 status
= intel_uncore_read_notrace(uncore
, ch_ctl
);
1370 if ((status
& DP_AUX_CH_CTL_SEND_BUSY
) == 0)
1374 /* just trace the final value */
1375 trace_i915_reg_rw(false, ch_ctl
, status
, sizeof(status
), true);
1378 const u32 status
= intel_uncore_read(uncore
, ch_ctl
);
1380 if (status
!= intel_dp
->aux_busy_last_status
) {
1381 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1383 intel_dp
->aux_busy_last_status
= status
;
1390 /* Only 5 data registers! */
1391 if (WARN_ON(send_bytes
> 20 || recv_size
> 20)) {
1396 while ((aux_clock_divider
= intel_dp
->get_aux_clock_divider(intel_dp
, clock
++))) {
1397 u32 send_ctl
= intel_dp
->get_aux_send_ctl(intel_dp
,
1401 send_ctl
|= aux_send_ctl_flags
;
1403 /* Must try at least 3 times according to DP spec */
1404 for (try = 0; try < 5; try++) {
1405 /* Load the send data into the aux channel data registers */
1406 for (i
= 0; i
< send_bytes
; i
+= 4)
1407 intel_uncore_write(uncore
,
1409 intel_dp_pack_aux(send
+ i
,
1412 /* Send the command and wait for it to complete */
1413 intel_uncore_write(uncore
, ch_ctl
, send_ctl
);
1415 status
= intel_dp_aux_wait_done(intel_dp
);
1417 /* Clear done status and any errors */
1418 intel_uncore_write(uncore
,
1421 DP_AUX_CH_CTL_DONE
|
1422 DP_AUX_CH_CTL_TIME_OUT_ERROR
|
1423 DP_AUX_CH_CTL_RECEIVE_ERROR
);
1425 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426 * 400us delay required for errors and timeouts
1427 * Timeout errors from the HW already meet this
1428 * requirement so skip to next iteration
1430 if (status
& DP_AUX_CH_CTL_TIME_OUT_ERROR
)
1433 if (status
& DP_AUX_CH_CTL_RECEIVE_ERROR
) {
1434 usleep_range(400, 500);
1437 if (status
& DP_AUX_CH_CTL_DONE
)
1442 if ((status
& DP_AUX_CH_CTL_DONE
) == 0) {
1443 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status
);
1449 /* Check for timeout or receive error.
1450 * Timeouts occur when the sink is not connected
1452 if (status
& DP_AUX_CH_CTL_RECEIVE_ERROR
) {
1453 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status
);
1458 /* Timeouts occur when the device isn't connected, so they're
1459 * "normal" -- don't fill the kernel log with these */
1460 if (status
& DP_AUX_CH_CTL_TIME_OUT_ERROR
) {
1461 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status
);
1466 /* Unload any bytes sent back from the other side */
1467 recv_bytes
= ((status
& DP_AUX_CH_CTL_MESSAGE_SIZE_MASK
) >>
1468 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
);
1471 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472 * We have no idea of what happened so we return -EBUSY so
1473 * drm layer takes care for the necessary retries.
1475 if (recv_bytes
== 0 || recv_bytes
> 20) {
1476 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1482 if (recv_bytes
> recv_size
)
1483 recv_bytes
= recv_size
;
1485 for (i
= 0; i
< recv_bytes
; i
+= 4)
1486 intel_dp_unpack_aux(intel_uncore_read(uncore
, ch_data
[i
>> 2]),
1487 recv
+ i
, recv_bytes
- i
);
1491 pm_qos_update_request(&i915
->pm_qos
, PM_QOS_DEFAULT_VALUE
);
1494 edp_panel_vdd_off(intel_dp
, false);
1496 pps_unlock(intel_dp
, pps_wakeref
);
1497 intel_display_power_put_async(i915
, aux_domain
, aux_wakeref
);
1500 intel_tc_port_unlock(intel_dig_port
);
1505 #define BARE_ADDRESS_SIZE 3
1506 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1509 intel_dp_aux_header(u8 txbuf
[HEADER_SIZE
],
1510 const struct drm_dp_aux_msg
*msg
)
1512 txbuf
[0] = (msg
->request
<< 4) | ((msg
->address
>> 16) & 0xf);
1513 txbuf
[1] = (msg
->address
>> 8) & 0xff;
1514 txbuf
[2] = msg
->address
& 0xff;
1515 txbuf
[3] = msg
->size
- 1;
1519 intel_dp_aux_transfer(struct drm_dp_aux
*aux
, struct drm_dp_aux_msg
*msg
)
1521 struct intel_dp
*intel_dp
= container_of(aux
, struct intel_dp
, aux
);
1522 u8 txbuf
[20], rxbuf
[20];
1523 size_t txsize
, rxsize
;
1526 intel_dp_aux_header(txbuf
, msg
);
1528 switch (msg
->request
& ~DP_AUX_I2C_MOT
) {
1529 case DP_AUX_NATIVE_WRITE
:
1530 case DP_AUX_I2C_WRITE
:
1531 case DP_AUX_I2C_WRITE_STATUS_UPDATE
:
1532 txsize
= msg
->size
? HEADER_SIZE
+ msg
->size
: BARE_ADDRESS_SIZE
;
1533 rxsize
= 2; /* 0 or 1 data bytes */
1535 if (WARN_ON(txsize
> 20))
1538 WARN_ON(!msg
->buffer
!= !msg
->size
);
1541 memcpy(txbuf
+ HEADER_SIZE
, msg
->buffer
, msg
->size
);
1543 ret
= intel_dp_aux_xfer(intel_dp
, txbuf
, txsize
,
1546 msg
->reply
= rxbuf
[0] >> 4;
1549 /* Number of bytes written in a short write. */
1550 ret
= clamp_t(int, rxbuf
[1], 0, msg
->size
);
1552 /* Return payload size. */
1558 case DP_AUX_NATIVE_READ
:
1559 case DP_AUX_I2C_READ
:
1560 txsize
= msg
->size
? HEADER_SIZE
: BARE_ADDRESS_SIZE
;
1561 rxsize
= msg
->size
+ 1;
1563 if (WARN_ON(rxsize
> 20))
1566 ret
= intel_dp_aux_xfer(intel_dp
, txbuf
, txsize
,
1569 msg
->reply
= rxbuf
[0] >> 4;
1571 * Assume happy day, and copy the data. The caller is
1572 * expected to check msg->reply before touching it.
1574 * Return payload size.
1577 memcpy(msg
->buffer
, rxbuf
+ 1, ret
);
1590 static i915_reg_t
g4x_aux_ctl_reg(struct intel_dp
*intel_dp
)
1592 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1593 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1594 enum aux_ch aux_ch
= dig_port
->aux_ch
;
1600 return DP_AUX_CH_CTL(aux_ch
);
1602 MISSING_CASE(aux_ch
);
1603 return DP_AUX_CH_CTL(AUX_CH_B
);
1607 static i915_reg_t
g4x_aux_data_reg(struct intel_dp
*intel_dp
, int index
)
1609 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1610 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1611 enum aux_ch aux_ch
= dig_port
->aux_ch
;
1617 return DP_AUX_CH_DATA(aux_ch
, index
);
1619 MISSING_CASE(aux_ch
);
1620 return DP_AUX_CH_DATA(AUX_CH_B
, index
);
1624 static i915_reg_t
ilk_aux_ctl_reg(struct intel_dp
*intel_dp
)
1626 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1627 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1628 enum aux_ch aux_ch
= dig_port
->aux_ch
;
1632 return DP_AUX_CH_CTL(aux_ch
);
1636 return PCH_DP_AUX_CH_CTL(aux_ch
);
1638 MISSING_CASE(aux_ch
);
1639 return DP_AUX_CH_CTL(AUX_CH_A
);
1643 static i915_reg_t
ilk_aux_data_reg(struct intel_dp
*intel_dp
, int index
)
1645 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1646 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1647 enum aux_ch aux_ch
= dig_port
->aux_ch
;
1651 return DP_AUX_CH_DATA(aux_ch
, index
);
1655 return PCH_DP_AUX_CH_DATA(aux_ch
, index
);
1657 MISSING_CASE(aux_ch
);
1658 return DP_AUX_CH_DATA(AUX_CH_A
, index
);
1662 static i915_reg_t
skl_aux_ctl_reg(struct intel_dp
*intel_dp
)
1664 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1665 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1666 enum aux_ch aux_ch
= dig_port
->aux_ch
;
1676 return DP_AUX_CH_CTL(aux_ch
);
1678 MISSING_CASE(aux_ch
);
1679 return DP_AUX_CH_CTL(AUX_CH_A
);
1683 static i915_reg_t
skl_aux_data_reg(struct intel_dp
*intel_dp
, int index
)
1685 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1686 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1687 enum aux_ch aux_ch
= dig_port
->aux_ch
;
1697 return DP_AUX_CH_DATA(aux_ch
, index
);
1699 MISSING_CASE(aux_ch
);
1700 return DP_AUX_CH_DATA(AUX_CH_A
, index
);
1705 intel_dp_aux_fini(struct intel_dp
*intel_dp
)
1707 kfree(intel_dp
->aux
.name
);
1711 intel_dp_aux_init(struct intel_dp
*intel_dp
)
1713 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1714 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
1715 struct intel_encoder
*encoder
= &dig_port
->base
;
1717 if (INTEL_GEN(dev_priv
) >= 9) {
1718 intel_dp
->aux_ch_ctl_reg
= skl_aux_ctl_reg
;
1719 intel_dp
->aux_ch_data_reg
= skl_aux_data_reg
;
1720 } else if (HAS_PCH_SPLIT(dev_priv
)) {
1721 intel_dp
->aux_ch_ctl_reg
= ilk_aux_ctl_reg
;
1722 intel_dp
->aux_ch_data_reg
= ilk_aux_data_reg
;
1724 intel_dp
->aux_ch_ctl_reg
= g4x_aux_ctl_reg
;
1725 intel_dp
->aux_ch_data_reg
= g4x_aux_data_reg
;
1728 if (INTEL_GEN(dev_priv
) >= 9)
1729 intel_dp
->get_aux_clock_divider
= skl_get_aux_clock_divider
;
1730 else if (IS_BROADWELL(dev_priv
) || IS_HASWELL(dev_priv
))
1731 intel_dp
->get_aux_clock_divider
= hsw_get_aux_clock_divider
;
1732 else if (HAS_PCH_SPLIT(dev_priv
))
1733 intel_dp
->get_aux_clock_divider
= ilk_get_aux_clock_divider
;
1735 intel_dp
->get_aux_clock_divider
= g4x_get_aux_clock_divider
;
1737 if (INTEL_GEN(dev_priv
) >= 9)
1738 intel_dp
->get_aux_send_ctl
= skl_get_aux_send_ctl
;
1740 intel_dp
->get_aux_send_ctl
= g4x_get_aux_send_ctl
;
1742 drm_dp_aux_init(&intel_dp
->aux
);
1744 /* Failure to allocate our preferred name is not critical */
1745 intel_dp
->aux
.name
= kasprintf(GFP_KERNEL
, "DPDDC-%c",
1746 port_name(encoder
->port
));
1747 intel_dp
->aux
.transfer
= intel_dp_aux_transfer
;
1750 bool intel_dp_source_supports_hbr2(struct intel_dp
*intel_dp
)
1752 int max_rate
= intel_dp
->source_rates
[intel_dp
->num_source_rates
- 1];
1754 return max_rate
>= 540000;
1757 bool intel_dp_source_supports_hbr3(struct intel_dp
*intel_dp
)
1759 int max_rate
= intel_dp
->source_rates
[intel_dp
->num_source_rates
- 1];
1761 return max_rate
>= 810000;
1765 intel_dp_set_clock(struct intel_encoder
*encoder
,
1766 struct intel_crtc_state
*pipe_config
)
1768 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
1769 const struct dp_link_dpll
*divisor
= NULL
;
1772 if (IS_G4X(dev_priv
)) {
1774 count
= ARRAY_SIZE(g4x_dpll
);
1775 } else if (HAS_PCH_SPLIT(dev_priv
)) {
1777 count
= ARRAY_SIZE(pch_dpll
);
1778 } else if (IS_CHERRYVIEW(dev_priv
)) {
1780 count
= ARRAY_SIZE(chv_dpll
);
1781 } else if (IS_VALLEYVIEW(dev_priv
)) {
1783 count
= ARRAY_SIZE(vlv_dpll
);
1786 if (divisor
&& count
) {
1787 for (i
= 0; i
< count
; i
++) {
1788 if (pipe_config
->port_clock
== divisor
[i
].clock
) {
1789 pipe_config
->dpll
= divisor
[i
].dpll
;
1790 pipe_config
->clock_set
= true;
1797 static void snprintf_int_array(char *str
, size_t len
,
1798 const int *array
, int nelem
)
1804 for (i
= 0; i
< nelem
; i
++) {
1805 int r
= snprintf(str
, len
, "%s%d", i
? ", " : "", array
[i
]);
1813 static void intel_dp_print_rates(struct intel_dp
*intel_dp
)
1815 char str
[128]; /* FIXME: too big for stack? */
1817 if (!drm_debug_enabled(DRM_UT_KMS
))
1820 snprintf_int_array(str
, sizeof(str
),
1821 intel_dp
->source_rates
, intel_dp
->num_source_rates
);
1822 DRM_DEBUG_KMS("source rates: %s\n", str
);
1824 snprintf_int_array(str
, sizeof(str
),
1825 intel_dp
->sink_rates
, intel_dp
->num_sink_rates
);
1826 DRM_DEBUG_KMS("sink rates: %s\n", str
);
1828 snprintf_int_array(str
, sizeof(str
),
1829 intel_dp
->common_rates
, intel_dp
->num_common_rates
);
1830 DRM_DEBUG_KMS("common rates: %s\n", str
);
1834 intel_dp_max_link_rate(struct intel_dp
*intel_dp
)
1838 len
= intel_dp_common_len_rate_limit(intel_dp
, intel_dp
->max_link_rate
);
1839 if (WARN_ON(len
<= 0))
1842 return intel_dp
->common_rates
[len
- 1];
1845 int intel_dp_rate_select(struct intel_dp
*intel_dp
, int rate
)
1847 int i
= intel_dp_rate_index(intel_dp
->sink_rates
,
1848 intel_dp
->num_sink_rates
, rate
);
1856 void intel_dp_compute_rate(struct intel_dp
*intel_dp
, int port_clock
,
1857 u8
*link_bw
, u8
*rate_select
)
1859 /* eDP 1.4 rate select method. */
1860 if (intel_dp
->use_rate_select
) {
1863 intel_dp_rate_select(intel_dp
, port_clock
);
1865 *link_bw
= drm_dp_link_rate_to_bw_code(port_clock
);
1870 static bool intel_dp_source_supports_fec(struct intel_dp
*intel_dp
,
1871 const struct intel_crtc_state
*pipe_config
)
1873 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1875 /* On TGL, FEC is supported on all Pipes */
1876 if (INTEL_GEN(dev_priv
) >= 12)
1879 if (IS_GEN(dev_priv
, 11) && pipe_config
->cpu_transcoder
!= TRANSCODER_A
)
1885 static bool intel_dp_supports_fec(struct intel_dp
*intel_dp
,
1886 const struct intel_crtc_state
*pipe_config
)
1888 return intel_dp_source_supports_fec(intel_dp
, pipe_config
) &&
1889 drm_dp_sink_supports_fec(intel_dp
->fec_capable
);
1892 static bool intel_dp_supports_dsc(struct intel_dp
*intel_dp
,
1893 const struct intel_crtc_state
*crtc_state
)
1895 struct intel_encoder
*encoder
= &dp_to_dig_port(intel_dp
)->base
;
1897 if (!intel_dp_is_edp(intel_dp
) && !crtc_state
->fec_enable
)
1900 return intel_dsc_source_support(encoder
, crtc_state
) &&
1901 drm_dp_sink_supports_dsc(intel_dp
->dsc_dpcd
);
1904 static int intel_dp_compute_bpp(struct intel_dp
*intel_dp
,
1905 struct intel_crtc_state
*pipe_config
)
1907 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
1908 struct intel_connector
*intel_connector
= intel_dp
->attached_connector
;
1911 bpp
= pipe_config
->pipe_bpp
;
1912 bpc
= drm_dp_downstream_max_bpc(intel_dp
->dpcd
, intel_dp
->downstream_ports
);
1915 bpp
= min(bpp
, 3*bpc
);
1917 if (intel_dp_is_edp(intel_dp
)) {
1918 /* Get bpp from vbt only for panels that dont have bpp in edid */
1919 if (intel_connector
->base
.display_info
.bpc
== 0 &&
1920 dev_priv
->vbt
.edp
.bpp
&& dev_priv
->vbt
.edp
.bpp
< bpp
) {
1921 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1922 dev_priv
->vbt
.edp
.bpp
);
1923 bpp
= dev_priv
->vbt
.edp
.bpp
;
1930 /* Adjust link config limits based on compliance test requests. */
1932 intel_dp_adjust_compliance_config(struct intel_dp
*intel_dp
,
1933 struct intel_crtc_state
*pipe_config
,
1934 struct link_config_limits
*limits
)
1936 /* For DP Compliance we override the computed bpp for the pipe */
1937 if (intel_dp
->compliance
.test_data
.bpc
!= 0) {
1938 int bpp
= 3 * intel_dp
->compliance
.test_data
.bpc
;
1940 limits
->min_bpp
= limits
->max_bpp
= bpp
;
1941 pipe_config
->dither_force_disable
= bpp
== 6 * 3;
1943 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp
);
1946 /* Use values requested by Compliance Test Request */
1947 if (intel_dp
->compliance
.test_type
== DP_TEST_LINK_TRAINING
) {
1950 /* Validate the compliance test data since max values
1951 * might have changed due to link train fallback.
1953 if (intel_dp_link_params_valid(intel_dp
, intel_dp
->compliance
.test_link_rate
,
1954 intel_dp
->compliance
.test_lane_count
)) {
1955 index
= intel_dp_rate_index(intel_dp
->common_rates
,
1956 intel_dp
->num_common_rates
,
1957 intel_dp
->compliance
.test_link_rate
);
1959 limits
->min_clock
= limits
->max_clock
= index
;
1960 limits
->min_lane_count
= limits
->max_lane_count
=
1961 intel_dp
->compliance
.test_lane_count
;
1966 static int intel_dp_output_bpp(const struct intel_crtc_state
*crtc_state
, int bpp
)
1969 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1970 * format of the number of bytes per pixel will be half the number
1971 * of bytes of RGB pixel.
1973 if (crtc_state
->output_format
== INTEL_OUTPUT_FORMAT_YCBCR420
)
1979 /* Optimize link config in order: max bpp, min clock, min lanes */
1981 intel_dp_compute_link_config_wide(struct intel_dp
*intel_dp
,
1982 struct intel_crtc_state
*pipe_config
,
1983 const struct link_config_limits
*limits
)
1985 struct drm_display_mode
*adjusted_mode
= &pipe_config
->hw
.adjusted_mode
;
1986 int bpp
, clock
, lane_count
;
1987 int mode_rate
, link_clock
, link_avail
;
1989 for (bpp
= limits
->max_bpp
; bpp
>= limits
->min_bpp
; bpp
-= 2 * 3) {
1990 int output_bpp
= intel_dp_output_bpp(pipe_config
, bpp
);
1992 mode_rate
= intel_dp_link_required(adjusted_mode
->crtc_clock
,
1995 for (clock
= limits
->min_clock
; clock
<= limits
->max_clock
; clock
++) {
1996 for (lane_count
= limits
->min_lane_count
;
1997 lane_count
<= limits
->max_lane_count
;
1999 link_clock
= intel_dp
->common_rates
[clock
];
2000 link_avail
= intel_dp_max_data_rate(link_clock
,
2003 if (mode_rate
<= link_avail
) {
2004 pipe_config
->lane_count
= lane_count
;
2005 pipe_config
->pipe_bpp
= bpp
;
2006 pipe_config
->port_clock
= link_clock
;
2017 static int intel_dp_dsc_compute_bpp(struct intel_dp
*intel_dp
, u8 dsc_max_bpc
)
2020 u8 dsc_bpc
[3] = {0};
2022 num_bpc
= drm_dp_dsc_sink_supported_input_bpcs(intel_dp
->dsc_dpcd
,
2024 for (i
= 0; i
< num_bpc
; i
++) {
2025 if (dsc_max_bpc
>= dsc_bpc
[i
])
2026 return dsc_bpc
[i
] * 3;
2032 #define DSC_SUPPORTED_VERSION_MIN 1
2034 static int intel_dp_dsc_compute_params(struct intel_encoder
*encoder
,
2035 struct intel_crtc_state
*crtc_state
)
2037 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
2038 struct drm_dsc_config
*vdsc_cfg
= &crtc_state
->dsc
.config
;
2042 ret
= intel_dsc_compute_params(encoder
, crtc_state
);
2047 * Slice Height of 8 works for all currently available panels. So start
2048 * with that if pic_height is an integral multiple of 8. Eventually add
2049 * logic to try multiple slice heights.
2051 if (vdsc_cfg
->pic_height
% 8 == 0)
2052 vdsc_cfg
->slice_height
= 8;
2053 else if (vdsc_cfg
->pic_height
% 4 == 0)
2054 vdsc_cfg
->slice_height
= 4;
2056 vdsc_cfg
->slice_height
= 2;
2058 vdsc_cfg
->dsc_version_major
=
2059 (intel_dp
->dsc_dpcd
[DP_DSC_REV
- DP_DSC_SUPPORT
] &
2060 DP_DSC_MAJOR_MASK
) >> DP_DSC_MAJOR_SHIFT
;
2061 vdsc_cfg
->dsc_version_minor
=
2062 min(DSC_SUPPORTED_VERSION_MIN
,
2063 (intel_dp
->dsc_dpcd
[DP_DSC_REV
- DP_DSC_SUPPORT
] &
2064 DP_DSC_MINOR_MASK
) >> DP_DSC_MINOR_SHIFT
);
2066 vdsc_cfg
->convert_rgb
= intel_dp
->dsc_dpcd
[DP_DSC_DEC_COLOR_FORMAT_CAP
- DP_DSC_SUPPORT
] &
2069 line_buf_depth
= drm_dp_dsc_sink_line_buf_depth(intel_dp
->dsc_dpcd
);
2070 if (!line_buf_depth
) {
2071 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2075 if (vdsc_cfg
->dsc_version_minor
== 2)
2076 vdsc_cfg
->line_buf_depth
= (line_buf_depth
== DSC_1_2_MAX_LINEBUF_DEPTH_BITS
) ?
2077 DSC_1_2_MAX_LINEBUF_DEPTH_VAL
: line_buf_depth
;
2079 vdsc_cfg
->line_buf_depth
= (line_buf_depth
> DSC_1_1_MAX_LINEBUF_DEPTH_BITS
) ?
2080 DSC_1_1_MAX_LINEBUF_DEPTH_BITS
: line_buf_depth
;
2082 vdsc_cfg
->block_pred_enable
=
2083 intel_dp
->dsc_dpcd
[DP_DSC_BLK_PREDICTION_SUPPORT
- DP_DSC_SUPPORT
] &
2084 DP_DSC_BLK_PREDICTION_IS_SUPPORTED
;
2086 return drm_dsc_compute_rc_parameters(vdsc_cfg
);
2089 static int intel_dp_dsc_compute_config(struct intel_dp
*intel_dp
,
2090 struct intel_crtc_state
*pipe_config
,
2091 struct drm_connector_state
*conn_state
,
2092 struct link_config_limits
*limits
)
2094 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
2095 struct drm_i915_private
*dev_priv
= to_i915(dig_port
->base
.base
.dev
);
2096 struct drm_display_mode
*adjusted_mode
= &pipe_config
->hw
.adjusted_mode
;
2101 pipe_config
->fec_enable
= !intel_dp_is_edp(intel_dp
) &&
2102 intel_dp_supports_fec(intel_dp
, pipe_config
);
2104 if (!intel_dp_supports_dsc(intel_dp
, pipe_config
))
2107 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2108 if (INTEL_GEN(dev_priv
) >= 12)
2109 dsc_max_bpc
= min_t(u8
, 12, conn_state
->max_requested_bpc
);
2111 dsc_max_bpc
= min_t(u8
, 10,
2112 conn_state
->max_requested_bpc
);
2114 pipe_bpp
= intel_dp_dsc_compute_bpp(intel_dp
, dsc_max_bpc
);
2116 /* Min Input BPC for ICL+ is 8 */
2117 if (pipe_bpp
< 8 * 3) {
2118 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2123 * For now enable DSC for max bpp, max link rate, max lane count.
2124 * Optimize this later for the minimum possible link rate/lane count
2125 * with DSC enabled for the requested mode.
2127 pipe_config
->pipe_bpp
= pipe_bpp
;
2128 pipe_config
->port_clock
= intel_dp
->common_rates
[limits
->max_clock
];
2129 pipe_config
->lane_count
= limits
->max_lane_count
;
2131 if (intel_dp_is_edp(intel_dp
)) {
2132 pipe_config
->dsc
.compressed_bpp
=
2133 min_t(u16
, drm_edp_dsc_sink_output_bpp(intel_dp
->dsc_dpcd
) >> 4,
2134 pipe_config
->pipe_bpp
);
2135 pipe_config
->dsc
.slice_count
=
2136 drm_dp_dsc_sink_max_slice_count(intel_dp
->dsc_dpcd
,
2139 u16 dsc_max_output_bpp
;
2140 u8 dsc_dp_slice_count
;
2142 dsc_max_output_bpp
=
2143 intel_dp_dsc_get_output_bpp(dev_priv
,
2144 pipe_config
->port_clock
,
2145 pipe_config
->lane_count
,
2146 adjusted_mode
->crtc_clock
,
2147 adjusted_mode
->crtc_hdisplay
);
2148 dsc_dp_slice_count
=
2149 intel_dp_dsc_get_slice_count(intel_dp
,
2150 adjusted_mode
->crtc_clock
,
2151 adjusted_mode
->crtc_hdisplay
);
2152 if (!dsc_max_output_bpp
|| !dsc_dp_slice_count
) {
2153 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2156 pipe_config
->dsc
.compressed_bpp
= min_t(u16
,
2157 dsc_max_output_bpp
>> 4,
2158 pipe_config
->pipe_bpp
);
2159 pipe_config
->dsc
.slice_count
= dsc_dp_slice_count
;
2162 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2163 * is greater than the maximum Cdclock and if slice count is even
2164 * then we need to use 2 VDSC instances.
2166 if (adjusted_mode
->crtc_clock
> dev_priv
->max_cdclk_freq
) {
2167 if (pipe_config
->dsc
.slice_count
> 1) {
2168 pipe_config
->dsc
.dsc_split
= true;
2170 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2175 ret
= intel_dp_dsc_compute_params(&dig_port
->base
, pipe_config
);
2177 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2178 "Compressed BPP = %d\n",
2179 pipe_config
->pipe_bpp
,
2180 pipe_config
->dsc
.compressed_bpp
);
2184 pipe_config
->dsc
.compression_enable
= true;
2185 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2186 "Compressed Bpp = %d Slice Count = %d\n",
2187 pipe_config
->pipe_bpp
,
2188 pipe_config
->dsc
.compressed_bpp
,
2189 pipe_config
->dsc
.slice_count
);
2194 int intel_dp_min_bpp(const struct intel_crtc_state
*crtc_state
)
2196 if (crtc_state
->output_format
== INTEL_OUTPUT_FORMAT_RGB
)
2203 intel_dp_compute_link_config(struct intel_encoder
*encoder
,
2204 struct intel_crtc_state
*pipe_config
,
2205 struct drm_connector_state
*conn_state
)
2207 struct drm_display_mode
*adjusted_mode
= &pipe_config
->hw
.adjusted_mode
;
2208 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
2209 struct link_config_limits limits
;
2213 common_len
= intel_dp_common_len_rate_limit(intel_dp
,
2214 intel_dp
->max_link_rate
);
2216 /* No common link rates between source and sink */
2217 WARN_ON(common_len
<= 0);
2219 limits
.min_clock
= 0;
2220 limits
.max_clock
= common_len
- 1;
2222 limits
.min_lane_count
= 1;
2223 limits
.max_lane_count
= intel_dp_max_lane_count(intel_dp
);
2225 limits
.min_bpp
= intel_dp_min_bpp(pipe_config
);
2226 limits
.max_bpp
= intel_dp_compute_bpp(intel_dp
, pipe_config
);
2228 if (intel_dp_is_edp(intel_dp
)) {
2230 * Use the maximum clock and number of lanes the eDP panel
2231 * advertizes being capable of. The panels are generally
2232 * designed to support only a single clock and lane
2233 * configuration, and typically these values correspond to the
2234 * native resolution of the panel.
2236 limits
.min_lane_count
= limits
.max_lane_count
;
2237 limits
.min_clock
= limits
.max_clock
;
2240 intel_dp_adjust_compliance_config(intel_dp
, pipe_config
, &limits
);
2242 DRM_DEBUG_KMS("DP link computation with max lane count %i "
2243 "max rate %d max bpp %d pixel clock %iKHz\n",
2244 limits
.max_lane_count
,
2245 intel_dp
->common_rates
[limits
.max_clock
],
2246 limits
.max_bpp
, adjusted_mode
->crtc_clock
);
2249 * Optimize for slow and wide. This is the place to add alternative
2250 * optimization policy.
2252 ret
= intel_dp_compute_link_config_wide(intel_dp
, pipe_config
, &limits
);
2254 /* enable compression if the mode doesn't fit available BW */
2255 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp
->force_dsc_en
);
2256 if (ret
|| intel_dp
->force_dsc_en
) {
2257 ret
= intel_dp_dsc_compute_config(intel_dp
, pipe_config
,
2258 conn_state
, &limits
);
2263 if (pipe_config
->dsc
.compression_enable
) {
2264 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2265 pipe_config
->lane_count
, pipe_config
->port_clock
,
2266 pipe_config
->pipe_bpp
,
2267 pipe_config
->dsc
.compressed_bpp
);
2269 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2270 intel_dp_link_required(adjusted_mode
->crtc_clock
,
2271 pipe_config
->dsc
.compressed_bpp
),
2272 intel_dp_max_data_rate(pipe_config
->port_clock
,
2273 pipe_config
->lane_count
));
2275 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2276 pipe_config
->lane_count
, pipe_config
->port_clock
,
2277 pipe_config
->pipe_bpp
);
2279 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2280 intel_dp_link_required(adjusted_mode
->crtc_clock
,
2281 pipe_config
->pipe_bpp
),
2282 intel_dp_max_data_rate(pipe_config
->port_clock
,
2283 pipe_config
->lane_count
));
2289 intel_dp_ycbcr420_config(struct intel_dp
*intel_dp
,
2290 struct drm_connector
*connector
,
2291 struct intel_crtc_state
*crtc_state
)
2293 const struct drm_display_info
*info
= &connector
->display_info
;
2294 const struct drm_display_mode
*adjusted_mode
=
2295 &crtc_state
->hw
.adjusted_mode
;
2296 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
2299 if (!drm_mode_is_420_only(info
, adjusted_mode
) ||
2300 !intel_dp_get_colorimetry_status(intel_dp
) ||
2301 !connector
->ycbcr_420_allowed
)
2304 crtc_state
->output_format
= INTEL_OUTPUT_FORMAT_YCBCR420
;
2306 /* YCBCR 420 output conversion needs a scaler */
2307 ret
= skl_update_scaler_crtc(crtc_state
);
2309 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2313 intel_pch_panel_fitting(crtc
, crtc_state
, DRM_MODE_SCALE_FULLSCREEN
);
2318 bool intel_dp_limited_color_range(const struct intel_crtc_state
*crtc_state
,
2319 const struct drm_connector_state
*conn_state
)
2321 const struct intel_digital_connector_state
*intel_conn_state
=
2322 to_intel_digital_connector_state(conn_state
);
2323 const struct drm_display_mode
*adjusted_mode
=
2324 &crtc_state
->hw
.adjusted_mode
;
2327 * Our YCbCr output is always limited range.
2328 * crtc_state->limited_color_range only applies to RGB,
2329 * and it must never be set for YCbCr or we risk setting
2330 * some conflicting bits in PIPECONF which will mess up
2331 * the colors on the monitor.
2333 if (crtc_state
->output_format
!= INTEL_OUTPUT_FORMAT_RGB
)
2336 if (intel_conn_state
->broadcast_rgb
== INTEL_BROADCAST_RGB_AUTO
) {
2339 * CEA-861-E - 5.1 Default Encoding Parameters
2340 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2342 return crtc_state
->pipe_bpp
!= 18 &&
2343 drm_default_rgb_quant_range(adjusted_mode
) ==
2344 HDMI_QUANTIZATION_RANGE_LIMITED
;
2346 return intel_conn_state
->broadcast_rgb
==
2347 INTEL_BROADCAST_RGB_LIMITED
;
2351 static bool intel_dp_port_has_audio(struct drm_i915_private
*dev_priv
,
2354 if (IS_G4X(dev_priv
))
2356 if (INTEL_GEN(dev_priv
) < 12 && port
== PORT_A
)
2363 intel_dp_compute_config(struct intel_encoder
*encoder
,
2364 struct intel_crtc_state
*pipe_config
,
2365 struct drm_connector_state
*conn_state
)
2367 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
2368 struct drm_display_mode
*adjusted_mode
= &pipe_config
->hw
.adjusted_mode
;
2369 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
2370 struct intel_lspcon
*lspcon
= enc_to_intel_lspcon(encoder
);
2371 enum port port
= encoder
->port
;
2372 struct intel_crtc
*intel_crtc
= to_intel_crtc(pipe_config
->uapi
.crtc
);
2373 struct intel_connector
*intel_connector
= intel_dp
->attached_connector
;
2374 struct intel_digital_connector_state
*intel_conn_state
=
2375 to_intel_digital_connector_state(conn_state
);
2376 bool constant_n
= drm_dp_has_quirk(&intel_dp
->desc
,
2377 DP_DPCD_QUIRK_CONSTANT_N
);
2378 int ret
= 0, output_bpp
;
2380 if (HAS_PCH_SPLIT(dev_priv
) && !HAS_DDI(dev_priv
) && port
!= PORT_A
)
2381 pipe_config
->has_pch_encoder
= true;
2383 pipe_config
->output_format
= INTEL_OUTPUT_FORMAT_RGB
;
2386 lspcon_ycbcr420_config(&intel_connector
->base
, pipe_config
);
2388 ret
= intel_dp_ycbcr420_config(intel_dp
, &intel_connector
->base
,
2394 pipe_config
->has_drrs
= false;
2395 if (!intel_dp_port_has_audio(dev_priv
, port
))
2396 pipe_config
->has_audio
= false;
2397 else if (intel_conn_state
->force_audio
== HDMI_AUDIO_AUTO
)
2398 pipe_config
->has_audio
= intel_dp
->has_audio
;
2400 pipe_config
->has_audio
= intel_conn_state
->force_audio
== HDMI_AUDIO_ON
;
2402 if (intel_dp_is_edp(intel_dp
) && intel_connector
->panel
.fixed_mode
) {
2403 intel_fixed_panel_mode(intel_connector
->panel
.fixed_mode
,
2406 if (INTEL_GEN(dev_priv
) >= 9) {
2407 ret
= skl_update_scaler_crtc(pipe_config
);
2412 if (HAS_GMCH(dev_priv
))
2413 intel_gmch_panel_fitting(intel_crtc
, pipe_config
,
2414 conn_state
->scaling_mode
);
2416 intel_pch_panel_fitting(intel_crtc
, pipe_config
,
2417 conn_state
->scaling_mode
);
2420 if (adjusted_mode
->flags
& DRM_MODE_FLAG_DBLSCAN
)
2423 if (HAS_GMCH(dev_priv
) &&
2424 adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
)
2427 if (adjusted_mode
->flags
& DRM_MODE_FLAG_DBLCLK
)
2430 if (intel_dp_hdisplay_bad(dev_priv
, adjusted_mode
->crtc_hdisplay
))
2433 ret
= intel_dp_compute_link_config(encoder
, pipe_config
, conn_state
);
2437 pipe_config
->limited_color_range
=
2438 intel_dp_limited_color_range(pipe_config
, conn_state
);
2440 if (pipe_config
->dsc
.compression_enable
)
2441 output_bpp
= pipe_config
->dsc
.compressed_bpp
;
2443 output_bpp
= intel_dp_output_bpp(pipe_config
, pipe_config
->pipe_bpp
);
2445 intel_link_compute_m_n(output_bpp
,
2446 pipe_config
->lane_count
,
2447 adjusted_mode
->crtc_clock
,
2448 pipe_config
->port_clock
,
2449 &pipe_config
->dp_m_n
,
2450 constant_n
, pipe_config
->fec_enable
);
2452 if (intel_connector
->panel
.downclock_mode
!= NULL
&&
2453 dev_priv
->drrs
.type
== SEAMLESS_DRRS_SUPPORT
) {
2454 pipe_config
->has_drrs
= true;
2455 intel_link_compute_m_n(output_bpp
,
2456 pipe_config
->lane_count
,
2457 intel_connector
->panel
.downclock_mode
->clock
,
2458 pipe_config
->port_clock
,
2459 &pipe_config
->dp_m2_n2
,
2460 constant_n
, pipe_config
->fec_enable
);
2463 if (!HAS_DDI(dev_priv
))
2464 intel_dp_set_clock(encoder
, pipe_config
);
2466 intel_psr_compute_config(intel_dp
, pipe_config
);
2471 void intel_dp_set_link_params(struct intel_dp
*intel_dp
,
2472 int link_rate
, u8 lane_count
,
2475 intel_dp
->link_trained
= false;
2476 intel_dp
->link_rate
= link_rate
;
2477 intel_dp
->lane_count
= lane_count
;
2478 intel_dp
->link_mst
= link_mst
;
2481 static void intel_dp_prepare(struct intel_encoder
*encoder
,
2482 const struct intel_crtc_state
*pipe_config
)
2484 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
2485 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
2486 enum port port
= encoder
->port
;
2487 struct intel_crtc
*crtc
= to_intel_crtc(pipe_config
->uapi
.crtc
);
2488 const struct drm_display_mode
*adjusted_mode
= &pipe_config
->hw
.adjusted_mode
;
2490 intel_dp_set_link_params(intel_dp
, pipe_config
->port_clock
,
2491 pipe_config
->lane_count
,
2492 intel_crtc_has_type(pipe_config
,
2493 INTEL_OUTPUT_DP_MST
));
2495 intel_dp
->regs
.dp_tp_ctl
= DP_TP_CTL(port
);
2496 intel_dp
->regs
.dp_tp_status
= DP_TP_STATUS(port
);
2499 * There are four kinds of DP registers:
2506 * IBX PCH and CPU are the same for almost everything,
2507 * except that the CPU DP PLL is configured in this
2510 * CPT PCH is quite different, having many bits moved
2511 * to the TRANS_DP_CTL register instead. That
2512 * configuration happens (oddly) in ilk_pch_enable
2515 /* Preserve the BIOS-computed detected bit. This is
2516 * supposed to be read-only.
2518 intel_dp
->DP
= I915_READ(intel_dp
->output_reg
) & DP_DETECTED
;
2520 /* Handle DP bits in common between all three register formats */
2521 intel_dp
->DP
|= DP_VOLTAGE_0_4
| DP_PRE_EMPHASIS_0
;
2522 intel_dp
->DP
|= DP_PORT_WIDTH(pipe_config
->lane_count
);
2524 /* Split out the IBX/CPU vs CPT settings */
2526 if (IS_IVYBRIDGE(dev_priv
) && port
== PORT_A
) {
2527 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PHSYNC
)
2528 intel_dp
->DP
|= DP_SYNC_HS_HIGH
;
2529 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PVSYNC
)
2530 intel_dp
->DP
|= DP_SYNC_VS_HIGH
;
2531 intel_dp
->DP
|= DP_LINK_TRAIN_OFF_CPT
;
2533 if (drm_dp_enhanced_frame_cap(intel_dp
->dpcd
))
2534 intel_dp
->DP
|= DP_ENHANCED_FRAMING
;
2536 intel_dp
->DP
|= DP_PIPE_SEL_IVB(crtc
->pipe
);
2537 } else if (HAS_PCH_CPT(dev_priv
) && port
!= PORT_A
) {
2540 intel_dp
->DP
|= DP_LINK_TRAIN_OFF_CPT
;
2542 trans_dp
= I915_READ(TRANS_DP_CTL(crtc
->pipe
));
2543 if (drm_dp_enhanced_frame_cap(intel_dp
->dpcd
))
2544 trans_dp
|= TRANS_DP_ENH_FRAMING
;
2546 trans_dp
&= ~TRANS_DP_ENH_FRAMING
;
2547 I915_WRITE(TRANS_DP_CTL(crtc
->pipe
), trans_dp
);
2549 if (IS_G4X(dev_priv
) && pipe_config
->limited_color_range
)
2550 intel_dp
->DP
|= DP_COLOR_RANGE_16_235
;
2552 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PHSYNC
)
2553 intel_dp
->DP
|= DP_SYNC_HS_HIGH
;
2554 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PVSYNC
)
2555 intel_dp
->DP
|= DP_SYNC_VS_HIGH
;
2556 intel_dp
->DP
|= DP_LINK_TRAIN_OFF
;
2558 if (drm_dp_enhanced_frame_cap(intel_dp
->dpcd
))
2559 intel_dp
->DP
|= DP_ENHANCED_FRAMING
;
2561 if (IS_CHERRYVIEW(dev_priv
))
2562 intel_dp
->DP
|= DP_PIPE_SEL_CHV(crtc
->pipe
);
2564 intel_dp
->DP
|= DP_PIPE_SEL(crtc
->pipe
);
2568 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2569 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2571 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2572 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2574 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2575 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2577 static void intel_pps_verify_state(struct intel_dp
*intel_dp
);
2579 static void wait_panel_status(struct intel_dp
*intel_dp
,
2583 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2584 i915_reg_t pp_stat_reg
, pp_ctrl_reg
;
2586 lockdep_assert_held(&dev_priv
->pps_mutex
);
2588 intel_pps_verify_state(intel_dp
);
2590 pp_stat_reg
= _pp_stat_reg(intel_dp
);
2591 pp_ctrl_reg
= _pp_ctrl_reg(intel_dp
);
2593 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2595 I915_READ(pp_stat_reg
),
2596 I915_READ(pp_ctrl_reg
));
2598 if (intel_de_wait_for_register(dev_priv
, pp_stat_reg
,
2600 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2601 I915_READ(pp_stat_reg
),
2602 I915_READ(pp_ctrl_reg
));
2604 DRM_DEBUG_KMS("Wait complete\n");
2607 static void wait_panel_on(struct intel_dp
*intel_dp
)
2609 DRM_DEBUG_KMS("Wait for panel power on\n");
2610 wait_panel_status(intel_dp
, IDLE_ON_MASK
, IDLE_ON_VALUE
);
2613 static void wait_panel_off(struct intel_dp
*intel_dp
)
2615 DRM_DEBUG_KMS("Wait for panel power off time\n");
2616 wait_panel_status(intel_dp
, IDLE_OFF_MASK
, IDLE_OFF_VALUE
);
2619 static void wait_panel_power_cycle(struct intel_dp
*intel_dp
)
2621 ktime_t panel_power_on_time
;
2622 s64 panel_power_off_duration
;
2624 DRM_DEBUG_KMS("Wait for panel power cycle\n");
2626 /* take the difference of currrent time and panel power off time
2627 * and then make panel wait for t11_t12 if needed. */
2628 panel_power_on_time
= ktime_get_boottime();
2629 panel_power_off_duration
= ktime_ms_delta(panel_power_on_time
, intel_dp
->panel_power_off_time
);
2631 /* When we disable the VDD override bit last we have to do the manual
2633 if (panel_power_off_duration
< (s64
)intel_dp
->panel_power_cycle_delay
)
2634 wait_remaining_ms_from_jiffies(jiffies
,
2635 intel_dp
->panel_power_cycle_delay
- panel_power_off_duration
);
2637 wait_panel_status(intel_dp
, IDLE_CYCLE_MASK
, IDLE_CYCLE_VALUE
);
2640 static void wait_backlight_on(struct intel_dp
*intel_dp
)
2642 wait_remaining_ms_from_jiffies(intel_dp
->last_power_on
,
2643 intel_dp
->backlight_on_delay
);
2646 static void edp_wait_backlight_off(struct intel_dp
*intel_dp
)
2648 wait_remaining_ms_from_jiffies(intel_dp
->last_backlight_off
,
2649 intel_dp
->backlight_off_delay
);
2652 /* Read the current pp_control value, unlocking the register if it
2656 static u32
ilk_get_pp_control(struct intel_dp
*intel_dp
)
2658 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2661 lockdep_assert_held(&dev_priv
->pps_mutex
);
2663 control
= I915_READ(_pp_ctrl_reg(intel_dp
));
2664 if (WARN_ON(!HAS_DDI(dev_priv
) &&
2665 (control
& PANEL_UNLOCK_MASK
) != PANEL_UNLOCK_REGS
)) {
2666 control
&= ~PANEL_UNLOCK_MASK
;
2667 control
|= PANEL_UNLOCK_REGS
;
2673 * Must be paired with edp_panel_vdd_off().
2674 * Must hold pps_mutex around the whole on/off sequence.
2675 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2677 static bool edp_panel_vdd_on(struct intel_dp
*intel_dp
)
2679 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2680 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
2682 i915_reg_t pp_stat_reg
, pp_ctrl_reg
;
2683 bool need_to_disable
= !intel_dp
->want_panel_vdd
;
2685 lockdep_assert_held(&dev_priv
->pps_mutex
);
2687 if (!intel_dp_is_edp(intel_dp
))
2690 cancel_delayed_work(&intel_dp
->panel_vdd_work
);
2691 intel_dp
->want_panel_vdd
= true;
2693 if (edp_have_panel_vdd(intel_dp
))
2694 return need_to_disable
;
2696 intel_display_power_get(dev_priv
,
2697 intel_aux_power_domain(intel_dig_port
));
2699 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2700 intel_dig_port
->base
.base
.base
.id
,
2701 intel_dig_port
->base
.base
.name
);
2703 if (!edp_have_panel_power(intel_dp
))
2704 wait_panel_power_cycle(intel_dp
);
2706 pp
= ilk_get_pp_control(intel_dp
);
2707 pp
|= EDP_FORCE_VDD
;
2709 pp_stat_reg
= _pp_stat_reg(intel_dp
);
2710 pp_ctrl_reg
= _pp_ctrl_reg(intel_dp
);
2712 I915_WRITE(pp_ctrl_reg
, pp
);
2713 POSTING_READ(pp_ctrl_reg
);
2714 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2715 I915_READ(pp_stat_reg
), I915_READ(pp_ctrl_reg
));
2717 * If the panel wasn't on, delay before accessing aux channel
2719 if (!edp_have_panel_power(intel_dp
)) {
2720 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2721 intel_dig_port
->base
.base
.base
.id
,
2722 intel_dig_port
->base
.base
.name
);
2723 msleep(intel_dp
->panel_power_up_delay
);
2726 return need_to_disable
;
2730 * Must be paired with intel_edp_panel_vdd_off() or
2731 * intel_edp_panel_off().
2732 * Nested calls to these functions are not allowed since
2733 * we drop the lock. Caller must use some higher level
2734 * locking to prevent nested calls from other threads.
2736 void intel_edp_panel_vdd_on(struct intel_dp
*intel_dp
)
2738 intel_wakeref_t wakeref
;
2741 if (!intel_dp_is_edp(intel_dp
))
2745 with_pps_lock(intel_dp
, wakeref
)
2746 vdd
= edp_panel_vdd_on(intel_dp
);
2747 I915_STATE_WARN(!vdd
, "[ENCODER:%d:%s] VDD already requested on\n",
2748 dp_to_dig_port(intel_dp
)->base
.base
.base
.id
,
2749 dp_to_dig_port(intel_dp
)->base
.base
.name
);
2752 static void edp_panel_vdd_off_sync(struct intel_dp
*intel_dp
)
2754 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2755 struct intel_digital_port
*intel_dig_port
=
2756 dp_to_dig_port(intel_dp
);
2758 i915_reg_t pp_stat_reg
, pp_ctrl_reg
;
2760 lockdep_assert_held(&dev_priv
->pps_mutex
);
2762 WARN_ON(intel_dp
->want_panel_vdd
);
2764 if (!edp_have_panel_vdd(intel_dp
))
2767 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2768 intel_dig_port
->base
.base
.base
.id
,
2769 intel_dig_port
->base
.base
.name
);
2771 pp
= ilk_get_pp_control(intel_dp
);
2772 pp
&= ~EDP_FORCE_VDD
;
2774 pp_ctrl_reg
= _pp_ctrl_reg(intel_dp
);
2775 pp_stat_reg
= _pp_stat_reg(intel_dp
);
2777 I915_WRITE(pp_ctrl_reg
, pp
);
2778 POSTING_READ(pp_ctrl_reg
);
2780 /* Make sure sequencer is idle before allowing subsequent activity */
2781 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2782 I915_READ(pp_stat_reg
), I915_READ(pp_ctrl_reg
));
2784 if ((pp
& PANEL_POWER_ON
) == 0)
2785 intel_dp
->panel_power_off_time
= ktime_get_boottime();
2787 intel_display_power_put_unchecked(dev_priv
,
2788 intel_aux_power_domain(intel_dig_port
));
2791 static void edp_panel_vdd_work(struct work_struct
*__work
)
2793 struct intel_dp
*intel_dp
=
2794 container_of(to_delayed_work(__work
),
2795 struct intel_dp
, panel_vdd_work
);
2796 intel_wakeref_t wakeref
;
2798 with_pps_lock(intel_dp
, wakeref
) {
2799 if (!intel_dp
->want_panel_vdd
)
2800 edp_panel_vdd_off_sync(intel_dp
);
2804 static void edp_panel_vdd_schedule_off(struct intel_dp
*intel_dp
)
2806 unsigned long delay
;
2809 * Queue the timer to fire a long time from now (relative to the power
2810 * down delay) to keep the panel power up across a sequence of
2813 delay
= msecs_to_jiffies(intel_dp
->panel_power_cycle_delay
* 5);
2814 schedule_delayed_work(&intel_dp
->panel_vdd_work
, delay
);
2818 * Must be paired with edp_panel_vdd_on().
2819 * Must hold pps_mutex around the whole on/off sequence.
2820 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2822 static void edp_panel_vdd_off(struct intel_dp
*intel_dp
, bool sync
)
2824 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2826 lockdep_assert_held(&dev_priv
->pps_mutex
);
2828 if (!intel_dp_is_edp(intel_dp
))
2831 I915_STATE_WARN(!intel_dp
->want_panel_vdd
, "[ENCODER:%d:%s] VDD not forced on",
2832 dp_to_dig_port(intel_dp
)->base
.base
.base
.id
,
2833 dp_to_dig_port(intel_dp
)->base
.base
.name
);
2835 intel_dp
->want_panel_vdd
= false;
2838 edp_panel_vdd_off_sync(intel_dp
);
2840 edp_panel_vdd_schedule_off(intel_dp
);
2843 static void edp_panel_on(struct intel_dp
*intel_dp
)
2845 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2847 i915_reg_t pp_ctrl_reg
;
2849 lockdep_assert_held(&dev_priv
->pps_mutex
);
2851 if (!intel_dp_is_edp(intel_dp
))
2854 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2855 dp_to_dig_port(intel_dp
)->base
.base
.base
.id
,
2856 dp_to_dig_port(intel_dp
)->base
.base
.name
);
2858 if (WARN(edp_have_panel_power(intel_dp
),
2859 "[ENCODER:%d:%s] panel power already on\n",
2860 dp_to_dig_port(intel_dp
)->base
.base
.base
.id
,
2861 dp_to_dig_port(intel_dp
)->base
.base
.name
))
2864 wait_panel_power_cycle(intel_dp
);
2866 pp_ctrl_reg
= _pp_ctrl_reg(intel_dp
);
2867 pp
= ilk_get_pp_control(intel_dp
);
2868 if (IS_GEN(dev_priv
, 5)) {
2869 /* ILK workaround: disable reset around power sequence */
2870 pp
&= ~PANEL_POWER_RESET
;
2871 I915_WRITE(pp_ctrl_reg
, pp
);
2872 POSTING_READ(pp_ctrl_reg
);
2875 pp
|= PANEL_POWER_ON
;
2876 if (!IS_GEN(dev_priv
, 5))
2877 pp
|= PANEL_POWER_RESET
;
2879 I915_WRITE(pp_ctrl_reg
, pp
);
2880 POSTING_READ(pp_ctrl_reg
);
2882 wait_panel_on(intel_dp
);
2883 intel_dp
->last_power_on
= jiffies
;
2885 if (IS_GEN(dev_priv
, 5)) {
2886 pp
|= PANEL_POWER_RESET
; /* restore panel reset bit */
2887 I915_WRITE(pp_ctrl_reg
, pp
);
2888 POSTING_READ(pp_ctrl_reg
);
2892 void intel_edp_panel_on(struct intel_dp
*intel_dp
)
2894 intel_wakeref_t wakeref
;
2896 if (!intel_dp_is_edp(intel_dp
))
2899 with_pps_lock(intel_dp
, wakeref
)
2900 edp_panel_on(intel_dp
);
2904 static void edp_panel_off(struct intel_dp
*intel_dp
)
2906 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2907 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
2909 i915_reg_t pp_ctrl_reg
;
2911 lockdep_assert_held(&dev_priv
->pps_mutex
);
2913 if (!intel_dp_is_edp(intel_dp
))
2916 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2917 dig_port
->base
.base
.base
.id
, dig_port
->base
.base
.name
);
2919 WARN(!intel_dp
->want_panel_vdd
, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2920 dig_port
->base
.base
.base
.id
, dig_port
->base
.base
.name
);
2922 pp
= ilk_get_pp_control(intel_dp
);
2923 /* We need to switch off panel power _and_ force vdd, for otherwise some
2924 * panels get very unhappy and cease to work. */
2925 pp
&= ~(PANEL_POWER_ON
| PANEL_POWER_RESET
| EDP_FORCE_VDD
|
2928 pp_ctrl_reg
= _pp_ctrl_reg(intel_dp
);
2930 intel_dp
->want_panel_vdd
= false;
2932 I915_WRITE(pp_ctrl_reg
, pp
);
2933 POSTING_READ(pp_ctrl_reg
);
2935 wait_panel_off(intel_dp
);
2936 intel_dp
->panel_power_off_time
= ktime_get_boottime();
2938 /* We got a reference when we enabled the VDD. */
2939 intel_display_power_put_unchecked(dev_priv
, intel_aux_power_domain(dig_port
));
2942 void intel_edp_panel_off(struct intel_dp
*intel_dp
)
2944 intel_wakeref_t wakeref
;
2946 if (!intel_dp_is_edp(intel_dp
))
2949 with_pps_lock(intel_dp
, wakeref
)
2950 edp_panel_off(intel_dp
);
2953 /* Enable backlight in the panel power control. */
2954 static void _intel_edp_backlight_on(struct intel_dp
*intel_dp
)
2956 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2957 intel_wakeref_t wakeref
;
2960 * If we enable the backlight right away following a panel power
2961 * on, we may see slight flicker as the panel syncs with the eDP
2962 * link. So delay a bit to make sure the image is solid before
2963 * allowing it to appear.
2965 wait_backlight_on(intel_dp
);
2967 with_pps_lock(intel_dp
, wakeref
) {
2968 i915_reg_t pp_ctrl_reg
= _pp_ctrl_reg(intel_dp
);
2971 pp
= ilk_get_pp_control(intel_dp
);
2972 pp
|= EDP_BLC_ENABLE
;
2974 I915_WRITE(pp_ctrl_reg
, pp
);
2975 POSTING_READ(pp_ctrl_reg
);
2979 /* Enable backlight PWM and backlight PP control. */
2980 void intel_edp_backlight_on(const struct intel_crtc_state
*crtc_state
,
2981 const struct drm_connector_state
*conn_state
)
2983 struct intel_dp
*intel_dp
= enc_to_intel_dp(to_intel_encoder(conn_state
->best_encoder
));
2985 if (!intel_dp_is_edp(intel_dp
))
2988 DRM_DEBUG_KMS("\n");
2990 intel_panel_enable_backlight(crtc_state
, conn_state
);
2991 _intel_edp_backlight_on(intel_dp
);
2994 /* Disable backlight in the panel power control. */
2995 static void _intel_edp_backlight_off(struct intel_dp
*intel_dp
)
2997 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
2998 intel_wakeref_t wakeref
;
3000 if (!intel_dp_is_edp(intel_dp
))
3003 with_pps_lock(intel_dp
, wakeref
) {
3004 i915_reg_t pp_ctrl_reg
= _pp_ctrl_reg(intel_dp
);
3007 pp
= ilk_get_pp_control(intel_dp
);
3008 pp
&= ~EDP_BLC_ENABLE
;
3010 I915_WRITE(pp_ctrl_reg
, pp
);
3011 POSTING_READ(pp_ctrl_reg
);
3014 intel_dp
->last_backlight_off
= jiffies
;
3015 edp_wait_backlight_off(intel_dp
);
3018 /* Disable backlight PP control and backlight PWM. */
3019 void intel_edp_backlight_off(const struct drm_connector_state
*old_conn_state
)
3021 struct intel_dp
*intel_dp
= enc_to_intel_dp(to_intel_encoder(old_conn_state
->best_encoder
));
3023 if (!intel_dp_is_edp(intel_dp
))
3026 DRM_DEBUG_KMS("\n");
3028 _intel_edp_backlight_off(intel_dp
);
3029 intel_panel_disable_backlight(old_conn_state
);
3033 * Hook for controlling the panel power control backlight through the bl_power
3034 * sysfs attribute. Take care to handle multiple calls.
3036 static void intel_edp_backlight_power(struct intel_connector
*connector
,
3039 struct intel_dp
*intel_dp
= intel_attached_dp(connector
);
3040 intel_wakeref_t wakeref
;
3044 with_pps_lock(intel_dp
, wakeref
)
3045 is_enabled
= ilk_get_pp_control(intel_dp
) & EDP_BLC_ENABLE
;
3046 if (is_enabled
== enable
)
3049 DRM_DEBUG_KMS("panel power control backlight %s\n",
3050 enable
? "enable" : "disable");
3053 _intel_edp_backlight_on(intel_dp
);
3055 _intel_edp_backlight_off(intel_dp
);
3058 static void assert_dp_port(struct intel_dp
*intel_dp
, bool state
)
3060 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
3061 struct drm_i915_private
*dev_priv
= to_i915(dig_port
->base
.base
.dev
);
3062 bool cur_state
= I915_READ(intel_dp
->output_reg
) & DP_PORT_EN
;
3064 I915_STATE_WARN(cur_state
!= state
,
3065 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3066 dig_port
->base
.base
.base
.id
, dig_port
->base
.base
.name
,
3067 onoff(state
), onoff(cur_state
));
3069 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3071 static void assert_edp_pll(struct drm_i915_private
*dev_priv
, bool state
)
3073 bool cur_state
= I915_READ(DP_A
) & DP_PLL_ENABLE
;
3075 I915_STATE_WARN(cur_state
!= state
,
3076 "eDP PLL state assertion failure (expected %s, current %s)\n",
3077 onoff(state
), onoff(cur_state
));
3079 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3080 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3082 static void ilk_edp_pll_on(struct intel_dp
*intel_dp
,
3083 const struct intel_crtc_state
*pipe_config
)
3085 struct intel_crtc
*crtc
= to_intel_crtc(pipe_config
->uapi
.crtc
);
3086 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
3088 assert_pipe_disabled(dev_priv
, pipe_config
->cpu_transcoder
);
3089 assert_dp_port_disabled(intel_dp
);
3090 assert_edp_pll_disabled(dev_priv
);
3092 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3093 pipe_config
->port_clock
);
3095 intel_dp
->DP
&= ~DP_PLL_FREQ_MASK
;
3097 if (pipe_config
->port_clock
== 162000)
3098 intel_dp
->DP
|= DP_PLL_FREQ_162MHZ
;
3100 intel_dp
->DP
|= DP_PLL_FREQ_270MHZ
;
3102 I915_WRITE(DP_A
, intel_dp
->DP
);
3107 * [DevILK] Work around required when enabling DP PLL
3108 * while a pipe is enabled going to FDI:
3109 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3110 * 2. Program DP PLL enable
3112 if (IS_GEN(dev_priv
, 5))
3113 intel_wait_for_vblank_if_active(dev_priv
, !crtc
->pipe
);
3115 intel_dp
->DP
|= DP_PLL_ENABLE
;
3117 I915_WRITE(DP_A
, intel_dp
->DP
);
3122 static void ilk_edp_pll_off(struct intel_dp
*intel_dp
,
3123 const struct intel_crtc_state
*old_crtc_state
)
3125 struct intel_crtc
*crtc
= to_intel_crtc(old_crtc_state
->uapi
.crtc
);
3126 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
3128 assert_pipe_disabled(dev_priv
, old_crtc_state
->cpu_transcoder
);
3129 assert_dp_port_disabled(intel_dp
);
3130 assert_edp_pll_enabled(dev_priv
);
3132 DRM_DEBUG_KMS("disabling eDP PLL\n");
3134 intel_dp
->DP
&= ~DP_PLL_ENABLE
;
3136 I915_WRITE(DP_A
, intel_dp
->DP
);
3141 static bool downstream_hpd_needs_d0(struct intel_dp
*intel_dp
)
3144 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3145 * be capable of signalling downstream hpd with a long pulse.
3146 * Whether or not that means D3 is safe to use is not clear,
3147 * but let's assume so until proven otherwise.
3149 * FIXME should really check all downstream ports...
3151 return intel_dp
->dpcd
[DP_DPCD_REV
] == 0x11 &&
3152 intel_dp
->dpcd
[DP_DOWNSTREAMPORT_PRESENT
] & DP_DWN_STRM_PORT_PRESENT
&&
3153 intel_dp
->downstream_ports
[0] & DP_DS_PORT_HPD
;
3156 void intel_dp_sink_set_decompression_state(struct intel_dp
*intel_dp
,
3157 const struct intel_crtc_state
*crtc_state
,
3162 if (!crtc_state
->dsc
.compression_enable
)
3165 ret
= drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_DSC_ENABLE
,
3166 enable
? DP_DECOMPRESSION_EN
: 0);
3168 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3169 enable
? "enable" : "disable");
3172 /* If the sink supports it, try to set the power state appropriately */
3173 void intel_dp_sink_dpms(struct intel_dp
*intel_dp
, int mode
)
3177 /* Should have a valid DPCD by this point */
3178 if (intel_dp
->dpcd
[DP_DPCD_REV
] < 0x11)
3181 if (mode
!= DRM_MODE_DPMS_ON
) {
3182 if (downstream_hpd_needs_d0(intel_dp
))
3185 ret
= drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_SET_POWER
,
3188 struct intel_lspcon
*lspcon
= dp_to_lspcon(intel_dp
);
3191 * When turning on, we need to retry for 1ms to give the sink
3194 for (i
= 0; i
< 3; i
++) {
3195 ret
= drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_SET_POWER
,
3202 if (ret
== 1 && lspcon
->active
)
3203 lspcon_wait_pcon_mode(lspcon
);
3207 DRM_DEBUG_KMS("failed to %s sink power state\n",
3208 mode
== DRM_MODE_DPMS_ON
? "enable" : "disable");
3211 static bool cpt_dp_port_selected(struct drm_i915_private
*dev_priv
,
3212 enum port port
, enum pipe
*pipe
)
3216 for_each_pipe(dev_priv
, p
) {
3217 u32 val
= I915_READ(TRANS_DP_CTL(p
));
3219 if ((val
& TRANS_DP_PORT_SEL_MASK
) == TRANS_DP_PORT_SEL(port
)) {
3225 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port
));
3227 /* must initialize pipe to something for the asserts */
3233 bool intel_dp_port_enabled(struct drm_i915_private
*dev_priv
,
3234 i915_reg_t dp_reg
, enum port port
,
3240 val
= I915_READ(dp_reg
);
3242 ret
= val
& DP_PORT_EN
;
3244 /* asserts want to know the pipe even if the port is disabled */
3245 if (IS_IVYBRIDGE(dev_priv
) && port
== PORT_A
)
3246 *pipe
= (val
& DP_PIPE_SEL_MASK_IVB
) >> DP_PIPE_SEL_SHIFT_IVB
;
3247 else if (HAS_PCH_CPT(dev_priv
) && port
!= PORT_A
)
3248 ret
&= cpt_dp_port_selected(dev_priv
, port
, pipe
);
3249 else if (IS_CHERRYVIEW(dev_priv
))
3250 *pipe
= (val
& DP_PIPE_SEL_MASK_CHV
) >> DP_PIPE_SEL_SHIFT_CHV
;
3252 *pipe
= (val
& DP_PIPE_SEL_MASK
) >> DP_PIPE_SEL_SHIFT
;
3257 static bool intel_dp_get_hw_state(struct intel_encoder
*encoder
,
3260 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
3261 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
3262 intel_wakeref_t wakeref
;
3265 wakeref
= intel_display_power_get_if_enabled(dev_priv
,
3266 encoder
->power_domain
);
3270 ret
= intel_dp_port_enabled(dev_priv
, intel_dp
->output_reg
,
3271 encoder
->port
, pipe
);
3273 intel_display_power_put(dev_priv
, encoder
->power_domain
, wakeref
);
3278 static void intel_dp_get_config(struct intel_encoder
*encoder
,
3279 struct intel_crtc_state
*pipe_config
)
3281 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
3282 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
3284 enum port port
= encoder
->port
;
3285 struct intel_crtc
*crtc
= to_intel_crtc(pipe_config
->uapi
.crtc
);
3287 if (encoder
->type
== INTEL_OUTPUT_EDP
)
3288 pipe_config
->output_types
|= BIT(INTEL_OUTPUT_EDP
);
3290 pipe_config
->output_types
|= BIT(INTEL_OUTPUT_DP
);
3292 tmp
= I915_READ(intel_dp
->output_reg
);
3294 pipe_config
->has_audio
= tmp
& DP_AUDIO_OUTPUT_ENABLE
&& port
!= PORT_A
;
3296 if (HAS_PCH_CPT(dev_priv
) && port
!= PORT_A
) {
3297 u32 trans_dp
= I915_READ(TRANS_DP_CTL(crtc
->pipe
));
3299 if (trans_dp
& TRANS_DP_HSYNC_ACTIVE_HIGH
)
3300 flags
|= DRM_MODE_FLAG_PHSYNC
;
3302 flags
|= DRM_MODE_FLAG_NHSYNC
;
3304 if (trans_dp
& TRANS_DP_VSYNC_ACTIVE_HIGH
)
3305 flags
|= DRM_MODE_FLAG_PVSYNC
;
3307 flags
|= DRM_MODE_FLAG_NVSYNC
;
3309 if (tmp
& DP_SYNC_HS_HIGH
)
3310 flags
|= DRM_MODE_FLAG_PHSYNC
;
3312 flags
|= DRM_MODE_FLAG_NHSYNC
;
3314 if (tmp
& DP_SYNC_VS_HIGH
)
3315 flags
|= DRM_MODE_FLAG_PVSYNC
;
3317 flags
|= DRM_MODE_FLAG_NVSYNC
;
3320 pipe_config
->hw
.adjusted_mode
.flags
|= flags
;
3322 if (IS_G4X(dev_priv
) && tmp
& DP_COLOR_RANGE_16_235
)
3323 pipe_config
->limited_color_range
= true;
3325 pipe_config
->lane_count
=
3326 ((tmp
& DP_PORT_WIDTH_MASK
) >> DP_PORT_WIDTH_SHIFT
) + 1;
3328 intel_dp_get_m_n(crtc
, pipe_config
);
3330 if (port
== PORT_A
) {
3331 if ((I915_READ(DP_A
) & DP_PLL_FREQ_MASK
) == DP_PLL_FREQ_162MHZ
)
3332 pipe_config
->port_clock
= 162000;
3334 pipe_config
->port_clock
= 270000;
3337 pipe_config
->hw
.adjusted_mode
.crtc_clock
=
3338 intel_dotclock_calculate(pipe_config
->port_clock
,
3339 &pipe_config
->dp_m_n
);
3341 if (intel_dp_is_edp(intel_dp
) && dev_priv
->vbt
.edp
.bpp
&&
3342 pipe_config
->pipe_bpp
> dev_priv
->vbt
.edp
.bpp
) {
3344 * This is a big fat ugly hack.
3346 * Some machines in UEFI boot mode provide us a VBT that has 18
3347 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3348 * unknown we fail to light up. Yet the same BIOS boots up with
3349 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3350 * max, not what it tells us to use.
3352 * Note: This will still be broken if the eDP panel is not lit
3353 * up by the BIOS, and thus we can't get the mode at module
3356 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3357 pipe_config
->pipe_bpp
, dev_priv
->vbt
.edp
.bpp
);
3358 dev_priv
->vbt
.edp
.bpp
= pipe_config
->pipe_bpp
;
3362 static void intel_disable_dp(struct intel_encoder
*encoder
,
3363 const struct intel_crtc_state
*old_crtc_state
,
3364 const struct drm_connector_state
*old_conn_state
)
3366 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
3368 intel_dp
->link_trained
= false;
3370 if (old_crtc_state
->has_audio
)
3371 intel_audio_codec_disable(encoder
,
3372 old_crtc_state
, old_conn_state
);
3374 /* Make sure the panel is off before trying to change the mode. But also
3375 * ensure that we have vdd while we switch off the panel. */
3376 intel_edp_panel_vdd_on(intel_dp
);
3377 intel_edp_backlight_off(old_conn_state
);
3378 intel_dp_sink_dpms(intel_dp
, DRM_MODE_DPMS_OFF
);
3379 intel_edp_panel_off(intel_dp
);
3382 static void g4x_disable_dp(struct intel_encoder
*encoder
,
3383 const struct intel_crtc_state
*old_crtc_state
,
3384 const struct drm_connector_state
*old_conn_state
)
3386 intel_disable_dp(encoder
, old_crtc_state
, old_conn_state
);
3389 static void vlv_disable_dp(struct intel_encoder
*encoder
,
3390 const struct intel_crtc_state
*old_crtc_state
,
3391 const struct drm_connector_state
*old_conn_state
)
3393 intel_disable_dp(encoder
, old_crtc_state
, old_conn_state
);
3396 static void g4x_post_disable_dp(struct intel_encoder
*encoder
,
3397 const struct intel_crtc_state
*old_crtc_state
,
3398 const struct drm_connector_state
*old_conn_state
)
3400 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
3401 enum port port
= encoder
->port
;
3404 * Bspec does not list a specific disable sequence for g4x DP.
3405 * Follow the ilk+ sequence (disable pipe before the port) for
3406 * g4x DP as it does not suffer from underruns like the normal
3407 * g4x modeset sequence (disable pipe after the port).
3409 intel_dp_link_down(encoder
, old_crtc_state
);
3411 /* Only ilk+ has port A */
3413 ilk_edp_pll_off(intel_dp
, old_crtc_state
);
3416 static void vlv_post_disable_dp(struct intel_encoder
*encoder
,
3417 const struct intel_crtc_state
*old_crtc_state
,
3418 const struct drm_connector_state
*old_conn_state
)
3420 intel_dp_link_down(encoder
, old_crtc_state
);
3423 static void chv_post_disable_dp(struct intel_encoder
*encoder
,
3424 const struct intel_crtc_state
*old_crtc_state
,
3425 const struct drm_connector_state
*old_conn_state
)
3427 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
3429 intel_dp_link_down(encoder
, old_crtc_state
);
3431 vlv_dpio_get(dev_priv
);
3433 /* Assert data lane reset */
3434 chv_data_lane_soft_reset(encoder
, old_crtc_state
, true);
3436 vlv_dpio_put(dev_priv
);
3440 _intel_dp_set_link_train(struct intel_dp
*intel_dp
,
3444 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
3445 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
3446 enum port port
= intel_dig_port
->base
.port
;
3447 u8 train_pat_mask
= drm_dp_training_pattern_mask(intel_dp
->dpcd
);
3449 if (dp_train_pat
& train_pat_mask
)
3450 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3451 dp_train_pat
& train_pat_mask
);
3453 if (HAS_DDI(dev_priv
)) {
3454 u32 temp
= I915_READ(intel_dp
->regs
.dp_tp_ctl
);
3456 if (dp_train_pat
& DP_LINK_SCRAMBLING_DISABLE
)
3457 temp
|= DP_TP_CTL_SCRAMBLE_DISABLE
;
3459 temp
&= ~DP_TP_CTL_SCRAMBLE_DISABLE
;
3461 temp
&= ~DP_TP_CTL_LINK_TRAIN_MASK
;
3462 switch (dp_train_pat
& train_pat_mask
) {
3463 case DP_TRAINING_PATTERN_DISABLE
:
3464 temp
|= DP_TP_CTL_LINK_TRAIN_NORMAL
;
3467 case DP_TRAINING_PATTERN_1
:
3468 temp
|= DP_TP_CTL_LINK_TRAIN_PAT1
;
3470 case DP_TRAINING_PATTERN_2
:
3471 temp
|= DP_TP_CTL_LINK_TRAIN_PAT2
;
3473 case DP_TRAINING_PATTERN_3
:
3474 temp
|= DP_TP_CTL_LINK_TRAIN_PAT3
;
3476 case DP_TRAINING_PATTERN_4
:
3477 temp
|= DP_TP_CTL_LINK_TRAIN_PAT4
;
3480 I915_WRITE(intel_dp
->regs
.dp_tp_ctl
, temp
);
3482 } else if ((IS_IVYBRIDGE(dev_priv
) && port
== PORT_A
) ||
3483 (HAS_PCH_CPT(dev_priv
) && port
!= PORT_A
)) {
3484 *DP
&= ~DP_LINK_TRAIN_MASK_CPT
;
3486 switch (dp_train_pat
& DP_TRAINING_PATTERN_MASK
) {
3487 case DP_TRAINING_PATTERN_DISABLE
:
3488 *DP
|= DP_LINK_TRAIN_OFF_CPT
;
3490 case DP_TRAINING_PATTERN_1
:
3491 *DP
|= DP_LINK_TRAIN_PAT_1_CPT
;
3493 case DP_TRAINING_PATTERN_2
:
3494 *DP
|= DP_LINK_TRAIN_PAT_2_CPT
;
3496 case DP_TRAINING_PATTERN_3
:
3497 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3498 *DP
|= DP_LINK_TRAIN_PAT_2_CPT
;
3503 *DP
&= ~DP_LINK_TRAIN_MASK
;
3505 switch (dp_train_pat
& DP_TRAINING_PATTERN_MASK
) {
3506 case DP_TRAINING_PATTERN_DISABLE
:
3507 *DP
|= DP_LINK_TRAIN_OFF
;
3509 case DP_TRAINING_PATTERN_1
:
3510 *DP
|= DP_LINK_TRAIN_PAT_1
;
3512 case DP_TRAINING_PATTERN_2
:
3513 *DP
|= DP_LINK_TRAIN_PAT_2
;
3515 case DP_TRAINING_PATTERN_3
:
3516 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3517 *DP
|= DP_LINK_TRAIN_PAT_2
;
3523 static void intel_dp_enable_port(struct intel_dp
*intel_dp
,
3524 const struct intel_crtc_state
*old_crtc_state
)
3526 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
3528 /* enable with pattern 1 (as per spec) */
3530 intel_dp_program_link_training_pattern(intel_dp
, DP_TRAINING_PATTERN_1
);
3533 * Magic for VLV/CHV. We _must_ first set up the register
3534 * without actually enabling the port, and then do another
3535 * write to enable the port. Otherwise link training will
3536 * fail when the power sequencer is freshly used for this port.
3538 intel_dp
->DP
|= DP_PORT_EN
;
3539 if (old_crtc_state
->has_audio
)
3540 intel_dp
->DP
|= DP_AUDIO_OUTPUT_ENABLE
;
3542 I915_WRITE(intel_dp
->output_reg
, intel_dp
->DP
);
3543 POSTING_READ(intel_dp
->output_reg
);
3546 static void intel_enable_dp(struct intel_encoder
*encoder
,
3547 const struct intel_crtc_state
*pipe_config
,
3548 const struct drm_connector_state
*conn_state
)
3550 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
3551 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
3552 struct intel_crtc
*crtc
= to_intel_crtc(pipe_config
->uapi
.crtc
);
3553 u32 dp_reg
= I915_READ(intel_dp
->output_reg
);
3554 enum pipe pipe
= crtc
->pipe
;
3555 intel_wakeref_t wakeref
;
3557 if (WARN_ON(dp_reg
& DP_PORT_EN
))
3560 with_pps_lock(intel_dp
, wakeref
) {
3561 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
3562 vlv_init_panel_power_sequencer(encoder
, pipe_config
);
3564 intel_dp_enable_port(intel_dp
, pipe_config
);
3566 edp_panel_vdd_on(intel_dp
);
3567 edp_panel_on(intel_dp
);
3568 edp_panel_vdd_off(intel_dp
, true);
3571 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
3572 unsigned int lane_mask
= 0x0;
3574 if (IS_CHERRYVIEW(dev_priv
))
3575 lane_mask
= intel_dp_unused_lane_mask(pipe_config
->lane_count
);
3577 vlv_wait_port_ready(dev_priv
, dp_to_dig_port(intel_dp
),
3581 intel_dp_sink_dpms(intel_dp
, DRM_MODE_DPMS_ON
);
3582 intel_dp_start_link_train(intel_dp
);
3583 intel_dp_stop_link_train(intel_dp
);
3585 if (pipe_config
->has_audio
) {
3586 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3588 intel_audio_codec_enable(encoder
, pipe_config
, conn_state
);
3592 static void g4x_enable_dp(struct intel_encoder
*encoder
,
3593 const struct intel_crtc_state
*pipe_config
,
3594 const struct drm_connector_state
*conn_state
)
3596 intel_enable_dp(encoder
, pipe_config
, conn_state
);
3597 intel_edp_backlight_on(pipe_config
, conn_state
);
3600 static void vlv_enable_dp(struct intel_encoder
*encoder
,
3601 const struct intel_crtc_state
*pipe_config
,
3602 const struct drm_connector_state
*conn_state
)
3604 intel_edp_backlight_on(pipe_config
, conn_state
);
3607 static void g4x_pre_enable_dp(struct intel_encoder
*encoder
,
3608 const struct intel_crtc_state
*pipe_config
,
3609 const struct drm_connector_state
*conn_state
)
3611 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
3612 enum port port
= encoder
->port
;
3614 intel_dp_prepare(encoder
, pipe_config
);
3616 /* Only ilk+ has port A */
3618 ilk_edp_pll_on(intel_dp
, pipe_config
);
3621 static void vlv_detach_power_sequencer(struct intel_dp
*intel_dp
)
3623 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
3624 struct drm_i915_private
*dev_priv
= to_i915(intel_dig_port
->base
.base
.dev
);
3625 enum pipe pipe
= intel_dp
->pps_pipe
;
3626 i915_reg_t pp_on_reg
= PP_ON_DELAYS(pipe
);
3628 WARN_ON(intel_dp
->active_pipe
!= INVALID_PIPE
);
3630 if (WARN_ON(pipe
!= PIPE_A
&& pipe
!= PIPE_B
))
3633 edp_panel_vdd_off_sync(intel_dp
);
3636 * VLV seems to get confused when multiple power sequencers
3637 * have the same port selected (even if only one has power/vdd
3638 * enabled). The failure manifests as vlv_wait_port_ready() failing
3639 * CHV on the other hand doesn't seem to mind having the same port
3640 * selected in multiple power sequencers, but let's clear the
3641 * port select always when logically disconnecting a power sequencer
3644 DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3645 pipe_name(pipe
), intel_dig_port
->base
.base
.base
.id
,
3646 intel_dig_port
->base
.base
.name
);
3647 I915_WRITE(pp_on_reg
, 0);
3648 POSTING_READ(pp_on_reg
);
3650 intel_dp
->pps_pipe
= INVALID_PIPE
;
3653 static void vlv_steal_power_sequencer(struct drm_i915_private
*dev_priv
,
3656 struct intel_encoder
*encoder
;
3658 lockdep_assert_held(&dev_priv
->pps_mutex
);
3660 for_each_intel_dp(&dev_priv
->drm
, encoder
) {
3661 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
3663 WARN(intel_dp
->active_pipe
== pipe
,
3664 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3665 pipe_name(pipe
), encoder
->base
.base
.id
,
3666 encoder
->base
.name
);
3668 if (intel_dp
->pps_pipe
!= pipe
)
3671 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3672 pipe_name(pipe
), encoder
->base
.base
.id
,
3673 encoder
->base
.name
);
3675 /* make sure vdd is off before we steal it */
3676 vlv_detach_power_sequencer(intel_dp
);
3680 static void vlv_init_panel_power_sequencer(struct intel_encoder
*encoder
,
3681 const struct intel_crtc_state
*crtc_state
)
3683 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
3684 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
3685 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
3687 lockdep_assert_held(&dev_priv
->pps_mutex
);
3689 WARN_ON(intel_dp
->active_pipe
!= INVALID_PIPE
);
3691 if (intel_dp
->pps_pipe
!= INVALID_PIPE
&&
3692 intel_dp
->pps_pipe
!= crtc
->pipe
) {
3694 * If another power sequencer was being used on this
3695 * port previously make sure to turn off vdd there while
3696 * we still have control of it.
3698 vlv_detach_power_sequencer(intel_dp
);
3702 * We may be stealing the power
3703 * sequencer from another port.
3705 vlv_steal_power_sequencer(dev_priv
, crtc
->pipe
);
3707 intel_dp
->active_pipe
= crtc
->pipe
;
3709 if (!intel_dp_is_edp(intel_dp
))
3712 /* now it's all ours */
3713 intel_dp
->pps_pipe
= crtc
->pipe
;
3715 DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3716 pipe_name(intel_dp
->pps_pipe
), encoder
->base
.base
.id
,
3717 encoder
->base
.name
);
3719 /* init power sequencer on this pipe and port */
3720 intel_dp_init_panel_power_sequencer(intel_dp
);
3721 intel_dp_init_panel_power_sequencer_registers(intel_dp
, true);
3724 static void vlv_pre_enable_dp(struct intel_encoder
*encoder
,
3725 const struct intel_crtc_state
*pipe_config
,
3726 const struct drm_connector_state
*conn_state
)
3728 vlv_phy_pre_encoder_enable(encoder
, pipe_config
);
3730 intel_enable_dp(encoder
, pipe_config
, conn_state
);
3733 static void vlv_dp_pre_pll_enable(struct intel_encoder
*encoder
,
3734 const struct intel_crtc_state
*pipe_config
,
3735 const struct drm_connector_state
*conn_state
)
3737 intel_dp_prepare(encoder
, pipe_config
);
3739 vlv_phy_pre_pll_enable(encoder
, pipe_config
);
3742 static void chv_pre_enable_dp(struct intel_encoder
*encoder
,
3743 const struct intel_crtc_state
*pipe_config
,
3744 const struct drm_connector_state
*conn_state
)
3746 chv_phy_pre_encoder_enable(encoder
, pipe_config
);
3748 intel_enable_dp(encoder
, pipe_config
, conn_state
);
3750 /* Second common lane will stay alive on its own now */
3751 chv_phy_release_cl2_override(encoder
);
3754 static void chv_dp_pre_pll_enable(struct intel_encoder
*encoder
,
3755 const struct intel_crtc_state
*pipe_config
,
3756 const struct drm_connector_state
*conn_state
)
3758 intel_dp_prepare(encoder
, pipe_config
);
3760 chv_phy_pre_pll_enable(encoder
, pipe_config
);
3763 static void chv_dp_post_pll_disable(struct intel_encoder
*encoder
,
3764 const struct intel_crtc_state
*old_crtc_state
,
3765 const struct drm_connector_state
*old_conn_state
)
3767 chv_phy_post_pll_disable(encoder
, old_crtc_state
);
3771 * Fetch AUX CH registers 0x202 - 0x207 which contain
3772 * link status information
3775 intel_dp_get_link_status(struct intel_dp
*intel_dp
, u8 link_status
[DP_LINK_STATUS_SIZE
])
3777 return drm_dp_dpcd_read(&intel_dp
->aux
, DP_LANE0_1_STATUS
, link_status
,
3778 DP_LINK_STATUS_SIZE
) == DP_LINK_STATUS_SIZE
;
3781 /* These are source-specific values. */
3783 intel_dp_voltage_max(struct intel_dp
*intel_dp
)
3785 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
3786 struct intel_encoder
*encoder
= &dp_to_dig_port(intel_dp
)->base
;
3787 enum port port
= encoder
->port
;
3789 if (HAS_DDI(dev_priv
))
3790 return intel_ddi_dp_voltage_max(encoder
);
3791 else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
3792 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3
;
3793 else if (IS_IVYBRIDGE(dev_priv
) && port
== PORT_A
)
3794 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2
;
3795 else if (HAS_PCH_CPT(dev_priv
) && port
!= PORT_A
)
3796 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3
;
3798 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2
;
3802 intel_dp_pre_emphasis_max(struct intel_dp
*intel_dp
, u8 voltage_swing
)
3804 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
3805 struct intel_encoder
*encoder
= &dp_to_dig_port(intel_dp
)->base
;
3806 enum port port
= encoder
->port
;
3808 if (HAS_DDI(dev_priv
)) {
3809 return intel_ddi_dp_pre_emphasis_max(encoder
, voltage_swing
);
3810 } else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
3811 switch (voltage_swing
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3812 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3813 return DP_TRAIN_PRE_EMPH_LEVEL_3
;
3814 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3815 return DP_TRAIN_PRE_EMPH_LEVEL_2
;
3816 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
:
3817 return DP_TRAIN_PRE_EMPH_LEVEL_1
;
3818 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3
:
3820 return DP_TRAIN_PRE_EMPH_LEVEL_0
;
3822 } else if (IS_IVYBRIDGE(dev_priv
) && port
== PORT_A
) {
3823 switch (voltage_swing
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3824 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3825 return DP_TRAIN_PRE_EMPH_LEVEL_2
;
3826 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3827 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
:
3828 return DP_TRAIN_PRE_EMPH_LEVEL_1
;
3830 return DP_TRAIN_PRE_EMPH_LEVEL_0
;
3833 switch (voltage_swing
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3834 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3835 return DP_TRAIN_PRE_EMPH_LEVEL_2
;
3836 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3837 return DP_TRAIN_PRE_EMPH_LEVEL_2
;
3838 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
:
3839 return DP_TRAIN_PRE_EMPH_LEVEL_1
;
3840 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3
:
3842 return DP_TRAIN_PRE_EMPH_LEVEL_0
;
3847 static u32
vlv_signal_levels(struct intel_dp
*intel_dp
)
3849 struct intel_encoder
*encoder
= &dp_to_dig_port(intel_dp
)->base
;
3850 unsigned long demph_reg_value
, preemph_reg_value
,
3851 uniqtranscale_reg_value
;
3852 u8 train_set
= intel_dp
->train_set
[0];
3854 switch (train_set
& DP_TRAIN_PRE_EMPHASIS_MASK
) {
3855 case DP_TRAIN_PRE_EMPH_LEVEL_0
:
3856 preemph_reg_value
= 0x0004000;
3857 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3858 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3859 demph_reg_value
= 0x2B405555;
3860 uniqtranscale_reg_value
= 0x552AB83A;
3862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3863 demph_reg_value
= 0x2B404040;
3864 uniqtranscale_reg_value
= 0x5548B83A;
3866 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
:
3867 demph_reg_value
= 0x2B245555;
3868 uniqtranscale_reg_value
= 0x5560B83A;
3870 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3
:
3871 demph_reg_value
= 0x2B405555;
3872 uniqtranscale_reg_value
= 0x5598DA3A;
3878 case DP_TRAIN_PRE_EMPH_LEVEL_1
:
3879 preemph_reg_value
= 0x0002000;
3880 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3881 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3882 demph_reg_value
= 0x2B404040;
3883 uniqtranscale_reg_value
= 0x5552B83A;
3885 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3886 demph_reg_value
= 0x2B404848;
3887 uniqtranscale_reg_value
= 0x5580B83A;
3889 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
:
3890 demph_reg_value
= 0x2B404040;
3891 uniqtranscale_reg_value
= 0x55ADDA3A;
3897 case DP_TRAIN_PRE_EMPH_LEVEL_2
:
3898 preemph_reg_value
= 0x0000000;
3899 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3900 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3901 demph_reg_value
= 0x2B305555;
3902 uniqtranscale_reg_value
= 0x5570B83A;
3904 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3905 demph_reg_value
= 0x2B2B4040;
3906 uniqtranscale_reg_value
= 0x55ADDA3A;
3912 case DP_TRAIN_PRE_EMPH_LEVEL_3
:
3913 preemph_reg_value
= 0x0006000;
3914 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3915 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3916 demph_reg_value
= 0x1B405555;
3917 uniqtranscale_reg_value
= 0x55ADDA3A;
3927 vlv_set_phy_signal_level(encoder
, demph_reg_value
, preemph_reg_value
,
3928 uniqtranscale_reg_value
, 0);
3933 static u32
chv_signal_levels(struct intel_dp
*intel_dp
)
3935 struct intel_encoder
*encoder
= &dp_to_dig_port(intel_dp
)->base
;
3936 u32 deemph_reg_value
, margin_reg_value
;
3937 bool uniq_trans_scale
= false;
3938 u8 train_set
= intel_dp
->train_set
[0];
3940 switch (train_set
& DP_TRAIN_PRE_EMPHASIS_MASK
) {
3941 case DP_TRAIN_PRE_EMPH_LEVEL_0
:
3942 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3943 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3944 deemph_reg_value
= 128;
3945 margin_reg_value
= 52;
3947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3948 deemph_reg_value
= 128;
3949 margin_reg_value
= 77;
3951 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
:
3952 deemph_reg_value
= 128;
3953 margin_reg_value
= 102;
3955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3
:
3956 deemph_reg_value
= 128;
3957 margin_reg_value
= 154;
3958 uniq_trans_scale
= true;
3964 case DP_TRAIN_PRE_EMPH_LEVEL_1
:
3965 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3966 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3967 deemph_reg_value
= 85;
3968 margin_reg_value
= 78;
3970 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3971 deemph_reg_value
= 85;
3972 margin_reg_value
= 116;
3974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
:
3975 deemph_reg_value
= 85;
3976 margin_reg_value
= 154;
3982 case DP_TRAIN_PRE_EMPH_LEVEL_2
:
3983 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3984 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3985 deemph_reg_value
= 64;
3986 margin_reg_value
= 104;
3988 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
3989 deemph_reg_value
= 64;
3990 margin_reg_value
= 154;
3996 case DP_TRAIN_PRE_EMPH_LEVEL_3
:
3997 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
3998 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
3999 deemph_reg_value
= 43;
4000 margin_reg_value
= 154;
4010 chv_set_phy_signal_level(encoder
, deemph_reg_value
,
4011 margin_reg_value
, uniq_trans_scale
);
4017 g4x_signal_levels(u8 train_set
)
4019 u32 signal_levels
= 0;
4021 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
4022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
:
4024 signal_levels
|= DP_VOLTAGE_0_4
;
4026 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
:
4027 signal_levels
|= DP_VOLTAGE_0_6
;
4029 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
:
4030 signal_levels
|= DP_VOLTAGE_0_8
;
4032 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3
:
4033 signal_levels
|= DP_VOLTAGE_1_2
;
4036 switch (train_set
& DP_TRAIN_PRE_EMPHASIS_MASK
) {
4037 case DP_TRAIN_PRE_EMPH_LEVEL_0
:
4039 signal_levels
|= DP_PRE_EMPHASIS_0
;
4041 case DP_TRAIN_PRE_EMPH_LEVEL_1
:
4042 signal_levels
|= DP_PRE_EMPHASIS_3_5
;
4044 case DP_TRAIN_PRE_EMPH_LEVEL_2
:
4045 signal_levels
|= DP_PRE_EMPHASIS_6
;
4047 case DP_TRAIN_PRE_EMPH_LEVEL_3
:
4048 signal_levels
|= DP_PRE_EMPHASIS_9_5
;
4051 return signal_levels
;
4054 /* SNB CPU eDP voltage swing and pre-emphasis control */
4056 snb_cpu_edp_signal_levels(u8 train_set
)
4058 int signal_levels
= train_set
& (DP_TRAIN_VOLTAGE_SWING_MASK
|
4059 DP_TRAIN_PRE_EMPHASIS_MASK
);
4060 switch (signal_levels
) {
4061 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
| DP_TRAIN_PRE_EMPH_LEVEL_0
:
4062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
| DP_TRAIN_PRE_EMPH_LEVEL_0
:
4063 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B
;
4064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
| DP_TRAIN_PRE_EMPH_LEVEL_1
:
4065 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B
;
4066 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
| DP_TRAIN_PRE_EMPH_LEVEL_2
:
4067 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
| DP_TRAIN_PRE_EMPH_LEVEL_2
:
4068 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B
;
4069 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
| DP_TRAIN_PRE_EMPH_LEVEL_1
:
4070 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
| DP_TRAIN_PRE_EMPH_LEVEL_1
:
4071 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B
;
4072 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
| DP_TRAIN_PRE_EMPH_LEVEL_0
:
4073 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3
| DP_TRAIN_PRE_EMPH_LEVEL_0
:
4074 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B
;
4076 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4077 "0x%x\n", signal_levels
);
4078 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B
;
4082 /* IVB CPU eDP voltage swing and pre-emphasis control */
4084 ivb_cpu_edp_signal_levels(u8 train_set
)
4086 int signal_levels
= train_set
& (DP_TRAIN_VOLTAGE_SWING_MASK
|
4087 DP_TRAIN_PRE_EMPHASIS_MASK
);
4088 switch (signal_levels
) {
4089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
| DP_TRAIN_PRE_EMPH_LEVEL_0
:
4090 return EDP_LINK_TRAIN_400MV_0DB_IVB
;
4091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
| DP_TRAIN_PRE_EMPH_LEVEL_1
:
4092 return EDP_LINK_TRAIN_400MV_3_5DB_IVB
;
4093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0
| DP_TRAIN_PRE_EMPH_LEVEL_2
:
4094 return EDP_LINK_TRAIN_400MV_6DB_IVB
;
4096 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
| DP_TRAIN_PRE_EMPH_LEVEL_0
:
4097 return EDP_LINK_TRAIN_600MV_0DB_IVB
;
4098 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1
| DP_TRAIN_PRE_EMPH_LEVEL_1
:
4099 return EDP_LINK_TRAIN_600MV_3_5DB_IVB
;
4101 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
| DP_TRAIN_PRE_EMPH_LEVEL_0
:
4102 return EDP_LINK_TRAIN_800MV_0DB_IVB
;
4103 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2
| DP_TRAIN_PRE_EMPH_LEVEL_1
:
4104 return EDP_LINK_TRAIN_800MV_3_5DB_IVB
;
4107 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4108 "0x%x\n", signal_levels
);
4109 return EDP_LINK_TRAIN_500MV_0DB_IVB
;
4114 intel_dp_set_signal_levels(struct intel_dp
*intel_dp
)
4116 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
4117 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
4118 enum port port
= intel_dig_port
->base
.port
;
4119 u32 signal_levels
, mask
= 0;
4120 u8 train_set
= intel_dp
->train_set
[0];
4122 if (IS_GEN9_LP(dev_priv
) || INTEL_GEN(dev_priv
) >= 10) {
4123 signal_levels
= bxt_signal_levels(intel_dp
);
4124 } else if (HAS_DDI(dev_priv
)) {
4125 signal_levels
= ddi_signal_levels(intel_dp
);
4126 mask
= DDI_BUF_EMP_MASK
;
4127 } else if (IS_CHERRYVIEW(dev_priv
)) {
4128 signal_levels
= chv_signal_levels(intel_dp
);
4129 } else if (IS_VALLEYVIEW(dev_priv
)) {
4130 signal_levels
= vlv_signal_levels(intel_dp
);
4131 } else if (IS_IVYBRIDGE(dev_priv
) && port
== PORT_A
) {
4132 signal_levels
= ivb_cpu_edp_signal_levels(train_set
);
4133 mask
= EDP_LINK_TRAIN_VOL_EMP_MASK_IVB
;
4134 } else if (IS_GEN(dev_priv
, 6) && port
== PORT_A
) {
4135 signal_levels
= snb_cpu_edp_signal_levels(train_set
);
4136 mask
= EDP_LINK_TRAIN_VOL_EMP_MASK_SNB
;
4138 signal_levels
= g4x_signal_levels(train_set
);
4139 mask
= DP_VOLTAGE_MASK
| DP_PRE_EMPHASIS_MASK
;
4143 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels
);
4145 DRM_DEBUG_KMS("Using vswing level %d\n",
4146 train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
);
4147 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4148 (train_set
& DP_TRAIN_PRE_EMPHASIS_MASK
) >>
4149 DP_TRAIN_PRE_EMPHASIS_SHIFT
);
4151 intel_dp
->DP
= (intel_dp
->DP
& ~mask
) | signal_levels
;
4153 I915_WRITE(intel_dp
->output_reg
, intel_dp
->DP
);
4154 POSTING_READ(intel_dp
->output_reg
);
4158 intel_dp_program_link_training_pattern(struct intel_dp
*intel_dp
,
4161 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
4162 struct drm_i915_private
*dev_priv
=
4163 to_i915(intel_dig_port
->base
.base
.dev
);
4165 _intel_dp_set_link_train(intel_dp
, &intel_dp
->DP
, dp_train_pat
);
4167 I915_WRITE(intel_dp
->output_reg
, intel_dp
->DP
);
4168 POSTING_READ(intel_dp
->output_reg
);
4171 void intel_dp_set_idle_link_train(struct intel_dp
*intel_dp
)
4173 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
4174 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
4175 enum port port
= intel_dig_port
->base
.port
;
4178 if (!HAS_DDI(dev_priv
))
4181 val
= I915_READ(intel_dp
->regs
.dp_tp_ctl
);
4182 val
&= ~DP_TP_CTL_LINK_TRAIN_MASK
;
4183 val
|= DP_TP_CTL_LINK_TRAIN_IDLE
;
4184 I915_WRITE(intel_dp
->regs
.dp_tp_ctl
, val
);
4187 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4188 * reason we need to set idle transmission mode is to work around a HW
4189 * issue where we enable the pipe while not in idle link-training mode.
4190 * In this case there is requirement to wait for a minimum number of
4191 * idle patterns to be sent.
4193 if (port
== PORT_A
&& INTEL_GEN(dev_priv
) < 12)
4196 if (intel_de_wait_for_set(dev_priv
, intel_dp
->regs
.dp_tp_status
,
4197 DP_TP_STATUS_IDLE_DONE
, 1))
4198 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4202 intel_dp_link_down(struct intel_encoder
*encoder
,
4203 const struct intel_crtc_state
*old_crtc_state
)
4205 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
4206 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
4207 struct intel_crtc
*crtc
= to_intel_crtc(old_crtc_state
->uapi
.crtc
);
4208 enum port port
= encoder
->port
;
4209 u32 DP
= intel_dp
->DP
;
4211 if (WARN_ON((I915_READ(intel_dp
->output_reg
) & DP_PORT_EN
) == 0))
4214 DRM_DEBUG_KMS("\n");
4216 if ((IS_IVYBRIDGE(dev_priv
) && port
== PORT_A
) ||
4217 (HAS_PCH_CPT(dev_priv
) && port
!= PORT_A
)) {
4218 DP
&= ~DP_LINK_TRAIN_MASK_CPT
;
4219 DP
|= DP_LINK_TRAIN_PAT_IDLE_CPT
;
4221 DP
&= ~DP_LINK_TRAIN_MASK
;
4222 DP
|= DP_LINK_TRAIN_PAT_IDLE
;
4224 I915_WRITE(intel_dp
->output_reg
, DP
);
4225 POSTING_READ(intel_dp
->output_reg
);
4227 DP
&= ~(DP_PORT_EN
| DP_AUDIO_OUTPUT_ENABLE
);
4228 I915_WRITE(intel_dp
->output_reg
, DP
);
4229 POSTING_READ(intel_dp
->output_reg
);
4232 * HW workaround for IBX, we need to move the port
4233 * to transcoder A after disabling it to allow the
4234 * matching HDMI port to be enabled on transcoder A.
4236 if (HAS_PCH_IBX(dev_priv
) && crtc
->pipe
== PIPE_B
&& port
!= PORT_A
) {
4238 * We get CPU/PCH FIFO underruns on the other pipe when
4239 * doing the workaround. Sweep them under the rug.
4241 intel_set_cpu_fifo_underrun_reporting(dev_priv
, PIPE_A
, false);
4242 intel_set_pch_fifo_underrun_reporting(dev_priv
, PIPE_A
, false);
4244 /* always enable with pattern 1 (as per spec) */
4245 DP
&= ~(DP_PIPE_SEL_MASK
| DP_LINK_TRAIN_MASK
);
4246 DP
|= DP_PORT_EN
| DP_PIPE_SEL(PIPE_A
) |
4247 DP_LINK_TRAIN_PAT_1
;
4248 I915_WRITE(intel_dp
->output_reg
, DP
);
4249 POSTING_READ(intel_dp
->output_reg
);
4252 I915_WRITE(intel_dp
->output_reg
, DP
);
4253 POSTING_READ(intel_dp
->output_reg
);
4255 intel_wait_for_vblank_if_active(dev_priv
, PIPE_A
);
4256 intel_set_cpu_fifo_underrun_reporting(dev_priv
, PIPE_A
, true);
4257 intel_set_pch_fifo_underrun_reporting(dev_priv
, PIPE_A
, true);
4260 msleep(intel_dp
->panel_power_down_delay
);
4264 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
4265 intel_wakeref_t wakeref
;
4267 with_pps_lock(intel_dp
, wakeref
)
4268 intel_dp
->active_pipe
= INVALID_PIPE
;
4273 intel_dp_extended_receiver_capabilities(struct intel_dp
*intel_dp
)
4278 * Prior to DP1.3 the bit represented by
4279 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4280 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4281 * the true capability of the panel. The only way to check is to
4282 * then compare 0000h and 2200h.
4284 if (!(intel_dp
->dpcd
[DP_TRAINING_AUX_RD_INTERVAL
] &
4285 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT
))
4288 if (drm_dp_dpcd_read(&intel_dp
->aux
, DP_DP13_DPCD_REV
,
4289 &dpcd_ext
, sizeof(dpcd_ext
)) != sizeof(dpcd_ext
)) {
4290 DRM_ERROR("DPCD failed read at extended capabilities\n");
4294 if (intel_dp
->dpcd
[DP_DPCD_REV
] > dpcd_ext
[DP_DPCD_REV
]) {
4295 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4299 if (!memcmp(intel_dp
->dpcd
, dpcd_ext
, sizeof(dpcd_ext
)))
4302 DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4303 (int)sizeof(intel_dp
->dpcd
), intel_dp
->dpcd
);
4305 memcpy(intel_dp
->dpcd
, dpcd_ext
, sizeof(dpcd_ext
));
4309 intel_dp_read_dpcd(struct intel_dp
*intel_dp
)
4311 if (drm_dp_dpcd_read(&intel_dp
->aux
, 0x000, intel_dp
->dpcd
,
4312 sizeof(intel_dp
->dpcd
)) < 0)
4313 return false; /* aux transfer failed */
4315 intel_dp_extended_receiver_capabilities(intel_dp
);
4317 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp
->dpcd
), intel_dp
->dpcd
);
4319 return intel_dp
->dpcd
[DP_DPCD_REV
] != 0;
4322 bool intel_dp_get_colorimetry_status(struct intel_dp
*intel_dp
)
4326 if (drm_dp_dpcd_readb(&intel_dp
->aux
, DP_DPRX_FEATURE_ENUMERATION_LIST
,
4329 return dprx
& DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED
;
4332 static void intel_dp_get_dsc_sink_cap(struct intel_dp
*intel_dp
)
4335 * Clear the cached register set to avoid using stale values
4336 * for the sinks that do not support DSC.
4338 memset(intel_dp
->dsc_dpcd
, 0, sizeof(intel_dp
->dsc_dpcd
));
4340 /* Clear fec_capable to avoid using stale values */
4341 intel_dp
->fec_capable
= 0;
4343 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4344 if (intel_dp
->dpcd
[DP_DPCD_REV
] >= 0x14 ||
4345 intel_dp
->edp_dpcd
[0] >= DP_EDP_14
) {
4346 if (drm_dp_dpcd_read(&intel_dp
->aux
, DP_DSC_SUPPORT
,
4348 sizeof(intel_dp
->dsc_dpcd
)) < 0)
4349 DRM_ERROR("Failed to read DPCD register 0x%x\n",
4352 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4353 (int)sizeof(intel_dp
->dsc_dpcd
),
4354 intel_dp
->dsc_dpcd
);
4356 /* FEC is supported only on DP 1.4 */
4357 if (!intel_dp_is_edp(intel_dp
) &&
4358 drm_dp_dpcd_readb(&intel_dp
->aux
, DP_FEC_CAPABILITY
,
4359 &intel_dp
->fec_capable
) < 0)
4360 DRM_ERROR("Failed to read FEC DPCD register\n");
4362 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp
->fec_capable
);
4367 intel_edp_init_dpcd(struct intel_dp
*intel_dp
)
4369 struct drm_i915_private
*dev_priv
=
4370 to_i915(dp_to_dig_port(intel_dp
)->base
.base
.dev
);
4372 /* this function is meant to be called only once */
4373 WARN_ON(intel_dp
->dpcd
[DP_DPCD_REV
] != 0);
4375 if (!intel_dp_read_dpcd(intel_dp
))
4378 drm_dp_read_desc(&intel_dp
->aux
, &intel_dp
->desc
,
4379 drm_dp_is_branch(intel_dp
->dpcd
));
4382 * Read the eDP display control registers.
4384 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4385 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4386 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4387 * method). The display control registers should read zero if they're
4388 * not supported anyway.
4390 if (drm_dp_dpcd_read(&intel_dp
->aux
, DP_EDP_DPCD_REV
,
4391 intel_dp
->edp_dpcd
, sizeof(intel_dp
->edp_dpcd
)) ==
4392 sizeof(intel_dp
->edp_dpcd
))
4393 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp
->edp_dpcd
),
4394 intel_dp
->edp_dpcd
);
4397 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4398 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4400 intel_psr_init_dpcd(intel_dp
);
4402 /* Read the eDP 1.4+ supported link rates. */
4403 if (intel_dp
->edp_dpcd
[0] >= DP_EDP_14
) {
4404 __le16 sink_rates
[DP_MAX_SUPPORTED_RATES
];
4407 drm_dp_dpcd_read(&intel_dp
->aux
, DP_SUPPORTED_LINK_RATES
,
4408 sink_rates
, sizeof(sink_rates
));
4410 for (i
= 0; i
< ARRAY_SIZE(sink_rates
); i
++) {
4411 int val
= le16_to_cpu(sink_rates
[i
]);
4416 /* Value read multiplied by 200kHz gives the per-lane
4417 * link rate in kHz. The source rates are, however,
4418 * stored in terms of LS_Clk kHz. The full conversion
4419 * back to symbols is
4420 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4422 intel_dp
->sink_rates
[i
] = (val
* 200) / 10;
4424 intel_dp
->num_sink_rates
= i
;
4428 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4429 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4431 if (intel_dp
->num_sink_rates
)
4432 intel_dp
->use_rate_select
= true;
4434 intel_dp_set_sink_rates(intel_dp
);
4436 intel_dp_set_common_rates(intel_dp
);
4438 /* Read the eDP DSC DPCD registers */
4439 if (INTEL_GEN(dev_priv
) >= 10 || IS_GEMINILAKE(dev_priv
))
4440 intel_dp_get_dsc_sink_cap(intel_dp
);
4447 intel_dp_get_dpcd(struct intel_dp
*intel_dp
)
4449 if (!intel_dp_read_dpcd(intel_dp
))
4453 * Don't clobber cached eDP rates. Also skip re-reading
4454 * the OUI/ID since we know it won't change.
4456 if (!intel_dp_is_edp(intel_dp
)) {
4457 drm_dp_read_desc(&intel_dp
->aux
, &intel_dp
->desc
,
4458 drm_dp_is_branch(intel_dp
->dpcd
));
4460 intel_dp_set_sink_rates(intel_dp
);
4461 intel_dp_set_common_rates(intel_dp
);
4465 * Some eDP panels do not set a valid value for sink count, that is why
4466 * it don't care about read it here and in intel_edp_init_dpcd().
4468 if (!intel_dp_is_edp(intel_dp
) &&
4469 !drm_dp_has_quirk(&intel_dp
->desc
, DP_DPCD_QUIRK_NO_SINK_COUNT
)) {
4473 r
= drm_dp_dpcd_readb(&intel_dp
->aux
, DP_SINK_COUNT
, &count
);
4478 * Sink count can change between short pulse hpd hence
4479 * a member variable in intel_dp will track any changes
4480 * between short pulse interrupts.
4482 intel_dp
->sink_count
= DP_GET_SINK_COUNT(count
);
4485 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4486 * a dongle is present but no display. Unless we require to know
4487 * if a dongle is present or not, we don't need to update
4488 * downstream port information. So, an early return here saves
4489 * time from performing other operations which are not required.
4491 if (!intel_dp
->sink_count
)
4495 if (!drm_dp_is_branch(intel_dp
->dpcd
))
4496 return true; /* native DP sink */
4498 if (intel_dp
->dpcd
[DP_DPCD_REV
] == 0x10)
4499 return true; /* no per-port downstream info */
4501 if (drm_dp_dpcd_read(&intel_dp
->aux
, DP_DOWNSTREAM_PORT_0
,
4502 intel_dp
->downstream_ports
,
4503 DP_MAX_DOWNSTREAM_PORTS
) < 0)
4504 return false; /* downstream port status fetch failed */
4510 intel_dp_sink_can_mst(struct intel_dp
*intel_dp
)
4514 if (intel_dp
->dpcd
[DP_DPCD_REV
] < 0x12)
4517 if (drm_dp_dpcd_readb(&intel_dp
->aux
, DP_MSTM_CAP
, &mstm_cap
) != 1)
4520 return mstm_cap
& DP_MST_CAP
;
4524 intel_dp_can_mst(struct intel_dp
*intel_dp
)
4526 return i915_modparams
.enable_dp_mst
&&
4527 intel_dp
->can_mst
&&
4528 intel_dp_sink_can_mst(intel_dp
);
4532 intel_dp_configure_mst(struct intel_dp
*intel_dp
)
4534 struct intel_encoder
*encoder
=
4535 &dp_to_dig_port(intel_dp
)->base
;
4536 bool sink_can_mst
= intel_dp_sink_can_mst(intel_dp
);
4538 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4539 encoder
->base
.base
.id
, encoder
->base
.name
,
4540 yesno(intel_dp
->can_mst
), yesno(sink_can_mst
),
4541 yesno(i915_modparams
.enable_dp_mst
));
4543 if (!intel_dp
->can_mst
)
4546 intel_dp
->is_mst
= sink_can_mst
&&
4547 i915_modparams
.enable_dp_mst
;
4549 drm_dp_mst_topology_mgr_set_mst(&intel_dp
->mst_mgr
,
4554 intel_dp_get_sink_irq_esi(struct intel_dp
*intel_dp
, u8
*sink_irq_vector
)
4556 return drm_dp_dpcd_read(&intel_dp
->aux
, DP_SINK_COUNT_ESI
,
4557 sink_irq_vector
, DP_DPRX_ESI_LEN
) ==
4562 intel_dp_needs_vsc_sdp(const struct intel_crtc_state
*crtc_state
,
4563 const struct drm_connector_state
*conn_state
)
4566 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4567 * of Color Encoding Format and Content Color Gamut], in order to
4568 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4570 if (crtc_state
->output_format
== INTEL_OUTPUT_FORMAT_YCBCR420
)
4573 switch (conn_state
->colorspace
) {
4574 case DRM_MODE_COLORIMETRY_SYCC_601
:
4575 case DRM_MODE_COLORIMETRY_OPYCC_601
:
4576 case DRM_MODE_COLORIMETRY_BT2020_YCC
:
4577 case DRM_MODE_COLORIMETRY_BT2020_RGB
:
4578 case DRM_MODE_COLORIMETRY_BT2020_CYCC
:
4588 intel_dp_setup_vsc_sdp(struct intel_dp
*intel_dp
,
4589 const struct intel_crtc_state
*crtc_state
,
4590 const struct drm_connector_state
*conn_state
)
4592 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
4593 struct dp_sdp vsc_sdp
= {};
4595 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4596 vsc_sdp
.sdp_header
.HB0
= 0;
4597 vsc_sdp
.sdp_header
.HB1
= 0x7;
4600 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4601 * Colorimetry Format indication.
4603 vsc_sdp
.sdp_header
.HB2
= 0x5;
4606 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4607 * Colorimetry Format indication (HB2 = 05h).
4609 vsc_sdp
.sdp_header
.HB3
= 0x13;
4611 /* DP 1.4a spec, Table 2-120 */
4612 switch (crtc_state
->output_format
) {
4613 case INTEL_OUTPUT_FORMAT_YCBCR444
:
4614 vsc_sdp
.db
[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4616 case INTEL_OUTPUT_FORMAT_YCBCR420
:
4617 vsc_sdp
.db
[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4619 case INTEL_OUTPUT_FORMAT_RGB
:
4621 /* RGB: DB16[7:4] = 0h */
4625 switch (conn_state
->colorspace
) {
4626 case DRM_MODE_COLORIMETRY_BT709_YCC
:
4627 vsc_sdp
.db
[16] |= 0x1;
4629 case DRM_MODE_COLORIMETRY_XVYCC_601
:
4630 vsc_sdp
.db
[16] |= 0x2;
4632 case DRM_MODE_COLORIMETRY_XVYCC_709
:
4633 vsc_sdp
.db
[16] |= 0x3;
4635 case DRM_MODE_COLORIMETRY_SYCC_601
:
4636 vsc_sdp
.db
[16] |= 0x4;
4638 case DRM_MODE_COLORIMETRY_OPYCC_601
:
4639 vsc_sdp
.db
[16] |= 0x5;
4641 case DRM_MODE_COLORIMETRY_BT2020_CYCC
:
4642 case DRM_MODE_COLORIMETRY_BT2020_RGB
:
4643 vsc_sdp
.db
[16] |= 0x6;
4645 case DRM_MODE_COLORIMETRY_BT2020_YCC
:
4646 vsc_sdp
.db
[16] |= 0x7;
4648 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65
:
4649 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER
:
4650 vsc_sdp
.db
[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4653 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4655 /* RGB->YCBCR color conversion uses the BT.709 color space. */
4656 if (crtc_state
->output_format
== INTEL_OUTPUT_FORMAT_YCBCR420
)
4657 vsc_sdp
.db
[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4662 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4663 * the following Component Bit Depth values are defined:
4669 switch (crtc_state
->pipe_bpp
) {
4671 vsc_sdp
.db
[17] = 0x1;
4673 case 30: /* 10bpc */
4674 vsc_sdp
.db
[17] = 0x2;
4676 case 36: /* 12bpc */
4677 vsc_sdp
.db
[17] = 0x3;
4679 case 48: /* 16bpc */
4680 vsc_sdp
.db
[17] = 0x4;
4683 MISSING_CASE(crtc_state
->pipe_bpp
);
4688 * Dynamic Range (Bit 7)
4689 * 0 = VESA range, 1 = CTA range.
4690 * all YCbCr are always limited range
4692 vsc_sdp
.db
[17] |= 0x80;
4695 * Content Type (Bits 2:0)
4696 * 000b = Not defined.
4701 * All other values are RESERVED.
4702 * Note: See CTA-861-G for the definition and expected
4703 * processing by a stream sink for the above contect types.
4707 intel_dig_port
->write_infoframe(&intel_dig_port
->base
,
4708 crtc_state
, DP_SDP_VSC
, &vsc_sdp
, sizeof(vsc_sdp
));
4712 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp
*intel_dp
,
4713 const struct intel_crtc_state
*crtc_state
,
4714 const struct drm_connector_state
*conn_state
)
4716 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
4717 struct dp_sdp infoframe_sdp
= {};
4718 struct hdmi_drm_infoframe drm_infoframe
= {};
4719 const int infoframe_size
= HDMI_INFOFRAME_HEADER_SIZE
+ HDMI_DRM_INFOFRAME_SIZE
;
4720 unsigned char buf
[HDMI_INFOFRAME_HEADER_SIZE
+ HDMI_DRM_INFOFRAME_SIZE
];
4724 ret
= drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe
, conn_state
);
4726 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4730 len
= hdmi_drm_infoframe_pack_only(&drm_infoframe
, buf
, sizeof(buf
));
4732 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4736 if (len
!= infoframe_size
) {
4737 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4742 * Set up the infoframe sdp packet for HDR static metadata.
4743 * Prepare VSC Header for SU as per DP 1.4a spec,
4744 * Table 2-100 and Table 2-101
4747 /* Packet ID, 00h for non-Audio INFOFRAME */
4748 infoframe_sdp
.sdp_header
.HB0
= 0;
4750 * Packet Type 80h + Non-audio INFOFRAME Type value
4751 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4753 infoframe_sdp
.sdp_header
.HB1
= drm_infoframe
.type
;
4755 * Least Significant Eight Bits of (Data Byte Count – 1)
4756 * infoframe_size - 1,
4758 infoframe_sdp
.sdp_header
.HB2
= 0x1D;
4759 /* INFOFRAME SDP Version Number */
4760 infoframe_sdp
.sdp_header
.HB3
= (0x13 << 2);
4761 /* CTA Header Byte 2 (INFOFRAME Version Number) */
4762 infoframe_sdp
.db
[0] = drm_infoframe
.version
;
4763 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4764 infoframe_sdp
.db
[1] = drm_infoframe
.length
;
4766 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4767 * HDMI_INFOFRAME_HEADER_SIZE
4769 BUILD_BUG_ON(sizeof(infoframe_sdp
.db
) < HDMI_DRM_INFOFRAME_SIZE
+ 2);
4770 memcpy(&infoframe_sdp
.db
[2], &buf
[HDMI_INFOFRAME_HEADER_SIZE
],
4771 HDMI_DRM_INFOFRAME_SIZE
);
4774 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4775 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4776 * - Two Data Blocks: 2 bytes
4777 * CTA Header Byte2 (INFOFRAME Version Number)
4778 * CTA Header Byte3 (Length of INFOFRAME)
4779 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4781 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4782 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4783 * will pad rest of the size.
4785 intel_dig_port
->write_infoframe(&intel_dig_port
->base
, crtc_state
,
4786 HDMI_PACKET_TYPE_GAMUT_METADATA
,
4788 sizeof(struct dp_sdp_header
) + 2 + HDMI_DRM_INFOFRAME_SIZE
);
4791 void intel_dp_vsc_enable(struct intel_dp
*intel_dp
,
4792 const struct intel_crtc_state
*crtc_state
,
4793 const struct drm_connector_state
*conn_state
)
4795 if (!intel_dp_needs_vsc_sdp(crtc_state
, conn_state
))
4798 intel_dp_setup_vsc_sdp(intel_dp
, crtc_state
, conn_state
);
4801 void intel_dp_hdr_metadata_enable(struct intel_dp
*intel_dp
,
4802 const struct intel_crtc_state
*crtc_state
,
4803 const struct drm_connector_state
*conn_state
)
4805 if (!conn_state
->hdr_output_metadata
)
4808 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp
,
4813 static u8
intel_dp_autotest_link_training(struct intel_dp
*intel_dp
)
4817 u8 test_lane_count
, test_link_bw
;
4821 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4822 status
= drm_dp_dpcd_readb(&intel_dp
->aux
, DP_TEST_LANE_COUNT
,
4826 DRM_DEBUG_KMS("Lane count read failed\n");
4829 test_lane_count
&= DP_MAX_LANE_COUNT_MASK
;
4831 status
= drm_dp_dpcd_readb(&intel_dp
->aux
, DP_TEST_LINK_RATE
,
4834 DRM_DEBUG_KMS("Link Rate read failed\n");
4837 test_link_rate
= drm_dp_bw_code_to_link_rate(test_link_bw
);
4839 /* Validate the requested link rate and lane count */
4840 if (!intel_dp_link_params_valid(intel_dp
, test_link_rate
,
4844 intel_dp
->compliance
.test_lane_count
= test_lane_count
;
4845 intel_dp
->compliance
.test_link_rate
= test_link_rate
;
4850 static u8
intel_dp_autotest_video_pattern(struct intel_dp
*intel_dp
)
4854 __be16 h_width
, v_height
;
4857 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4858 status
= drm_dp_dpcd_readb(&intel_dp
->aux
, DP_TEST_PATTERN
,
4861 DRM_DEBUG_KMS("Test pattern read failed\n");
4864 if (test_pattern
!= DP_COLOR_RAMP
)
4867 status
= drm_dp_dpcd_read(&intel_dp
->aux
, DP_TEST_H_WIDTH_HI
,
4870 DRM_DEBUG_KMS("H Width read failed\n");
4874 status
= drm_dp_dpcd_read(&intel_dp
->aux
, DP_TEST_V_HEIGHT_HI
,
4877 DRM_DEBUG_KMS("V Height read failed\n");
4881 status
= drm_dp_dpcd_readb(&intel_dp
->aux
, DP_TEST_MISC0
,
4884 DRM_DEBUG_KMS("TEST MISC read failed\n");
4887 if ((test_misc
& DP_TEST_COLOR_FORMAT_MASK
) != DP_COLOR_FORMAT_RGB
)
4889 if (test_misc
& DP_TEST_DYNAMIC_RANGE_CEA
)
4891 switch (test_misc
& DP_TEST_BIT_DEPTH_MASK
) {
4892 case DP_TEST_BIT_DEPTH_6
:
4893 intel_dp
->compliance
.test_data
.bpc
= 6;
4895 case DP_TEST_BIT_DEPTH_8
:
4896 intel_dp
->compliance
.test_data
.bpc
= 8;
4902 intel_dp
->compliance
.test_data
.video_pattern
= test_pattern
;
4903 intel_dp
->compliance
.test_data
.hdisplay
= be16_to_cpu(h_width
);
4904 intel_dp
->compliance
.test_data
.vdisplay
= be16_to_cpu(v_height
);
4905 /* Set test active flag here so userspace doesn't interrupt things */
4906 intel_dp
->compliance
.test_active
= true;
4911 static u8
intel_dp_autotest_edid(struct intel_dp
*intel_dp
)
4913 u8 test_result
= DP_TEST_ACK
;
4914 struct intel_connector
*intel_connector
= intel_dp
->attached_connector
;
4915 struct drm_connector
*connector
= &intel_connector
->base
;
4917 if (intel_connector
->detect_edid
== NULL
||
4918 connector
->edid_corrupt
||
4919 intel_dp
->aux
.i2c_defer_count
> 6) {
4920 /* Check EDID read for NACKs, DEFERs and corruption
4921 * (DP CTS 1.2 Core r1.1)
4922 * 4.2.2.4 : Failed EDID read, I2C_NAK
4923 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4924 * 4.2.2.6 : EDID corruption detected
4925 * Use failsafe mode for all cases
4927 if (intel_dp
->aux
.i2c_nack_count
> 0 ||
4928 intel_dp
->aux
.i2c_defer_count
> 0)
4929 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4930 intel_dp
->aux
.i2c_nack_count
,
4931 intel_dp
->aux
.i2c_defer_count
);
4932 intel_dp
->compliance
.test_data
.edid
= INTEL_DP_RESOLUTION_FAILSAFE
;
4934 struct edid
*block
= intel_connector
->detect_edid
;
4936 /* We have to write the checksum
4937 * of the last block read
4939 block
+= intel_connector
->detect_edid
->extensions
;
4941 if (drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_TEST_EDID_CHECKSUM
,
4942 block
->checksum
) <= 0)
4943 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4945 test_result
= DP_TEST_ACK
| DP_TEST_EDID_CHECKSUM_WRITE
;
4946 intel_dp
->compliance
.test_data
.edid
= INTEL_DP_RESOLUTION_PREFERRED
;
4949 /* Set test active flag here so userspace doesn't interrupt things */
4950 intel_dp
->compliance
.test_active
= true;
4955 static u8
intel_dp_autotest_phy_pattern(struct intel_dp
*intel_dp
)
4957 u8 test_result
= DP_TEST_NAK
;
4961 static void intel_dp_handle_test_request(struct intel_dp
*intel_dp
)
4963 u8 response
= DP_TEST_NAK
;
4967 status
= drm_dp_dpcd_readb(&intel_dp
->aux
, DP_TEST_REQUEST
, &request
);
4969 DRM_DEBUG_KMS("Could not read test request from sink\n");
4974 case DP_TEST_LINK_TRAINING
:
4975 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4976 response
= intel_dp_autotest_link_training(intel_dp
);
4978 case DP_TEST_LINK_VIDEO_PATTERN
:
4979 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4980 response
= intel_dp_autotest_video_pattern(intel_dp
);
4982 case DP_TEST_LINK_EDID_READ
:
4983 DRM_DEBUG_KMS("EDID test requested\n");
4984 response
= intel_dp_autotest_edid(intel_dp
);
4986 case DP_TEST_LINK_PHY_TEST_PATTERN
:
4987 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4988 response
= intel_dp_autotest_phy_pattern(intel_dp
);
4991 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request
);
4995 if (response
& DP_TEST_ACK
)
4996 intel_dp
->compliance
.test_type
= request
;
4999 status
= drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_TEST_RESPONSE
, response
);
5001 DRM_DEBUG_KMS("Could not write test response to sink\n");
5005 intel_dp_check_mst_status(struct intel_dp
*intel_dp
)
5009 if (intel_dp
->is_mst
) {
5010 u8 esi
[DP_DPRX_ESI_LEN
] = { 0 };
5015 WARN_ON_ONCE(intel_dp
->active_mst_links
< 0);
5016 bret
= intel_dp_get_sink_irq_esi(intel_dp
, esi
);
5020 /* check link status - esi[10] = 0x200c */
5021 if (intel_dp
->active_mst_links
> 0 &&
5022 !drm_dp_channel_eq_ok(&esi
[10], intel_dp
->lane_count
)) {
5023 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5024 intel_dp_start_link_train(intel_dp
);
5025 intel_dp_stop_link_train(intel_dp
);
5028 DRM_DEBUG_KMS("got esi %3ph\n", esi
);
5029 ret
= drm_dp_mst_hpd_irq(&intel_dp
->mst_mgr
, esi
, &handled
);
5032 for (retry
= 0; retry
< 3; retry
++) {
5034 wret
= drm_dp_dpcd_write(&intel_dp
->aux
,
5035 DP_SINK_COUNT_ESI
+1,
5042 bret
= intel_dp_get_sink_irq_esi(intel_dp
, esi
);
5044 DRM_DEBUG_KMS("got esi2 %3ph\n", esi
);
5052 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5053 intel_dp
->is_mst
= false;
5054 drm_dp_mst_topology_mgr_set_mst(&intel_dp
->mst_mgr
,
5062 intel_dp_needs_link_retrain(struct intel_dp
*intel_dp
)
5064 u8 link_status
[DP_LINK_STATUS_SIZE
];
5066 if (!intel_dp
->link_trained
)
5070 * While PSR source HW is enabled, it will control main-link sending
5071 * frames, enabling and disabling it so trying to do a retrain will fail
5072 * as the link would or not be on or it could mix training patterns
5073 * and frame data at the same time causing retrain to fail.
5074 * Also when exiting PSR, HW will retrain the link anyways fixing
5075 * any link status error.
5077 if (intel_psr_enabled(intel_dp
))
5080 if (!intel_dp_get_link_status(intel_dp
, link_status
))
5084 * Validate the cached values of intel_dp->link_rate and
5085 * intel_dp->lane_count before attempting to retrain.
5087 if (!intel_dp_link_params_valid(intel_dp
, intel_dp
->link_rate
,
5088 intel_dp
->lane_count
))
5091 /* Retrain if Channel EQ or CR not ok */
5092 return !drm_dp_channel_eq_ok(link_status
, intel_dp
->lane_count
);
5095 int intel_dp_retrain_link(struct intel_encoder
*encoder
,
5096 struct drm_modeset_acquire_ctx
*ctx
)
5098 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5099 struct intel_dp
*intel_dp
= enc_to_intel_dp(encoder
);
5100 struct intel_connector
*connector
= intel_dp
->attached_connector
;
5101 struct drm_connector_state
*conn_state
;
5102 struct intel_crtc_state
*crtc_state
;
5103 struct intel_crtc
*crtc
;
5106 /* FIXME handle the MST connectors as well */
5108 if (!connector
|| connector
->base
.status
!= connector_status_connected
)
5111 ret
= drm_modeset_lock(&dev_priv
->drm
.mode_config
.connection_mutex
,
5116 conn_state
= connector
->base
.state
;
5118 crtc
= to_intel_crtc(conn_state
->crtc
);
5122 ret
= drm_modeset_lock(&crtc
->base
.mutex
, ctx
);
5126 crtc_state
= to_intel_crtc_state(crtc
->base
.state
);
5128 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state
));
5130 if (!crtc_state
->hw
.active
)
5133 if (conn_state
->commit
&&
5134 !try_wait_for_completion(&conn_state
->commit
->hw_done
))
5137 if (!intel_dp_needs_link_retrain(intel_dp
))
5140 /* Suppress underruns caused by re-training */
5141 intel_set_cpu_fifo_underrun_reporting(dev_priv
, crtc
->pipe
, false);
5142 if (crtc_state
->has_pch_encoder
)
5143 intel_set_pch_fifo_underrun_reporting(dev_priv
,
5144 intel_crtc_pch_transcoder(crtc
), false);
5146 intel_dp_start_link_train(intel_dp
);
5147 intel_dp_stop_link_train(intel_dp
);
5149 /* Keep underrun reporting disabled until things are stable */
5150 intel_wait_for_vblank(dev_priv
, crtc
->pipe
);
5152 intel_set_cpu_fifo_underrun_reporting(dev_priv
, crtc
->pipe
, true);
5153 if (crtc_state
->has_pch_encoder
)
5154 intel_set_pch_fifo_underrun_reporting(dev_priv
,
5155 intel_crtc_pch_transcoder(crtc
), true);
5161 * If display is now connected check links status,
5162 * there has been known issues of link loss triggering
5165 * Some sinks (eg. ASUS PB287Q) seem to perform some
5166 * weird HPD ping pong during modesets. So we can apparently
5167 * end up with HPD going low during a modeset, and then
5168 * going back up soon after. And once that happens we must
5169 * retrain the link to get a picture. That's in case no
5170 * userspace component reacted to intermittent HPD dip.
5172 static enum intel_hotplug_state
5173 intel_dp_hotplug(struct intel_encoder
*encoder
,
5174 struct intel_connector
*connector
,
5177 struct drm_modeset_acquire_ctx ctx
;
5178 enum intel_hotplug_state state
;
5181 state
= intel_encoder_hotplug(encoder
, connector
, irq_received
);
5183 drm_modeset_acquire_init(&ctx
, 0);
5186 ret
= intel_dp_retrain_link(encoder
, &ctx
);
5188 if (ret
== -EDEADLK
) {
5189 drm_modeset_backoff(&ctx
);
5196 drm_modeset_drop_locks(&ctx
);
5197 drm_modeset_acquire_fini(&ctx
);
5198 WARN(ret
, "Acquiring modeset locks failed with %i\n", ret
);
5201 * Keeping it consistent with intel_ddi_hotplug() and
5202 * intel_hdmi_hotplug().
5204 if (state
== INTEL_HOTPLUG_UNCHANGED
&& irq_received
)
5205 state
= INTEL_HOTPLUG_RETRY
;
5210 static void intel_dp_check_service_irq(struct intel_dp
*intel_dp
)
5214 if (intel_dp
->dpcd
[DP_DPCD_REV
] < 0x11)
5217 if (drm_dp_dpcd_readb(&intel_dp
->aux
,
5218 DP_DEVICE_SERVICE_IRQ_VECTOR
, &val
) != 1 || !val
)
5221 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_DEVICE_SERVICE_IRQ_VECTOR
, val
);
5223 if (val
& DP_AUTOMATED_TEST_REQUEST
)
5224 intel_dp_handle_test_request(intel_dp
);
5226 if (val
& DP_CP_IRQ
)
5227 intel_hdcp_handle_cp_irq(intel_dp
->attached_connector
);
5229 if (val
& DP_SINK_SPECIFIC_IRQ
)
5230 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5234 * According to DP spec
5237 * 2. Configure link according to Receiver Capabilities
5238 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
5239 * 4. Check link status on receipt of hot-plug interrupt
5241 * intel_dp_short_pulse - handles short pulse interrupts
5242 * when full detection is not required.
5243 * Returns %true if short pulse is handled and full detection
5244 * is NOT required and %false otherwise.
5247 intel_dp_short_pulse(struct intel_dp
*intel_dp
)
5249 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
5250 u8 old_sink_count
= intel_dp
->sink_count
;
5254 * Clearing compliance test variables to allow capturing
5255 * of values for next automated test request.
5257 memset(&intel_dp
->compliance
, 0, sizeof(intel_dp
->compliance
));
5260 * Now read the DPCD to see if it's actually running
5261 * If the current value of sink count doesn't match with
5262 * the value that was stored earlier or dpcd read failed
5263 * we need to do full detection
5265 ret
= intel_dp_get_dpcd(intel_dp
);
5267 if ((old_sink_count
!= intel_dp
->sink_count
) || !ret
) {
5268 /* No need to proceed if we are going to do full detect */
5272 intel_dp_check_service_irq(intel_dp
);
5274 /* Handle CEC interrupts, if any */
5275 drm_dp_cec_irq(&intel_dp
->aux
);
5277 /* defer to the hotplug work for link retraining if needed */
5278 if (intel_dp_needs_link_retrain(intel_dp
))
5281 intel_psr_short_pulse(intel_dp
);
5283 if (intel_dp
->compliance
.test_type
== DP_TEST_LINK_TRAINING
) {
5284 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5285 /* Send a Hotplug Uevent to userspace to start modeset */
5286 drm_kms_helper_hotplug_event(&dev_priv
->drm
);
5292 /* XXX this is probably wrong for multiple downstream ports */
5293 static enum drm_connector_status
5294 intel_dp_detect_dpcd(struct intel_dp
*intel_dp
)
5296 struct intel_lspcon
*lspcon
= dp_to_lspcon(intel_dp
);
5297 u8
*dpcd
= intel_dp
->dpcd
;
5300 if (WARN_ON(intel_dp_is_edp(intel_dp
)))
5301 return connector_status_connected
;
5304 lspcon_resume(lspcon
);
5306 if (!intel_dp_get_dpcd(intel_dp
))
5307 return connector_status_disconnected
;
5309 /* if there's no downstream port, we're done */
5310 if (!drm_dp_is_branch(dpcd
))
5311 return connector_status_connected
;
5313 /* If we're HPD-aware, SINK_COUNT changes dynamically */
5314 if (intel_dp
->dpcd
[DP_DPCD_REV
] >= 0x11 &&
5315 intel_dp
->downstream_ports
[0] & DP_DS_PORT_HPD
) {
5317 return intel_dp
->sink_count
?
5318 connector_status_connected
: connector_status_disconnected
;
5321 if (intel_dp_can_mst(intel_dp
))
5322 return connector_status_connected
;
5324 /* If no HPD, poke DDC gently */
5325 if (drm_probe_ddc(&intel_dp
->aux
.ddc
))
5326 return connector_status_connected
;
5328 /* Well we tried, say unknown for unreliable port types */
5329 if (intel_dp
->dpcd
[DP_DPCD_REV
] >= 0x11) {
5330 type
= intel_dp
->downstream_ports
[0] & DP_DS_PORT_TYPE_MASK
;
5331 if (type
== DP_DS_PORT_TYPE_VGA
||
5332 type
== DP_DS_PORT_TYPE_NON_EDID
)
5333 return connector_status_unknown
;
5335 type
= intel_dp
->dpcd
[DP_DOWNSTREAMPORT_PRESENT
] &
5336 DP_DWN_STRM_PORT_TYPE_MASK
;
5337 if (type
== DP_DWN_STRM_PORT_TYPE_ANALOG
||
5338 type
== DP_DWN_STRM_PORT_TYPE_OTHER
)
5339 return connector_status_unknown
;
5342 /* Anything else is out of spec, warn and ignore */
5343 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5344 return connector_status_disconnected
;
5347 static enum drm_connector_status
5348 edp_detect(struct intel_dp
*intel_dp
)
5350 return connector_status_connected
;
5353 static bool ibx_digital_port_connected(struct intel_encoder
*encoder
)
5355 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5358 switch (encoder
->hpd_pin
) {
5360 bit
= SDE_PORTB_HOTPLUG
;
5363 bit
= SDE_PORTC_HOTPLUG
;
5366 bit
= SDE_PORTD_HOTPLUG
;
5369 MISSING_CASE(encoder
->hpd_pin
);
5373 return I915_READ(SDEISR
) & bit
;
5376 static bool cpt_digital_port_connected(struct intel_encoder
*encoder
)
5378 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5381 switch (encoder
->hpd_pin
) {
5383 bit
= SDE_PORTB_HOTPLUG_CPT
;
5386 bit
= SDE_PORTC_HOTPLUG_CPT
;
5389 bit
= SDE_PORTD_HOTPLUG_CPT
;
5392 MISSING_CASE(encoder
->hpd_pin
);
5396 return I915_READ(SDEISR
) & bit
;
5399 static bool spt_digital_port_connected(struct intel_encoder
*encoder
)
5401 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5404 switch (encoder
->hpd_pin
) {
5406 bit
= SDE_PORTA_HOTPLUG_SPT
;
5409 bit
= SDE_PORTE_HOTPLUG_SPT
;
5412 return cpt_digital_port_connected(encoder
);
5415 return I915_READ(SDEISR
) & bit
;
5418 static bool g4x_digital_port_connected(struct intel_encoder
*encoder
)
5420 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5423 switch (encoder
->hpd_pin
) {
5425 bit
= PORTB_HOTPLUG_LIVE_STATUS_G4X
;
5428 bit
= PORTC_HOTPLUG_LIVE_STATUS_G4X
;
5431 bit
= PORTD_HOTPLUG_LIVE_STATUS_G4X
;
5434 MISSING_CASE(encoder
->hpd_pin
);
5438 return I915_READ(PORT_HOTPLUG_STAT
) & bit
;
5441 static bool gm45_digital_port_connected(struct intel_encoder
*encoder
)
5443 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5446 switch (encoder
->hpd_pin
) {
5448 bit
= PORTB_HOTPLUG_LIVE_STATUS_GM45
;
5451 bit
= PORTC_HOTPLUG_LIVE_STATUS_GM45
;
5454 bit
= PORTD_HOTPLUG_LIVE_STATUS_GM45
;
5457 MISSING_CASE(encoder
->hpd_pin
);
5461 return I915_READ(PORT_HOTPLUG_STAT
) & bit
;
5464 static bool ilk_digital_port_connected(struct intel_encoder
*encoder
)
5466 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5468 if (encoder
->hpd_pin
== HPD_PORT_A
)
5469 return I915_READ(DEISR
) & DE_DP_A_HOTPLUG
;
5471 return ibx_digital_port_connected(encoder
);
5474 static bool snb_digital_port_connected(struct intel_encoder
*encoder
)
5476 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5478 if (encoder
->hpd_pin
== HPD_PORT_A
)
5479 return I915_READ(DEISR
) & DE_DP_A_HOTPLUG
;
5481 return cpt_digital_port_connected(encoder
);
5484 static bool ivb_digital_port_connected(struct intel_encoder
*encoder
)
5486 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5488 if (encoder
->hpd_pin
== HPD_PORT_A
)
5489 return I915_READ(DEISR
) & DE_DP_A_HOTPLUG_IVB
;
5491 return cpt_digital_port_connected(encoder
);
5494 static bool bdw_digital_port_connected(struct intel_encoder
*encoder
)
5496 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5498 if (encoder
->hpd_pin
== HPD_PORT_A
)
5499 return I915_READ(GEN8_DE_PORT_ISR
) & GEN8_PORT_DP_A_HOTPLUG
;
5501 return cpt_digital_port_connected(encoder
);
5504 static bool bxt_digital_port_connected(struct intel_encoder
*encoder
)
5506 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5509 switch (encoder
->hpd_pin
) {
5511 bit
= BXT_DE_PORT_HP_DDIA
;
5514 bit
= BXT_DE_PORT_HP_DDIB
;
5517 bit
= BXT_DE_PORT_HP_DDIC
;
5520 MISSING_CASE(encoder
->hpd_pin
);
5524 return I915_READ(GEN8_DE_PORT_ISR
) & bit
;
5527 static bool intel_combo_phy_connected(struct drm_i915_private
*dev_priv
,
5530 if (HAS_PCH_MCC(dev_priv
) && phy
== PHY_C
)
5531 return I915_READ(SDEISR
) & SDE_TC_HOTPLUG_ICP(PORT_TC1
);
5533 return I915_READ(SDEISR
) & SDE_DDI_HOTPLUG_ICP(phy
);
5536 static bool icp_digital_port_connected(struct intel_encoder
*encoder
)
5538 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5539 struct intel_digital_port
*dig_port
= enc_to_dig_port(encoder
);
5540 enum phy phy
= intel_port_to_phy(dev_priv
, encoder
->port
);
5542 if (intel_phy_is_combo(dev_priv
, phy
))
5543 return intel_combo_phy_connected(dev_priv
, phy
);
5544 else if (intel_phy_is_tc(dev_priv
, phy
))
5545 return intel_tc_port_connected(dig_port
);
5547 MISSING_CASE(encoder
->hpd_pin
);
5553 * intel_digital_port_connected - is the specified port connected?
5554 * @encoder: intel_encoder
5556 * In cases where there's a connector physically connected but it can't be used
5557 * by our hardware we also return false, since the rest of the driver should
5558 * pretty much treat the port as disconnected. This is relevant for type-C
5559 * (starting on ICL) where there's ownership involved.
5561 * Return %true if port is connected, %false otherwise.
5563 static bool __intel_digital_port_connected(struct intel_encoder
*encoder
)
5565 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5567 if (HAS_GMCH(dev_priv
)) {
5568 if (IS_GM45(dev_priv
))
5569 return gm45_digital_port_connected(encoder
);
5571 return g4x_digital_port_connected(encoder
);
5574 if (INTEL_PCH_TYPE(dev_priv
) >= PCH_ICP
)
5575 return icp_digital_port_connected(encoder
);
5576 else if (INTEL_PCH_TYPE(dev_priv
) >= PCH_SPT
)
5577 return spt_digital_port_connected(encoder
);
5578 else if (IS_GEN9_LP(dev_priv
))
5579 return bxt_digital_port_connected(encoder
);
5580 else if (IS_GEN(dev_priv
, 8))
5581 return bdw_digital_port_connected(encoder
);
5582 else if (IS_GEN(dev_priv
, 7))
5583 return ivb_digital_port_connected(encoder
);
5584 else if (IS_GEN(dev_priv
, 6))
5585 return snb_digital_port_connected(encoder
);
5586 else if (IS_GEN(dev_priv
, 5))
5587 return ilk_digital_port_connected(encoder
);
5589 MISSING_CASE(INTEL_GEN(dev_priv
));
5593 bool intel_digital_port_connected(struct intel_encoder
*encoder
)
5595 struct drm_i915_private
*dev_priv
= to_i915(encoder
->base
.dev
);
5596 bool is_connected
= false;
5597 intel_wakeref_t wakeref
;
5599 with_intel_display_power(dev_priv
, POWER_DOMAIN_DISPLAY_CORE
, wakeref
)
5600 is_connected
= __intel_digital_port_connected(encoder
);
5602 return is_connected
;
5605 static struct edid
*
5606 intel_dp_get_edid(struct intel_dp
*intel_dp
)
5608 struct intel_connector
*intel_connector
= intel_dp
->attached_connector
;
5610 /* use cached edid if we have one */
5611 if (intel_connector
->edid
) {
5613 if (IS_ERR(intel_connector
->edid
))
5616 return drm_edid_duplicate(intel_connector
->edid
);
5618 return drm_get_edid(&intel_connector
->base
,
5619 &intel_dp
->aux
.ddc
);
5623 intel_dp_set_edid(struct intel_dp
*intel_dp
)
5625 struct intel_connector
*intel_connector
= intel_dp
->attached_connector
;
5628 intel_dp_unset_edid(intel_dp
);
5629 edid
= intel_dp_get_edid(intel_dp
);
5630 intel_connector
->detect_edid
= edid
;
5632 intel_dp
->has_audio
= drm_detect_monitor_audio(edid
);
5633 drm_dp_cec_set_edid(&intel_dp
->aux
, edid
);
5637 intel_dp_unset_edid(struct intel_dp
*intel_dp
)
5639 struct intel_connector
*intel_connector
= intel_dp
->attached_connector
;
5641 drm_dp_cec_unset_edid(&intel_dp
->aux
);
5642 kfree(intel_connector
->detect_edid
);
5643 intel_connector
->detect_edid
= NULL
;
5645 intel_dp
->has_audio
= false;
5649 intel_dp_detect(struct drm_connector
*connector
,
5650 struct drm_modeset_acquire_ctx
*ctx
,
5653 struct drm_i915_private
*dev_priv
= to_i915(connector
->dev
);
5654 struct intel_dp
*intel_dp
= intel_attached_dp(to_intel_connector(connector
));
5655 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
5656 struct intel_encoder
*encoder
= &dig_port
->base
;
5657 enum drm_connector_status status
;
5659 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5660 connector
->base
.id
, connector
->name
);
5661 WARN_ON(!drm_modeset_is_locked(&dev_priv
->drm
.mode_config
.connection_mutex
));
5663 /* Can't disconnect eDP */
5664 if (intel_dp_is_edp(intel_dp
))
5665 status
= edp_detect(intel_dp
);
5666 else if (intel_digital_port_connected(encoder
))
5667 status
= intel_dp_detect_dpcd(intel_dp
);
5669 status
= connector_status_disconnected
;
5671 if (status
== connector_status_disconnected
) {
5672 memset(&intel_dp
->compliance
, 0, sizeof(intel_dp
->compliance
));
5673 memset(intel_dp
->dsc_dpcd
, 0, sizeof(intel_dp
->dsc_dpcd
));
5675 if (intel_dp
->is_mst
) {
5676 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5678 intel_dp
->mst_mgr
.mst_state
);
5679 intel_dp
->is_mst
= false;
5680 drm_dp_mst_topology_mgr_set_mst(&intel_dp
->mst_mgr
,
5687 if (intel_dp
->reset_link_params
) {
5688 /* Initial max link lane count */
5689 intel_dp
->max_link_lane_count
= intel_dp_max_common_lane_count(intel_dp
);
5691 /* Initial max link rate */
5692 intel_dp
->max_link_rate
= intel_dp_max_common_rate(intel_dp
);
5694 intel_dp
->reset_link_params
= false;
5697 intel_dp_print_rates(intel_dp
);
5699 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5700 if (INTEL_GEN(dev_priv
) >= 11)
5701 intel_dp_get_dsc_sink_cap(intel_dp
);
5703 intel_dp_configure_mst(intel_dp
);
5705 if (intel_dp
->is_mst
) {
5707 * If we are in MST mode then this connector
5708 * won't appear connected or have anything
5711 status
= connector_status_disconnected
;
5716 * Some external monitors do not signal loss of link synchronization
5717 * with an IRQ_HPD, so force a link status check.
5719 if (!intel_dp_is_edp(intel_dp
)) {
5722 ret
= intel_dp_retrain_link(encoder
, ctx
);
5728 * Clearing NACK and defer counts to get their exact values
5729 * while reading EDID which are required by Compliance tests
5730 * 4.2.2.4 and 4.2.2.5
5732 intel_dp
->aux
.i2c_nack_count
= 0;
5733 intel_dp
->aux
.i2c_defer_count
= 0;
5735 intel_dp_set_edid(intel_dp
);
5736 if (intel_dp_is_edp(intel_dp
) ||
5737 to_intel_connector(connector
)->detect_edid
)
5738 status
= connector_status_connected
;
5740 intel_dp_check_service_irq(intel_dp
);
5743 if (status
!= connector_status_connected
&& !intel_dp
->is_mst
)
5744 intel_dp_unset_edid(intel_dp
);
5747 * Make sure the refs for power wells enabled during detect are
5748 * dropped to avoid a new detect cycle triggered by HPD polling.
5750 intel_display_power_flush_work(dev_priv
);
5756 intel_dp_force(struct drm_connector
*connector
)
5758 struct intel_dp
*intel_dp
= intel_attached_dp(to_intel_connector(connector
));
5759 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
5760 struct intel_encoder
*intel_encoder
= &dig_port
->base
;
5761 struct drm_i915_private
*dev_priv
= to_i915(intel_encoder
->base
.dev
);
5762 enum intel_display_power_domain aux_domain
=
5763 intel_aux_power_domain(dig_port
);
5764 intel_wakeref_t wakeref
;
5766 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5767 connector
->base
.id
, connector
->name
);
5768 intel_dp_unset_edid(intel_dp
);
5770 if (connector
->status
!= connector_status_connected
)
5773 wakeref
= intel_display_power_get(dev_priv
, aux_domain
);
5775 intel_dp_set_edid(intel_dp
);
5777 intel_display_power_put(dev_priv
, aux_domain
, wakeref
);
5780 static int intel_dp_get_modes(struct drm_connector
*connector
)
5782 struct intel_connector
*intel_connector
= to_intel_connector(connector
);
5785 edid
= intel_connector
->detect_edid
;
5787 int ret
= intel_connector_update_modes(connector
, edid
);
5792 /* if eDP has no EDID, fall back to fixed mode */
5793 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector
))) &&
5794 intel_connector
->panel
.fixed_mode
) {
5795 struct drm_display_mode
*mode
;
5797 mode
= drm_mode_duplicate(connector
->dev
,
5798 intel_connector
->panel
.fixed_mode
);
5800 drm_mode_probed_add(connector
, mode
);
5809 intel_dp_connector_register(struct drm_connector
*connector
)
5811 struct intel_dp
*intel_dp
= intel_attached_dp(to_intel_connector(connector
));
5814 ret
= intel_connector_register(connector
);
5818 i915_debugfs_connector_add(connector
);
5820 DRM_DEBUG_KMS("registering %s bus for %s\n",
5821 intel_dp
->aux
.name
, connector
->kdev
->kobj
.name
);
5823 intel_dp
->aux
.dev
= connector
->kdev
;
5824 ret
= drm_dp_aux_register(&intel_dp
->aux
);
5826 drm_dp_cec_register_connector(&intel_dp
->aux
, connector
);
5831 intel_dp_connector_unregister(struct drm_connector
*connector
)
5833 struct intel_dp
*intel_dp
= intel_attached_dp(to_intel_connector(connector
));
5835 drm_dp_cec_unregister_connector(&intel_dp
->aux
);
5836 drm_dp_aux_unregister(&intel_dp
->aux
);
5837 intel_connector_unregister(connector
);
5840 void intel_dp_encoder_flush_work(struct drm_encoder
*encoder
)
5842 struct intel_digital_port
*intel_dig_port
= enc_to_dig_port(to_intel_encoder(encoder
));
5843 struct intel_dp
*intel_dp
= &intel_dig_port
->dp
;
5845 intel_dp_mst_encoder_cleanup(intel_dig_port
);
5846 if (intel_dp_is_edp(intel_dp
)) {
5847 intel_wakeref_t wakeref
;
5849 cancel_delayed_work_sync(&intel_dp
->panel_vdd_work
);
5851 * vdd might still be enabled do to the delayed vdd off.
5852 * Make sure vdd is actually turned off here.
5854 with_pps_lock(intel_dp
, wakeref
)
5855 edp_panel_vdd_off_sync(intel_dp
);
5857 if (intel_dp
->edp_notifier
.notifier_call
) {
5858 unregister_reboot_notifier(&intel_dp
->edp_notifier
);
5859 intel_dp
->edp_notifier
.notifier_call
= NULL
;
5863 intel_dp_aux_fini(intel_dp
);
5866 static void intel_dp_encoder_destroy(struct drm_encoder
*encoder
)
5868 intel_dp_encoder_flush_work(encoder
);
5870 drm_encoder_cleanup(encoder
);
5871 kfree(enc_to_dig_port(to_intel_encoder(encoder
)));
5874 void intel_dp_encoder_suspend(struct intel_encoder
*intel_encoder
)
5876 struct intel_dp
*intel_dp
= enc_to_intel_dp(intel_encoder
);
5877 intel_wakeref_t wakeref
;
5879 if (!intel_dp_is_edp(intel_dp
))
5883 * vdd might still be enabled do to the delayed vdd off.
5884 * Make sure vdd is actually turned off here.
5886 cancel_delayed_work_sync(&intel_dp
->panel_vdd_work
);
5887 with_pps_lock(intel_dp
, wakeref
)
5888 edp_panel_vdd_off_sync(intel_dp
);
5891 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp
*hdcp
, int timeout
)
5895 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5896 ret
= wait_event_interruptible_timeout(hdcp
->cp_irq_queue
, C
,
5897 msecs_to_jiffies(timeout
));
5900 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5904 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port
*intel_dig_port
,
5907 struct intel_dp
*intel_dp
= enc_to_intel_dp(to_intel_encoder(&intel_dig_port
->base
.base
));
5908 static const struct drm_dp_aux_msg msg
= {
5909 .request
= DP_AUX_NATIVE_WRITE
,
5910 .address
= DP_AUX_HDCP_AKSV
,
5911 .size
= DRM_HDCP_KSV_LEN
,
5913 u8 txbuf
[HEADER_SIZE
+ DRM_HDCP_KSV_LEN
] = {}, rxbuf
[2], reply
= 0;
5917 /* Output An first, that's easy */
5918 dpcd_ret
= drm_dp_dpcd_write(&intel_dig_port
->dp
.aux
, DP_AUX_HDCP_AN
,
5919 an
, DRM_HDCP_AN_LEN
);
5920 if (dpcd_ret
!= DRM_HDCP_AN_LEN
) {
5921 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5923 return dpcd_ret
>= 0 ? -EIO
: dpcd_ret
;
5927 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5928 * order to get it on the wire, we need to create the AUX header as if
5929 * we were writing the data, and then tickle the hardware to output the
5930 * data once the header is sent out.
5932 intel_dp_aux_header(txbuf
, &msg
);
5934 ret
= intel_dp_aux_xfer(intel_dp
, txbuf
, HEADER_SIZE
+ msg
.size
,
5935 rxbuf
, sizeof(rxbuf
),
5936 DP_AUX_CH_CTL_AUX_AKSV_SELECT
);
5938 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret
);
5940 } else if (ret
== 0) {
5941 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5945 reply
= (rxbuf
[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK
;
5946 if (reply
!= DP_AUX_NATIVE_REPLY_ACK
) {
5947 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5954 static int intel_dp_hdcp_read_bksv(struct intel_digital_port
*intel_dig_port
,
5958 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
, DP_AUX_HDCP_BKSV
, bksv
,
5960 if (ret
!= DRM_HDCP_KSV_LEN
) {
5961 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret
);
5962 return ret
>= 0 ? -EIO
: ret
;
5967 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port
*intel_dig_port
,
5972 * For some reason the HDMI and DP HDCP specs call this register
5973 * definition by different names. In the HDMI spec, it's called BSTATUS,
5974 * but in DP it's called BINFO.
5976 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
, DP_AUX_HDCP_BINFO
,
5977 bstatus
, DRM_HDCP_BSTATUS_LEN
);
5978 if (ret
!= DRM_HDCP_BSTATUS_LEN
) {
5979 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret
);
5980 return ret
>= 0 ? -EIO
: ret
;
5986 int intel_dp_hdcp_read_bcaps(struct intel_digital_port
*intel_dig_port
,
5991 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
, DP_AUX_HDCP_BCAPS
,
5994 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret
);
5995 return ret
>= 0 ? -EIO
: ret
;
6002 int intel_dp_hdcp_repeater_present(struct intel_digital_port
*intel_dig_port
,
6003 bool *repeater_present
)
6008 ret
= intel_dp_hdcp_read_bcaps(intel_dig_port
, &bcaps
);
6012 *repeater_present
= bcaps
& DP_BCAPS_REPEATER_PRESENT
;
6017 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port
*intel_dig_port
,
6021 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
, DP_AUX_HDCP_RI_PRIME
,
6022 ri_prime
, DRM_HDCP_RI_LEN
);
6023 if (ret
!= DRM_HDCP_RI_LEN
) {
6024 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret
);
6025 return ret
>= 0 ? -EIO
: ret
;
6031 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port
*intel_dig_port
,
6036 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
, DP_AUX_HDCP_BSTATUS
,
6039 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret
);
6040 return ret
>= 0 ? -EIO
: ret
;
6042 *ksv_ready
= bstatus
& DP_BSTATUS_READY
;
6047 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port
*intel_dig_port
,
6048 int num_downstream
, u8
*ksv_fifo
)
6053 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6054 for (i
= 0; i
< num_downstream
; i
+= 3) {
6055 size_t len
= min(num_downstream
- i
, 3) * DRM_HDCP_KSV_LEN
;
6056 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
,
6057 DP_AUX_HDCP_KSV_FIFO
,
6058 ksv_fifo
+ i
* DRM_HDCP_KSV_LEN
,
6061 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6063 return ret
>= 0 ? -EIO
: ret
;
6070 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port
*intel_dig_port
,
6075 if (i
>= DRM_HDCP_V_PRIME_NUM_PARTS
)
6078 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
,
6079 DP_AUX_HDCP_V_PRIME(i
), part
,
6080 DRM_HDCP_V_PRIME_PART_LEN
);
6081 if (ret
!= DRM_HDCP_V_PRIME_PART_LEN
) {
6082 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i
, ret
);
6083 return ret
>= 0 ? -EIO
: ret
;
6089 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port
*intel_dig_port
,
6092 /* Not used for single stream DisplayPort setups */
6097 bool intel_dp_hdcp_check_link(struct intel_digital_port
*intel_dig_port
)
6102 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
, DP_AUX_HDCP_BSTATUS
,
6105 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret
);
6109 return !(bstatus
& (DP_BSTATUS_LINK_FAILURE
| DP_BSTATUS_REAUTH_REQ
));
6113 int intel_dp_hdcp_capable(struct intel_digital_port
*intel_dig_port
,
6119 ret
= intel_dp_hdcp_read_bcaps(intel_dig_port
, &bcaps
);
6123 *hdcp_capable
= bcaps
& DP_BCAPS_HDCP_CAPABLE
;
6127 struct hdcp2_dp_errata_stream_type
{
6132 struct hdcp2_dp_msg_data
{
6135 bool msg_detectable
;
6137 u32 timeout2
; /* Added for non_paired situation */
6140 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data
[] = {
6141 { HDCP_2_2_AKE_INIT
, DP_HDCP_2_2_AKE_INIT_OFFSET
, false, 0, 0 },
6142 { HDCP_2_2_AKE_SEND_CERT
, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET
,
6143 false, HDCP_2_2_CERT_TIMEOUT_MS
, 0 },
6144 { HDCP_2_2_AKE_NO_STORED_KM
, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET
,
6146 { HDCP_2_2_AKE_STORED_KM
, DP_HDCP_2_2_AKE_STORED_KM_OFFSET
,
6148 { HDCP_2_2_AKE_SEND_HPRIME
, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET
,
6149 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS
,
6150 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS
},
6151 { HDCP_2_2_AKE_SEND_PAIRING_INFO
,
6152 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET
, true,
6153 HDCP_2_2_PAIRING_TIMEOUT_MS
, 0 },
6154 { HDCP_2_2_LC_INIT
, DP_HDCP_2_2_LC_INIT_OFFSET
, false, 0, 0 },
6155 { HDCP_2_2_LC_SEND_LPRIME
, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET
,
6156 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS
, 0 },
6157 { HDCP_2_2_SKE_SEND_EKS
, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET
, false,
6159 { HDCP_2_2_REP_SEND_RECVID_LIST
,
6160 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET
, true,
6161 HDCP_2_2_RECVID_LIST_TIMEOUT_MS
, 0 },
6162 { HDCP_2_2_REP_SEND_ACK
, DP_HDCP_2_2_REP_SEND_ACK_OFFSET
, false,
6164 { HDCP_2_2_REP_STREAM_MANAGE
,
6165 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET
, false,
6167 { HDCP_2_2_REP_STREAM_READY
, DP_HDCP_2_2_REP_STREAM_READY_OFFSET
,
6168 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS
, 0 },
6169 /* local define to shovel this through the write_2_2 interface */
6170 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50
6171 { HDCP_2_2_ERRATA_DP_STREAM_TYPE
,
6172 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET
, false,
6177 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port
*intel_dig_port
,
6182 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
,
6183 DP_HDCP_2_2_REG_RXSTATUS_OFFSET
, rx_status
,
6184 HDCP_2_2_DP_RXSTATUS_LEN
);
6185 if (ret
!= HDCP_2_2_DP_RXSTATUS_LEN
) {
6186 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret
);
6187 return ret
>= 0 ? -EIO
: ret
;
6194 int hdcp2_detect_msg_availability(struct intel_digital_port
*intel_dig_port
,
6195 u8 msg_id
, bool *msg_ready
)
6201 ret
= intel_dp_hdcp2_read_rx_status(intel_dig_port
, &rx_status
);
6206 case HDCP_2_2_AKE_SEND_HPRIME
:
6207 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status
))
6210 case HDCP_2_2_AKE_SEND_PAIRING_INFO
:
6211 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status
))
6214 case HDCP_2_2_REP_SEND_RECVID_LIST
:
6215 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status
))
6219 DRM_ERROR("Unidentified msg_id: %d\n", msg_id
);
6227 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port
*intel_dig_port
,
6228 const struct hdcp2_dp_msg_data
*hdcp2_msg_data
)
6230 struct intel_dp
*dp
= &intel_dig_port
->dp
;
6231 struct intel_hdcp
*hdcp
= &dp
->attached_connector
->hdcp
;
6232 u8 msg_id
= hdcp2_msg_data
->msg_id
;
6234 bool msg_ready
= false;
6236 if (msg_id
== HDCP_2_2_AKE_SEND_HPRIME
&& !hdcp
->is_paired
)
6237 timeout
= hdcp2_msg_data
->timeout2
;
6239 timeout
= hdcp2_msg_data
->timeout
;
6242 * There is no way to detect the CERT, LPRIME and STREAM_READY
6243 * availability. So Wait for timeout and read the msg.
6245 if (!hdcp2_msg_data
->msg_detectable
) {
6250 * As we want to check the msg availability at timeout, Ignoring
6251 * the timeout at wait for CP_IRQ.
6253 intel_dp_hdcp_wait_for_cp_irq(hdcp
, timeout
);
6254 ret
= hdcp2_detect_msg_availability(intel_dig_port
,
6255 msg_id
, &msg_ready
);
6261 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6262 hdcp2_msg_data
->msg_id
, ret
, timeout
);
6267 static const struct hdcp2_dp_msg_data
*get_hdcp2_dp_msg_data(u8 msg_id
)
6271 for (i
= 0; i
< ARRAY_SIZE(hdcp2_dp_msg_data
); i
++)
6272 if (hdcp2_dp_msg_data
[i
].msg_id
== msg_id
)
6273 return &hdcp2_dp_msg_data
[i
];
6279 int intel_dp_hdcp2_write_msg(struct intel_digital_port
*intel_dig_port
,
6280 void *buf
, size_t size
)
6282 struct intel_dp
*dp
= &intel_dig_port
->dp
;
6283 struct intel_hdcp
*hdcp
= &dp
->attached_connector
->hdcp
;
6284 unsigned int offset
;
6286 ssize_t ret
, bytes_to_write
, len
;
6287 const struct hdcp2_dp_msg_data
*hdcp2_msg_data
;
6289 hdcp2_msg_data
= get_hdcp2_dp_msg_data(*byte
);
6290 if (!hdcp2_msg_data
)
6293 offset
= hdcp2_msg_data
->offset
;
6295 /* No msg_id in DP HDCP2.2 msgs */
6296 bytes_to_write
= size
- 1;
6299 hdcp
->cp_irq_count_cached
= atomic_read(&hdcp
->cp_irq_count
);
6301 while (bytes_to_write
) {
6302 len
= bytes_to_write
> DP_AUX_MAX_PAYLOAD_BYTES
?
6303 DP_AUX_MAX_PAYLOAD_BYTES
: bytes_to_write
;
6305 ret
= drm_dp_dpcd_write(&intel_dig_port
->dp
.aux
,
6306 offset
, (void *)byte
, len
);
6310 bytes_to_write
-= ret
;
6319 ssize_t
get_receiver_id_list_size(struct intel_digital_port
*intel_dig_port
)
6321 u8 rx_info
[HDCP_2_2_RXINFO_LEN
];
6325 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
,
6326 DP_HDCP_2_2_REG_RXINFO_OFFSET
,
6327 (void *)rx_info
, HDCP_2_2_RXINFO_LEN
);
6328 if (ret
!= HDCP_2_2_RXINFO_LEN
)
6329 return ret
>= 0 ? -EIO
: ret
;
6331 dev_cnt
= (HDCP_2_2_DEV_COUNT_HI(rx_info
[0]) << 4 |
6332 HDCP_2_2_DEV_COUNT_LO(rx_info
[1]));
6334 if (dev_cnt
> HDCP_2_2_MAX_DEVICE_COUNT
)
6335 dev_cnt
= HDCP_2_2_MAX_DEVICE_COUNT
;
6337 ret
= sizeof(struct hdcp2_rep_send_receiverid_list
) -
6338 HDCP_2_2_RECEIVER_IDS_MAX_LEN
+
6339 (dev_cnt
* HDCP_2_2_RECEIVER_ID_LEN
);
6345 int intel_dp_hdcp2_read_msg(struct intel_digital_port
*intel_dig_port
,
6346 u8 msg_id
, void *buf
, size_t size
)
6348 unsigned int offset
;
6350 ssize_t ret
, bytes_to_recv
, len
;
6351 const struct hdcp2_dp_msg_data
*hdcp2_msg_data
;
6353 hdcp2_msg_data
= get_hdcp2_dp_msg_data(msg_id
);
6354 if (!hdcp2_msg_data
)
6356 offset
= hdcp2_msg_data
->offset
;
6358 ret
= intel_dp_hdcp2_wait_for_msg(intel_dig_port
, hdcp2_msg_data
);
6362 if (msg_id
== HDCP_2_2_REP_SEND_RECVID_LIST
) {
6363 ret
= get_receiver_id_list_size(intel_dig_port
);
6369 bytes_to_recv
= size
- 1;
6371 /* DP adaptation msgs has no msg_id */
6374 while (bytes_to_recv
) {
6375 len
= bytes_to_recv
> DP_AUX_MAX_PAYLOAD_BYTES
?
6376 DP_AUX_MAX_PAYLOAD_BYTES
: bytes_to_recv
;
6378 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
, offset
,
6381 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id
, ret
);
6385 bytes_to_recv
-= ret
;
6396 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port
*intel_dig_port
,
6397 bool is_repeater
, u8 content_type
)
6399 struct hdcp2_dp_errata_stream_type stream_type_msg
;
6405 * Errata for DP: As Stream type is used for encryption, Receiver
6406 * should be communicated with stream type for the decryption of the
6408 * Repeater will be communicated with stream type as a part of it's
6409 * auth later in time.
6411 stream_type_msg
.msg_id
= HDCP_2_2_ERRATA_DP_STREAM_TYPE
;
6412 stream_type_msg
.stream_type
= content_type
;
6414 return intel_dp_hdcp2_write_msg(intel_dig_port
, &stream_type_msg
,
6415 sizeof(stream_type_msg
));
6419 int intel_dp_hdcp2_check_link(struct intel_digital_port
*intel_dig_port
)
6424 ret
= intel_dp_hdcp2_read_rx_status(intel_dig_port
, &rx_status
);
6428 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status
))
6429 ret
= HDCP_REAUTH_REQUEST
;
6430 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status
))
6431 ret
= HDCP_LINK_INTEGRITY_FAILURE
;
6432 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status
))
6433 ret
= HDCP_TOPOLOGY_CHANGE
;
6439 int intel_dp_hdcp2_capable(struct intel_digital_port
*intel_dig_port
,
6446 ret
= drm_dp_dpcd_read(&intel_dig_port
->dp
.aux
,
6447 DP_HDCP_2_2_REG_RX_CAPS_OFFSET
,
6448 rx_caps
, HDCP_2_2_RXCAPS_LEN
);
6449 if (ret
!= HDCP_2_2_RXCAPS_LEN
)
6450 return ret
>= 0 ? -EIO
: ret
;
6452 if (rx_caps
[0] == HDCP_2_2_RX_CAPS_VERSION_VAL
&&
6453 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps
[2]))
6459 static const struct intel_hdcp_shim intel_dp_hdcp_shim
= {
6460 .write_an_aksv
= intel_dp_hdcp_write_an_aksv
,
6461 .read_bksv
= intel_dp_hdcp_read_bksv
,
6462 .read_bstatus
= intel_dp_hdcp_read_bstatus
,
6463 .repeater_present
= intel_dp_hdcp_repeater_present
,
6464 .read_ri_prime
= intel_dp_hdcp_read_ri_prime
,
6465 .read_ksv_ready
= intel_dp_hdcp_read_ksv_ready
,
6466 .read_ksv_fifo
= intel_dp_hdcp_read_ksv_fifo
,
6467 .read_v_prime_part
= intel_dp_hdcp_read_v_prime_part
,
6468 .toggle_signalling
= intel_dp_hdcp_toggle_signalling
,
6469 .check_link
= intel_dp_hdcp_check_link
,
6470 .hdcp_capable
= intel_dp_hdcp_capable
,
6471 .write_2_2_msg
= intel_dp_hdcp2_write_msg
,
6472 .read_2_2_msg
= intel_dp_hdcp2_read_msg
,
6473 .config_stream_type
= intel_dp_hdcp2_config_stream_type
,
6474 .check_2_2_link
= intel_dp_hdcp2_check_link
,
6475 .hdcp_2_2_capable
= intel_dp_hdcp2_capable
,
6476 .protocol
= HDCP_PROTOCOL_DP
,
6479 static void intel_edp_panel_vdd_sanitize(struct intel_dp
*intel_dp
)
6481 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
6482 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
6484 lockdep_assert_held(&dev_priv
->pps_mutex
);
6486 if (!edp_have_panel_vdd(intel_dp
))
6490 * The VDD bit needs a power domain reference, so if the bit is
6491 * already enabled when we boot or resume, grab this reference and
6492 * schedule a vdd off, so we don't hold on to the reference
6495 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6496 intel_display_power_get(dev_priv
, intel_aux_power_domain(dig_port
));
6498 edp_panel_vdd_schedule_off(intel_dp
);
6501 static enum pipe
vlv_active_pipe(struct intel_dp
*intel_dp
)
6503 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
6504 struct intel_encoder
*encoder
= &dp_to_dig_port(intel_dp
)->base
;
6507 if (intel_dp_port_enabled(dev_priv
, intel_dp
->output_reg
,
6508 encoder
->port
, &pipe
))
6511 return INVALID_PIPE
;
6514 void intel_dp_encoder_reset(struct drm_encoder
*encoder
)
6516 struct drm_i915_private
*dev_priv
= to_i915(encoder
->dev
);
6517 struct intel_dp
*intel_dp
= enc_to_intel_dp(to_intel_encoder(encoder
));
6518 struct intel_lspcon
*lspcon
= dp_to_lspcon(intel_dp
);
6519 intel_wakeref_t wakeref
;
6521 if (!HAS_DDI(dev_priv
))
6522 intel_dp
->DP
= I915_READ(intel_dp
->output_reg
);
6525 lspcon_resume(lspcon
);
6527 intel_dp
->reset_link_params
= true;
6529 if (!IS_VALLEYVIEW(dev_priv
) && !IS_CHERRYVIEW(dev_priv
) &&
6530 !intel_dp_is_edp(intel_dp
))
6533 with_pps_lock(intel_dp
, wakeref
) {
6534 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
6535 intel_dp
->active_pipe
= vlv_active_pipe(intel_dp
);
6537 if (intel_dp_is_edp(intel_dp
)) {
6539 * Reinit the power sequencer, in case BIOS did
6540 * something nasty with it.
6542 intel_dp_pps_init(intel_dp
);
6543 intel_edp_panel_vdd_sanitize(intel_dp
);
6548 static const struct drm_connector_funcs intel_dp_connector_funcs
= {
6549 .force
= intel_dp_force
,
6550 .fill_modes
= drm_helper_probe_single_connector_modes
,
6551 .atomic_get_property
= intel_digital_connector_atomic_get_property
,
6552 .atomic_set_property
= intel_digital_connector_atomic_set_property
,
6553 .late_register
= intel_dp_connector_register
,
6554 .early_unregister
= intel_dp_connector_unregister
,
6555 .destroy
= intel_connector_destroy
,
6556 .atomic_destroy_state
= drm_atomic_helper_connector_destroy_state
,
6557 .atomic_duplicate_state
= intel_digital_connector_duplicate_state
,
6560 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs
= {
6561 .detect_ctx
= intel_dp_detect
,
6562 .get_modes
= intel_dp_get_modes
,
6563 .mode_valid
= intel_dp_mode_valid
,
6564 .atomic_check
= intel_digital_connector_atomic_check
,
6567 static const struct drm_encoder_funcs intel_dp_enc_funcs
= {
6568 .reset
= intel_dp_encoder_reset
,
6569 .destroy
= intel_dp_encoder_destroy
,
6573 intel_dp_hpd_pulse(struct intel_digital_port
*intel_dig_port
, bool long_hpd
)
6575 struct intel_dp
*intel_dp
= &intel_dig_port
->dp
;
6577 if (long_hpd
&& intel_dig_port
->base
.type
== INTEL_OUTPUT_EDP
) {
6579 * vdd off can generate a long pulse on eDP which
6580 * would require vdd on to handle it, and thus we
6581 * would end up in an endless cycle of
6582 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6584 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6585 intel_dig_port
->base
.base
.base
.id
,
6586 intel_dig_port
->base
.base
.name
);
6590 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6591 intel_dig_port
->base
.base
.base
.id
,
6592 intel_dig_port
->base
.base
.name
,
6593 long_hpd
? "long" : "short");
6596 intel_dp
->reset_link_params
= true;
6600 if (intel_dp
->is_mst
) {
6601 if (intel_dp_check_mst_status(intel_dp
) == -EINVAL
) {
6603 * If we were in MST mode, and device is not
6604 * there, get out of MST mode
6606 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6607 intel_dp
->is_mst
, intel_dp
->mst_mgr
.mst_state
);
6608 intel_dp
->is_mst
= false;
6609 drm_dp_mst_topology_mgr_set_mst(&intel_dp
->mst_mgr
,
6616 if (!intel_dp
->is_mst
) {
6619 handled
= intel_dp_short_pulse(intel_dp
);
6628 /* check the VBT to see whether the eDP is on another port */
6629 bool intel_dp_is_port_edp(struct drm_i915_private
*dev_priv
, enum port port
)
6632 * eDP not supported on g4x. so bail out early just
6633 * for a bit extra safety in case the VBT is bonkers.
6635 if (INTEL_GEN(dev_priv
) < 5)
6638 if (INTEL_GEN(dev_priv
) < 9 && port
== PORT_A
)
6641 return intel_bios_is_port_edp(dev_priv
, port
);
6645 intel_dp_add_properties(struct intel_dp
*intel_dp
, struct drm_connector
*connector
)
6647 struct drm_i915_private
*dev_priv
= to_i915(connector
->dev
);
6648 enum port port
= dp_to_dig_port(intel_dp
)->base
.port
;
6650 if (!IS_G4X(dev_priv
) && port
!= PORT_A
)
6651 intel_attach_force_audio_property(connector
);
6653 intel_attach_broadcast_rgb_property(connector
);
6654 if (HAS_GMCH(dev_priv
))
6655 drm_connector_attach_max_bpc_property(connector
, 6, 10);
6656 else if (INTEL_GEN(dev_priv
) >= 5)
6657 drm_connector_attach_max_bpc_property(connector
, 6, 12);
6659 intel_attach_colorspace_property(connector
);
6661 if (IS_GEMINILAKE(dev_priv
) || INTEL_GEN(dev_priv
) >= 11)
6662 drm_object_attach_property(&connector
->base
,
6663 connector
->dev
->mode_config
.hdr_output_metadata_property
,
6666 if (intel_dp_is_edp(intel_dp
)) {
6667 u32 allowed_scalers
;
6669 allowed_scalers
= BIT(DRM_MODE_SCALE_ASPECT
) | BIT(DRM_MODE_SCALE_FULLSCREEN
);
6670 if (!HAS_GMCH(dev_priv
))
6671 allowed_scalers
|= BIT(DRM_MODE_SCALE_CENTER
);
6673 drm_connector_attach_scaling_mode_property(connector
, allowed_scalers
);
6675 connector
->state
->scaling_mode
= DRM_MODE_SCALE_ASPECT
;
6680 static void intel_dp_init_panel_power_timestamps(struct intel_dp
*intel_dp
)
6682 intel_dp
->panel_power_off_time
= ktime_get_boottime();
6683 intel_dp
->last_power_on
= jiffies
;
6684 intel_dp
->last_backlight_off
= jiffies
;
6688 intel_pps_readout_hw_state(struct intel_dp
*intel_dp
, struct edp_power_seq
*seq
)
6690 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
6691 u32 pp_on
, pp_off
, pp_ctl
;
6692 struct pps_registers regs
;
6694 intel_pps_get_registers(intel_dp
, ®s
);
6696 pp_ctl
= ilk_get_pp_control(intel_dp
);
6698 /* Ensure PPS is unlocked */
6699 if (!HAS_DDI(dev_priv
))
6700 I915_WRITE(regs
.pp_ctrl
, pp_ctl
);
6702 pp_on
= I915_READ(regs
.pp_on
);
6703 pp_off
= I915_READ(regs
.pp_off
);
6705 /* Pull timing values out of registers */
6706 seq
->t1_t3
= REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK
, pp_on
);
6707 seq
->t8
= REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK
, pp_on
);
6708 seq
->t9
= REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK
, pp_off
);
6709 seq
->t10
= REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK
, pp_off
);
6711 if (i915_mmio_reg_valid(regs
.pp_div
)) {
6714 pp_div
= I915_READ(regs
.pp_div
);
6716 seq
->t11_t12
= REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK
, pp_div
) * 1000;
6718 seq
->t11_t12
= REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK
, pp_ctl
) * 1000;
6723 intel_pps_dump_state(const char *state_name
, const struct edp_power_seq
*seq
)
6725 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6727 seq
->t1_t3
, seq
->t8
, seq
->t9
, seq
->t10
, seq
->t11_t12
);
6731 intel_pps_verify_state(struct intel_dp
*intel_dp
)
6733 struct edp_power_seq hw
;
6734 struct edp_power_seq
*sw
= &intel_dp
->pps_delays
;
6736 intel_pps_readout_hw_state(intel_dp
, &hw
);
6738 if (hw
.t1_t3
!= sw
->t1_t3
|| hw
.t8
!= sw
->t8
|| hw
.t9
!= sw
->t9
||
6739 hw
.t10
!= sw
->t10
|| hw
.t11_t12
!= sw
->t11_t12
) {
6740 DRM_ERROR("PPS state mismatch\n");
6741 intel_pps_dump_state("sw", sw
);
6742 intel_pps_dump_state("hw", &hw
);
6747 intel_dp_init_panel_power_sequencer(struct intel_dp
*intel_dp
)
6749 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
6750 struct edp_power_seq cur
, vbt
, spec
,
6751 *final
= &intel_dp
->pps_delays
;
6753 lockdep_assert_held(&dev_priv
->pps_mutex
);
6755 /* already initialized? */
6756 if (final
->t11_t12
!= 0)
6759 intel_pps_readout_hw_state(intel_dp
, &cur
);
6761 intel_pps_dump_state("cur", &cur
);
6763 vbt
= dev_priv
->vbt
.edp
.pps
;
6764 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6765 * of 500ms appears to be too short. Ocassionally the panel
6766 * just fails to power back on. Increasing the delay to 800ms
6767 * seems sufficient to avoid this problem.
6769 if (dev_priv
->quirks
& QUIRK_INCREASE_T12_DELAY
) {
6770 vbt
.t11_t12
= max_t(u16
, vbt
.t11_t12
, 1300 * 10);
6771 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6774 /* T11_T12 delay is special and actually in units of 100ms, but zero
6775 * based in the hw (so we need to add 100 ms). But the sw vbt
6776 * table multiplies it with 1000 to make it in units of 100usec,
6778 vbt
.t11_t12
+= 100 * 10;
6780 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6781 * our hw here, which are all in 100usec. */
6782 spec
.t1_t3
= 210 * 10;
6783 spec
.t8
= 50 * 10; /* no limit for t8, use t7 instead */
6784 spec
.t9
= 50 * 10; /* no limit for t9, make it symmetric with t8 */
6785 spec
.t10
= 500 * 10;
6786 /* This one is special and actually in units of 100ms, but zero
6787 * based in the hw (so we need to add 100 ms). But the sw vbt
6788 * table multiplies it with 1000 to make it in units of 100usec,
6790 spec
.t11_t12
= (510 + 100) * 10;
6792 intel_pps_dump_state("vbt", &vbt
);
6794 /* Use the max of the register settings and vbt. If both are
6795 * unset, fall back to the spec limits. */
6796 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
6798 max(cur.field, vbt.field))
6799 assign_final(t1_t3
);
6803 assign_final(t11_t12
);
6806 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
6807 intel_dp
->panel_power_up_delay
= get_delay(t1_t3
);
6808 intel_dp
->backlight_on_delay
= get_delay(t8
);
6809 intel_dp
->backlight_off_delay
= get_delay(t9
);
6810 intel_dp
->panel_power_down_delay
= get_delay(t10
);
6811 intel_dp
->panel_power_cycle_delay
= get_delay(t11_t12
);
6814 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6815 intel_dp
->panel_power_up_delay
, intel_dp
->panel_power_down_delay
,
6816 intel_dp
->panel_power_cycle_delay
);
6818 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6819 intel_dp
->backlight_on_delay
, intel_dp
->backlight_off_delay
);
6822 * We override the HW backlight delays to 1 because we do manual waits
6823 * on them. For T8, even BSpec recommends doing it. For T9, if we
6824 * don't do this, we'll end up waiting for the backlight off delay
6825 * twice: once when we do the manual sleep, and once when we disable
6826 * the panel and wait for the PP_STATUS bit to become zero.
6832 * HW has only a 100msec granularity for t11_t12 so round it up
6835 final
->t11_t12
= roundup(final
->t11_t12
, 100 * 10);
6839 intel_dp_init_panel_power_sequencer_registers(struct intel_dp
*intel_dp
,
6840 bool force_disable_vdd
)
6842 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
6843 u32 pp_on
, pp_off
, port_sel
= 0;
6844 int div
= dev_priv
->rawclk_freq
/ 1000;
6845 struct pps_registers regs
;
6846 enum port port
= dp_to_dig_port(intel_dp
)->base
.port
;
6847 const struct edp_power_seq
*seq
= &intel_dp
->pps_delays
;
6849 lockdep_assert_held(&dev_priv
->pps_mutex
);
6851 intel_pps_get_registers(intel_dp
, ®s
);
6854 * On some VLV machines the BIOS can leave the VDD
6855 * enabled even on power sequencers which aren't
6856 * hooked up to any port. This would mess up the
6857 * power domain tracking the first time we pick
6858 * one of these power sequencers for use since
6859 * edp_panel_vdd_on() would notice that the VDD was
6860 * already on and therefore wouldn't grab the power
6861 * domain reference. Disable VDD first to avoid this.
6862 * This also avoids spuriously turning the VDD on as
6863 * soon as the new power sequencer gets initialized.
6865 if (force_disable_vdd
) {
6866 u32 pp
= ilk_get_pp_control(intel_dp
);
6868 WARN(pp
& PANEL_POWER_ON
, "Panel power already on\n");
6870 if (pp
& EDP_FORCE_VDD
)
6871 DRM_DEBUG_KMS("VDD already on, disabling first\n");
6873 pp
&= ~EDP_FORCE_VDD
;
6875 I915_WRITE(regs
.pp_ctrl
, pp
);
6878 pp_on
= REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK
, seq
->t1_t3
) |
6879 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK
, seq
->t8
);
6880 pp_off
= REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK
, seq
->t9
) |
6881 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK
, seq
->t10
);
6883 /* Haswell doesn't have any port selection bits for the panel
6884 * power sequencer any more. */
6885 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
6886 port_sel
= PANEL_PORT_SELECT_VLV(port
);
6887 } else if (HAS_PCH_IBX(dev_priv
) || HAS_PCH_CPT(dev_priv
)) {
6890 port_sel
= PANEL_PORT_SELECT_DPA
;
6893 port_sel
= PANEL_PORT_SELECT_DPC
;
6896 port_sel
= PANEL_PORT_SELECT_DPD
;
6906 I915_WRITE(regs
.pp_on
, pp_on
);
6907 I915_WRITE(regs
.pp_off
, pp_off
);
6910 * Compute the divisor for the pp clock, simply match the Bspec formula.
6912 if (i915_mmio_reg_valid(regs
.pp_div
)) {
6913 I915_WRITE(regs
.pp_div
,
6914 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK
, (100 * div
) / 2 - 1) |
6915 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK
, DIV_ROUND_UP(seq
->t11_t12
, 1000)));
6919 pp_ctl
= I915_READ(regs
.pp_ctrl
);
6920 pp_ctl
&= ~BXT_POWER_CYCLE_DELAY_MASK
;
6921 pp_ctl
|= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK
, DIV_ROUND_UP(seq
->t11_t12
, 1000));
6922 I915_WRITE(regs
.pp_ctrl
, pp_ctl
);
6925 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6926 I915_READ(regs
.pp_on
),
6927 I915_READ(regs
.pp_off
),
6928 i915_mmio_reg_valid(regs
.pp_div
) ?
6929 I915_READ(regs
.pp_div
) :
6930 (I915_READ(regs
.pp_ctrl
) & BXT_POWER_CYCLE_DELAY_MASK
));
6933 static void intel_dp_pps_init(struct intel_dp
*intel_dp
)
6935 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
6937 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
6938 vlv_initial_power_sequencer_setup(intel_dp
);
6940 intel_dp_init_panel_power_sequencer(intel_dp
);
6941 intel_dp_init_panel_power_sequencer_registers(intel_dp
, false);
6946 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6947 * @dev_priv: i915 device
6948 * @crtc_state: a pointer to the active intel_crtc_state
6949 * @refresh_rate: RR to be programmed
6951 * This function gets called when refresh rate (RR) has to be changed from
6952 * one frequency to another. Switches can be between high and low RR
6953 * supported by the panel or to any other RR based on media playback (in
6954 * this case, RR value needs to be passed from user space).
6956 * The caller of this function needs to take a lock on dev_priv->drrs.
6958 static void intel_dp_set_drrs_state(struct drm_i915_private
*dev_priv
,
6959 const struct intel_crtc_state
*crtc_state
,
6962 struct intel_dp
*intel_dp
= dev_priv
->drrs
.dp
;
6963 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc_state
->uapi
.crtc
);
6964 enum drrs_refresh_rate_type index
= DRRS_HIGH_RR
;
6966 if (refresh_rate
<= 0) {
6967 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6971 if (intel_dp
== NULL
) {
6972 DRM_DEBUG_KMS("DRRS not supported.\n");
6977 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6981 if (dev_priv
->drrs
.type
< SEAMLESS_DRRS_SUPPORT
) {
6982 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6986 if (intel_dp
->attached_connector
->panel
.downclock_mode
->vrefresh
==
6988 index
= DRRS_LOW_RR
;
6990 if (index
== dev_priv
->drrs
.refresh_rate_type
) {
6992 "DRRS requested for previously set RR...ignoring\n");
6996 if (!crtc_state
->hw
.active
) {
6997 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
7001 if (INTEL_GEN(dev_priv
) >= 8 && !IS_CHERRYVIEW(dev_priv
)) {
7004 intel_dp_set_m_n(crtc_state
, M1_N1
);
7007 intel_dp_set_m_n(crtc_state
, M2_N2
);
7011 DRM_ERROR("Unsupported refreshrate type\n");
7013 } else if (INTEL_GEN(dev_priv
) > 6) {
7014 i915_reg_t reg
= PIPECONF(crtc_state
->cpu_transcoder
);
7017 val
= I915_READ(reg
);
7018 if (index
> DRRS_HIGH_RR
) {
7019 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
7020 val
|= PIPECONF_EDP_RR_MODE_SWITCH_VLV
;
7022 val
|= PIPECONF_EDP_RR_MODE_SWITCH
;
7024 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
7025 val
&= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV
;
7027 val
&= ~PIPECONF_EDP_RR_MODE_SWITCH
;
7029 I915_WRITE(reg
, val
);
7032 dev_priv
->drrs
.refresh_rate_type
= index
;
7034 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate
);
7038 * intel_edp_drrs_enable - init drrs struct if supported
7039 * @intel_dp: DP struct
7040 * @crtc_state: A pointer to the active crtc state.
7042 * Initializes frontbuffer_bits and drrs.dp
7044 void intel_edp_drrs_enable(struct intel_dp
*intel_dp
,
7045 const struct intel_crtc_state
*crtc_state
)
7047 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
7049 if (!crtc_state
->has_drrs
) {
7050 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7054 if (dev_priv
->psr
.enabled
) {
7055 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7059 mutex_lock(&dev_priv
->drrs
.mutex
);
7060 if (dev_priv
->drrs
.dp
) {
7061 DRM_DEBUG_KMS("DRRS already enabled\n");
7065 dev_priv
->drrs
.busy_frontbuffer_bits
= 0;
7067 dev_priv
->drrs
.dp
= intel_dp
;
7070 mutex_unlock(&dev_priv
->drrs
.mutex
);
7074 * intel_edp_drrs_disable - Disable DRRS
7075 * @intel_dp: DP struct
7076 * @old_crtc_state: Pointer to old crtc_state.
7079 void intel_edp_drrs_disable(struct intel_dp
*intel_dp
,
7080 const struct intel_crtc_state
*old_crtc_state
)
7082 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
7084 if (!old_crtc_state
->has_drrs
)
7087 mutex_lock(&dev_priv
->drrs
.mutex
);
7088 if (!dev_priv
->drrs
.dp
) {
7089 mutex_unlock(&dev_priv
->drrs
.mutex
);
7093 if (dev_priv
->drrs
.refresh_rate_type
== DRRS_LOW_RR
)
7094 intel_dp_set_drrs_state(dev_priv
, old_crtc_state
,
7095 intel_dp
->attached_connector
->panel
.fixed_mode
->vrefresh
);
7097 dev_priv
->drrs
.dp
= NULL
;
7098 mutex_unlock(&dev_priv
->drrs
.mutex
);
7100 cancel_delayed_work_sync(&dev_priv
->drrs
.work
);
7103 static void intel_edp_drrs_downclock_work(struct work_struct
*work
)
7105 struct drm_i915_private
*dev_priv
=
7106 container_of(work
, typeof(*dev_priv
), drrs
.work
.work
);
7107 struct intel_dp
*intel_dp
;
7109 mutex_lock(&dev_priv
->drrs
.mutex
);
7111 intel_dp
= dev_priv
->drrs
.dp
;
7117 * The delayed work can race with an invalidate hence we need to
7121 if (dev_priv
->drrs
.busy_frontbuffer_bits
)
7124 if (dev_priv
->drrs
.refresh_rate_type
!= DRRS_LOW_RR
) {
7125 struct drm_crtc
*crtc
= dp_to_dig_port(intel_dp
)->base
.base
.crtc
;
7127 intel_dp_set_drrs_state(dev_priv
, to_intel_crtc(crtc
)->config
,
7128 intel_dp
->attached_connector
->panel
.downclock_mode
->vrefresh
);
7132 mutex_unlock(&dev_priv
->drrs
.mutex
);
7136 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7137 * @dev_priv: i915 device
7138 * @frontbuffer_bits: frontbuffer plane tracking bits
7140 * This function gets called everytime rendering on the given planes start.
7141 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7143 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7145 void intel_edp_drrs_invalidate(struct drm_i915_private
*dev_priv
,
7146 unsigned int frontbuffer_bits
)
7148 struct drm_crtc
*crtc
;
7151 if (dev_priv
->drrs
.type
== DRRS_NOT_SUPPORTED
)
7154 cancel_delayed_work(&dev_priv
->drrs
.work
);
7156 mutex_lock(&dev_priv
->drrs
.mutex
);
7157 if (!dev_priv
->drrs
.dp
) {
7158 mutex_unlock(&dev_priv
->drrs
.mutex
);
7162 crtc
= dp_to_dig_port(dev_priv
->drrs
.dp
)->base
.base
.crtc
;
7163 pipe
= to_intel_crtc(crtc
)->pipe
;
7165 frontbuffer_bits
&= INTEL_FRONTBUFFER_ALL_MASK(pipe
);
7166 dev_priv
->drrs
.busy_frontbuffer_bits
|= frontbuffer_bits
;
7168 /* invalidate means busy screen hence upclock */
7169 if (frontbuffer_bits
&& dev_priv
->drrs
.refresh_rate_type
== DRRS_LOW_RR
)
7170 intel_dp_set_drrs_state(dev_priv
, to_intel_crtc(crtc
)->config
,
7171 dev_priv
->drrs
.dp
->attached_connector
->panel
.fixed_mode
->vrefresh
);
7173 mutex_unlock(&dev_priv
->drrs
.mutex
);
7177 * intel_edp_drrs_flush - Restart Idleness DRRS
7178 * @dev_priv: i915 device
7179 * @frontbuffer_bits: frontbuffer plane tracking bits
7181 * This function gets called every time rendering on the given planes has
7182 * completed or flip on a crtc is completed. So DRRS should be upclocked
7183 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7184 * if no other planes are dirty.
7186 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7188 void intel_edp_drrs_flush(struct drm_i915_private
*dev_priv
,
7189 unsigned int frontbuffer_bits
)
7191 struct drm_crtc
*crtc
;
7194 if (dev_priv
->drrs
.type
== DRRS_NOT_SUPPORTED
)
7197 cancel_delayed_work(&dev_priv
->drrs
.work
);
7199 mutex_lock(&dev_priv
->drrs
.mutex
);
7200 if (!dev_priv
->drrs
.dp
) {
7201 mutex_unlock(&dev_priv
->drrs
.mutex
);
7205 crtc
= dp_to_dig_port(dev_priv
->drrs
.dp
)->base
.base
.crtc
;
7206 pipe
= to_intel_crtc(crtc
)->pipe
;
7208 frontbuffer_bits
&= INTEL_FRONTBUFFER_ALL_MASK(pipe
);
7209 dev_priv
->drrs
.busy_frontbuffer_bits
&= ~frontbuffer_bits
;
7211 /* flush means busy screen hence upclock */
7212 if (frontbuffer_bits
&& dev_priv
->drrs
.refresh_rate_type
== DRRS_LOW_RR
)
7213 intel_dp_set_drrs_state(dev_priv
, to_intel_crtc(crtc
)->config
,
7214 dev_priv
->drrs
.dp
->attached_connector
->panel
.fixed_mode
->vrefresh
);
7217 * flush also means no more activity hence schedule downclock, if all
7218 * other fbs are quiescent too
7220 if (!dev_priv
->drrs
.busy_frontbuffer_bits
)
7221 schedule_delayed_work(&dev_priv
->drrs
.work
,
7222 msecs_to_jiffies(1000));
7223 mutex_unlock(&dev_priv
->drrs
.mutex
);
7227 * DOC: Display Refresh Rate Switching (DRRS)
7229 * Display Refresh Rate Switching (DRRS) is a power conservation feature
7230 * which enables swtching between low and high refresh rates,
7231 * dynamically, based on the usage scenario. This feature is applicable
7232 * for internal panels.
7234 * Indication that the panel supports DRRS is given by the panel EDID, which
7235 * would list multiple refresh rates for one resolution.
7237 * DRRS is of 2 types - static and seamless.
7238 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7239 * (may appear as a blink on screen) and is used in dock-undock scenario.
7240 * Seamless DRRS involves changing RR without any visual effect to the user
7241 * and can be used during normal system usage. This is done by programming
7242 * certain registers.
7244 * Support for static/seamless DRRS may be indicated in the VBT based on
7245 * inputs from the panel spec.
7247 * DRRS saves power by switching to low RR based on usage scenarios.
7249 * The implementation is based on frontbuffer tracking implementation. When
7250 * there is a disturbance on the screen triggered by user activity or a periodic
7251 * system activity, DRRS is disabled (RR is changed to high RR). When there is
7252 * no movement on screen, after a timeout of 1 second, a switch to low RR is
7255 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7256 * and intel_edp_drrs_flush() are called.
7258 * DRRS can be further extended to support other internal panels and also
7259 * the scenario of video playback wherein RR is set based on the rate
7260 * requested by userspace.
7264 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7265 * @connector: eDP connector
7266 * @fixed_mode: preferred mode of panel
7268 * This function is called only once at driver load to initialize basic
7272 * Downclock mode if panel supports it, else return NULL.
7273 * DRRS support is determined by the presence of downclock mode (apart
7274 * from VBT setting).
7276 static struct drm_display_mode
*
7277 intel_dp_drrs_init(struct intel_connector
*connector
,
7278 struct drm_display_mode
*fixed_mode
)
7280 struct drm_i915_private
*dev_priv
= to_i915(connector
->base
.dev
);
7281 struct drm_display_mode
*downclock_mode
= NULL
;
7283 INIT_DELAYED_WORK(&dev_priv
->drrs
.work
, intel_edp_drrs_downclock_work
);
7284 mutex_init(&dev_priv
->drrs
.mutex
);
7286 if (INTEL_GEN(dev_priv
) <= 6) {
7287 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7291 if (dev_priv
->vbt
.drrs_type
!= SEAMLESS_DRRS_SUPPORT
) {
7292 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7296 downclock_mode
= intel_panel_edid_downclock_mode(connector
, fixed_mode
);
7297 if (!downclock_mode
) {
7298 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7302 dev_priv
->drrs
.type
= dev_priv
->vbt
.drrs_type
;
7304 dev_priv
->drrs
.refresh_rate_type
= DRRS_HIGH_RR
;
7305 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7306 return downclock_mode
;
7309 static bool intel_edp_init_connector(struct intel_dp
*intel_dp
,
7310 struct intel_connector
*intel_connector
)
7312 struct drm_i915_private
*dev_priv
= dp_to_i915(intel_dp
);
7313 struct drm_device
*dev
= &dev_priv
->drm
;
7314 struct drm_connector
*connector
= &intel_connector
->base
;
7315 struct drm_display_mode
*fixed_mode
= NULL
;
7316 struct drm_display_mode
*downclock_mode
= NULL
;
7318 enum pipe pipe
= INVALID_PIPE
;
7319 intel_wakeref_t wakeref
;
7322 if (!intel_dp_is_edp(intel_dp
))
7325 INIT_DELAYED_WORK(&intel_dp
->panel_vdd_work
, edp_panel_vdd_work
);
7328 * On IBX/CPT we may get here with LVDS already registered. Since the
7329 * driver uses the only internal power sequencer available for both
7330 * eDP and LVDS bail out early in this case to prevent interfering
7331 * with an already powered-on LVDS power sequencer.
7333 if (intel_get_lvds_encoder(dev_priv
)) {
7334 WARN_ON(!(HAS_PCH_IBX(dev_priv
) || HAS_PCH_CPT(dev_priv
)));
7335 DRM_INFO("LVDS was detected, not registering eDP\n");
7340 with_pps_lock(intel_dp
, wakeref
) {
7341 intel_dp_init_panel_power_timestamps(intel_dp
);
7342 intel_dp_pps_init(intel_dp
);
7343 intel_edp_panel_vdd_sanitize(intel_dp
);
7346 /* Cache DPCD and EDID for edp. */
7347 has_dpcd
= intel_edp_init_dpcd(intel_dp
);
7350 /* if this fails, presume the device is a ghost */
7351 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7355 mutex_lock(&dev
->mode_config
.mutex
);
7356 edid
= drm_get_edid(connector
, &intel_dp
->aux
.ddc
);
7358 if (drm_add_edid_modes(connector
, edid
)) {
7359 drm_connector_update_edid_property(connector
,
7363 edid
= ERR_PTR(-EINVAL
);
7366 edid
= ERR_PTR(-ENOENT
);
7368 intel_connector
->edid
= edid
;
7370 fixed_mode
= intel_panel_edid_fixed_mode(intel_connector
);
7372 downclock_mode
= intel_dp_drrs_init(intel_connector
, fixed_mode
);
7374 /* fallback to VBT if available for eDP */
7376 fixed_mode
= intel_panel_vbt_fixed_mode(intel_connector
);
7377 mutex_unlock(&dev
->mode_config
.mutex
);
7379 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
7380 intel_dp
->edp_notifier
.notifier_call
= edp_notify_handler
;
7381 register_reboot_notifier(&intel_dp
->edp_notifier
);
7384 * Figure out the current pipe for the initial backlight setup.
7385 * If the current pipe isn't valid, try the PPS pipe, and if that
7386 * fails just assume pipe A.
7388 pipe
= vlv_active_pipe(intel_dp
);
7390 if (pipe
!= PIPE_A
&& pipe
!= PIPE_B
)
7391 pipe
= intel_dp
->pps_pipe
;
7393 if (pipe
!= PIPE_A
&& pipe
!= PIPE_B
)
7396 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7400 intel_panel_init(&intel_connector
->panel
, fixed_mode
, downclock_mode
);
7401 intel_connector
->panel
.backlight
.power
= intel_edp_backlight_power
;
7402 intel_panel_setup_backlight(connector
, pipe
);
7405 drm_connector_init_panel_orientation_property(
7406 connector
, fixed_mode
->hdisplay
, fixed_mode
->vdisplay
);
7411 cancel_delayed_work_sync(&intel_dp
->panel_vdd_work
);
7413 * vdd might still be enabled do to the delayed vdd off.
7414 * Make sure vdd is actually turned off here.
7416 with_pps_lock(intel_dp
, wakeref
)
7417 edp_panel_vdd_off_sync(intel_dp
);
7422 static void intel_dp_modeset_retry_work_fn(struct work_struct
*work
)
7424 struct intel_connector
*intel_connector
;
7425 struct drm_connector
*connector
;
7427 intel_connector
= container_of(work
, typeof(*intel_connector
),
7428 modeset_retry_work
);
7429 connector
= &intel_connector
->base
;
7430 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector
->base
.id
,
7433 /* Grab the locks before changing connector property*/
7434 mutex_lock(&connector
->dev
->mode_config
.mutex
);
7435 /* Set connector link status to BAD and send a Uevent to notify
7436 * userspace to do a modeset.
7438 drm_connector_set_link_status_property(connector
,
7439 DRM_MODE_LINK_STATUS_BAD
);
7440 mutex_unlock(&connector
->dev
->mode_config
.mutex
);
7441 /* Send Hotplug uevent so userspace can reprobe */
7442 drm_kms_helper_hotplug_event(connector
->dev
);
7446 intel_dp_init_connector(struct intel_digital_port
*intel_dig_port
,
7447 struct intel_connector
*intel_connector
)
7449 struct drm_connector
*connector
= &intel_connector
->base
;
7450 struct intel_dp
*intel_dp
= &intel_dig_port
->dp
;
7451 struct intel_encoder
*intel_encoder
= &intel_dig_port
->base
;
7452 struct drm_device
*dev
= intel_encoder
->base
.dev
;
7453 struct drm_i915_private
*dev_priv
= to_i915(dev
);
7454 enum port port
= intel_encoder
->port
;
7455 enum phy phy
= intel_port_to_phy(dev_priv
, port
);
7458 /* Initialize the work for modeset in case of link train failure */
7459 INIT_WORK(&intel_connector
->modeset_retry_work
,
7460 intel_dp_modeset_retry_work_fn
);
7462 if (WARN(intel_dig_port
->max_lanes
< 1,
7463 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7464 intel_dig_port
->max_lanes
, intel_encoder
->base
.base
.id
,
7465 intel_encoder
->base
.name
))
7468 intel_dp_set_source_rates(intel_dp
);
7470 intel_dp
->reset_link_params
= true;
7471 intel_dp
->pps_pipe
= INVALID_PIPE
;
7472 intel_dp
->active_pipe
= INVALID_PIPE
;
7474 /* Preserve the current hw state. */
7475 intel_dp
->DP
= I915_READ(intel_dp
->output_reg
);
7476 intel_dp
->attached_connector
= intel_connector
;
7478 if (intel_dp_is_port_edp(dev_priv
, port
)) {
7480 * Currently we don't support eDP on TypeC ports, although in
7481 * theory it could work on TypeC legacy ports.
7483 WARN_ON(intel_phy_is_tc(dev_priv
, phy
));
7484 type
= DRM_MODE_CONNECTOR_eDP
;
7486 type
= DRM_MODE_CONNECTOR_DisplayPort
;
7489 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
7490 intel_dp
->active_pipe
= vlv_active_pipe(intel_dp
);
7493 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7494 * for DP the encoder type can be set by the caller to
7495 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7497 if (type
== DRM_MODE_CONNECTOR_eDP
)
7498 intel_encoder
->type
= INTEL_OUTPUT_EDP
;
7500 /* eDP only on port B and/or C on vlv/chv */
7501 if (WARN_ON((IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) &&
7502 intel_dp_is_edp(intel_dp
) &&
7503 port
!= PORT_B
&& port
!= PORT_C
))
7506 DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7507 type
== DRM_MODE_CONNECTOR_eDP
? "eDP" : "DP",
7508 intel_encoder
->base
.base
.id
, intel_encoder
->base
.name
);
7510 drm_connector_init(dev
, connector
, &intel_dp_connector_funcs
, type
);
7511 drm_connector_helper_add(connector
, &intel_dp_connector_helper_funcs
);
7513 if (!HAS_GMCH(dev_priv
))
7514 connector
->interlace_allowed
= true;
7515 connector
->doublescan_allowed
= 0;
7517 if (INTEL_GEN(dev_priv
) >= 11)
7518 connector
->ycbcr_420_allowed
= true;
7520 intel_encoder
->hpd_pin
= intel_hpd_pin_default(dev_priv
, port
);
7522 intel_dp_aux_init(intel_dp
);
7524 intel_connector_attach_encoder(intel_connector
, intel_encoder
);
7526 if (HAS_DDI(dev_priv
))
7527 intel_connector
->get_hw_state
= intel_ddi_connector_get_hw_state
;
7529 intel_connector
->get_hw_state
= intel_connector_get_hw_state
;
7531 /* init MST on ports that can support it */
7532 intel_dp_mst_encoder_init(intel_dig_port
,
7533 intel_connector
->base
.base
.id
);
7535 if (!intel_edp_init_connector(intel_dp
, intel_connector
)) {
7536 intel_dp_aux_fini(intel_dp
);
7537 intel_dp_mst_encoder_cleanup(intel_dig_port
);
7541 intel_dp_add_properties(intel_dp
, connector
);
7543 if (is_hdcp_supported(dev_priv
, port
) && !intel_dp_is_edp(intel_dp
)) {
7544 int ret
= intel_hdcp_init(intel_connector
, &intel_dp_hdcp_shim
);
7546 DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7549 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7550 * 0xd. Failure to do so will result in spurious interrupts being
7551 * generated on the port when a cable is not attached.
7553 if (IS_G45(dev_priv
)) {
7554 u32 temp
= I915_READ(PEG_BAND_GAP_DATA
);
7555 I915_WRITE(PEG_BAND_GAP_DATA
, (temp
& ~0xf) | 0xd);
7561 drm_connector_cleanup(connector
);
7566 bool intel_dp_init(struct drm_i915_private
*dev_priv
,
7567 i915_reg_t output_reg
,
7570 struct intel_digital_port
*intel_dig_port
;
7571 struct intel_encoder
*intel_encoder
;
7572 struct drm_encoder
*encoder
;
7573 struct intel_connector
*intel_connector
;
7575 intel_dig_port
= kzalloc(sizeof(*intel_dig_port
), GFP_KERNEL
);
7576 if (!intel_dig_port
)
7579 intel_connector
= intel_connector_alloc();
7580 if (!intel_connector
)
7581 goto err_connector_alloc
;
7583 intel_encoder
= &intel_dig_port
->base
;
7584 encoder
= &intel_encoder
->base
;
7586 if (drm_encoder_init(&dev_priv
->drm
, &intel_encoder
->base
,
7587 &intel_dp_enc_funcs
, DRM_MODE_ENCODER_TMDS
,
7588 "DP %c", port_name(port
)))
7589 goto err_encoder_init
;
7591 intel_encoder
->hotplug
= intel_dp_hotplug
;
7592 intel_encoder
->compute_config
= intel_dp_compute_config
;
7593 intel_encoder
->get_hw_state
= intel_dp_get_hw_state
;
7594 intel_encoder
->get_config
= intel_dp_get_config
;
7595 intel_encoder
->update_pipe
= intel_panel_update_backlight
;
7596 intel_encoder
->suspend
= intel_dp_encoder_suspend
;
7597 if (IS_CHERRYVIEW(dev_priv
)) {
7598 intel_encoder
->pre_pll_enable
= chv_dp_pre_pll_enable
;
7599 intel_encoder
->pre_enable
= chv_pre_enable_dp
;
7600 intel_encoder
->enable
= vlv_enable_dp
;
7601 intel_encoder
->disable
= vlv_disable_dp
;
7602 intel_encoder
->post_disable
= chv_post_disable_dp
;
7603 intel_encoder
->post_pll_disable
= chv_dp_post_pll_disable
;
7604 } else if (IS_VALLEYVIEW(dev_priv
)) {
7605 intel_encoder
->pre_pll_enable
= vlv_dp_pre_pll_enable
;
7606 intel_encoder
->pre_enable
= vlv_pre_enable_dp
;
7607 intel_encoder
->enable
= vlv_enable_dp
;
7608 intel_encoder
->disable
= vlv_disable_dp
;
7609 intel_encoder
->post_disable
= vlv_post_disable_dp
;
7611 intel_encoder
->pre_enable
= g4x_pre_enable_dp
;
7612 intel_encoder
->enable
= g4x_enable_dp
;
7613 intel_encoder
->disable
= g4x_disable_dp
;
7614 intel_encoder
->post_disable
= g4x_post_disable_dp
;
7617 intel_dig_port
->dp
.output_reg
= output_reg
;
7618 intel_dig_port
->max_lanes
= 4;
7620 intel_encoder
->type
= INTEL_OUTPUT_DP
;
7621 intel_encoder
->power_domain
= intel_port_to_power_domain(port
);
7622 if (IS_CHERRYVIEW(dev_priv
)) {
7624 intel_encoder
->pipe_mask
= BIT(PIPE_C
);
7626 intel_encoder
->pipe_mask
= BIT(PIPE_A
) | BIT(PIPE_B
);
7628 intel_encoder
->pipe_mask
= ~0;
7630 intel_encoder
->cloneable
= 0;
7631 intel_encoder
->port
= port
;
7633 intel_dig_port
->hpd_pulse
= intel_dp_hpd_pulse
;
7636 intel_infoframe_init(intel_dig_port
);
7638 intel_dig_port
->aux_ch
= intel_bios_port_aux_ch(dev_priv
, port
);
7639 if (!intel_dp_init_connector(intel_dig_port
, intel_connector
))
7640 goto err_init_connector
;
7645 drm_encoder_cleanup(encoder
);
7647 kfree(intel_connector
);
7648 err_connector_alloc
:
7649 kfree(intel_dig_port
);
7653 void intel_dp_mst_suspend(struct drm_i915_private
*dev_priv
)
7655 struct intel_encoder
*encoder
;
7657 for_each_intel_encoder(&dev_priv
->drm
, encoder
) {
7658 struct intel_dp
*intel_dp
;
7660 if (encoder
->type
!= INTEL_OUTPUT_DDI
)
7663 intel_dp
= enc_to_intel_dp(encoder
);
7665 if (!intel_dp
->can_mst
)
7668 if (intel_dp
->is_mst
)
7669 drm_dp_mst_topology_mgr_suspend(&intel_dp
->mst_mgr
);
7673 void intel_dp_mst_resume(struct drm_i915_private
*dev_priv
)
7675 struct intel_encoder
*encoder
;
7677 for_each_intel_encoder(&dev_priv
->drm
, encoder
) {
7678 struct intel_dp
*intel_dp
;
7681 if (encoder
->type
!= INTEL_OUTPUT_DDI
)
7684 intel_dp
= enc_to_intel_dp(encoder
);
7686 if (!intel_dp
->can_mst
)
7689 ret
= drm_dp_mst_topology_mgr_resume(&intel_dp
->mst_mgr
,
7692 intel_dp
->is_mst
= false;
7693 drm_dp_mst_topology_mgr_set_mst(&intel_dp
->mst_mgr
,