Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / display / intel_dpll_mgr.c
blobc75e34d871118bba528f95f7dcd21c0631703c77
1 /*
2 * Copyright © 2006-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include "intel_display_types.h"
25 #include "intel_dpio_phy.h"
26 #include "intel_dpll_mgr.h"
28 /**
29 * DOC: Display PLLs
31 * Display PLLs used for driving outputs vary by platform. While some have
32 * per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
33 * from a pool. In the latter scenario, it is possible that multiple pipes
34 * share a PLL if their configurations match.
36 * This file provides an abstraction over display PLLs. The function
37 * intel_shared_dpll_init() initializes the PLLs for the given platform. The
38 * users of a PLL are tracked and that tracking is integrated with the atomic
39 * modset interface. During an atomic operation, required PLLs can be reserved
40 * for a given CRTC and encoder configuration by calling
41 * intel_reserve_shared_dplls() and previously reserved PLLs can be released
42 * with intel_release_shared_dplls().
43 * Changes to the users are first staged in the atomic state, and then made
44 * effective by calling intel_shared_dpll_swap_state() during the atomic
45 * commit phase.
48 static void
49 intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
50 struct intel_shared_dpll_state *shared_dpll)
52 enum intel_dpll_id i;
54 /* Copy shared dpll state */
55 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
56 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
58 shared_dpll[i] = pll->state;
62 static struct intel_shared_dpll_state *
63 intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
65 struct intel_atomic_state *state = to_intel_atomic_state(s);
67 WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));
69 if (!state->dpll_set) {
70 state->dpll_set = true;
72 intel_atomic_duplicate_dpll_state(to_i915(s->dev),
73 state->shared_dpll);
76 return state->shared_dpll;
79 /**
80 * intel_get_shared_dpll_by_id - get a DPLL given its id
81 * @dev_priv: i915 device instance
82 * @id: pll id
84 * Returns:
85 * A pointer to the DPLL with @id
87 struct intel_shared_dpll *
88 intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
89 enum intel_dpll_id id)
91 return &dev_priv->shared_dplls[id];
94 /**
95 * intel_get_shared_dpll_id - get the id of a DPLL
96 * @dev_priv: i915 device instance
97 * @pll: the DPLL
99 * Returns:
100 * The id of @pll
102 enum intel_dpll_id
103 intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
104 struct intel_shared_dpll *pll)
106 if (WARN_ON(pll < dev_priv->shared_dplls||
107 pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
108 return -1;
110 return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
113 /* For ILK+ */
114 void assert_shared_dpll(struct drm_i915_private *dev_priv,
115 struct intel_shared_dpll *pll,
116 bool state)
118 bool cur_state;
119 struct intel_dpll_hw_state hw_state;
121 if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
122 return;
124 cur_state = pll->info->funcs->get_hw_state(dev_priv, pll, &hw_state);
125 I915_STATE_WARN(cur_state != state,
126 "%s assertion failure (expected %s, current %s)\n",
127 pll->info->name, onoff(state), onoff(cur_state));
131 * intel_prepare_shared_dpll - call a dpll's prepare hook
132 * @crtc_state: CRTC, and its state, which has a shared dpll
134 * This calls the PLL's prepare hook if it has one and if the PLL is not
135 * already enabled. The prepare hook is platform specific.
137 void intel_prepare_shared_dpll(const struct intel_crtc_state *crtc_state)
139 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
140 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
141 struct intel_shared_dpll *pll = crtc_state->shared_dpll;
143 if (WARN_ON(pll == NULL))
144 return;
146 mutex_lock(&dev_priv->dpll_lock);
147 WARN_ON(!pll->state.crtc_mask);
148 if (!pll->active_mask) {
149 DRM_DEBUG_DRIVER("setting up %s\n", pll->info->name);
150 WARN_ON(pll->on);
151 assert_shared_dpll_disabled(dev_priv, pll);
153 pll->info->funcs->prepare(dev_priv, pll);
155 mutex_unlock(&dev_priv->dpll_lock);
159 * intel_enable_shared_dpll - enable a CRTC's shared DPLL
160 * @crtc_state: CRTC, and its state, which has a shared DPLL
162 * Enable the shared DPLL used by @crtc.
164 void intel_enable_shared_dpll(const struct intel_crtc_state *crtc_state)
166 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
167 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
168 struct intel_shared_dpll *pll = crtc_state->shared_dpll;
169 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
170 unsigned int old_mask;
172 if (WARN_ON(pll == NULL))
173 return;
175 mutex_lock(&dev_priv->dpll_lock);
176 old_mask = pll->active_mask;
178 if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
179 WARN_ON(pll->active_mask & crtc_mask))
180 goto out;
182 pll->active_mask |= crtc_mask;
184 DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
185 pll->info->name, pll->active_mask, pll->on,
186 crtc->base.base.id);
188 if (old_mask) {
189 WARN_ON(!pll->on);
190 assert_shared_dpll_enabled(dev_priv, pll);
191 goto out;
193 WARN_ON(pll->on);
195 DRM_DEBUG_KMS("enabling %s\n", pll->info->name);
196 pll->info->funcs->enable(dev_priv, pll);
197 pll->on = true;
199 out:
200 mutex_unlock(&dev_priv->dpll_lock);
204 * intel_disable_shared_dpll - disable a CRTC's shared DPLL
205 * @crtc_state: CRTC, and its state, which has a shared DPLL
207 * Disable the shared DPLL used by @crtc.
209 void intel_disable_shared_dpll(const struct intel_crtc_state *crtc_state)
211 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
212 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
213 struct intel_shared_dpll *pll = crtc_state->shared_dpll;
214 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
216 /* PCH only available on ILK+ */
217 if (INTEL_GEN(dev_priv) < 5)
218 return;
220 if (pll == NULL)
221 return;
223 mutex_lock(&dev_priv->dpll_lock);
224 if (WARN_ON(!(pll->active_mask & crtc_mask)))
225 goto out;
227 DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
228 pll->info->name, pll->active_mask, pll->on,
229 crtc->base.base.id);
231 assert_shared_dpll_enabled(dev_priv, pll);
232 WARN_ON(!pll->on);
234 pll->active_mask &= ~crtc_mask;
235 if (pll->active_mask)
236 goto out;
238 DRM_DEBUG_KMS("disabling %s\n", pll->info->name);
239 pll->info->funcs->disable(dev_priv, pll);
240 pll->on = false;
242 out:
243 mutex_unlock(&dev_priv->dpll_lock);
246 static struct intel_shared_dpll *
247 intel_find_shared_dpll(struct intel_atomic_state *state,
248 const struct intel_crtc *crtc,
249 const struct intel_dpll_hw_state *pll_state,
250 unsigned long dpll_mask)
252 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
253 struct intel_shared_dpll *pll, *unused_pll = NULL;
254 struct intel_shared_dpll_state *shared_dpll;
255 enum intel_dpll_id i;
257 shared_dpll = intel_atomic_get_shared_dpll_state(&state->base);
259 WARN_ON(dpll_mask & ~(BIT(I915_NUM_PLLS) - 1));
261 for_each_set_bit(i, &dpll_mask, I915_NUM_PLLS) {
262 pll = &dev_priv->shared_dplls[i];
264 /* Only want to check enabled timings first */
265 if (shared_dpll[i].crtc_mask == 0) {
266 if (!unused_pll)
267 unused_pll = pll;
268 continue;
271 if (memcmp(pll_state,
272 &shared_dpll[i].hw_state,
273 sizeof(*pll_state)) == 0) {
274 DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
275 crtc->base.base.id, crtc->base.name,
276 pll->info->name,
277 shared_dpll[i].crtc_mask,
278 pll->active_mask);
279 return pll;
283 /* Ok no matching timings, maybe there's a free one? */
284 if (unused_pll) {
285 DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
286 crtc->base.base.id, crtc->base.name,
287 unused_pll->info->name);
288 return unused_pll;
291 return NULL;
294 static void
295 intel_reference_shared_dpll(struct intel_atomic_state *state,
296 const struct intel_crtc *crtc,
297 const struct intel_shared_dpll *pll,
298 const struct intel_dpll_hw_state *pll_state)
300 struct intel_shared_dpll_state *shared_dpll;
301 const enum intel_dpll_id id = pll->info->id;
303 shared_dpll = intel_atomic_get_shared_dpll_state(&state->base);
305 if (shared_dpll[id].crtc_mask == 0)
306 shared_dpll[id].hw_state = *pll_state;
308 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->info->name,
309 pipe_name(crtc->pipe));
311 shared_dpll[id].crtc_mask |= 1 << crtc->pipe;
314 static void intel_unreference_shared_dpll(struct intel_atomic_state *state,
315 const struct intel_crtc *crtc,
316 const struct intel_shared_dpll *pll)
318 struct intel_shared_dpll_state *shared_dpll;
320 shared_dpll = intel_atomic_get_shared_dpll_state(&state->base);
321 shared_dpll[pll->info->id].crtc_mask &= ~(1 << crtc->pipe);
324 static void intel_put_dpll(struct intel_atomic_state *state,
325 struct intel_crtc *crtc)
327 const struct intel_crtc_state *old_crtc_state =
328 intel_atomic_get_old_crtc_state(state, crtc);
329 struct intel_crtc_state *new_crtc_state =
330 intel_atomic_get_new_crtc_state(state, crtc);
332 new_crtc_state->shared_dpll = NULL;
334 if (!old_crtc_state->shared_dpll)
335 return;
337 intel_unreference_shared_dpll(state, crtc, old_crtc_state->shared_dpll);
341 * intel_shared_dpll_swap_state - make atomic DPLL configuration effective
342 * @state: atomic state
344 * This is the dpll version of drm_atomic_helper_swap_state() since the
345 * helper does not handle driver-specific global state.
347 * For consistency with atomic helpers this function does a complete swap,
348 * i.e. it also puts the current state into @state, even though there is no
349 * need for that at this moment.
351 void intel_shared_dpll_swap_state(struct intel_atomic_state *state)
353 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
354 struct intel_shared_dpll_state *shared_dpll = state->shared_dpll;
355 enum intel_dpll_id i;
357 if (!state->dpll_set)
358 return;
360 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
361 struct intel_shared_dpll *pll =
362 &dev_priv->shared_dplls[i];
364 swap(pll->state, shared_dpll[i]);
368 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
369 struct intel_shared_dpll *pll,
370 struct intel_dpll_hw_state *hw_state)
372 const enum intel_dpll_id id = pll->info->id;
373 intel_wakeref_t wakeref;
374 u32 val;
376 wakeref = intel_display_power_get_if_enabled(dev_priv,
377 POWER_DOMAIN_DISPLAY_CORE);
378 if (!wakeref)
379 return false;
381 val = I915_READ(PCH_DPLL(id));
382 hw_state->dpll = val;
383 hw_state->fp0 = I915_READ(PCH_FP0(id));
384 hw_state->fp1 = I915_READ(PCH_FP1(id));
386 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
388 return val & DPLL_VCO_ENABLE;
391 static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
392 struct intel_shared_dpll *pll)
394 const enum intel_dpll_id id = pll->info->id;
396 I915_WRITE(PCH_FP0(id), pll->state.hw_state.fp0);
397 I915_WRITE(PCH_FP1(id), pll->state.hw_state.fp1);
400 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
402 u32 val;
403 bool enabled;
405 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
407 val = I915_READ(PCH_DREF_CONTROL);
408 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
409 DREF_SUPERSPREAD_SOURCE_MASK));
410 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
413 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
414 struct intel_shared_dpll *pll)
416 const enum intel_dpll_id id = pll->info->id;
418 /* PCH refclock must be enabled first */
419 ibx_assert_pch_refclk_enabled(dev_priv);
421 I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
423 /* Wait for the clocks to stabilize. */
424 POSTING_READ(PCH_DPLL(id));
425 udelay(150);
427 /* The pixel multiplier can only be updated once the
428 * DPLL is enabled and the clocks are stable.
430 * So write it again.
432 I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
433 POSTING_READ(PCH_DPLL(id));
434 udelay(200);
437 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
438 struct intel_shared_dpll *pll)
440 const enum intel_dpll_id id = pll->info->id;
442 I915_WRITE(PCH_DPLL(id), 0);
443 POSTING_READ(PCH_DPLL(id));
444 udelay(200);
447 static bool ibx_get_dpll(struct intel_atomic_state *state,
448 struct intel_crtc *crtc,
449 struct intel_encoder *encoder)
451 struct intel_crtc_state *crtc_state =
452 intel_atomic_get_new_crtc_state(state, crtc);
453 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
454 struct intel_shared_dpll *pll;
455 enum intel_dpll_id i;
457 if (HAS_PCH_IBX(dev_priv)) {
458 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
459 i = (enum intel_dpll_id) crtc->pipe;
460 pll = &dev_priv->shared_dplls[i];
462 DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
463 crtc->base.base.id, crtc->base.name,
464 pll->info->name);
465 } else {
466 pll = intel_find_shared_dpll(state, crtc,
467 &crtc_state->dpll_hw_state,
468 BIT(DPLL_ID_PCH_PLL_B) |
469 BIT(DPLL_ID_PCH_PLL_A));
472 if (!pll)
473 return false;
475 /* reference the pll */
476 intel_reference_shared_dpll(state, crtc,
477 pll, &crtc_state->dpll_hw_state);
479 crtc_state->shared_dpll = pll;
481 return true;
484 static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
485 const struct intel_dpll_hw_state *hw_state)
487 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
488 "fp0: 0x%x, fp1: 0x%x\n",
489 hw_state->dpll,
490 hw_state->dpll_md,
491 hw_state->fp0,
492 hw_state->fp1);
495 static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
496 .prepare = ibx_pch_dpll_prepare,
497 .enable = ibx_pch_dpll_enable,
498 .disable = ibx_pch_dpll_disable,
499 .get_hw_state = ibx_pch_dpll_get_hw_state,
502 static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
503 struct intel_shared_dpll *pll)
505 const enum intel_dpll_id id = pll->info->id;
507 I915_WRITE(WRPLL_CTL(id), pll->state.hw_state.wrpll);
508 POSTING_READ(WRPLL_CTL(id));
509 udelay(20);
512 static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
513 struct intel_shared_dpll *pll)
515 I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
516 POSTING_READ(SPLL_CTL);
517 udelay(20);
520 static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
521 struct intel_shared_dpll *pll)
523 const enum intel_dpll_id id = pll->info->id;
524 u32 val;
526 val = I915_READ(WRPLL_CTL(id));
527 I915_WRITE(WRPLL_CTL(id), val & ~WRPLL_PLL_ENABLE);
528 POSTING_READ(WRPLL_CTL(id));
531 * Try to set up the PCH reference clock once all DPLLs
532 * that depend on it have been shut down.
534 if (dev_priv->pch_ssc_use & BIT(id))
535 intel_init_pch_refclk(dev_priv);
538 static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
539 struct intel_shared_dpll *pll)
541 enum intel_dpll_id id = pll->info->id;
542 u32 val;
544 val = I915_READ(SPLL_CTL);
545 I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
546 POSTING_READ(SPLL_CTL);
549 * Try to set up the PCH reference clock once all DPLLs
550 * that depend on it have been shut down.
552 if (dev_priv->pch_ssc_use & BIT(id))
553 intel_init_pch_refclk(dev_priv);
556 static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
557 struct intel_shared_dpll *pll,
558 struct intel_dpll_hw_state *hw_state)
560 const enum intel_dpll_id id = pll->info->id;
561 intel_wakeref_t wakeref;
562 u32 val;
564 wakeref = intel_display_power_get_if_enabled(dev_priv,
565 POWER_DOMAIN_DISPLAY_CORE);
566 if (!wakeref)
567 return false;
569 val = I915_READ(WRPLL_CTL(id));
570 hw_state->wrpll = val;
572 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
574 return val & WRPLL_PLL_ENABLE;
577 static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
578 struct intel_shared_dpll *pll,
579 struct intel_dpll_hw_state *hw_state)
581 intel_wakeref_t wakeref;
582 u32 val;
584 wakeref = intel_display_power_get_if_enabled(dev_priv,
585 POWER_DOMAIN_DISPLAY_CORE);
586 if (!wakeref)
587 return false;
589 val = I915_READ(SPLL_CTL);
590 hw_state->spll = val;
592 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
594 return val & SPLL_PLL_ENABLE;
597 #define LC_FREQ 2700
598 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
600 #define P_MIN 2
601 #define P_MAX 64
602 #define P_INC 2
604 /* Constraints for PLL good behavior */
605 #define REF_MIN 48
606 #define REF_MAX 400
607 #define VCO_MIN 2400
608 #define VCO_MAX 4800
610 struct hsw_wrpll_rnp {
611 unsigned p, n2, r2;
614 static unsigned hsw_wrpll_get_budget_for_freq(int clock)
616 unsigned budget;
618 switch (clock) {
619 case 25175000:
620 case 25200000:
621 case 27000000:
622 case 27027000:
623 case 37762500:
624 case 37800000:
625 case 40500000:
626 case 40541000:
627 case 54000000:
628 case 54054000:
629 case 59341000:
630 case 59400000:
631 case 72000000:
632 case 74176000:
633 case 74250000:
634 case 81000000:
635 case 81081000:
636 case 89012000:
637 case 89100000:
638 case 108000000:
639 case 108108000:
640 case 111264000:
641 case 111375000:
642 case 148352000:
643 case 148500000:
644 case 162000000:
645 case 162162000:
646 case 222525000:
647 case 222750000:
648 case 296703000:
649 case 297000000:
650 budget = 0;
651 break;
652 case 233500000:
653 case 245250000:
654 case 247750000:
655 case 253250000:
656 case 298000000:
657 budget = 1500;
658 break;
659 case 169128000:
660 case 169500000:
661 case 179500000:
662 case 202000000:
663 budget = 2000;
664 break;
665 case 256250000:
666 case 262500000:
667 case 270000000:
668 case 272500000:
669 case 273750000:
670 case 280750000:
671 case 281250000:
672 case 286000000:
673 case 291750000:
674 budget = 4000;
675 break;
676 case 267250000:
677 case 268500000:
678 budget = 5000;
679 break;
680 default:
681 budget = 1000;
682 break;
685 return budget;
688 static void hsw_wrpll_update_rnp(u64 freq2k, unsigned int budget,
689 unsigned int r2, unsigned int n2,
690 unsigned int p,
691 struct hsw_wrpll_rnp *best)
693 u64 a, b, c, d, diff, diff_best;
695 /* No best (r,n,p) yet */
696 if (best->p == 0) {
697 best->p = p;
698 best->n2 = n2;
699 best->r2 = r2;
700 return;
704 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
705 * freq2k.
707 * delta = 1e6 *
708 * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
709 * freq2k;
711 * and we would like delta <= budget.
713 * If the discrepancy is above the PPM-based budget, always prefer to
714 * improve upon the previous solution. However, if you're within the
715 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
717 a = freq2k * budget * p * r2;
718 b = freq2k * budget * best->p * best->r2;
719 diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
720 diff_best = abs_diff(freq2k * best->p * best->r2,
721 LC_FREQ_2K * best->n2);
722 c = 1000000 * diff;
723 d = 1000000 * diff_best;
725 if (a < c && b < d) {
726 /* If both are above the budget, pick the closer */
727 if (best->p * best->r2 * diff < p * r2 * diff_best) {
728 best->p = p;
729 best->n2 = n2;
730 best->r2 = r2;
732 } else if (a >= c && b < d) {
733 /* If A is below the threshold but B is above it? Update. */
734 best->p = p;
735 best->n2 = n2;
736 best->r2 = r2;
737 } else if (a >= c && b >= d) {
738 /* Both are below the limit, so pick the higher n2/(r2*r2) */
739 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
740 best->p = p;
741 best->n2 = n2;
742 best->r2 = r2;
745 /* Otherwise a < c && b >= d, do nothing */
748 static void
749 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
750 unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
752 u64 freq2k;
753 unsigned p, n2, r2;
754 struct hsw_wrpll_rnp best = { 0, 0, 0 };
755 unsigned budget;
757 freq2k = clock / 100;
759 budget = hsw_wrpll_get_budget_for_freq(clock);
761 /* Special case handling for 540 pixel clock: bypass WR PLL entirely
762 * and directly pass the LC PLL to it. */
763 if (freq2k == 5400000) {
764 *n2_out = 2;
765 *p_out = 1;
766 *r2_out = 2;
767 return;
771 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
772 * the WR PLL.
774 * We want R so that REF_MIN <= Ref <= REF_MAX.
775 * Injecting R2 = 2 * R gives:
776 * REF_MAX * r2 > LC_FREQ * 2 and
777 * REF_MIN * r2 < LC_FREQ * 2
779 * Which means the desired boundaries for r2 are:
780 * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
783 for (r2 = LC_FREQ * 2 / REF_MAX + 1;
784 r2 <= LC_FREQ * 2 / REF_MIN;
785 r2++) {
788 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
790 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
791 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
792 * VCO_MAX * r2 > n2 * LC_FREQ and
793 * VCO_MIN * r2 < n2 * LC_FREQ)
795 * Which means the desired boundaries for n2 are:
796 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
798 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
799 n2 <= VCO_MAX * r2 / LC_FREQ;
800 n2++) {
802 for (p = P_MIN; p <= P_MAX; p += P_INC)
803 hsw_wrpll_update_rnp(freq2k, budget,
804 r2, n2, p, &best);
808 *n2_out = best.n2;
809 *p_out = best.p;
810 *r2_out = best.r2;
813 static struct intel_shared_dpll *
814 hsw_ddi_hdmi_get_dpll(struct intel_atomic_state *state,
815 struct intel_crtc *crtc)
817 struct intel_crtc_state *crtc_state =
818 intel_atomic_get_new_crtc_state(state, crtc);
819 struct intel_shared_dpll *pll;
820 u32 val;
821 unsigned int p, n2, r2;
823 hsw_ddi_calculate_wrpll(crtc_state->port_clock * 1000, &r2, &n2, &p);
825 val = WRPLL_PLL_ENABLE | WRPLL_REF_LCPLL |
826 WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
827 WRPLL_DIVIDER_POST(p);
829 crtc_state->dpll_hw_state.wrpll = val;
831 pll = intel_find_shared_dpll(state, crtc,
832 &crtc_state->dpll_hw_state,
833 BIT(DPLL_ID_WRPLL2) |
834 BIT(DPLL_ID_WRPLL1));
836 if (!pll)
837 return NULL;
839 return pll;
842 static struct intel_shared_dpll *
843 hsw_ddi_dp_get_dpll(struct intel_crtc_state *crtc_state)
845 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
846 struct intel_shared_dpll *pll;
847 enum intel_dpll_id pll_id;
848 int clock = crtc_state->port_clock;
850 switch (clock / 2) {
851 case 81000:
852 pll_id = DPLL_ID_LCPLL_810;
853 break;
854 case 135000:
855 pll_id = DPLL_ID_LCPLL_1350;
856 break;
857 case 270000:
858 pll_id = DPLL_ID_LCPLL_2700;
859 break;
860 default:
861 DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
862 return NULL;
865 pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
867 if (!pll)
868 return NULL;
870 return pll;
873 static bool hsw_get_dpll(struct intel_atomic_state *state,
874 struct intel_crtc *crtc,
875 struct intel_encoder *encoder)
877 struct intel_crtc_state *crtc_state =
878 intel_atomic_get_new_crtc_state(state, crtc);
879 struct intel_shared_dpll *pll;
881 memset(&crtc_state->dpll_hw_state, 0,
882 sizeof(crtc_state->dpll_hw_state));
884 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
885 pll = hsw_ddi_hdmi_get_dpll(state, crtc);
886 } else if (intel_crtc_has_dp_encoder(crtc_state)) {
887 pll = hsw_ddi_dp_get_dpll(crtc_state);
888 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
889 if (WARN_ON(crtc_state->port_clock / 2 != 135000))
890 return false;
892 crtc_state->dpll_hw_state.spll =
893 SPLL_PLL_ENABLE | SPLL_FREQ_1350MHz | SPLL_REF_MUXED_SSC;
895 pll = intel_find_shared_dpll(state, crtc,
896 &crtc_state->dpll_hw_state,
897 BIT(DPLL_ID_SPLL));
898 } else {
899 return false;
902 if (!pll)
903 return false;
905 intel_reference_shared_dpll(state, crtc,
906 pll, &crtc_state->dpll_hw_state);
908 crtc_state->shared_dpll = pll;
910 return true;
913 static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
914 const struct intel_dpll_hw_state *hw_state)
916 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
917 hw_state->wrpll, hw_state->spll);
920 static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
921 .enable = hsw_ddi_wrpll_enable,
922 .disable = hsw_ddi_wrpll_disable,
923 .get_hw_state = hsw_ddi_wrpll_get_hw_state,
926 static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
927 .enable = hsw_ddi_spll_enable,
928 .disable = hsw_ddi_spll_disable,
929 .get_hw_state = hsw_ddi_spll_get_hw_state,
932 static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
933 struct intel_shared_dpll *pll)
937 static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
938 struct intel_shared_dpll *pll)
942 static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
943 struct intel_shared_dpll *pll,
944 struct intel_dpll_hw_state *hw_state)
946 return true;
949 static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
950 .enable = hsw_ddi_lcpll_enable,
951 .disable = hsw_ddi_lcpll_disable,
952 .get_hw_state = hsw_ddi_lcpll_get_hw_state,
955 struct skl_dpll_regs {
956 i915_reg_t ctl, cfgcr1, cfgcr2;
959 /* this array is indexed by the *shared* pll id */
960 static const struct skl_dpll_regs skl_dpll_regs[4] = {
962 /* DPLL 0 */
963 .ctl = LCPLL1_CTL,
964 /* DPLL 0 doesn't support HDMI mode */
967 /* DPLL 1 */
968 .ctl = LCPLL2_CTL,
969 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
970 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
973 /* DPLL 2 */
974 .ctl = WRPLL_CTL(0),
975 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
976 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
979 /* DPLL 3 */
980 .ctl = WRPLL_CTL(1),
981 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
982 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
986 static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
987 struct intel_shared_dpll *pll)
989 const enum intel_dpll_id id = pll->info->id;
990 u32 val;
992 val = I915_READ(DPLL_CTRL1);
994 val &= ~(DPLL_CTRL1_HDMI_MODE(id) |
995 DPLL_CTRL1_SSC(id) |
996 DPLL_CTRL1_LINK_RATE_MASK(id));
997 val |= pll->state.hw_state.ctrl1 << (id * 6);
999 I915_WRITE(DPLL_CTRL1, val);
1000 POSTING_READ(DPLL_CTRL1);
1003 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
1004 struct intel_shared_dpll *pll)
1006 const struct skl_dpll_regs *regs = skl_dpll_regs;
1007 const enum intel_dpll_id id = pll->info->id;
1009 skl_ddi_pll_write_ctrl1(dev_priv, pll);
1011 I915_WRITE(regs[id].cfgcr1, pll->state.hw_state.cfgcr1);
1012 I915_WRITE(regs[id].cfgcr2, pll->state.hw_state.cfgcr2);
1013 POSTING_READ(regs[id].cfgcr1);
1014 POSTING_READ(regs[id].cfgcr2);
1016 /* the enable bit is always bit 31 */
1017 I915_WRITE(regs[id].ctl,
1018 I915_READ(regs[id].ctl) | LCPLL_PLL_ENABLE);
1020 if (intel_de_wait_for_set(dev_priv, DPLL_STATUS, DPLL_LOCK(id), 5))
1021 DRM_ERROR("DPLL %d not locked\n", id);
1024 static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
1025 struct intel_shared_dpll *pll)
1027 skl_ddi_pll_write_ctrl1(dev_priv, pll);
1030 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
1031 struct intel_shared_dpll *pll)
1033 const struct skl_dpll_regs *regs = skl_dpll_regs;
1034 const enum intel_dpll_id id = pll->info->id;
1036 /* the enable bit is always bit 31 */
1037 I915_WRITE(regs[id].ctl,
1038 I915_READ(regs[id].ctl) & ~LCPLL_PLL_ENABLE);
1039 POSTING_READ(regs[id].ctl);
1042 static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
1043 struct intel_shared_dpll *pll)
1047 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1048 struct intel_shared_dpll *pll,
1049 struct intel_dpll_hw_state *hw_state)
1051 u32 val;
1052 const struct skl_dpll_regs *regs = skl_dpll_regs;
1053 const enum intel_dpll_id id = pll->info->id;
1054 intel_wakeref_t wakeref;
1055 bool ret;
1057 wakeref = intel_display_power_get_if_enabled(dev_priv,
1058 POWER_DOMAIN_DISPLAY_CORE);
1059 if (!wakeref)
1060 return false;
1062 ret = false;
1064 val = I915_READ(regs[id].ctl);
1065 if (!(val & LCPLL_PLL_ENABLE))
1066 goto out;
1068 val = I915_READ(DPLL_CTRL1);
1069 hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
1071 /* avoid reading back stale values if HDMI mode is not enabled */
1072 if (val & DPLL_CTRL1_HDMI_MODE(id)) {
1073 hw_state->cfgcr1 = I915_READ(regs[id].cfgcr1);
1074 hw_state->cfgcr2 = I915_READ(regs[id].cfgcr2);
1076 ret = true;
1078 out:
1079 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
1081 return ret;
1084 static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
1085 struct intel_shared_dpll *pll,
1086 struct intel_dpll_hw_state *hw_state)
1088 const struct skl_dpll_regs *regs = skl_dpll_regs;
1089 const enum intel_dpll_id id = pll->info->id;
1090 intel_wakeref_t wakeref;
1091 u32 val;
1092 bool ret;
1094 wakeref = intel_display_power_get_if_enabled(dev_priv,
1095 POWER_DOMAIN_DISPLAY_CORE);
1096 if (!wakeref)
1097 return false;
1099 ret = false;
1101 /* DPLL0 is always enabled since it drives CDCLK */
1102 val = I915_READ(regs[id].ctl);
1103 if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
1104 goto out;
1106 val = I915_READ(DPLL_CTRL1);
1107 hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
1109 ret = true;
1111 out:
1112 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
1114 return ret;
1117 struct skl_wrpll_context {
1118 u64 min_deviation; /* current minimal deviation */
1119 u64 central_freq; /* chosen central freq */
1120 u64 dco_freq; /* chosen dco freq */
1121 unsigned int p; /* chosen divider */
1124 static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
1126 memset(ctx, 0, sizeof(*ctx));
1128 ctx->min_deviation = U64_MAX;
1131 /* DCO freq must be within +1%/-6% of the DCO central freq */
1132 #define SKL_DCO_MAX_PDEVIATION 100
1133 #define SKL_DCO_MAX_NDEVIATION 600
1135 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
1136 u64 central_freq,
1137 u64 dco_freq,
1138 unsigned int divider)
1140 u64 deviation;
1142 deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
1143 central_freq);
1145 /* positive deviation */
1146 if (dco_freq >= central_freq) {
1147 if (deviation < SKL_DCO_MAX_PDEVIATION &&
1148 deviation < ctx->min_deviation) {
1149 ctx->min_deviation = deviation;
1150 ctx->central_freq = central_freq;
1151 ctx->dco_freq = dco_freq;
1152 ctx->p = divider;
1154 /* negative deviation */
1155 } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
1156 deviation < ctx->min_deviation) {
1157 ctx->min_deviation = deviation;
1158 ctx->central_freq = central_freq;
1159 ctx->dco_freq = dco_freq;
1160 ctx->p = divider;
1164 static void skl_wrpll_get_multipliers(unsigned int p,
1165 unsigned int *p0 /* out */,
1166 unsigned int *p1 /* out */,
1167 unsigned int *p2 /* out */)
1169 /* even dividers */
1170 if (p % 2 == 0) {
1171 unsigned int half = p / 2;
1173 if (half == 1 || half == 2 || half == 3 || half == 5) {
1174 *p0 = 2;
1175 *p1 = 1;
1176 *p2 = half;
1177 } else if (half % 2 == 0) {
1178 *p0 = 2;
1179 *p1 = half / 2;
1180 *p2 = 2;
1181 } else if (half % 3 == 0) {
1182 *p0 = 3;
1183 *p1 = half / 3;
1184 *p2 = 2;
1185 } else if (half % 7 == 0) {
1186 *p0 = 7;
1187 *p1 = half / 7;
1188 *p2 = 2;
1190 } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
1191 *p0 = 3;
1192 *p1 = 1;
1193 *p2 = p / 3;
1194 } else if (p == 5 || p == 7) {
1195 *p0 = p;
1196 *p1 = 1;
1197 *p2 = 1;
1198 } else if (p == 15) {
1199 *p0 = 3;
1200 *p1 = 1;
1201 *p2 = 5;
1202 } else if (p == 21) {
1203 *p0 = 7;
1204 *p1 = 1;
1205 *p2 = 3;
1206 } else if (p == 35) {
1207 *p0 = 7;
1208 *p1 = 1;
1209 *p2 = 5;
1213 struct skl_wrpll_params {
1214 u32 dco_fraction;
1215 u32 dco_integer;
1216 u32 qdiv_ratio;
1217 u32 qdiv_mode;
1218 u32 kdiv;
1219 u32 pdiv;
1220 u32 central_freq;
1223 static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
1224 u64 afe_clock,
1225 u64 central_freq,
1226 u32 p0, u32 p1, u32 p2)
1228 u64 dco_freq;
1230 switch (central_freq) {
1231 case 9600000000ULL:
1232 params->central_freq = 0;
1233 break;
1234 case 9000000000ULL:
1235 params->central_freq = 1;
1236 break;
1237 case 8400000000ULL:
1238 params->central_freq = 3;
1241 switch (p0) {
1242 case 1:
1243 params->pdiv = 0;
1244 break;
1245 case 2:
1246 params->pdiv = 1;
1247 break;
1248 case 3:
1249 params->pdiv = 2;
1250 break;
1251 case 7:
1252 params->pdiv = 4;
1253 break;
1254 default:
1255 WARN(1, "Incorrect PDiv\n");
1258 switch (p2) {
1259 case 5:
1260 params->kdiv = 0;
1261 break;
1262 case 2:
1263 params->kdiv = 1;
1264 break;
1265 case 3:
1266 params->kdiv = 2;
1267 break;
1268 case 1:
1269 params->kdiv = 3;
1270 break;
1271 default:
1272 WARN(1, "Incorrect KDiv\n");
1275 params->qdiv_ratio = p1;
1276 params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
1278 dco_freq = p0 * p1 * p2 * afe_clock;
1281 * Intermediate values are in Hz.
1282 * Divide by MHz to match bsepc
1284 params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1285 params->dco_fraction =
1286 div_u64((div_u64(dco_freq, 24) -
1287 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1290 static bool
1291 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1292 struct skl_wrpll_params *wrpll_params)
1294 u64 afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1295 u64 dco_central_freq[3] = { 8400000000ULL,
1296 9000000000ULL,
1297 9600000000ULL };
1298 static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
1299 24, 28, 30, 32, 36, 40, 42, 44,
1300 48, 52, 54, 56, 60, 64, 66, 68,
1301 70, 72, 76, 78, 80, 84, 88, 90,
1302 92, 96, 98 };
1303 static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
1304 static const struct {
1305 const int *list;
1306 int n_dividers;
1307 } dividers[] = {
1308 { even_dividers, ARRAY_SIZE(even_dividers) },
1309 { odd_dividers, ARRAY_SIZE(odd_dividers) },
1311 struct skl_wrpll_context ctx;
1312 unsigned int dco, d, i;
1313 unsigned int p0, p1, p2;
1315 skl_wrpll_context_init(&ctx);
1317 for (d = 0; d < ARRAY_SIZE(dividers); d++) {
1318 for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
1319 for (i = 0; i < dividers[d].n_dividers; i++) {
1320 unsigned int p = dividers[d].list[i];
1321 u64 dco_freq = p * afe_clock;
1323 skl_wrpll_try_divider(&ctx,
1324 dco_central_freq[dco],
1325 dco_freq,
1328 * Skip the remaining dividers if we're sure to
1329 * have found the definitive divider, we can't
1330 * improve a 0 deviation.
1332 if (ctx.min_deviation == 0)
1333 goto skip_remaining_dividers;
1337 skip_remaining_dividers:
1339 * If a solution is found with an even divider, prefer
1340 * this one.
1342 if (d == 0 && ctx.p)
1343 break;
1346 if (!ctx.p) {
1347 DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1348 return false;
1352 * gcc incorrectly analyses that these can be used without being
1353 * initialized. To be fair, it's hard to guess.
1355 p0 = p1 = p2 = 0;
1356 skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
1357 skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
1358 p0, p1, p2);
1360 return true;
1363 static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state)
1365 u32 ctrl1, cfgcr1, cfgcr2;
1366 struct skl_wrpll_params wrpll_params = { 0, };
1369 * See comment in intel_dpll_hw_state to understand why we always use 0
1370 * as the DPLL id in this function.
1372 ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1374 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1376 if (!skl_ddi_calculate_wrpll(crtc_state->port_clock * 1000,
1377 &wrpll_params))
1378 return false;
1380 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1381 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1382 wrpll_params.dco_integer;
1384 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1385 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1386 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1387 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1388 wrpll_params.central_freq;
1390 memset(&crtc_state->dpll_hw_state, 0,
1391 sizeof(crtc_state->dpll_hw_state));
1393 crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1394 crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1395 crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1396 return true;
1399 static bool
1400 skl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
1402 u32 ctrl1;
1405 * See comment in intel_dpll_hw_state to understand why we always use 0
1406 * as the DPLL id in this function.
1408 ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1409 switch (crtc_state->port_clock / 2) {
1410 case 81000:
1411 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1412 break;
1413 case 135000:
1414 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1415 break;
1416 case 270000:
1417 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1418 break;
1419 /* eDP 1.4 rates */
1420 case 162000:
1421 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
1422 break;
1423 case 108000:
1424 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
1425 break;
1426 case 216000:
1427 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
1428 break;
1431 memset(&crtc_state->dpll_hw_state, 0,
1432 sizeof(crtc_state->dpll_hw_state));
1434 crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1436 return true;
1439 static bool skl_get_dpll(struct intel_atomic_state *state,
1440 struct intel_crtc *crtc,
1441 struct intel_encoder *encoder)
1443 struct intel_crtc_state *crtc_state =
1444 intel_atomic_get_new_crtc_state(state, crtc);
1445 struct intel_shared_dpll *pll;
1446 bool bret;
1448 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
1449 bret = skl_ddi_hdmi_pll_dividers(crtc_state);
1450 if (!bret) {
1451 DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
1452 return false;
1454 } else if (intel_crtc_has_dp_encoder(crtc_state)) {
1455 bret = skl_ddi_dp_set_dpll_hw_state(crtc_state);
1456 if (!bret) {
1457 DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
1458 return false;
1460 } else {
1461 return false;
1464 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
1465 pll = intel_find_shared_dpll(state, crtc,
1466 &crtc_state->dpll_hw_state,
1467 BIT(DPLL_ID_SKL_DPLL0));
1468 else
1469 pll = intel_find_shared_dpll(state, crtc,
1470 &crtc_state->dpll_hw_state,
1471 BIT(DPLL_ID_SKL_DPLL3) |
1472 BIT(DPLL_ID_SKL_DPLL2) |
1473 BIT(DPLL_ID_SKL_DPLL1));
1474 if (!pll)
1475 return false;
1477 intel_reference_shared_dpll(state, crtc,
1478 pll, &crtc_state->dpll_hw_state);
1480 crtc_state->shared_dpll = pll;
1482 return true;
1485 static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
1486 const struct intel_dpll_hw_state *hw_state)
1488 DRM_DEBUG_KMS("dpll_hw_state: "
1489 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
1490 hw_state->ctrl1,
1491 hw_state->cfgcr1,
1492 hw_state->cfgcr2);
1495 static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
1496 .enable = skl_ddi_pll_enable,
1497 .disable = skl_ddi_pll_disable,
1498 .get_hw_state = skl_ddi_pll_get_hw_state,
1501 static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
1502 .enable = skl_ddi_dpll0_enable,
1503 .disable = skl_ddi_dpll0_disable,
1504 .get_hw_state = skl_ddi_dpll0_get_hw_state,
1507 static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
1508 struct intel_shared_dpll *pll)
1510 u32 temp;
1511 enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
1512 enum dpio_phy phy;
1513 enum dpio_channel ch;
1515 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
1517 /* Non-SSC reference */
1518 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
1519 temp |= PORT_PLL_REF_SEL;
1520 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
1522 if (IS_GEMINILAKE(dev_priv)) {
1523 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
1524 temp |= PORT_PLL_POWER_ENABLE;
1525 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
1527 if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
1528 PORT_PLL_POWER_STATE), 200))
1529 DRM_ERROR("Power state not set for PLL:%d\n", port);
1532 /* Disable 10 bit clock */
1533 temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1534 temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
1535 I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1537 /* Write P1 & P2 */
1538 temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
1539 temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
1540 temp |= pll->state.hw_state.ebb0;
1541 I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
1543 /* Write M2 integer */
1544 temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
1545 temp &= ~PORT_PLL_M2_MASK;
1546 temp |= pll->state.hw_state.pll0;
1547 I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
1549 /* Write N */
1550 temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
1551 temp &= ~PORT_PLL_N_MASK;
1552 temp |= pll->state.hw_state.pll1;
1553 I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
1555 /* Write M2 fraction */
1556 temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
1557 temp &= ~PORT_PLL_M2_FRAC_MASK;
1558 temp |= pll->state.hw_state.pll2;
1559 I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
1561 /* Write M2 fraction enable */
1562 temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
1563 temp &= ~PORT_PLL_M2_FRAC_ENABLE;
1564 temp |= pll->state.hw_state.pll3;
1565 I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
1567 /* Write coeff */
1568 temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
1569 temp &= ~PORT_PLL_PROP_COEFF_MASK;
1570 temp &= ~PORT_PLL_INT_COEFF_MASK;
1571 temp &= ~PORT_PLL_GAIN_CTL_MASK;
1572 temp |= pll->state.hw_state.pll6;
1573 I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
1575 /* Write calibration val */
1576 temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
1577 temp &= ~PORT_PLL_TARGET_CNT_MASK;
1578 temp |= pll->state.hw_state.pll8;
1579 I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
1581 temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
1582 temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
1583 temp |= pll->state.hw_state.pll9;
1584 I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
1586 temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
1587 temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
1588 temp &= ~PORT_PLL_DCO_AMP_MASK;
1589 temp |= pll->state.hw_state.pll10;
1590 I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
1592 /* Recalibrate with new settings */
1593 temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1594 temp |= PORT_PLL_RECALIBRATE;
1595 I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1596 temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
1597 temp |= pll->state.hw_state.ebb4;
1598 I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
1600 /* Enable PLL */
1601 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
1602 temp |= PORT_PLL_ENABLE;
1603 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
1604 POSTING_READ(BXT_PORT_PLL_ENABLE(port));
1606 if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
1607 200))
1608 DRM_ERROR("PLL %d not locked\n", port);
1610 if (IS_GEMINILAKE(dev_priv)) {
1611 temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
1612 temp |= DCC_DELAY_RANGE_2;
1613 I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
1617 * While we write to the group register to program all lanes at once we
1618 * can read only lane registers and we pick lanes 0/1 for that.
1620 temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
1621 temp &= ~LANE_STAGGER_MASK;
1622 temp &= ~LANESTAGGER_STRAP_OVRD;
1623 temp |= pll->state.hw_state.pcsdw12;
1624 I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
1627 static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
1628 struct intel_shared_dpll *pll)
1630 enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
1631 u32 temp;
1633 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
1634 temp &= ~PORT_PLL_ENABLE;
1635 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
1636 POSTING_READ(BXT_PORT_PLL_ENABLE(port));
1638 if (IS_GEMINILAKE(dev_priv)) {
1639 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
1640 temp &= ~PORT_PLL_POWER_ENABLE;
1641 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
1643 if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
1644 PORT_PLL_POWER_STATE), 200))
1645 DRM_ERROR("Power state not reset for PLL:%d\n", port);
1649 static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
1650 struct intel_shared_dpll *pll,
1651 struct intel_dpll_hw_state *hw_state)
1653 enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
1654 intel_wakeref_t wakeref;
1655 enum dpio_phy phy;
1656 enum dpio_channel ch;
1657 u32 val;
1658 bool ret;
1660 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
1662 wakeref = intel_display_power_get_if_enabled(dev_priv,
1663 POWER_DOMAIN_DISPLAY_CORE);
1664 if (!wakeref)
1665 return false;
1667 ret = false;
1669 val = I915_READ(BXT_PORT_PLL_ENABLE(port));
1670 if (!(val & PORT_PLL_ENABLE))
1671 goto out;
1673 hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
1674 hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
1676 hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
1677 hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
1679 hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
1680 hw_state->pll0 &= PORT_PLL_M2_MASK;
1682 hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
1683 hw_state->pll1 &= PORT_PLL_N_MASK;
1685 hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
1686 hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
1688 hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
1689 hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
1691 hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
1692 hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
1693 PORT_PLL_INT_COEFF_MASK |
1694 PORT_PLL_GAIN_CTL_MASK;
1696 hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
1697 hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
1699 hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
1700 hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
1702 hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
1703 hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
1704 PORT_PLL_DCO_AMP_MASK;
1707 * While we write to the group register to program all lanes at once we
1708 * can read only lane registers. We configure all lanes the same way, so
1709 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
1711 hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
1712 if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
1713 DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
1714 hw_state->pcsdw12,
1715 I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
1716 hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
1718 ret = true;
1720 out:
1721 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
1723 return ret;
1726 /* bxt clock parameters */
1727 struct bxt_clk_div {
1728 int clock;
1729 u32 p1;
1730 u32 p2;
1731 u32 m2_int;
1732 u32 m2_frac;
1733 bool m2_frac_en;
1734 u32 n;
1736 int vco;
1739 /* pre-calculated values for DP linkrates */
1740 static const struct bxt_clk_div bxt_dp_clk_val[] = {
1741 {162000, 4, 2, 32, 1677722, 1, 1},
1742 {270000, 4, 1, 27, 0, 0, 1},
1743 {540000, 2, 1, 27, 0, 0, 1},
1744 {216000, 3, 2, 32, 1677722, 1, 1},
1745 {243000, 4, 1, 24, 1258291, 1, 1},
1746 {324000, 4, 1, 32, 1677722, 1, 1},
1747 {432000, 3, 1, 32, 1677722, 1, 1}
1750 static bool
1751 bxt_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state,
1752 struct bxt_clk_div *clk_div)
1754 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1755 struct dpll best_clock;
1757 /* Calculate HDMI div */
1759 * FIXME: tie the following calculation into
1760 * i9xx_crtc_compute_clock
1762 if (!bxt_find_best_dpll(crtc_state, &best_clock)) {
1763 DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
1764 crtc_state->port_clock,
1765 pipe_name(crtc->pipe));
1766 return false;
1769 clk_div->p1 = best_clock.p1;
1770 clk_div->p2 = best_clock.p2;
1771 WARN_ON(best_clock.m1 != 2);
1772 clk_div->n = best_clock.n;
1773 clk_div->m2_int = best_clock.m2 >> 22;
1774 clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
1775 clk_div->m2_frac_en = clk_div->m2_frac != 0;
1777 clk_div->vco = best_clock.vco;
1779 return true;
1782 static void bxt_ddi_dp_pll_dividers(struct intel_crtc_state *crtc_state,
1783 struct bxt_clk_div *clk_div)
1785 int clock = crtc_state->port_clock;
1786 int i;
1788 *clk_div = bxt_dp_clk_val[0];
1789 for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
1790 if (bxt_dp_clk_val[i].clock == clock) {
1791 *clk_div = bxt_dp_clk_val[i];
1792 break;
1796 clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
1799 static bool bxt_ddi_set_dpll_hw_state(struct intel_crtc_state *crtc_state,
1800 const struct bxt_clk_div *clk_div)
1802 struct intel_dpll_hw_state *dpll_hw_state = &crtc_state->dpll_hw_state;
1803 int clock = crtc_state->port_clock;
1804 int vco = clk_div->vco;
1805 u32 prop_coef, int_coef, gain_ctl, targ_cnt;
1806 u32 lanestagger;
1808 memset(dpll_hw_state, 0, sizeof(*dpll_hw_state));
1810 if (vco >= 6200000 && vco <= 6700000) {
1811 prop_coef = 4;
1812 int_coef = 9;
1813 gain_ctl = 3;
1814 targ_cnt = 8;
1815 } else if ((vco > 5400000 && vco < 6200000) ||
1816 (vco >= 4800000 && vco < 5400000)) {
1817 prop_coef = 5;
1818 int_coef = 11;
1819 gain_ctl = 3;
1820 targ_cnt = 9;
1821 } else if (vco == 5400000) {
1822 prop_coef = 3;
1823 int_coef = 8;
1824 gain_ctl = 1;
1825 targ_cnt = 9;
1826 } else {
1827 DRM_ERROR("Invalid VCO\n");
1828 return false;
1831 if (clock > 270000)
1832 lanestagger = 0x18;
1833 else if (clock > 135000)
1834 lanestagger = 0x0d;
1835 else if (clock > 67000)
1836 lanestagger = 0x07;
1837 else if (clock > 33000)
1838 lanestagger = 0x04;
1839 else
1840 lanestagger = 0x02;
1842 dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
1843 dpll_hw_state->pll0 = clk_div->m2_int;
1844 dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
1845 dpll_hw_state->pll2 = clk_div->m2_frac;
1847 if (clk_div->m2_frac_en)
1848 dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
1850 dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
1851 dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
1853 dpll_hw_state->pll8 = targ_cnt;
1855 dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
1857 dpll_hw_state->pll10 =
1858 PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
1859 | PORT_PLL_DCO_AMP_OVR_EN_H;
1861 dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
1863 dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
1865 return true;
1868 static bool
1869 bxt_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
1871 struct bxt_clk_div clk_div = {};
1873 bxt_ddi_dp_pll_dividers(crtc_state, &clk_div);
1875 return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div);
1878 static bool
1879 bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
1881 struct bxt_clk_div clk_div = {};
1883 bxt_ddi_hdmi_pll_dividers(crtc_state, &clk_div);
1885 return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div);
1888 static bool bxt_get_dpll(struct intel_atomic_state *state,
1889 struct intel_crtc *crtc,
1890 struct intel_encoder *encoder)
1892 struct intel_crtc_state *crtc_state =
1893 intel_atomic_get_new_crtc_state(state, crtc);
1894 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1895 struct intel_shared_dpll *pll;
1896 enum intel_dpll_id id;
1898 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
1899 !bxt_ddi_hdmi_set_dpll_hw_state(crtc_state))
1900 return false;
1902 if (intel_crtc_has_dp_encoder(crtc_state) &&
1903 !bxt_ddi_dp_set_dpll_hw_state(crtc_state))
1904 return false;
1906 /* 1:1 mapping between ports and PLLs */
1907 id = (enum intel_dpll_id) encoder->port;
1908 pll = intel_get_shared_dpll_by_id(dev_priv, id);
1910 DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
1911 crtc->base.base.id, crtc->base.name, pll->info->name);
1913 intel_reference_shared_dpll(state, crtc,
1914 pll, &crtc_state->dpll_hw_state);
1916 crtc_state->shared_dpll = pll;
1918 return true;
1921 static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
1922 const struct intel_dpll_hw_state *hw_state)
1924 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
1925 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
1926 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
1927 hw_state->ebb0,
1928 hw_state->ebb4,
1929 hw_state->pll0,
1930 hw_state->pll1,
1931 hw_state->pll2,
1932 hw_state->pll3,
1933 hw_state->pll6,
1934 hw_state->pll8,
1935 hw_state->pll9,
1936 hw_state->pll10,
1937 hw_state->pcsdw12);
1940 static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
1941 .enable = bxt_ddi_pll_enable,
1942 .disable = bxt_ddi_pll_disable,
1943 .get_hw_state = bxt_ddi_pll_get_hw_state,
1946 struct intel_dpll_mgr {
1947 const struct dpll_info *dpll_info;
1949 bool (*get_dplls)(struct intel_atomic_state *state,
1950 struct intel_crtc *crtc,
1951 struct intel_encoder *encoder);
1952 void (*put_dplls)(struct intel_atomic_state *state,
1953 struct intel_crtc *crtc);
1954 void (*update_active_dpll)(struct intel_atomic_state *state,
1955 struct intel_crtc *crtc,
1956 struct intel_encoder *encoder);
1957 void (*dump_hw_state)(struct drm_i915_private *dev_priv,
1958 const struct intel_dpll_hw_state *hw_state);
1961 static const struct dpll_info pch_plls[] = {
1962 { "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 },
1963 { "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 },
1964 { },
1967 static const struct intel_dpll_mgr pch_pll_mgr = {
1968 .dpll_info = pch_plls,
1969 .get_dplls = ibx_get_dpll,
1970 .put_dplls = intel_put_dpll,
1971 .dump_hw_state = ibx_dump_hw_state,
1974 static const struct dpll_info hsw_plls[] = {
1975 { "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 },
1976 { "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 },
1977 { "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 },
1978 { "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON },
1979 { "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON },
1980 { "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON },
1981 { },
1984 static const struct intel_dpll_mgr hsw_pll_mgr = {
1985 .dpll_info = hsw_plls,
1986 .get_dplls = hsw_get_dpll,
1987 .put_dplls = intel_put_dpll,
1988 .dump_hw_state = hsw_dump_hw_state,
1991 static const struct dpll_info skl_plls[] = {
1992 { "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON },
1993 { "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
1994 { "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
1995 { "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 },
1996 { },
1999 static const struct intel_dpll_mgr skl_pll_mgr = {
2000 .dpll_info = skl_plls,
2001 .get_dplls = skl_get_dpll,
2002 .put_dplls = intel_put_dpll,
2003 .dump_hw_state = skl_dump_hw_state,
2006 static const struct dpll_info bxt_plls[] = {
2007 { "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
2008 { "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
2009 { "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
2010 { },
2013 static const struct intel_dpll_mgr bxt_pll_mgr = {
2014 .dpll_info = bxt_plls,
2015 .get_dplls = bxt_get_dpll,
2016 .put_dplls = intel_put_dpll,
2017 .dump_hw_state = bxt_dump_hw_state,
2020 static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv,
2021 struct intel_shared_dpll *pll)
2023 const enum intel_dpll_id id = pll->info->id;
2024 u32 val;
2026 /* 1. Enable DPLL power in DPLL_ENABLE. */
2027 val = I915_READ(CNL_DPLL_ENABLE(id));
2028 val |= PLL_POWER_ENABLE;
2029 I915_WRITE(CNL_DPLL_ENABLE(id), val);
2031 /* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */
2032 if (intel_de_wait_for_set(dev_priv, CNL_DPLL_ENABLE(id),
2033 PLL_POWER_STATE, 5))
2034 DRM_ERROR("PLL %d Power not enabled\n", id);
2037 * 3. Configure DPLL_CFGCR0 to set SSC enable/disable,
2038 * select DP mode, and set DP link rate.
2040 val = pll->state.hw_state.cfgcr0;
2041 I915_WRITE(CNL_DPLL_CFGCR0(id), val);
2043 /* 4. Reab back to ensure writes completed */
2044 POSTING_READ(CNL_DPLL_CFGCR0(id));
2046 /* 3. Configure DPLL_CFGCR0 */
2047 /* Avoid touch CFGCR1 if HDMI mode is not enabled */
2048 if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
2049 val = pll->state.hw_state.cfgcr1;
2050 I915_WRITE(CNL_DPLL_CFGCR1(id), val);
2051 /* 4. Reab back to ensure writes completed */
2052 POSTING_READ(CNL_DPLL_CFGCR1(id));
2056 * 5. If the frequency will result in a change to the voltage
2057 * requirement, follow the Display Voltage Frequency Switching
2058 * Sequence Before Frequency Change
2060 * Note: DVFS is actually handled via the cdclk code paths,
2061 * hence we do nothing here.
2064 /* 6. Enable DPLL in DPLL_ENABLE. */
2065 val = I915_READ(CNL_DPLL_ENABLE(id));
2066 val |= PLL_ENABLE;
2067 I915_WRITE(CNL_DPLL_ENABLE(id), val);
2069 /* 7. Wait for PLL lock status in DPLL_ENABLE. */
2070 if (intel_de_wait_for_set(dev_priv, CNL_DPLL_ENABLE(id), PLL_LOCK, 5))
2071 DRM_ERROR("PLL %d not locked\n", id);
2074 * 8. If the frequency will result in a change to the voltage
2075 * requirement, follow the Display Voltage Frequency Switching
2076 * Sequence After Frequency Change
2078 * Note: DVFS is actually handled via the cdclk code paths,
2079 * hence we do nothing here.
2083 * 9. turn on the clock for the DDI and map the DPLL to the DDI
2084 * Done at intel_ddi_clk_select
2088 static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv,
2089 struct intel_shared_dpll *pll)
2091 const enum intel_dpll_id id = pll->info->id;
2092 u32 val;
2095 * 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI.
2096 * Done at intel_ddi_post_disable
2100 * 2. If the frequency will result in a change to the voltage
2101 * requirement, follow the Display Voltage Frequency Switching
2102 * Sequence Before Frequency Change
2104 * Note: DVFS is actually handled via the cdclk code paths,
2105 * hence we do nothing here.
2108 /* 3. Disable DPLL through DPLL_ENABLE. */
2109 val = I915_READ(CNL_DPLL_ENABLE(id));
2110 val &= ~PLL_ENABLE;
2111 I915_WRITE(CNL_DPLL_ENABLE(id), val);
2113 /* 4. Wait for PLL not locked status in DPLL_ENABLE. */
2114 if (intel_de_wait_for_clear(dev_priv, CNL_DPLL_ENABLE(id), PLL_LOCK, 5))
2115 DRM_ERROR("PLL %d locked\n", id);
2118 * 5. If the frequency will result in a change to the voltage
2119 * requirement, follow the Display Voltage Frequency Switching
2120 * Sequence After Frequency Change
2122 * Note: DVFS is actually handled via the cdclk code paths,
2123 * hence we do nothing here.
2126 /* 6. Disable DPLL power in DPLL_ENABLE. */
2127 val = I915_READ(CNL_DPLL_ENABLE(id));
2128 val &= ~PLL_POWER_ENABLE;
2129 I915_WRITE(CNL_DPLL_ENABLE(id), val);
2131 /* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */
2132 if (intel_de_wait_for_clear(dev_priv, CNL_DPLL_ENABLE(id),
2133 PLL_POWER_STATE, 5))
2134 DRM_ERROR("PLL %d Power not disabled\n", id);
2137 static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2138 struct intel_shared_dpll *pll,
2139 struct intel_dpll_hw_state *hw_state)
2141 const enum intel_dpll_id id = pll->info->id;
2142 intel_wakeref_t wakeref;
2143 u32 val;
2144 bool ret;
2146 wakeref = intel_display_power_get_if_enabled(dev_priv,
2147 POWER_DOMAIN_DISPLAY_CORE);
2148 if (!wakeref)
2149 return false;
2151 ret = false;
2153 val = I915_READ(CNL_DPLL_ENABLE(id));
2154 if (!(val & PLL_ENABLE))
2155 goto out;
2157 val = I915_READ(CNL_DPLL_CFGCR0(id));
2158 hw_state->cfgcr0 = val;
2160 /* avoid reading back stale values if HDMI mode is not enabled */
2161 if (val & DPLL_CFGCR0_HDMI_MODE) {
2162 hw_state->cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(id));
2164 ret = true;
2166 out:
2167 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
2169 return ret;
2172 static void cnl_wrpll_get_multipliers(int bestdiv, int *pdiv,
2173 int *qdiv, int *kdiv)
2175 /* even dividers */
2176 if (bestdiv % 2 == 0) {
2177 if (bestdiv == 2) {
2178 *pdiv = 2;
2179 *qdiv = 1;
2180 *kdiv = 1;
2181 } else if (bestdiv % 4 == 0) {
2182 *pdiv = 2;
2183 *qdiv = bestdiv / 4;
2184 *kdiv = 2;
2185 } else if (bestdiv % 6 == 0) {
2186 *pdiv = 3;
2187 *qdiv = bestdiv / 6;
2188 *kdiv = 2;
2189 } else if (bestdiv % 5 == 0) {
2190 *pdiv = 5;
2191 *qdiv = bestdiv / 10;
2192 *kdiv = 2;
2193 } else if (bestdiv % 14 == 0) {
2194 *pdiv = 7;
2195 *qdiv = bestdiv / 14;
2196 *kdiv = 2;
2198 } else {
2199 if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) {
2200 *pdiv = bestdiv;
2201 *qdiv = 1;
2202 *kdiv = 1;
2203 } else { /* 9, 15, 21 */
2204 *pdiv = bestdiv / 3;
2205 *qdiv = 1;
2206 *kdiv = 3;
2211 static void cnl_wrpll_params_populate(struct skl_wrpll_params *params,
2212 u32 dco_freq, u32 ref_freq,
2213 int pdiv, int qdiv, int kdiv)
2215 u32 dco;
2217 switch (kdiv) {
2218 case 1:
2219 params->kdiv = 1;
2220 break;
2221 case 2:
2222 params->kdiv = 2;
2223 break;
2224 case 3:
2225 params->kdiv = 4;
2226 break;
2227 default:
2228 WARN(1, "Incorrect KDiv\n");
2231 switch (pdiv) {
2232 case 2:
2233 params->pdiv = 1;
2234 break;
2235 case 3:
2236 params->pdiv = 2;
2237 break;
2238 case 5:
2239 params->pdiv = 4;
2240 break;
2241 case 7:
2242 params->pdiv = 8;
2243 break;
2244 default:
2245 WARN(1, "Incorrect PDiv\n");
2248 WARN_ON(kdiv != 2 && qdiv != 1);
2250 params->qdiv_ratio = qdiv;
2251 params->qdiv_mode = (qdiv == 1) ? 0 : 1;
2253 dco = div_u64((u64)dco_freq << 15, ref_freq);
2255 params->dco_integer = dco >> 15;
2256 params->dco_fraction = dco & 0x7fff;
2259 int cnl_hdmi_pll_ref_clock(struct drm_i915_private *dev_priv)
2261 int ref_clock = dev_priv->cdclk.hw.ref;
2264 * For ICL+, the spec states: if reference frequency is 38.4,
2265 * use 19.2 because the DPLL automatically divides that by 2.
2267 if (INTEL_GEN(dev_priv) >= 11 && ref_clock == 38400)
2268 ref_clock = 19200;
2270 return ref_clock;
2273 static bool
2274 cnl_ddi_calculate_wrpll(struct intel_crtc_state *crtc_state,
2275 struct skl_wrpll_params *wrpll_params)
2277 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2278 u32 afe_clock = crtc_state->port_clock * 5;
2279 u32 ref_clock;
2280 u32 dco_min = 7998000;
2281 u32 dco_max = 10000000;
2282 u32 dco_mid = (dco_min + dco_max) / 2;
2283 static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16,
2284 18, 20, 24, 28, 30, 32, 36, 40,
2285 42, 44, 48, 50, 52, 54, 56, 60,
2286 64, 66, 68, 70, 72, 76, 78, 80,
2287 84, 88, 90, 92, 96, 98, 100, 102,
2288 3, 5, 7, 9, 15, 21 };
2289 u32 dco, best_dco = 0, dco_centrality = 0;
2290 u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */
2291 int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0;
2293 for (d = 0; d < ARRAY_SIZE(dividers); d++) {
2294 dco = afe_clock * dividers[d];
2296 if ((dco <= dco_max) && (dco >= dco_min)) {
2297 dco_centrality = abs(dco - dco_mid);
2299 if (dco_centrality < best_dco_centrality) {
2300 best_dco_centrality = dco_centrality;
2301 best_div = dividers[d];
2302 best_dco = dco;
2307 if (best_div == 0)
2308 return false;
2310 cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv);
2312 ref_clock = cnl_hdmi_pll_ref_clock(dev_priv);
2314 cnl_wrpll_params_populate(wrpll_params, best_dco, ref_clock,
2315 pdiv, qdiv, kdiv);
2317 return true;
2320 static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state)
2322 u32 cfgcr0, cfgcr1;
2323 struct skl_wrpll_params wrpll_params = { 0, };
2325 cfgcr0 = DPLL_CFGCR0_HDMI_MODE;
2327 if (!cnl_ddi_calculate_wrpll(crtc_state, &wrpll_params))
2328 return false;
2330 cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) |
2331 wrpll_params.dco_integer;
2333 cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) |
2334 DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) |
2335 DPLL_CFGCR1_KDIV(wrpll_params.kdiv) |
2336 DPLL_CFGCR1_PDIV(wrpll_params.pdiv) |
2337 DPLL_CFGCR1_CENTRAL_FREQ;
2339 memset(&crtc_state->dpll_hw_state, 0,
2340 sizeof(crtc_state->dpll_hw_state));
2342 crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
2343 crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
2344 return true;
2347 static bool
2348 cnl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
2350 u32 cfgcr0;
2352 cfgcr0 = DPLL_CFGCR0_SSC_ENABLE;
2354 switch (crtc_state->port_clock / 2) {
2355 case 81000:
2356 cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810;
2357 break;
2358 case 135000:
2359 cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350;
2360 break;
2361 case 270000:
2362 cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700;
2363 break;
2364 /* eDP 1.4 rates */
2365 case 162000:
2366 cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620;
2367 break;
2368 case 108000:
2369 cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080;
2370 break;
2371 case 216000:
2372 cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160;
2373 break;
2374 case 324000:
2375 /* Some SKUs may require elevated I/O voltage to support this */
2376 cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240;
2377 break;
2378 case 405000:
2379 /* Some SKUs may require elevated I/O voltage to support this */
2380 cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050;
2381 break;
2384 memset(&crtc_state->dpll_hw_state, 0,
2385 sizeof(crtc_state->dpll_hw_state));
2387 crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
2389 return true;
2392 static bool cnl_get_dpll(struct intel_atomic_state *state,
2393 struct intel_crtc *crtc,
2394 struct intel_encoder *encoder)
2396 struct intel_crtc_state *crtc_state =
2397 intel_atomic_get_new_crtc_state(state, crtc);
2398 struct intel_shared_dpll *pll;
2399 bool bret;
2401 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2402 bret = cnl_ddi_hdmi_pll_dividers(crtc_state);
2403 if (!bret) {
2404 DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
2405 return false;
2407 } else if (intel_crtc_has_dp_encoder(crtc_state)) {
2408 bret = cnl_ddi_dp_set_dpll_hw_state(crtc_state);
2409 if (!bret) {
2410 DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
2411 return false;
2413 } else {
2414 DRM_DEBUG_KMS("Skip DPLL setup for output_types 0x%x\n",
2415 crtc_state->output_types);
2416 return false;
2419 pll = intel_find_shared_dpll(state, crtc,
2420 &crtc_state->dpll_hw_state,
2421 BIT(DPLL_ID_SKL_DPLL2) |
2422 BIT(DPLL_ID_SKL_DPLL1) |
2423 BIT(DPLL_ID_SKL_DPLL0));
2424 if (!pll) {
2425 DRM_DEBUG_KMS("No PLL selected\n");
2426 return false;
2429 intel_reference_shared_dpll(state, crtc,
2430 pll, &crtc_state->dpll_hw_state);
2432 crtc_state->shared_dpll = pll;
2434 return true;
2437 static void cnl_dump_hw_state(struct drm_i915_private *dev_priv,
2438 const struct intel_dpll_hw_state *hw_state)
2440 DRM_DEBUG_KMS("dpll_hw_state: "
2441 "cfgcr0: 0x%x, cfgcr1: 0x%x\n",
2442 hw_state->cfgcr0,
2443 hw_state->cfgcr1);
2446 static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = {
2447 .enable = cnl_ddi_pll_enable,
2448 .disable = cnl_ddi_pll_disable,
2449 .get_hw_state = cnl_ddi_pll_get_hw_state,
2452 static const struct dpll_info cnl_plls[] = {
2453 { "DPLL 0", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
2454 { "DPLL 1", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
2455 { "DPLL 2", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
2456 { },
2459 static const struct intel_dpll_mgr cnl_pll_mgr = {
2460 .dpll_info = cnl_plls,
2461 .get_dplls = cnl_get_dpll,
2462 .put_dplls = intel_put_dpll,
2463 .dump_hw_state = cnl_dump_hw_state,
2466 struct icl_combo_pll_params {
2467 int clock;
2468 struct skl_wrpll_params wrpll;
2472 * These values alrea already adjusted: they're the bits we write to the
2473 * registers, not the logical values.
2475 static const struct icl_combo_pll_params icl_dp_combo_pll_24MHz_values[] = {
2476 { 540000,
2477 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */
2478 .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2479 { 270000,
2480 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */
2481 .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2482 { 162000,
2483 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */
2484 .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2485 { 324000,
2486 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */
2487 .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2488 { 216000,
2489 { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */
2490 .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, },
2491 { 432000,
2492 { .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */
2493 .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2494 { 648000,
2495 { .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */
2496 .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2497 { 810000,
2498 { .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */
2499 .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2503 /* Also used for 38.4 MHz values. */
2504 static const struct icl_combo_pll_params icl_dp_combo_pll_19_2MHz_values[] = {
2505 { 540000,
2506 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */
2507 .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2508 { 270000,
2509 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */
2510 .pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2511 { 162000,
2512 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */
2513 .pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2514 { 324000,
2515 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */
2516 .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2517 { 216000,
2518 { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */
2519 .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, },
2520 { 432000,
2521 { .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */
2522 .pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2523 { 648000,
2524 { .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */
2525 .pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2526 { 810000,
2527 { .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */
2528 .pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
2531 static const struct skl_wrpll_params icl_tbt_pll_24MHz_values = {
2532 .dco_integer = 0x151, .dco_fraction = 0x4000,
2533 .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
2536 static const struct skl_wrpll_params icl_tbt_pll_19_2MHz_values = {
2537 .dco_integer = 0x1A5, .dco_fraction = 0x7000,
2538 .pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
2541 static const struct skl_wrpll_params tgl_tbt_pll_19_2MHz_values = {
2542 .dco_integer = 0x54, .dco_fraction = 0x3000,
2543 /* the following params are unused */
2544 .pdiv = 0, .kdiv = 0, .qdiv_mode = 0, .qdiv_ratio = 0,
2547 static const struct skl_wrpll_params tgl_tbt_pll_24MHz_values = {
2548 .dco_integer = 0x43, .dco_fraction = 0x4000,
2549 /* the following params are unused */
2550 .pdiv = 0, .kdiv = 0, .qdiv_mode = 0, .qdiv_ratio = 0,
2553 static bool icl_calc_dp_combo_pll(struct intel_crtc_state *crtc_state,
2554 struct skl_wrpll_params *pll_params)
2556 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2557 const struct icl_combo_pll_params *params =
2558 dev_priv->cdclk.hw.ref == 24000 ?
2559 icl_dp_combo_pll_24MHz_values :
2560 icl_dp_combo_pll_19_2MHz_values;
2561 int clock = crtc_state->port_clock;
2562 int i;
2564 for (i = 0; i < ARRAY_SIZE(icl_dp_combo_pll_24MHz_values); i++) {
2565 if (clock == params[i].clock) {
2566 *pll_params = params[i].wrpll;
2567 return true;
2571 MISSING_CASE(clock);
2572 return false;
2575 static bool icl_calc_tbt_pll(struct intel_crtc_state *crtc_state,
2576 struct skl_wrpll_params *pll_params)
2578 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2580 if (INTEL_GEN(dev_priv) >= 12) {
2581 switch (dev_priv->cdclk.hw.ref) {
2582 default:
2583 MISSING_CASE(dev_priv->cdclk.hw.ref);
2584 /* fall-through */
2585 case 19200:
2586 case 38400:
2587 *pll_params = tgl_tbt_pll_19_2MHz_values;
2588 break;
2589 case 24000:
2590 *pll_params = tgl_tbt_pll_24MHz_values;
2591 break;
2593 } else {
2594 switch (dev_priv->cdclk.hw.ref) {
2595 default:
2596 MISSING_CASE(dev_priv->cdclk.hw.ref);
2597 /* fall-through */
2598 case 19200:
2599 case 38400:
2600 *pll_params = icl_tbt_pll_19_2MHz_values;
2601 break;
2602 case 24000:
2603 *pll_params = icl_tbt_pll_24MHz_values;
2604 break;
2608 return true;
2611 static bool icl_calc_dpll_state(struct intel_crtc_state *crtc_state,
2612 struct intel_encoder *encoder,
2613 struct intel_dpll_hw_state *pll_state)
2615 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2616 u32 cfgcr0, cfgcr1;
2617 struct skl_wrpll_params pll_params = { 0 };
2618 bool ret;
2620 if (intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv,
2621 encoder->port)))
2622 ret = icl_calc_tbt_pll(crtc_state, &pll_params);
2623 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
2624 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
2625 ret = cnl_ddi_calculate_wrpll(crtc_state, &pll_params);
2626 else
2627 ret = icl_calc_dp_combo_pll(crtc_state, &pll_params);
2629 if (!ret)
2630 return false;
2632 cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(pll_params.dco_fraction) |
2633 pll_params.dco_integer;
2635 cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params.qdiv_ratio) |
2636 DPLL_CFGCR1_QDIV_MODE(pll_params.qdiv_mode) |
2637 DPLL_CFGCR1_KDIV(pll_params.kdiv) |
2638 DPLL_CFGCR1_PDIV(pll_params.pdiv);
2640 if (INTEL_GEN(dev_priv) >= 12)
2641 cfgcr1 |= TGL_DPLL_CFGCR1_CFSELOVRD_NORMAL_XTAL;
2642 else
2643 cfgcr1 |= DPLL_CFGCR1_CENTRAL_FREQ_8400;
2645 memset(pll_state, 0, sizeof(*pll_state));
2647 pll_state->cfgcr0 = cfgcr0;
2648 pll_state->cfgcr1 = cfgcr1;
2650 return true;
2654 static enum tc_port icl_pll_id_to_tc_port(enum intel_dpll_id id)
2656 return id - DPLL_ID_ICL_MGPLL1;
2659 enum intel_dpll_id icl_tc_port_to_pll_id(enum tc_port tc_port)
2661 return tc_port + DPLL_ID_ICL_MGPLL1;
2664 static bool icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc,
2665 u32 *target_dco_khz,
2666 struct intel_dpll_hw_state *state,
2667 bool is_dkl)
2669 u32 dco_min_freq, dco_max_freq;
2670 int div1_vals[] = {7, 5, 3, 2};
2671 unsigned int i;
2672 int div2;
2674 dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000;
2675 dco_max_freq = is_dp ? 8100000 : 10000000;
2677 for (i = 0; i < ARRAY_SIZE(div1_vals); i++) {
2678 int div1 = div1_vals[i];
2680 for (div2 = 10; div2 > 0; div2--) {
2681 int dco = div1 * div2 * clock_khz * 5;
2682 int a_divratio, tlinedrv, inputsel;
2683 u32 hsdiv;
2685 if (dco < dco_min_freq || dco > dco_max_freq)
2686 continue;
2688 if (div2 >= 2) {
2690 * Note: a_divratio not matching TGL BSpec
2691 * algorithm but matching hardcoded values and
2692 * working on HW for DP alt-mode at least
2694 a_divratio = is_dp ? 10 : 5;
2695 tlinedrv = is_dkl ? 1 : 2;
2696 } else {
2697 a_divratio = 5;
2698 tlinedrv = 0;
2700 inputsel = is_dp ? 0 : 1;
2702 switch (div1) {
2703 default:
2704 MISSING_CASE(div1);
2705 /* fall through */
2706 case 2:
2707 hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2;
2708 break;
2709 case 3:
2710 hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3;
2711 break;
2712 case 5:
2713 hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5;
2714 break;
2715 case 7:
2716 hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7;
2717 break;
2720 *target_dco_khz = dco;
2722 state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1);
2724 state->mg_clktop2_coreclkctl1 =
2725 MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio);
2727 state->mg_clktop2_hsclkctl =
2728 MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) |
2729 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) |
2730 hsdiv |
2731 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2);
2733 return true;
2737 return false;
2741 * The specification for this function uses real numbers, so the math had to be
2742 * adapted to integer-only calculation, that's why it looks so different.
2744 static bool icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state,
2745 struct intel_dpll_hw_state *pll_state)
2747 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
2748 int refclk_khz = dev_priv->cdclk.hw.ref;
2749 int clock = crtc_state->port_clock;
2750 u32 dco_khz, m1div, m2div_int, m2div_rem, m2div_frac;
2751 u32 iref_ndiv, iref_trim, iref_pulse_w;
2752 u32 prop_coeff, int_coeff;
2753 u32 tdc_targetcnt, feedfwgain;
2754 u64 ssc_stepsize, ssc_steplen, ssc_steplog;
2755 u64 tmp;
2756 bool use_ssc = false;
2757 bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI);
2758 bool is_dkl = INTEL_GEN(dev_priv) >= 12;
2760 memset(pll_state, 0, sizeof(*pll_state));
2762 if (!icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz,
2763 pll_state, is_dkl)) {
2764 DRM_DEBUG_KMS("Failed to find divisors for clock %d\n", clock);
2765 return false;
2768 m1div = 2;
2769 m2div_int = dco_khz / (refclk_khz * m1div);
2770 if (m2div_int > 255) {
2771 if (!is_dkl) {
2772 m1div = 4;
2773 m2div_int = dco_khz / (refclk_khz * m1div);
2776 if (m2div_int > 255) {
2777 DRM_DEBUG_KMS("Failed to find mdiv for clock %d\n",
2778 clock);
2779 return false;
2782 m2div_rem = dco_khz % (refclk_khz * m1div);
2784 tmp = (u64)m2div_rem * (1 << 22);
2785 do_div(tmp, refclk_khz * m1div);
2786 m2div_frac = tmp;
2788 switch (refclk_khz) {
2789 case 19200:
2790 iref_ndiv = 1;
2791 iref_trim = 28;
2792 iref_pulse_w = 1;
2793 break;
2794 case 24000:
2795 iref_ndiv = 1;
2796 iref_trim = 25;
2797 iref_pulse_w = 2;
2798 break;
2799 case 38400:
2800 iref_ndiv = 2;
2801 iref_trim = 28;
2802 iref_pulse_w = 1;
2803 break;
2804 default:
2805 MISSING_CASE(refclk_khz);
2806 return false;
2810 * tdc_res = 0.000003
2811 * tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5)
2813 * The multiplication by 1000 is due to refclk MHz to KHz conversion. It
2814 * was supposed to be a division, but we rearranged the operations of
2815 * the formula to avoid early divisions so we don't multiply the
2816 * rounding errors.
2818 * 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which
2819 * we also rearrange to work with integers.
2821 * The 0.5 transformed to 5 results in a multiplication by 10 and the
2822 * last division by 10.
2824 tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10;
2827 * Here we divide dco_khz by 10 in order to allow the dividend to fit in
2828 * 32 bits. That's not a problem since we round the division down
2829 * anyway.
2831 feedfwgain = (use_ssc || m2div_rem > 0) ?
2832 m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0;
2834 if (dco_khz >= 9000000) {
2835 prop_coeff = 5;
2836 int_coeff = 10;
2837 } else {
2838 prop_coeff = 4;
2839 int_coeff = 8;
2842 if (use_ssc) {
2843 tmp = mul_u32_u32(dco_khz, 47 * 32);
2844 do_div(tmp, refclk_khz * m1div * 10000);
2845 ssc_stepsize = tmp;
2847 tmp = mul_u32_u32(dco_khz, 1000);
2848 ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32);
2849 } else {
2850 ssc_stepsize = 0;
2851 ssc_steplen = 0;
2853 ssc_steplog = 4;
2855 /* write pll_state calculations */
2856 if (is_dkl) {
2857 pll_state->mg_pll_div0 = DKL_PLL_DIV0_INTEG_COEFF(int_coeff) |
2858 DKL_PLL_DIV0_PROP_COEFF(prop_coeff) |
2859 DKL_PLL_DIV0_FBPREDIV(m1div) |
2860 DKL_PLL_DIV0_FBDIV_INT(m2div_int);
2862 pll_state->mg_pll_div1 = DKL_PLL_DIV1_IREF_TRIM(iref_trim) |
2863 DKL_PLL_DIV1_TDC_TARGET_CNT(tdc_targetcnt);
2865 pll_state->mg_pll_ssc = DKL_PLL_SSC_IREF_NDIV_RATIO(iref_ndiv) |
2866 DKL_PLL_SSC_STEP_LEN(ssc_steplen) |
2867 DKL_PLL_SSC_STEP_NUM(ssc_steplog) |
2868 (use_ssc ? DKL_PLL_SSC_EN : 0);
2870 pll_state->mg_pll_bias = (m2div_frac ? DKL_PLL_BIAS_FRAC_EN_H : 0) |
2871 DKL_PLL_BIAS_FBDIV_FRAC(m2div_frac);
2873 pll_state->mg_pll_tdc_coldst_bias =
2874 DKL_PLL_TDC_SSC_STEP_SIZE(ssc_stepsize) |
2875 DKL_PLL_TDC_FEED_FWD_GAIN(feedfwgain);
2877 } else {
2878 pll_state->mg_pll_div0 =
2879 (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) |
2880 MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) |
2881 MG_PLL_DIV0_FBDIV_INT(m2div_int);
2883 pll_state->mg_pll_div1 =
2884 MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) |
2885 MG_PLL_DIV1_DITHER_DIV_2 |
2886 MG_PLL_DIV1_NDIVRATIO(1) |
2887 MG_PLL_DIV1_FBPREDIV(m1div);
2889 pll_state->mg_pll_lf =
2890 MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) |
2891 MG_PLL_LF_AFCCNTSEL_512 |
2892 MG_PLL_LF_GAINCTRL(1) |
2893 MG_PLL_LF_INT_COEFF(int_coeff) |
2894 MG_PLL_LF_PROP_COEFF(prop_coeff);
2896 pll_state->mg_pll_frac_lock =
2897 MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 |
2898 MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 |
2899 MG_PLL_FRAC_LOCK_LOCKTHRESH(10) |
2900 MG_PLL_FRAC_LOCK_DCODITHEREN |
2901 MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain);
2902 if (use_ssc || m2div_rem > 0)
2903 pll_state->mg_pll_frac_lock |=
2904 MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN;
2906 pll_state->mg_pll_ssc =
2907 (use_ssc ? MG_PLL_SSC_EN : 0) |
2908 MG_PLL_SSC_TYPE(2) |
2909 MG_PLL_SSC_STEPLENGTH(ssc_steplen) |
2910 MG_PLL_SSC_STEPNUM(ssc_steplog) |
2911 MG_PLL_SSC_FLLEN |
2912 MG_PLL_SSC_STEPSIZE(ssc_stepsize);
2914 pll_state->mg_pll_tdc_coldst_bias =
2915 MG_PLL_TDC_COLDST_COLDSTART |
2916 MG_PLL_TDC_COLDST_IREFINT_EN |
2917 MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) |
2918 MG_PLL_TDC_TDCOVCCORR_EN |
2919 MG_PLL_TDC_TDCSEL(3);
2921 pll_state->mg_pll_bias =
2922 MG_PLL_BIAS_BIAS_GB_SEL(3) |
2923 MG_PLL_BIAS_INIT_DCOAMP(0x3F) |
2924 MG_PLL_BIAS_BIAS_BONUS(10) |
2925 MG_PLL_BIAS_BIASCAL_EN |
2926 MG_PLL_BIAS_CTRIM(12) |
2927 MG_PLL_BIAS_VREF_RDAC(4) |
2928 MG_PLL_BIAS_IREFTRIM(iref_trim);
2930 if (refclk_khz == 38400) {
2931 pll_state->mg_pll_tdc_coldst_bias_mask =
2932 MG_PLL_TDC_COLDST_COLDSTART;
2933 pll_state->mg_pll_bias_mask = 0;
2934 } else {
2935 pll_state->mg_pll_tdc_coldst_bias_mask = -1U;
2936 pll_state->mg_pll_bias_mask = -1U;
2939 pll_state->mg_pll_tdc_coldst_bias &=
2940 pll_state->mg_pll_tdc_coldst_bias_mask;
2941 pll_state->mg_pll_bias &= pll_state->mg_pll_bias_mask;
2944 return true;
2948 * icl_set_active_port_dpll - select the active port DPLL for a given CRTC
2949 * @crtc_state: state for the CRTC to select the DPLL for
2950 * @port_dpll_id: the active @port_dpll_id to select
2952 * Select the given @port_dpll_id instance from the DPLLs reserved for the
2953 * CRTC.
2955 void icl_set_active_port_dpll(struct intel_crtc_state *crtc_state,
2956 enum icl_port_dpll_id port_dpll_id)
2958 struct icl_port_dpll *port_dpll =
2959 &crtc_state->icl_port_dplls[port_dpll_id];
2961 crtc_state->shared_dpll = port_dpll->pll;
2962 crtc_state->dpll_hw_state = port_dpll->hw_state;
2965 static void icl_update_active_dpll(struct intel_atomic_state *state,
2966 struct intel_crtc *crtc,
2967 struct intel_encoder *encoder)
2969 struct intel_crtc_state *crtc_state =
2970 intel_atomic_get_new_crtc_state(state, crtc);
2971 struct intel_digital_port *primary_port;
2972 enum icl_port_dpll_id port_dpll_id = ICL_PORT_DPLL_DEFAULT;
2974 primary_port = encoder->type == INTEL_OUTPUT_DP_MST ?
2975 enc_to_mst(encoder)->primary :
2976 enc_to_dig_port(encoder);
2978 if (primary_port &&
2979 (primary_port->tc_mode == TC_PORT_DP_ALT ||
2980 primary_port->tc_mode == TC_PORT_LEGACY))
2981 port_dpll_id = ICL_PORT_DPLL_MG_PHY;
2983 icl_set_active_port_dpll(crtc_state, port_dpll_id);
2986 static bool icl_get_combo_phy_dpll(struct intel_atomic_state *state,
2987 struct intel_crtc *crtc,
2988 struct intel_encoder *encoder)
2990 struct intel_crtc_state *crtc_state =
2991 intel_atomic_get_new_crtc_state(state, crtc);
2992 struct icl_port_dpll *port_dpll =
2993 &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT];
2994 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2995 enum port port = encoder->port;
2996 unsigned long dpll_mask;
2998 if (!icl_calc_dpll_state(crtc_state, encoder, &port_dpll->hw_state)) {
2999 DRM_DEBUG_KMS("Could not calculate combo PHY PLL state.\n");
3001 return false;
3004 if (IS_ELKHARTLAKE(dev_priv) && port != PORT_A)
3005 dpll_mask =
3006 BIT(DPLL_ID_EHL_DPLL4) |
3007 BIT(DPLL_ID_ICL_DPLL1) |
3008 BIT(DPLL_ID_ICL_DPLL0);
3009 else
3010 dpll_mask = BIT(DPLL_ID_ICL_DPLL1) | BIT(DPLL_ID_ICL_DPLL0);
3012 port_dpll->pll = intel_find_shared_dpll(state, crtc,
3013 &port_dpll->hw_state,
3014 dpll_mask);
3015 if (!port_dpll->pll) {
3016 DRM_DEBUG_KMS("No combo PHY PLL found for [ENCODER:%d:%s]\n",
3017 encoder->base.base.id, encoder->base.name);
3018 return false;
3021 intel_reference_shared_dpll(state, crtc,
3022 port_dpll->pll, &port_dpll->hw_state);
3024 icl_update_active_dpll(state, crtc, encoder);
3026 return true;
3029 static bool icl_get_tc_phy_dplls(struct intel_atomic_state *state,
3030 struct intel_crtc *crtc,
3031 struct intel_encoder *encoder)
3033 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3034 struct intel_crtc_state *crtc_state =
3035 intel_atomic_get_new_crtc_state(state, crtc);
3036 struct icl_port_dpll *port_dpll;
3037 enum intel_dpll_id dpll_id;
3039 port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT];
3040 if (!icl_calc_dpll_state(crtc_state, encoder, &port_dpll->hw_state)) {
3041 DRM_DEBUG_KMS("Could not calculate TBT PLL state.\n");
3042 return false;
3045 port_dpll->pll = intel_find_shared_dpll(state, crtc,
3046 &port_dpll->hw_state,
3047 BIT(DPLL_ID_ICL_TBTPLL));
3048 if (!port_dpll->pll) {
3049 DRM_DEBUG_KMS("No TBT-ALT PLL found\n");
3050 return false;
3052 intel_reference_shared_dpll(state, crtc,
3053 port_dpll->pll, &port_dpll->hw_state);
3056 port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_MG_PHY];
3057 if (!icl_calc_mg_pll_state(crtc_state, &port_dpll->hw_state)) {
3058 DRM_DEBUG_KMS("Could not calculate MG PHY PLL state.\n");
3059 goto err_unreference_tbt_pll;
3062 dpll_id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
3063 encoder->port));
3064 port_dpll->pll = intel_find_shared_dpll(state, crtc,
3065 &port_dpll->hw_state,
3066 BIT(dpll_id));
3067 if (!port_dpll->pll) {
3068 DRM_DEBUG_KMS("No MG PHY PLL found\n");
3069 goto err_unreference_tbt_pll;
3071 intel_reference_shared_dpll(state, crtc,
3072 port_dpll->pll, &port_dpll->hw_state);
3074 icl_update_active_dpll(state, crtc, encoder);
3076 return true;
3078 err_unreference_tbt_pll:
3079 port_dpll = &crtc_state->icl_port_dplls[ICL_PORT_DPLL_DEFAULT];
3080 intel_unreference_shared_dpll(state, crtc, port_dpll->pll);
3082 return false;
3085 static bool icl_get_dplls(struct intel_atomic_state *state,
3086 struct intel_crtc *crtc,
3087 struct intel_encoder *encoder)
3089 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3090 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
3092 if (intel_phy_is_combo(dev_priv, phy))
3093 return icl_get_combo_phy_dpll(state, crtc, encoder);
3094 else if (intel_phy_is_tc(dev_priv, phy))
3095 return icl_get_tc_phy_dplls(state, crtc, encoder);
3097 MISSING_CASE(phy);
3099 return false;
3102 static void icl_put_dplls(struct intel_atomic_state *state,
3103 struct intel_crtc *crtc)
3105 const struct intel_crtc_state *old_crtc_state =
3106 intel_atomic_get_old_crtc_state(state, crtc);
3107 struct intel_crtc_state *new_crtc_state =
3108 intel_atomic_get_new_crtc_state(state, crtc);
3109 enum icl_port_dpll_id id;
3111 new_crtc_state->shared_dpll = NULL;
3113 for (id = ICL_PORT_DPLL_DEFAULT; id < ICL_PORT_DPLL_COUNT; id++) {
3114 const struct icl_port_dpll *old_port_dpll =
3115 &old_crtc_state->icl_port_dplls[id];
3116 struct icl_port_dpll *new_port_dpll =
3117 &new_crtc_state->icl_port_dplls[id];
3119 new_port_dpll->pll = NULL;
3121 if (!old_port_dpll->pll)
3122 continue;
3124 intel_unreference_shared_dpll(state, crtc, old_port_dpll->pll);
3128 static bool mg_pll_get_hw_state(struct drm_i915_private *dev_priv,
3129 struct intel_shared_dpll *pll,
3130 struct intel_dpll_hw_state *hw_state)
3132 const enum intel_dpll_id id = pll->info->id;
3133 enum tc_port tc_port = icl_pll_id_to_tc_port(id);
3134 intel_wakeref_t wakeref;
3135 bool ret = false;
3136 u32 val;
3138 wakeref = intel_display_power_get_if_enabled(dev_priv,
3139 POWER_DOMAIN_DISPLAY_CORE);
3140 if (!wakeref)
3141 return false;
3143 val = I915_READ(MG_PLL_ENABLE(tc_port));
3144 if (!(val & PLL_ENABLE))
3145 goto out;
3147 hw_state->mg_refclkin_ctl = I915_READ(MG_REFCLKIN_CTL(tc_port));
3148 hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK;
3150 hw_state->mg_clktop2_coreclkctl1 =
3151 I915_READ(MG_CLKTOP2_CORECLKCTL1(tc_port));
3152 hw_state->mg_clktop2_coreclkctl1 &=
3153 MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
3155 hw_state->mg_clktop2_hsclkctl =
3156 I915_READ(MG_CLKTOP2_HSCLKCTL(tc_port));
3157 hw_state->mg_clktop2_hsclkctl &=
3158 MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
3159 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
3160 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
3161 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK;
3163 hw_state->mg_pll_div0 = I915_READ(MG_PLL_DIV0(tc_port));
3164 hw_state->mg_pll_div1 = I915_READ(MG_PLL_DIV1(tc_port));
3165 hw_state->mg_pll_lf = I915_READ(MG_PLL_LF(tc_port));
3166 hw_state->mg_pll_frac_lock = I915_READ(MG_PLL_FRAC_LOCK(tc_port));
3167 hw_state->mg_pll_ssc = I915_READ(MG_PLL_SSC(tc_port));
3169 hw_state->mg_pll_bias = I915_READ(MG_PLL_BIAS(tc_port));
3170 hw_state->mg_pll_tdc_coldst_bias =
3171 I915_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
3173 if (dev_priv->cdclk.hw.ref == 38400) {
3174 hw_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART;
3175 hw_state->mg_pll_bias_mask = 0;
3176 } else {
3177 hw_state->mg_pll_tdc_coldst_bias_mask = -1U;
3178 hw_state->mg_pll_bias_mask = -1U;
3181 hw_state->mg_pll_tdc_coldst_bias &= hw_state->mg_pll_tdc_coldst_bias_mask;
3182 hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask;
3184 ret = true;
3185 out:
3186 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
3187 return ret;
3190 static bool dkl_pll_get_hw_state(struct drm_i915_private *dev_priv,
3191 struct intel_shared_dpll *pll,
3192 struct intel_dpll_hw_state *hw_state)
3194 const enum intel_dpll_id id = pll->info->id;
3195 enum tc_port tc_port = icl_pll_id_to_tc_port(id);
3196 intel_wakeref_t wakeref;
3197 bool ret = false;
3198 u32 val;
3200 wakeref = intel_display_power_get_if_enabled(dev_priv,
3201 POWER_DOMAIN_DISPLAY_CORE);
3202 if (!wakeref)
3203 return false;
3205 val = I915_READ(MG_PLL_ENABLE(tc_port));
3206 if (!(val & PLL_ENABLE))
3207 goto out;
3210 * All registers read here have the same HIP_INDEX_REG even though
3211 * they are on different building blocks
3213 I915_WRITE(HIP_INDEX_REG(tc_port), HIP_INDEX_VAL(tc_port, 0x2));
3215 hw_state->mg_refclkin_ctl = I915_READ(DKL_REFCLKIN_CTL(tc_port));
3216 hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK;
3218 hw_state->mg_clktop2_hsclkctl =
3219 I915_READ(DKL_CLKTOP2_HSCLKCTL(tc_port));
3220 hw_state->mg_clktop2_hsclkctl &=
3221 MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
3222 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
3223 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
3224 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK;
3226 hw_state->mg_clktop2_coreclkctl1 =
3227 I915_READ(DKL_CLKTOP2_CORECLKCTL1(tc_port));
3228 hw_state->mg_clktop2_coreclkctl1 &=
3229 MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
3231 hw_state->mg_pll_div0 = I915_READ(DKL_PLL_DIV0(tc_port));
3232 hw_state->mg_pll_div0 &= (DKL_PLL_DIV0_INTEG_COEFF_MASK |
3233 DKL_PLL_DIV0_PROP_COEFF_MASK |
3234 DKL_PLL_DIV0_FBPREDIV_MASK |
3235 DKL_PLL_DIV0_FBDIV_INT_MASK);
3237 hw_state->mg_pll_div1 = I915_READ(DKL_PLL_DIV1(tc_port));
3238 hw_state->mg_pll_div1 &= (DKL_PLL_DIV1_IREF_TRIM_MASK |
3239 DKL_PLL_DIV1_TDC_TARGET_CNT_MASK);
3241 hw_state->mg_pll_ssc = I915_READ(DKL_PLL_SSC(tc_port));
3242 hw_state->mg_pll_ssc &= (DKL_PLL_SSC_IREF_NDIV_RATIO_MASK |
3243 DKL_PLL_SSC_STEP_LEN_MASK |
3244 DKL_PLL_SSC_STEP_NUM_MASK |
3245 DKL_PLL_SSC_EN);
3247 hw_state->mg_pll_bias = I915_READ(DKL_PLL_BIAS(tc_port));
3248 hw_state->mg_pll_bias &= (DKL_PLL_BIAS_FRAC_EN_H |
3249 DKL_PLL_BIAS_FBDIV_FRAC_MASK);
3251 hw_state->mg_pll_tdc_coldst_bias =
3252 I915_READ(DKL_PLL_TDC_COLDST_BIAS(tc_port));
3253 hw_state->mg_pll_tdc_coldst_bias &= (DKL_PLL_TDC_SSC_STEP_SIZE_MASK |
3254 DKL_PLL_TDC_FEED_FWD_GAIN_MASK);
3256 ret = true;
3257 out:
3258 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
3259 return ret;
3262 static bool icl_pll_get_hw_state(struct drm_i915_private *dev_priv,
3263 struct intel_shared_dpll *pll,
3264 struct intel_dpll_hw_state *hw_state,
3265 i915_reg_t enable_reg)
3267 const enum intel_dpll_id id = pll->info->id;
3268 intel_wakeref_t wakeref;
3269 bool ret = false;
3270 u32 val;
3272 wakeref = intel_display_power_get_if_enabled(dev_priv,
3273 POWER_DOMAIN_DISPLAY_CORE);
3274 if (!wakeref)
3275 return false;
3277 val = I915_READ(enable_reg);
3278 if (!(val & PLL_ENABLE))
3279 goto out;
3281 if (INTEL_GEN(dev_priv) >= 12) {
3282 hw_state->cfgcr0 = I915_READ(TGL_DPLL_CFGCR0(id));
3283 hw_state->cfgcr1 = I915_READ(TGL_DPLL_CFGCR1(id));
3284 } else {
3285 if (IS_ELKHARTLAKE(dev_priv) && id == DPLL_ID_EHL_DPLL4) {
3286 hw_state->cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(4));
3287 hw_state->cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(4));
3288 } else {
3289 hw_state->cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(id));
3290 hw_state->cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(id));
3294 ret = true;
3295 out:
3296 intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
3297 return ret;
3300 static bool combo_pll_get_hw_state(struct drm_i915_private *dev_priv,
3301 struct intel_shared_dpll *pll,
3302 struct intel_dpll_hw_state *hw_state)
3304 i915_reg_t enable_reg = CNL_DPLL_ENABLE(pll->info->id);
3306 if (IS_ELKHARTLAKE(dev_priv) &&
3307 pll->info->id == DPLL_ID_EHL_DPLL4) {
3308 enable_reg = MG_PLL_ENABLE(0);
3311 return icl_pll_get_hw_state(dev_priv, pll, hw_state, enable_reg);
3314 static bool tbt_pll_get_hw_state(struct drm_i915_private *dev_priv,
3315 struct intel_shared_dpll *pll,
3316 struct intel_dpll_hw_state *hw_state)
3318 return icl_pll_get_hw_state(dev_priv, pll, hw_state, TBT_PLL_ENABLE);
3321 static void icl_dpll_write(struct drm_i915_private *dev_priv,
3322 struct intel_shared_dpll *pll)
3324 struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
3325 const enum intel_dpll_id id = pll->info->id;
3326 i915_reg_t cfgcr0_reg, cfgcr1_reg;
3328 if (INTEL_GEN(dev_priv) >= 12) {
3329 cfgcr0_reg = TGL_DPLL_CFGCR0(id);
3330 cfgcr1_reg = TGL_DPLL_CFGCR1(id);
3331 } else {
3332 if (IS_ELKHARTLAKE(dev_priv) && id == DPLL_ID_EHL_DPLL4) {
3333 cfgcr0_reg = ICL_DPLL_CFGCR0(4);
3334 cfgcr1_reg = ICL_DPLL_CFGCR1(4);
3335 } else {
3336 cfgcr0_reg = ICL_DPLL_CFGCR0(id);
3337 cfgcr1_reg = ICL_DPLL_CFGCR1(id);
3341 I915_WRITE(cfgcr0_reg, hw_state->cfgcr0);
3342 I915_WRITE(cfgcr1_reg, hw_state->cfgcr1);
3343 POSTING_READ(cfgcr1_reg);
3346 static void icl_mg_pll_write(struct drm_i915_private *dev_priv,
3347 struct intel_shared_dpll *pll)
3349 struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
3350 enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id);
3351 u32 val;
3354 * Some of the following registers have reserved fields, so program
3355 * these with RMW based on a mask. The mask can be fixed or generated
3356 * during the calc/readout phase if the mask depends on some other HW
3357 * state like refclk, see icl_calc_mg_pll_state().
3359 val = I915_READ(MG_REFCLKIN_CTL(tc_port));
3360 val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK;
3361 val |= hw_state->mg_refclkin_ctl;
3362 I915_WRITE(MG_REFCLKIN_CTL(tc_port), val);
3364 val = I915_READ(MG_CLKTOP2_CORECLKCTL1(tc_port));
3365 val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
3366 val |= hw_state->mg_clktop2_coreclkctl1;
3367 I915_WRITE(MG_CLKTOP2_CORECLKCTL1(tc_port), val);
3369 val = I915_READ(MG_CLKTOP2_HSCLKCTL(tc_port));
3370 val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
3371 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
3372 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
3373 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK);
3374 val |= hw_state->mg_clktop2_hsclkctl;
3375 I915_WRITE(MG_CLKTOP2_HSCLKCTL(tc_port), val);
3377 I915_WRITE(MG_PLL_DIV0(tc_port), hw_state->mg_pll_div0);
3378 I915_WRITE(MG_PLL_DIV1(tc_port), hw_state->mg_pll_div1);
3379 I915_WRITE(MG_PLL_LF(tc_port), hw_state->mg_pll_lf);
3380 I915_WRITE(MG_PLL_FRAC_LOCK(tc_port), hw_state->mg_pll_frac_lock);
3381 I915_WRITE(MG_PLL_SSC(tc_port), hw_state->mg_pll_ssc);
3383 val = I915_READ(MG_PLL_BIAS(tc_port));
3384 val &= ~hw_state->mg_pll_bias_mask;
3385 val |= hw_state->mg_pll_bias;
3386 I915_WRITE(MG_PLL_BIAS(tc_port), val);
3388 val = I915_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
3389 val &= ~hw_state->mg_pll_tdc_coldst_bias_mask;
3390 val |= hw_state->mg_pll_tdc_coldst_bias;
3391 I915_WRITE(MG_PLL_TDC_COLDST_BIAS(tc_port), val);
3393 POSTING_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
3396 static void dkl_pll_write(struct drm_i915_private *dev_priv,
3397 struct intel_shared_dpll *pll)
3399 struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
3400 enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id);
3401 u32 val;
3404 * All registers programmed here have the same HIP_INDEX_REG even
3405 * though on different building block
3407 I915_WRITE(HIP_INDEX_REG(tc_port), HIP_INDEX_VAL(tc_port, 0x2));
3409 /* All the registers are RMW */
3410 val = I915_READ(DKL_REFCLKIN_CTL(tc_port));
3411 val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK;
3412 val |= hw_state->mg_refclkin_ctl;
3413 I915_WRITE(DKL_REFCLKIN_CTL(tc_port), val);
3415 val = I915_READ(DKL_CLKTOP2_CORECLKCTL1(tc_port));
3416 val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
3417 val |= hw_state->mg_clktop2_coreclkctl1;
3418 I915_WRITE(DKL_CLKTOP2_CORECLKCTL1(tc_port), val);
3420 val = I915_READ(DKL_CLKTOP2_HSCLKCTL(tc_port));
3421 val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
3422 MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
3423 MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
3424 MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK);
3425 val |= hw_state->mg_clktop2_hsclkctl;
3426 I915_WRITE(DKL_CLKTOP2_HSCLKCTL(tc_port), val);
3428 val = I915_READ(DKL_PLL_DIV0(tc_port));
3429 val &= ~(DKL_PLL_DIV0_INTEG_COEFF_MASK |
3430 DKL_PLL_DIV0_PROP_COEFF_MASK |
3431 DKL_PLL_DIV0_FBPREDIV_MASK |
3432 DKL_PLL_DIV0_FBDIV_INT_MASK);
3433 val |= hw_state->mg_pll_div0;
3434 I915_WRITE(DKL_PLL_DIV0(tc_port), val);
3436 val = I915_READ(DKL_PLL_DIV1(tc_port));
3437 val &= ~(DKL_PLL_DIV1_IREF_TRIM_MASK |
3438 DKL_PLL_DIV1_TDC_TARGET_CNT_MASK);
3439 val |= hw_state->mg_pll_div1;
3440 I915_WRITE(DKL_PLL_DIV1(tc_port), val);
3442 val = I915_READ(DKL_PLL_SSC(tc_port));
3443 val &= ~(DKL_PLL_SSC_IREF_NDIV_RATIO_MASK |
3444 DKL_PLL_SSC_STEP_LEN_MASK |
3445 DKL_PLL_SSC_STEP_NUM_MASK |
3446 DKL_PLL_SSC_EN);
3447 val |= hw_state->mg_pll_ssc;
3448 I915_WRITE(DKL_PLL_SSC(tc_port), val);
3450 val = I915_READ(DKL_PLL_BIAS(tc_port));
3451 val &= ~(DKL_PLL_BIAS_FRAC_EN_H |
3452 DKL_PLL_BIAS_FBDIV_FRAC_MASK);
3453 val |= hw_state->mg_pll_bias;
3454 I915_WRITE(DKL_PLL_BIAS(tc_port), val);
3456 val = I915_READ(DKL_PLL_TDC_COLDST_BIAS(tc_port));
3457 val &= ~(DKL_PLL_TDC_SSC_STEP_SIZE_MASK |
3458 DKL_PLL_TDC_FEED_FWD_GAIN_MASK);
3459 val |= hw_state->mg_pll_tdc_coldst_bias;
3460 I915_WRITE(DKL_PLL_TDC_COLDST_BIAS(tc_port), val);
3462 POSTING_READ(DKL_PLL_TDC_COLDST_BIAS(tc_port));
3465 static void icl_pll_power_enable(struct drm_i915_private *dev_priv,
3466 struct intel_shared_dpll *pll,
3467 i915_reg_t enable_reg)
3469 u32 val;
3471 val = I915_READ(enable_reg);
3472 val |= PLL_POWER_ENABLE;
3473 I915_WRITE(enable_reg, val);
3476 * The spec says we need to "wait" but it also says it should be
3477 * immediate.
3479 if (intel_de_wait_for_set(dev_priv, enable_reg, PLL_POWER_STATE, 1))
3480 DRM_ERROR("PLL %d Power not enabled\n", pll->info->id);
3483 static void icl_pll_enable(struct drm_i915_private *dev_priv,
3484 struct intel_shared_dpll *pll,
3485 i915_reg_t enable_reg)
3487 u32 val;
3489 val = I915_READ(enable_reg);
3490 val |= PLL_ENABLE;
3491 I915_WRITE(enable_reg, val);
3493 /* Timeout is actually 600us. */
3494 if (intel_de_wait_for_set(dev_priv, enable_reg, PLL_LOCK, 1))
3495 DRM_ERROR("PLL %d not locked\n", pll->info->id);
3498 static void combo_pll_enable(struct drm_i915_private *dev_priv,
3499 struct intel_shared_dpll *pll)
3501 i915_reg_t enable_reg = CNL_DPLL_ENABLE(pll->info->id);
3503 if (IS_ELKHARTLAKE(dev_priv) &&
3504 pll->info->id == DPLL_ID_EHL_DPLL4) {
3505 enable_reg = MG_PLL_ENABLE(0);
3508 * We need to disable DC states when this DPLL is enabled.
3509 * This can be done by taking a reference on DPLL4 power
3510 * domain.
3512 pll->wakeref = intel_display_power_get(dev_priv,
3513 POWER_DOMAIN_DPLL_DC_OFF);
3516 icl_pll_power_enable(dev_priv, pll, enable_reg);
3518 icl_dpll_write(dev_priv, pll);
3521 * DVFS pre sequence would be here, but in our driver the cdclk code
3522 * paths should already be setting the appropriate voltage, hence we do
3523 * nothing here.
3526 icl_pll_enable(dev_priv, pll, enable_reg);
3528 /* DVFS post sequence would be here. See the comment above. */
3531 static void tbt_pll_enable(struct drm_i915_private *dev_priv,
3532 struct intel_shared_dpll *pll)
3534 icl_pll_power_enable(dev_priv, pll, TBT_PLL_ENABLE);
3536 icl_dpll_write(dev_priv, pll);
3539 * DVFS pre sequence would be here, but in our driver the cdclk code
3540 * paths should already be setting the appropriate voltage, hence we do
3541 * nothing here.
3544 icl_pll_enable(dev_priv, pll, TBT_PLL_ENABLE);
3546 /* DVFS post sequence would be here. See the comment above. */
3549 static void mg_pll_enable(struct drm_i915_private *dev_priv,
3550 struct intel_shared_dpll *pll)
3552 i915_reg_t enable_reg =
3553 MG_PLL_ENABLE(icl_pll_id_to_tc_port(pll->info->id));
3555 icl_pll_power_enable(dev_priv, pll, enable_reg);
3557 if (INTEL_GEN(dev_priv) >= 12)
3558 dkl_pll_write(dev_priv, pll);
3559 else
3560 icl_mg_pll_write(dev_priv, pll);
3563 * DVFS pre sequence would be here, but in our driver the cdclk code
3564 * paths should already be setting the appropriate voltage, hence we do
3565 * nothing here.
3568 icl_pll_enable(dev_priv, pll, enable_reg);
3570 /* DVFS post sequence would be here. See the comment above. */
3573 static void icl_pll_disable(struct drm_i915_private *dev_priv,
3574 struct intel_shared_dpll *pll,
3575 i915_reg_t enable_reg)
3577 u32 val;
3579 /* The first steps are done by intel_ddi_post_disable(). */
3582 * DVFS pre sequence would be here, but in our driver the cdclk code
3583 * paths should already be setting the appropriate voltage, hence we do
3584 * nothign here.
3587 val = I915_READ(enable_reg);
3588 val &= ~PLL_ENABLE;
3589 I915_WRITE(enable_reg, val);
3591 /* Timeout is actually 1us. */
3592 if (intel_de_wait_for_clear(dev_priv, enable_reg, PLL_LOCK, 1))
3593 DRM_ERROR("PLL %d locked\n", pll->info->id);
3595 /* DVFS post sequence would be here. See the comment above. */
3597 val = I915_READ(enable_reg);
3598 val &= ~PLL_POWER_ENABLE;
3599 I915_WRITE(enable_reg, val);
3602 * The spec says we need to "wait" but it also says it should be
3603 * immediate.
3605 if (intel_de_wait_for_clear(dev_priv, enable_reg, PLL_POWER_STATE, 1))
3606 DRM_ERROR("PLL %d Power not disabled\n", pll->info->id);
3609 static void combo_pll_disable(struct drm_i915_private *dev_priv,
3610 struct intel_shared_dpll *pll)
3612 i915_reg_t enable_reg = CNL_DPLL_ENABLE(pll->info->id);
3614 if (IS_ELKHARTLAKE(dev_priv) &&
3615 pll->info->id == DPLL_ID_EHL_DPLL4) {
3616 enable_reg = MG_PLL_ENABLE(0);
3617 icl_pll_disable(dev_priv, pll, enable_reg);
3619 intel_display_power_put(dev_priv, POWER_DOMAIN_DPLL_DC_OFF,
3620 pll->wakeref);
3621 return;
3624 icl_pll_disable(dev_priv, pll, enable_reg);
3627 static void tbt_pll_disable(struct drm_i915_private *dev_priv,
3628 struct intel_shared_dpll *pll)
3630 icl_pll_disable(dev_priv, pll, TBT_PLL_ENABLE);
3633 static void mg_pll_disable(struct drm_i915_private *dev_priv,
3634 struct intel_shared_dpll *pll)
3636 i915_reg_t enable_reg =
3637 MG_PLL_ENABLE(icl_pll_id_to_tc_port(pll->info->id));
3639 icl_pll_disable(dev_priv, pll, enable_reg);
3642 static void icl_dump_hw_state(struct drm_i915_private *dev_priv,
3643 const struct intel_dpll_hw_state *hw_state)
3645 DRM_DEBUG_KMS("dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, "
3646 "mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, "
3647 "mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, "
3648 "mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, "
3649 "mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, "
3650 "mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n",
3651 hw_state->cfgcr0, hw_state->cfgcr1,
3652 hw_state->mg_refclkin_ctl,
3653 hw_state->mg_clktop2_coreclkctl1,
3654 hw_state->mg_clktop2_hsclkctl,
3655 hw_state->mg_pll_div0,
3656 hw_state->mg_pll_div1,
3657 hw_state->mg_pll_lf,
3658 hw_state->mg_pll_frac_lock,
3659 hw_state->mg_pll_ssc,
3660 hw_state->mg_pll_bias,
3661 hw_state->mg_pll_tdc_coldst_bias);
3664 static const struct intel_shared_dpll_funcs combo_pll_funcs = {
3665 .enable = combo_pll_enable,
3666 .disable = combo_pll_disable,
3667 .get_hw_state = combo_pll_get_hw_state,
3670 static const struct intel_shared_dpll_funcs tbt_pll_funcs = {
3671 .enable = tbt_pll_enable,
3672 .disable = tbt_pll_disable,
3673 .get_hw_state = tbt_pll_get_hw_state,
3676 static const struct intel_shared_dpll_funcs mg_pll_funcs = {
3677 .enable = mg_pll_enable,
3678 .disable = mg_pll_disable,
3679 .get_hw_state = mg_pll_get_hw_state,
3682 static const struct dpll_info icl_plls[] = {
3683 { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
3684 { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
3685 { "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 },
3686 { "MG PLL 1", &mg_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 },
3687 { "MG PLL 2", &mg_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 },
3688 { "MG PLL 3", &mg_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 },
3689 { "MG PLL 4", &mg_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 },
3690 { },
3693 static const struct intel_dpll_mgr icl_pll_mgr = {
3694 .dpll_info = icl_plls,
3695 .get_dplls = icl_get_dplls,
3696 .put_dplls = icl_put_dplls,
3697 .update_active_dpll = icl_update_active_dpll,
3698 .dump_hw_state = icl_dump_hw_state,
3701 static const struct dpll_info ehl_plls[] = {
3702 { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
3703 { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
3704 { "DPLL 4", &combo_pll_funcs, DPLL_ID_EHL_DPLL4, 0 },
3705 { },
3708 static const struct intel_dpll_mgr ehl_pll_mgr = {
3709 .dpll_info = ehl_plls,
3710 .get_dplls = icl_get_dplls,
3711 .put_dplls = icl_put_dplls,
3712 .dump_hw_state = icl_dump_hw_state,
3715 static const struct intel_shared_dpll_funcs dkl_pll_funcs = {
3716 .enable = mg_pll_enable,
3717 .disable = mg_pll_disable,
3718 .get_hw_state = dkl_pll_get_hw_state,
3721 static const struct dpll_info tgl_plls[] = {
3722 { "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
3723 { "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
3724 { "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 },
3725 { "TC PLL 1", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 },
3726 { "TC PLL 2", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 },
3727 { "TC PLL 3", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 },
3728 { "TC PLL 4", &dkl_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 },
3729 { "TC PLL 5", &dkl_pll_funcs, DPLL_ID_TGL_MGPLL5, 0 },
3730 { "TC PLL 6", &dkl_pll_funcs, DPLL_ID_TGL_MGPLL6, 0 },
3731 { },
3734 static const struct intel_dpll_mgr tgl_pll_mgr = {
3735 .dpll_info = tgl_plls,
3736 .get_dplls = icl_get_dplls,
3737 .put_dplls = icl_put_dplls,
3738 .update_active_dpll = icl_update_active_dpll,
3739 .dump_hw_state = icl_dump_hw_state,
3743 * intel_shared_dpll_init - Initialize shared DPLLs
3744 * @dev: drm device
3746 * Initialize shared DPLLs for @dev.
3748 void intel_shared_dpll_init(struct drm_device *dev)
3750 struct drm_i915_private *dev_priv = to_i915(dev);
3751 const struct intel_dpll_mgr *dpll_mgr = NULL;
3752 const struct dpll_info *dpll_info;
3753 int i;
3755 if (INTEL_GEN(dev_priv) >= 12)
3756 dpll_mgr = &tgl_pll_mgr;
3757 else if (IS_ELKHARTLAKE(dev_priv))
3758 dpll_mgr = &ehl_pll_mgr;
3759 else if (INTEL_GEN(dev_priv) >= 11)
3760 dpll_mgr = &icl_pll_mgr;
3761 else if (IS_CANNONLAKE(dev_priv))
3762 dpll_mgr = &cnl_pll_mgr;
3763 else if (IS_GEN9_BC(dev_priv))
3764 dpll_mgr = &skl_pll_mgr;
3765 else if (IS_GEN9_LP(dev_priv))
3766 dpll_mgr = &bxt_pll_mgr;
3767 else if (HAS_DDI(dev_priv))
3768 dpll_mgr = &hsw_pll_mgr;
3769 else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
3770 dpll_mgr = &pch_pll_mgr;
3772 if (!dpll_mgr) {
3773 dev_priv->num_shared_dpll = 0;
3774 return;
3777 dpll_info = dpll_mgr->dpll_info;
3779 for (i = 0; dpll_info[i].name; i++) {
3780 WARN_ON(i != dpll_info[i].id);
3781 dev_priv->shared_dplls[i].info = &dpll_info[i];
3784 dev_priv->dpll_mgr = dpll_mgr;
3785 dev_priv->num_shared_dpll = i;
3786 mutex_init(&dev_priv->dpll_lock);
3788 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
3792 * intel_reserve_shared_dplls - reserve DPLLs for CRTC and encoder combination
3793 * @state: atomic state
3794 * @crtc: CRTC to reserve DPLLs for
3795 * @encoder: encoder
3797 * This function reserves all required DPLLs for the given CRTC and encoder
3798 * combination in the current atomic commit @state and the new @crtc atomic
3799 * state.
3801 * The new configuration in the atomic commit @state is made effective by
3802 * calling intel_shared_dpll_swap_state().
3804 * The reserved DPLLs should be released by calling
3805 * intel_release_shared_dplls().
3807 * Returns:
3808 * True if all required DPLLs were successfully reserved.
3810 bool intel_reserve_shared_dplls(struct intel_atomic_state *state,
3811 struct intel_crtc *crtc,
3812 struct intel_encoder *encoder)
3814 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3815 const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
3817 if (WARN_ON(!dpll_mgr))
3818 return false;
3820 return dpll_mgr->get_dplls(state, crtc, encoder);
3824 * intel_release_shared_dplls - end use of DPLLs by CRTC in atomic state
3825 * @state: atomic state
3826 * @crtc: crtc from which the DPLLs are to be released
3828 * This function releases all DPLLs reserved by intel_reserve_shared_dplls()
3829 * from the current atomic commit @state and the old @crtc atomic state.
3831 * The new configuration in the atomic commit @state is made effective by
3832 * calling intel_shared_dpll_swap_state().
3834 void intel_release_shared_dplls(struct intel_atomic_state *state,
3835 struct intel_crtc *crtc)
3837 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
3838 const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
3841 * FIXME: this function is called for every platform having a
3842 * compute_clock hook, even though the platform doesn't yet support
3843 * the shared DPLL framework and intel_reserve_shared_dplls() is not
3844 * called on those.
3846 if (!dpll_mgr)
3847 return;
3849 dpll_mgr->put_dplls(state, crtc);
3853 * intel_update_active_dpll - update the active DPLL for a CRTC/encoder
3854 * @state: atomic state
3855 * @crtc: the CRTC for which to update the active DPLL
3856 * @encoder: encoder determining the type of port DPLL
3858 * Update the active DPLL for the given @crtc/@encoder in @crtc's atomic state,
3859 * from the port DPLLs reserved previously by intel_reserve_shared_dplls(). The
3860 * DPLL selected will be based on the current mode of the encoder's port.
3862 void intel_update_active_dpll(struct intel_atomic_state *state,
3863 struct intel_crtc *crtc,
3864 struct intel_encoder *encoder)
3866 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3867 const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
3869 if (WARN_ON(!dpll_mgr))
3870 return;
3872 dpll_mgr->update_active_dpll(state, crtc, encoder);
3876 * intel_shared_dpll_dump_hw_state - write hw_state to dmesg
3877 * @dev_priv: i915 drm device
3878 * @hw_state: hw state to be written to the log
3880 * Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS.
3882 void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
3883 const struct intel_dpll_hw_state *hw_state)
3885 if (dev_priv->dpll_mgr) {
3886 dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state);
3887 } else {
3888 /* fallback for platforms that don't use the shared dpll
3889 * infrastructure
3891 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
3892 "fp0: 0x%x, fp1: 0x%x\n",
3893 hw_state->dpll,
3894 hw_state->dpll_md,
3895 hw_state->fp0,
3896 hw_state->fp1);