Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / display / intel_psr.c
blob89c9cf5f38d2d642009499c8e9de9c6268d78b8a
1 /*
2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 #include <drm/drm_atomic_helper.h>
26 #include "display/intel_dp.h"
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_display_types.h"
31 #include "intel_psr.h"
32 #include "intel_sprite.h"
34 /**
35 * DOC: Panel Self Refresh (PSR/SRD)
37 * Since Haswell Display controller supports Panel Self-Refresh on display
38 * panels witch have a remote frame buffer (RFB) implemented according to PSR
39 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
40 * when system is idle but display is on as it eliminates display refresh
41 * request to DDR memory completely as long as the frame buffer for that
42 * display is unchanged.
44 * Panel Self Refresh must be supported by both Hardware (source) and
45 * Panel (sink).
47 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
48 * to power down the link and memory controller. For DSI panels the same idea
49 * is called "manual mode".
51 * The implementation uses the hardware-based PSR support which automatically
52 * enters/exits self-refresh mode. The hardware takes care of sending the
53 * required DP aux message and could even retrain the link (that part isn't
54 * enabled yet though). The hardware also keeps track of any frontbuffer
55 * changes to know when to exit self-refresh mode again. Unfortunately that
56 * part doesn't work too well, hence why the i915 PSR support uses the
57 * software frontbuffer tracking to make sure it doesn't miss a screen
58 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
59 * get called by the frontbuffer tracking code. Note that because of locking
60 * issues the self-refresh re-enable code is done from a work queue, which
61 * must be correctly synchronized/cancelled when shutting down the pipe."
64 static bool psr_global_enabled(u32 debug)
66 switch (debug & I915_PSR_DEBUG_MODE_MASK) {
67 case I915_PSR_DEBUG_DEFAULT:
68 return i915_modparams.enable_psr;
69 case I915_PSR_DEBUG_DISABLE:
70 return false;
71 default:
72 return true;
76 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
77 const struct intel_crtc_state *crtc_state)
79 /* Cannot enable DSC and PSR2 simultaneously */
80 WARN_ON(crtc_state->dsc.compression_enable &&
81 crtc_state->has_psr2);
83 switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
84 case I915_PSR_DEBUG_DISABLE:
85 case I915_PSR_DEBUG_FORCE_PSR1:
86 return false;
87 default:
88 return crtc_state->has_psr2;
92 static void psr_irq_control(struct drm_i915_private *dev_priv)
94 enum transcoder trans_shift;
95 u32 mask, val;
96 i915_reg_t imr_reg;
99 * gen12+ has registers relative to transcoder and one per transcoder
100 * using the same bit definition: handle it as TRANSCODER_EDP to force
101 * 0 shift in bit definition
103 if (INTEL_GEN(dev_priv) >= 12) {
104 trans_shift = 0;
105 imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
106 } else {
107 trans_shift = dev_priv->psr.transcoder;
108 imr_reg = EDP_PSR_IMR;
111 mask = EDP_PSR_ERROR(trans_shift);
112 if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ)
113 mask |= EDP_PSR_POST_EXIT(trans_shift) |
114 EDP_PSR_PRE_ENTRY(trans_shift);
116 /* Warning: it is masking/setting reserved bits too */
117 val = I915_READ(imr_reg);
118 val &= ~EDP_PSR_TRANS_MASK(trans_shift);
119 val |= ~mask;
120 I915_WRITE(imr_reg, val);
123 static void psr_event_print(u32 val, bool psr2_enabled)
125 DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
126 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
127 DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
128 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
129 DRM_DEBUG_KMS("\tPSR2 disabled\n");
130 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
131 DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
132 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
133 DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
134 if (val & PSR_EVENT_GRAPHICS_RESET)
135 DRM_DEBUG_KMS("\tGraphics reset\n");
136 if (val & PSR_EVENT_PCH_INTERRUPT)
137 DRM_DEBUG_KMS("\tPCH interrupt\n");
138 if (val & PSR_EVENT_MEMORY_UP)
139 DRM_DEBUG_KMS("\tMemory up\n");
140 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
141 DRM_DEBUG_KMS("\tFront buffer modification\n");
142 if (val & PSR_EVENT_WD_TIMER_EXPIRE)
143 DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
144 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
145 DRM_DEBUG_KMS("\tPIPE registers updated\n");
146 if (val & PSR_EVENT_REGISTER_UPDATE)
147 DRM_DEBUG_KMS("\tRegister updated\n");
148 if (val & PSR_EVENT_HDCP_ENABLE)
149 DRM_DEBUG_KMS("\tHDCP enabled\n");
150 if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
151 DRM_DEBUG_KMS("\tKVMR session enabled\n");
152 if (val & PSR_EVENT_VBI_ENABLE)
153 DRM_DEBUG_KMS("\tVBI enabled\n");
154 if (val & PSR_EVENT_LPSP_MODE_EXIT)
155 DRM_DEBUG_KMS("\tLPSP mode exited\n");
156 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
157 DRM_DEBUG_KMS("\tPSR disabled\n");
160 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
162 enum transcoder cpu_transcoder = dev_priv->psr.transcoder;
163 enum transcoder trans_shift;
164 i915_reg_t imr_reg;
165 ktime_t time_ns = ktime_get();
167 if (INTEL_GEN(dev_priv) >= 12) {
168 trans_shift = 0;
169 imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
170 } else {
171 trans_shift = dev_priv->psr.transcoder;
172 imr_reg = EDP_PSR_IMR;
175 if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
176 dev_priv->psr.last_entry_attempt = time_ns;
177 DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
178 transcoder_name(cpu_transcoder));
181 if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
182 dev_priv->psr.last_exit = time_ns;
183 DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
184 transcoder_name(cpu_transcoder));
186 if (INTEL_GEN(dev_priv) >= 9) {
187 u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
188 bool psr2_enabled = dev_priv->psr.psr2_enabled;
190 I915_WRITE(PSR_EVENT(cpu_transcoder), val);
191 psr_event_print(val, psr2_enabled);
195 if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
196 u32 val;
198 DRM_WARN("[transcoder %s] PSR aux error\n",
199 transcoder_name(cpu_transcoder));
201 dev_priv->psr.irq_aux_error = true;
204 * If this interruption is not masked it will keep
205 * interrupting so fast that it prevents the scheduled
206 * work to run.
207 * Also after a PSR error, we don't want to arm PSR
208 * again so we don't care about unmask the interruption
209 * or unset irq_aux_error.
211 val = I915_READ(imr_reg);
212 val |= EDP_PSR_ERROR(trans_shift);
213 I915_WRITE(imr_reg, val);
215 schedule_work(&dev_priv->psr.work);
219 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
221 u8 alpm_caps = 0;
223 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
224 &alpm_caps) != 1)
225 return false;
226 return alpm_caps & DP_ALPM_CAP;
229 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
231 u8 val = 8; /* assume the worst if we can't read the value */
233 if (drm_dp_dpcd_readb(&intel_dp->aux,
234 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
235 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
236 else
237 DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
238 return val;
241 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
243 u16 val;
244 ssize_t r;
247 * Returning the default X granularity if granularity not required or
248 * if DPCD read fails
250 if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
251 return 4;
253 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
254 if (r != 2)
255 DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
258 * Spec says that if the value read is 0 the default granularity should
259 * be used instead.
261 if (r != 2 || val == 0)
262 val = 4;
264 return val;
267 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
269 struct drm_i915_private *dev_priv =
270 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
272 if (dev_priv->psr.dp) {
273 DRM_WARN("More than one eDP panel found, PSR support should be extended\n");
274 return;
277 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
278 sizeof(intel_dp->psr_dpcd));
280 if (!intel_dp->psr_dpcd[0])
281 return;
282 DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
283 intel_dp->psr_dpcd[0]);
285 if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
286 DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
287 return;
290 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
291 DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
292 return;
295 dev_priv->psr.sink_support = true;
296 dev_priv->psr.sink_sync_latency =
297 intel_dp_get_sink_sync_latency(intel_dp);
299 dev_priv->psr.dp = intel_dp;
301 if (INTEL_GEN(dev_priv) >= 9 &&
302 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
303 bool y_req = intel_dp->psr_dpcd[1] &
304 DP_PSR2_SU_Y_COORDINATE_REQUIRED;
305 bool alpm = intel_dp_get_alpm_status(intel_dp);
308 * All panels that supports PSR version 03h (PSR2 +
309 * Y-coordinate) can handle Y-coordinates in VSC but we are
310 * only sure that it is going to be used when required by the
311 * panel. This way panel is capable to do selective update
312 * without a aux frame sync.
314 * To support PSR version 02h and PSR version 03h without
315 * Y-coordinate requirement panels we would need to enable
316 * GTC first.
318 dev_priv->psr.sink_psr2_support = y_req && alpm;
319 DRM_DEBUG_KMS("PSR2 %ssupported\n",
320 dev_priv->psr.sink_psr2_support ? "" : "not ");
322 if (dev_priv->psr.sink_psr2_support) {
323 dev_priv->psr.colorimetry_support =
324 intel_dp_get_colorimetry_status(intel_dp);
325 dev_priv->psr.su_x_granularity =
326 intel_dp_get_su_x_granulartiy(intel_dp);
331 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
332 const struct intel_crtc_state *crtc_state)
334 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
335 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
336 struct dp_sdp psr_vsc;
338 if (dev_priv->psr.psr2_enabled) {
339 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
340 memset(&psr_vsc, 0, sizeof(psr_vsc));
341 psr_vsc.sdp_header.HB0 = 0;
342 psr_vsc.sdp_header.HB1 = 0x7;
343 if (dev_priv->psr.colorimetry_support) {
344 psr_vsc.sdp_header.HB2 = 0x5;
345 psr_vsc.sdp_header.HB3 = 0x13;
346 } else {
347 psr_vsc.sdp_header.HB2 = 0x4;
348 psr_vsc.sdp_header.HB3 = 0xe;
350 } else {
351 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
352 memset(&psr_vsc, 0, sizeof(psr_vsc));
353 psr_vsc.sdp_header.HB0 = 0;
354 psr_vsc.sdp_header.HB1 = 0x7;
355 psr_vsc.sdp_header.HB2 = 0x2;
356 psr_vsc.sdp_header.HB3 = 0x8;
359 intel_dig_port->write_infoframe(&intel_dig_port->base,
360 crtc_state,
361 DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
364 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
366 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
367 u32 aux_clock_divider, aux_ctl;
368 int i;
369 static const u8 aux_msg[] = {
370 [0] = DP_AUX_NATIVE_WRITE << 4,
371 [1] = DP_SET_POWER >> 8,
372 [2] = DP_SET_POWER & 0xff,
373 [3] = 1 - 1,
374 [4] = DP_SET_POWER_D0,
376 u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
377 EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
378 EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
379 EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
381 BUILD_BUG_ON(sizeof(aux_msg) > 20);
382 for (i = 0; i < sizeof(aux_msg); i += 4)
383 I915_WRITE(EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2),
384 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
386 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
388 /* Start with bits set for DDI_AUX_CTL register */
389 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
390 aux_clock_divider);
392 /* Select only valid bits for SRD_AUX_CTL */
393 aux_ctl &= psr_aux_mask;
394 I915_WRITE(EDP_PSR_AUX_CTL(dev_priv->psr.transcoder), aux_ctl);
397 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
399 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
400 u8 dpcd_val = DP_PSR_ENABLE;
402 /* Enable ALPM at sink for psr2 */
403 if (dev_priv->psr.psr2_enabled) {
404 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
405 DP_ALPM_ENABLE |
406 DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
408 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
409 } else {
410 if (dev_priv->psr.link_standby)
411 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
413 if (INTEL_GEN(dev_priv) >= 8)
414 dpcd_val |= DP_PSR_CRC_VERIFICATION;
417 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
419 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
422 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
424 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
425 u32 val = 0;
427 if (INTEL_GEN(dev_priv) >= 11)
428 val |= EDP_PSR_TP4_TIME_0US;
430 if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
431 val |= EDP_PSR_TP1_TIME_0us;
432 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
433 val |= EDP_PSR_TP1_TIME_100us;
434 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
435 val |= EDP_PSR_TP1_TIME_500us;
436 else
437 val |= EDP_PSR_TP1_TIME_2500us;
439 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
440 val |= EDP_PSR_TP2_TP3_TIME_0us;
441 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
442 val |= EDP_PSR_TP2_TP3_TIME_100us;
443 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
444 val |= EDP_PSR_TP2_TP3_TIME_500us;
445 else
446 val |= EDP_PSR_TP2_TP3_TIME_2500us;
448 if (intel_dp_source_supports_hbr2(intel_dp) &&
449 drm_dp_tps3_supported(intel_dp->dpcd))
450 val |= EDP_PSR_TP1_TP3_SEL;
451 else
452 val |= EDP_PSR_TP1_TP2_SEL;
454 return val;
457 static void hsw_activate_psr1(struct intel_dp *intel_dp)
459 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
460 u32 max_sleep_time = 0x1f;
461 u32 val = EDP_PSR_ENABLE;
463 /* Let's use 6 as the minimum to cover all known cases including the
464 * off-by-one issue that HW has in some cases.
466 int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
468 /* sink_sync_latency of 8 means source has to wait for more than 8
469 * frames, we'll go with 9 frames for now
471 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
472 val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
474 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
475 if (IS_HASWELL(dev_priv))
476 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
478 if (dev_priv->psr.link_standby)
479 val |= EDP_PSR_LINK_STANDBY;
481 val |= intel_psr1_get_tp_time(intel_dp);
483 if (INTEL_GEN(dev_priv) >= 8)
484 val |= EDP_PSR_CRC_ENABLE;
486 val |= (I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder)) &
487 EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
488 I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), val);
491 static void hsw_activate_psr2(struct intel_dp *intel_dp)
493 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
494 u32 val;
496 /* Let's use 6 as the minimum to cover all known cases including the
497 * off-by-one issue that HW has in some cases.
499 int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
501 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
502 val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
504 val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
505 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
506 val |= EDP_Y_COORDINATE_ENABLE;
508 val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
510 if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
511 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
512 val |= EDP_PSR2_TP2_TIME_50us;
513 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
514 val |= EDP_PSR2_TP2_TIME_100us;
515 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
516 val |= EDP_PSR2_TP2_TIME_500us;
517 else
518 val |= EDP_PSR2_TP2_TIME_2500us;
521 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
522 * recommending keep this bit unset while PSR2 is enabled.
524 I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), 0);
526 I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
529 static bool
530 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
532 if (INTEL_GEN(dev_priv) < 9)
533 return false;
534 else if (INTEL_GEN(dev_priv) >= 12)
535 return trans == TRANSCODER_A;
536 else
537 return trans == TRANSCODER_EDP;
540 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
542 if (!cstate || !cstate->hw.active)
543 return 0;
545 return DIV_ROUND_UP(1000 * 1000,
546 drm_mode_vrefresh(&cstate->hw.adjusted_mode));
549 static void psr2_program_idle_frames(struct drm_i915_private *dev_priv,
550 u32 idle_frames)
552 u32 val;
554 idle_frames <<= EDP_PSR2_IDLE_FRAME_SHIFT;
555 val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
556 val &= ~EDP_PSR2_IDLE_FRAME_MASK;
557 val |= idle_frames;
558 I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
561 static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv)
563 psr2_program_idle_frames(dev_priv, 0);
564 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
567 static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv)
569 int idle_frames;
571 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
573 * Restore PSR2 idle frame let's use 6 as the minimum to cover all known
574 * cases including the off-by-one issue that HW has in some cases.
576 idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
577 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
578 psr2_program_idle_frames(dev_priv, idle_frames);
581 static void tgl_dc5_idle_thread(struct work_struct *work)
583 struct drm_i915_private *dev_priv =
584 container_of(work, typeof(*dev_priv), psr.idle_work.work);
586 mutex_lock(&dev_priv->psr.lock);
587 /* If delayed work is pending, it is not idle */
588 if (delayed_work_pending(&dev_priv->psr.idle_work))
589 goto unlock;
591 DRM_DEBUG_KMS("DC5/6 idle thread\n");
592 tgl_psr2_disable_dc3co(dev_priv);
593 unlock:
594 mutex_unlock(&dev_priv->psr.lock);
597 static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv)
599 if (!dev_priv->psr.dc3co_enabled)
600 return;
602 cancel_delayed_work(&dev_priv->psr.idle_work);
603 /* Before PSR2 exit disallow dc3co*/
604 tgl_psr2_disable_dc3co(dev_priv);
607 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
608 struct intel_crtc_state *crtc_state)
610 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
611 int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
612 int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
613 int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
615 if (!dev_priv->psr.sink_psr2_support)
616 return false;
618 if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
619 DRM_DEBUG_KMS("PSR2 not supported in transcoder %s\n",
620 transcoder_name(crtc_state->cpu_transcoder));
621 return false;
625 * DSC and PSR2 cannot be enabled simultaneously. If a requested
626 * resolution requires DSC to be enabled, priority is given to DSC
627 * over PSR2.
629 if (crtc_state->dsc.compression_enable) {
630 DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
631 return false;
634 if (INTEL_GEN(dev_priv) >= 12) {
635 psr_max_h = 5120;
636 psr_max_v = 3200;
637 max_bpp = 30;
638 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
639 psr_max_h = 4096;
640 psr_max_v = 2304;
641 max_bpp = 24;
642 } else if (IS_GEN(dev_priv, 9)) {
643 psr_max_h = 3640;
644 psr_max_v = 2304;
645 max_bpp = 24;
648 if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
649 DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
650 crtc_hdisplay, crtc_vdisplay,
651 psr_max_h, psr_max_v);
652 return false;
655 if (crtc_state->pipe_bpp > max_bpp) {
656 DRM_DEBUG_KMS("PSR2 not enabled, pipe bpp %d > max supported %d\n",
657 crtc_state->pipe_bpp, max_bpp);
658 return false;
662 * HW sends SU blocks of size four scan lines, which means the starting
663 * X coordinate and Y granularity requirements will always be met. We
664 * only need to validate the SU block width is a multiple of
665 * x granularity.
667 if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
668 DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
669 crtc_hdisplay, dev_priv->psr.su_x_granularity);
670 return false;
673 if (crtc_state->crc_enabled) {
674 DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n");
675 return false;
678 return true;
681 void intel_psr_compute_config(struct intel_dp *intel_dp,
682 struct intel_crtc_state *crtc_state)
684 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
685 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
686 const struct drm_display_mode *adjusted_mode =
687 &crtc_state->hw.adjusted_mode;
688 int psr_setup_time;
690 if (!CAN_PSR(dev_priv))
691 return;
693 if (intel_dp != dev_priv->psr.dp)
694 return;
697 * HSW spec explicitly says PSR is tied to port A.
698 * BDW+ platforms have a instance of PSR registers per transcoder but
699 * for now it only supports one instance of PSR, so lets keep it
700 * hardcoded to PORT_A
702 if (dig_port->base.port != PORT_A) {
703 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
704 return;
707 if (dev_priv->psr.sink_not_reliable) {
708 DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
709 return;
712 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
713 DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n");
714 return;
717 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
718 if (psr_setup_time < 0) {
719 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
720 intel_dp->psr_dpcd[1]);
721 return;
724 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
725 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
726 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
727 psr_setup_time);
728 return;
731 crtc_state->has_psr = true;
732 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
735 static void intel_psr_activate(struct intel_dp *intel_dp)
737 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
739 if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder))
740 WARN_ON(I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE);
742 WARN_ON(I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE);
743 WARN_ON(dev_priv->psr.active);
744 lockdep_assert_held(&dev_priv->psr.lock);
746 /* psr1 and psr2 are mutually exclusive.*/
747 if (dev_priv->psr.psr2_enabled)
748 hsw_activate_psr2(intel_dp);
749 else
750 hsw_activate_psr1(intel_dp);
752 dev_priv->psr.active = true;
755 static void intel_psr_enable_source(struct intel_dp *intel_dp,
756 const struct intel_crtc_state *crtc_state)
758 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
759 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
760 u32 mask;
762 /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
763 * use hardcoded values PSR AUX transactions
765 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
766 hsw_psr_setup_aux(intel_dp);
768 if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
769 !IS_GEMINILAKE(dev_priv))) {
770 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
771 u32 chicken = I915_READ(reg);
773 chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
774 PSR2_ADD_VERTICAL_LINE_COUNT;
775 I915_WRITE(reg, chicken);
779 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
780 * mask LPSP to avoid dependency on other drivers that might block
781 * runtime_pm besides preventing other hw tracking issues now we
782 * can rely on frontbuffer tracking.
784 mask = EDP_PSR_DEBUG_MASK_MEMUP |
785 EDP_PSR_DEBUG_MASK_HPD |
786 EDP_PSR_DEBUG_MASK_LPSP |
787 EDP_PSR_DEBUG_MASK_MAX_SLEEP;
789 if (INTEL_GEN(dev_priv) < 11)
790 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
792 I915_WRITE(EDP_PSR_DEBUG(dev_priv->psr.transcoder), mask);
794 psr_irq_control(dev_priv);
797 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
798 const struct intel_crtc_state *crtc_state)
800 struct intel_dp *intel_dp = dev_priv->psr.dp;
801 u32 val;
803 WARN_ON(dev_priv->psr.enabled);
805 dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
806 dev_priv->psr.busy_frontbuffer_bits = 0;
807 dev_priv->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
808 dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
809 dev_priv->psr.dc3co_exit_delay = intel_get_frame_time_us(crtc_state);
810 dev_priv->psr.transcoder = crtc_state->cpu_transcoder;
813 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
814 * will still keep the error set even after the reset done in the
815 * irq_preinstall and irq_uninstall hooks.
816 * And enabling in this situation cause the screen to freeze in the
817 * first time that PSR HW tries to activate so lets keep PSR disabled
818 * to avoid any rendering problems.
820 if (INTEL_GEN(dev_priv) >= 12) {
821 val = I915_READ(TRANS_PSR_IIR(dev_priv->psr.transcoder));
822 val &= EDP_PSR_ERROR(0);
823 } else {
824 val = I915_READ(EDP_PSR_IIR);
825 val &= EDP_PSR_ERROR(dev_priv->psr.transcoder);
827 if (val) {
828 dev_priv->psr.sink_not_reliable = true;
829 DRM_DEBUG_KMS("PSR interruption error set, not enabling PSR\n");
830 return;
833 DRM_DEBUG_KMS("Enabling PSR%s\n",
834 dev_priv->psr.psr2_enabled ? "2" : "1");
835 intel_psr_setup_vsc(intel_dp, crtc_state);
836 intel_psr_enable_sink(intel_dp);
837 intel_psr_enable_source(intel_dp, crtc_state);
838 dev_priv->psr.enabled = true;
840 intel_psr_activate(intel_dp);
844 * intel_psr_enable - Enable PSR
845 * @intel_dp: Intel DP
846 * @crtc_state: new CRTC state
848 * This function can only be called after the pipe is fully trained and enabled.
850 void intel_psr_enable(struct intel_dp *intel_dp,
851 const struct intel_crtc_state *crtc_state)
853 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
855 if (!crtc_state->has_psr)
856 return;
858 if (WARN_ON(!CAN_PSR(dev_priv)))
859 return;
861 WARN_ON(dev_priv->drrs.dp);
863 mutex_lock(&dev_priv->psr.lock);
865 if (!psr_global_enabled(dev_priv->psr.debug)) {
866 DRM_DEBUG_KMS("PSR disabled by flag\n");
867 goto unlock;
870 intel_psr_enable_locked(dev_priv, crtc_state);
872 unlock:
873 mutex_unlock(&dev_priv->psr.lock);
876 static void intel_psr_exit(struct drm_i915_private *dev_priv)
878 u32 val;
880 if (!dev_priv->psr.active) {
881 if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) {
882 val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
883 WARN_ON(val & EDP_PSR2_ENABLE);
886 val = I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder));
887 WARN_ON(val & EDP_PSR_ENABLE);
889 return;
892 if (dev_priv->psr.psr2_enabled) {
893 tgl_disallow_dc3co_on_psr2_exit(dev_priv);
894 val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
895 WARN_ON(!(val & EDP_PSR2_ENABLE));
896 val &= ~EDP_PSR2_ENABLE;
897 I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
898 } else {
899 val = I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder));
900 WARN_ON(!(val & EDP_PSR_ENABLE));
901 val &= ~EDP_PSR_ENABLE;
902 I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), val);
904 dev_priv->psr.active = false;
907 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
909 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
910 i915_reg_t psr_status;
911 u32 psr_status_mask;
913 lockdep_assert_held(&dev_priv->psr.lock);
915 if (!dev_priv->psr.enabled)
916 return;
918 DRM_DEBUG_KMS("Disabling PSR%s\n",
919 dev_priv->psr.psr2_enabled ? "2" : "1");
921 intel_psr_exit(dev_priv);
923 if (dev_priv->psr.psr2_enabled) {
924 psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
925 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
926 } else {
927 psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder);
928 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
931 /* Wait till PSR is idle */
932 if (intel_de_wait_for_clear(dev_priv, psr_status,
933 psr_status_mask, 2000))
934 DRM_ERROR("Timed out waiting PSR idle state\n");
936 /* Disable PSR on Sink */
937 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
939 if (dev_priv->psr.psr2_enabled)
940 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
942 dev_priv->psr.enabled = false;
946 * intel_psr_disable - Disable PSR
947 * @intel_dp: Intel DP
948 * @old_crtc_state: old CRTC state
950 * This function needs to be called before disabling pipe.
952 void intel_psr_disable(struct intel_dp *intel_dp,
953 const struct intel_crtc_state *old_crtc_state)
955 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
957 if (!old_crtc_state->has_psr)
958 return;
960 if (WARN_ON(!CAN_PSR(dev_priv)))
961 return;
963 mutex_lock(&dev_priv->psr.lock);
965 intel_psr_disable_locked(intel_dp);
967 mutex_unlock(&dev_priv->psr.lock);
968 cancel_work_sync(&dev_priv->psr.work);
969 cancel_delayed_work_sync(&dev_priv->psr.idle_work);
972 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
974 if (INTEL_GEN(dev_priv) >= 9)
976 * Display WA #0884: skl+
977 * This documented WA for bxt can be safely applied
978 * broadly so we can force HW tracking to exit PSR
979 * instead of disabling and re-enabling.
980 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
981 * but it makes more sense write to the current active
982 * pipe.
984 I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
985 else
987 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
988 * on older gens so doing the manual exit instead.
990 intel_psr_exit(dev_priv);
994 * intel_psr_update - Update PSR state
995 * @intel_dp: Intel DP
996 * @crtc_state: new CRTC state
998 * This functions will update PSR states, disabling, enabling or switching PSR
999 * version when executing fastsets. For full modeset, intel_psr_disable() and
1000 * intel_psr_enable() should be called instead.
1002 void intel_psr_update(struct intel_dp *intel_dp,
1003 const struct intel_crtc_state *crtc_state)
1005 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1006 struct i915_psr *psr = &dev_priv->psr;
1007 bool enable, psr2_enable;
1009 if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
1010 return;
1012 mutex_lock(&dev_priv->psr.lock);
1014 enable = crtc_state->has_psr && psr_global_enabled(psr->debug);
1015 psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
1017 if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
1018 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1019 if (crtc_state->crc_enabled && psr->enabled)
1020 psr_force_hw_tracking_exit(dev_priv);
1021 else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1023 * Activate PSR again after a force exit when enabling
1024 * CRC in older gens
1026 if (!dev_priv->psr.active &&
1027 !dev_priv->psr.busy_frontbuffer_bits)
1028 schedule_work(&dev_priv->psr.work);
1031 goto unlock;
1034 if (psr->enabled)
1035 intel_psr_disable_locked(intel_dp);
1037 if (enable)
1038 intel_psr_enable_locked(dev_priv, crtc_state);
1040 unlock:
1041 mutex_unlock(&dev_priv->psr.lock);
1045 * intel_psr_wait_for_idle - wait for PSR1 to idle
1046 * @new_crtc_state: new CRTC state
1047 * @out_value: PSR status in case of failure
1049 * This function is expected to be called from pipe_update_start() where it is
1050 * not expected to race with PSR enable or disable.
1052 * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1054 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
1055 u32 *out_value)
1057 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1058 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1060 if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
1061 return 0;
1063 /* FIXME: Update this for PSR2 if we need to wait for idle */
1064 if (READ_ONCE(dev_priv->psr.psr2_enabled))
1065 return 0;
1068 * From bspec: Panel Self Refresh (BDW+)
1069 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1070 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1071 * defensive enough to cover everything.
1074 return __intel_wait_for_register(&dev_priv->uncore,
1075 EDP_PSR_STATUS(dev_priv->psr.transcoder),
1076 EDP_PSR_STATUS_STATE_MASK,
1077 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1078 out_value);
1081 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
1083 i915_reg_t reg;
1084 u32 mask;
1085 int err;
1087 if (!dev_priv->psr.enabled)
1088 return false;
1090 if (dev_priv->psr.psr2_enabled) {
1091 reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1092 mask = EDP_PSR2_STATUS_STATE_MASK;
1093 } else {
1094 reg = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1095 mask = EDP_PSR_STATUS_STATE_MASK;
1098 mutex_unlock(&dev_priv->psr.lock);
1100 err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1101 if (err)
1102 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
1104 /* After the unlocked wait, verify that PSR is still wanted! */
1105 mutex_lock(&dev_priv->psr.lock);
1106 return err == 0 && dev_priv->psr.enabled;
1109 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1111 struct drm_device *dev = &dev_priv->drm;
1112 struct drm_modeset_acquire_ctx ctx;
1113 struct drm_atomic_state *state;
1114 struct intel_crtc *crtc;
1115 int err;
1117 state = drm_atomic_state_alloc(dev);
1118 if (!state)
1119 return -ENOMEM;
1121 drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1122 state->acquire_ctx = &ctx;
1124 retry:
1125 for_each_intel_crtc(dev, crtc) {
1126 struct intel_crtc_state *crtc_state =
1127 intel_atomic_get_crtc_state(state, crtc);
1129 if (IS_ERR(crtc_state)) {
1130 err = PTR_ERR(crtc_state);
1131 goto error;
1134 if (crtc_state->hw.active && crtc_state->has_psr) {
1135 /* Mark mode as changed to trigger a pipe->update() */
1136 crtc_state->uapi.mode_changed = true;
1137 break;
1141 err = drm_atomic_commit(state);
1143 error:
1144 if (err == -EDEADLK) {
1145 drm_atomic_state_clear(state);
1146 err = drm_modeset_backoff(&ctx);
1147 if (!err)
1148 goto retry;
1151 drm_modeset_drop_locks(&ctx);
1152 drm_modeset_acquire_fini(&ctx);
1153 drm_atomic_state_put(state);
1155 return err;
1158 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1160 const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1161 u32 old_mode;
1162 int ret;
1164 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1165 mode > I915_PSR_DEBUG_FORCE_PSR1) {
1166 DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
1167 return -EINVAL;
1170 ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1171 if (ret)
1172 return ret;
1174 old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1175 dev_priv->psr.debug = val;
1178 * Do it right away if it's already enabled, otherwise it will be done
1179 * when enabling the source.
1181 if (dev_priv->psr.enabled)
1182 psr_irq_control(dev_priv);
1184 mutex_unlock(&dev_priv->psr.lock);
1186 if (old_mode != mode)
1187 ret = intel_psr_fastset_force(dev_priv);
1189 return ret;
1192 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1194 struct i915_psr *psr = &dev_priv->psr;
1196 intel_psr_disable_locked(psr->dp);
1197 psr->sink_not_reliable = true;
1198 /* let's make sure that sink is awaken */
1199 drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1202 static void intel_psr_work(struct work_struct *work)
1204 struct drm_i915_private *dev_priv =
1205 container_of(work, typeof(*dev_priv), psr.work);
1207 mutex_lock(&dev_priv->psr.lock);
1209 if (!dev_priv->psr.enabled)
1210 goto unlock;
1212 if (READ_ONCE(dev_priv->psr.irq_aux_error))
1213 intel_psr_handle_irq(dev_priv);
1216 * We have to make sure PSR is ready for re-enable
1217 * otherwise it keeps disabled until next full enable/disable cycle.
1218 * PSR might take some time to get fully disabled
1219 * and be ready for re-enable.
1221 if (!__psr_wait_for_idle_locked(dev_priv))
1222 goto unlock;
1225 * The delayed work can race with an invalidate hence we need to
1226 * recheck. Since psr_flush first clears this and then reschedules we
1227 * won't ever miss a flush when bailing out here.
1229 if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1230 goto unlock;
1232 intel_psr_activate(dev_priv->psr.dp);
1233 unlock:
1234 mutex_unlock(&dev_priv->psr.lock);
1238 * intel_psr_invalidate - Invalidade PSR
1239 * @dev_priv: i915 device
1240 * @frontbuffer_bits: frontbuffer plane tracking bits
1241 * @origin: which operation caused the invalidate
1243 * Since the hardware frontbuffer tracking has gaps we need to integrate
1244 * with the software frontbuffer tracking. This function gets called every
1245 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1246 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1248 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1250 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1251 unsigned frontbuffer_bits, enum fb_op_origin origin)
1253 if (!CAN_PSR(dev_priv))
1254 return;
1256 if (origin == ORIGIN_FLIP)
1257 return;
1259 mutex_lock(&dev_priv->psr.lock);
1260 if (!dev_priv->psr.enabled) {
1261 mutex_unlock(&dev_priv->psr.lock);
1262 return;
1265 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1266 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1268 if (frontbuffer_bits)
1269 intel_psr_exit(dev_priv);
1271 mutex_unlock(&dev_priv->psr.lock);
1275 * When we will be completely rely on PSR2 S/W tracking in future,
1276 * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1277 * event also therefore tgl_dc3co_flush() require to be changed
1278 * accrodingly in future.
1280 static void
1281 tgl_dc3co_flush(struct drm_i915_private *dev_priv,
1282 unsigned int frontbuffer_bits, enum fb_op_origin origin)
1284 u32 delay;
1286 mutex_lock(&dev_priv->psr.lock);
1288 if (!dev_priv->psr.dc3co_enabled)
1289 goto unlock;
1291 if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active)
1292 goto unlock;
1295 * At every frontbuffer flush flip event modified delay of delayed work,
1296 * when delayed work schedules that means display has been idle.
1298 if (!(frontbuffer_bits &
1299 INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe)))
1300 goto unlock;
1302 tgl_psr2_enable_dc3co(dev_priv);
1303 /* DC5/DC6 required idle frames = 6 */
1304 delay = 6 * dev_priv->psr.dc3co_exit_delay;
1305 mod_delayed_work(system_wq, &dev_priv->psr.idle_work,
1306 usecs_to_jiffies(delay));
1308 unlock:
1309 mutex_unlock(&dev_priv->psr.lock);
1313 * intel_psr_flush - Flush PSR
1314 * @dev_priv: i915 device
1315 * @frontbuffer_bits: frontbuffer plane tracking bits
1316 * @origin: which operation caused the flush
1318 * Since the hardware frontbuffer tracking has gaps we need to integrate
1319 * with the software frontbuffer tracking. This function gets called every
1320 * time frontbuffer rendering has completed and flushed out to memory. PSR
1321 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1323 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1325 void intel_psr_flush(struct drm_i915_private *dev_priv,
1326 unsigned frontbuffer_bits, enum fb_op_origin origin)
1328 if (!CAN_PSR(dev_priv))
1329 return;
1331 if (origin == ORIGIN_FLIP) {
1332 tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin);
1333 return;
1336 mutex_lock(&dev_priv->psr.lock);
1337 if (!dev_priv->psr.enabled) {
1338 mutex_unlock(&dev_priv->psr.lock);
1339 return;
1342 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1343 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1345 /* By definition flush = invalidate + flush */
1346 if (frontbuffer_bits)
1347 psr_force_hw_tracking_exit(dev_priv);
1349 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1350 schedule_work(&dev_priv->psr.work);
1351 mutex_unlock(&dev_priv->psr.lock);
1355 * intel_psr_init - Init basic PSR work and mutex.
1356 * @dev_priv: i915 device private
1358 * This function is called only once at driver load to initialize basic
1359 * PSR stuff.
1361 void intel_psr_init(struct drm_i915_private *dev_priv)
1363 if (!HAS_PSR(dev_priv))
1364 return;
1366 if (!dev_priv->psr.sink_support)
1367 return;
1369 if (IS_HASWELL(dev_priv))
1371 * HSW don't have PSR registers on the same space as transcoder
1372 * so set this to a value that when subtract to the register
1373 * in transcoder space results in the right offset for HSW
1375 dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1377 if (i915_modparams.enable_psr == -1)
1378 if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1379 i915_modparams.enable_psr = 0;
1381 /* Set link_standby x link_off defaults */
1382 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1383 /* HSW and BDW require workarounds that we don't implement. */
1384 dev_priv->psr.link_standby = false;
1385 else if (INTEL_GEN(dev_priv) < 12)
1386 /* For new platforms up to TGL let's respect VBT back again */
1387 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1389 INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1390 INIT_DELAYED_WORK(&dev_priv->psr.idle_work, tgl_dc5_idle_thread);
1391 mutex_init(&dev_priv->psr.lock);
1394 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1395 u8 *status, u8 *error_status)
1397 struct drm_dp_aux *aux = &intel_dp->aux;
1398 int ret;
1400 ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1401 if (ret != 1)
1402 return ret;
1404 ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1405 if (ret != 1)
1406 return ret;
1408 *status = *status & DP_PSR_SINK_STATE_MASK;
1410 return 0;
1413 static void psr_alpm_check(struct intel_dp *intel_dp)
1415 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1416 struct drm_dp_aux *aux = &intel_dp->aux;
1417 struct i915_psr *psr = &dev_priv->psr;
1418 u8 val;
1419 int r;
1421 if (!psr->psr2_enabled)
1422 return;
1424 r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1425 if (r != 1) {
1426 DRM_ERROR("Error reading ALPM status\n");
1427 return;
1430 if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1431 intel_psr_disable_locked(intel_dp);
1432 psr->sink_not_reliable = true;
1433 DRM_DEBUG_KMS("ALPM lock timeout error, disabling PSR\n");
1435 /* Clearing error */
1436 drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1440 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1442 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1443 struct i915_psr *psr = &dev_priv->psr;
1444 u8 val;
1445 int r;
1447 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
1448 if (r != 1) {
1449 DRM_ERROR("Error reading DP_PSR_ESI\n");
1450 return;
1453 if (val & DP_PSR_CAPS_CHANGE) {
1454 intel_psr_disable_locked(intel_dp);
1455 psr->sink_not_reliable = true;
1456 DRM_DEBUG_KMS("Sink PSR capability changed, disabling PSR\n");
1458 /* Clearing it */
1459 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
1463 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1465 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1466 struct i915_psr *psr = &dev_priv->psr;
1467 u8 status, error_status;
1468 const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1469 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1470 DP_PSR_LINK_CRC_ERROR;
1472 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1473 return;
1475 mutex_lock(&psr->lock);
1477 if (!psr->enabled || psr->dp != intel_dp)
1478 goto exit;
1480 if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
1481 DRM_ERROR("Error reading PSR status or error status\n");
1482 goto exit;
1485 if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
1486 intel_psr_disable_locked(intel_dp);
1487 psr->sink_not_reliable = true;
1490 if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
1491 DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1492 if (error_status & DP_PSR_RFB_STORAGE_ERROR)
1493 DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1494 if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1495 DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1496 if (error_status & DP_PSR_LINK_CRC_ERROR)
1497 DRM_DEBUG_KMS("PSR Link CRC error, disabling PSR\n");
1499 if (error_status & ~errors)
1500 DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1501 error_status & ~errors);
1502 /* clear status register */
1503 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
1505 psr_alpm_check(intel_dp);
1506 psr_capability_changed_check(intel_dp);
1508 exit:
1509 mutex_unlock(&psr->lock);
1512 bool intel_psr_enabled(struct intel_dp *intel_dp)
1514 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1515 bool ret;
1517 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1518 return false;
1520 mutex_lock(&dev_priv->psr.lock);
1521 ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1522 mutex_unlock(&dev_priv->psr.lock);
1524 return ret;
1527 void intel_psr_atomic_check(struct drm_connector *connector,
1528 struct drm_connector_state *old_state,
1529 struct drm_connector_state *new_state)
1531 struct drm_i915_private *dev_priv = to_i915(connector->dev);
1532 struct intel_connector *intel_connector;
1533 struct intel_digital_port *dig_port;
1534 struct drm_crtc_state *crtc_state;
1536 if (!CAN_PSR(dev_priv) || !new_state->crtc ||
1537 dev_priv->psr.initially_probed)
1538 return;
1540 intel_connector = to_intel_connector(connector);
1541 dig_port = enc_to_dig_port(intel_connector->encoder);
1542 if (dev_priv->psr.dp != &dig_port->dp)
1543 return;
1545 crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
1546 new_state->crtc);
1547 crtc_state->mode_changed = true;
1548 dev_priv->psr.initially_probed = true;