Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
blobf451ef376548e19207233333d4231fcab2364624
1 /*
2 * Copyright © 2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <drm/drm_print.h>
27 #include "gem/i915_gem_context.h"
29 #include "i915_drv.h"
31 #include "intel_context.h"
32 #include "intel_engine.h"
33 #include "intel_engine_pm.h"
34 #include "intel_engine_pool.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_lrc.h"
39 #include "intel_reset.h"
40 #include "intel_ring.h"
42 /* Haswell does have the CXT_SIZE register however it does not appear to be
43 * valid. Now, docs explain in dwords what is in the context object. The full
44 * size is 70720 bytes, however, the power context and execlist context will
45 * never be saved (power context is stored elsewhere, and execlists don't work
46 * on HSW) - so the final size, including the extra state required for the
47 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
51 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
52 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
53 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
54 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE)
55 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
57 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
59 #define MAX_MMIO_BASES 3
60 struct engine_info {
61 unsigned int hw_id;
62 u8 class;
63 u8 instance;
64 /* mmio bases table *must* be sorted in reverse gen order */
65 struct engine_mmio_base {
66 u32 gen : 8;
67 u32 base : 24;
68 } mmio_bases[MAX_MMIO_BASES];
71 static const struct engine_info intel_engines[] = {
72 [RCS0] = {
73 .hw_id = RCS0_HW,
74 .class = RENDER_CLASS,
75 .instance = 0,
76 .mmio_bases = {
77 { .gen = 1, .base = RENDER_RING_BASE }
80 [BCS0] = {
81 .hw_id = BCS0_HW,
82 .class = COPY_ENGINE_CLASS,
83 .instance = 0,
84 .mmio_bases = {
85 { .gen = 6, .base = BLT_RING_BASE }
88 [VCS0] = {
89 .hw_id = VCS0_HW,
90 .class = VIDEO_DECODE_CLASS,
91 .instance = 0,
92 .mmio_bases = {
93 { .gen = 11, .base = GEN11_BSD_RING_BASE },
94 { .gen = 6, .base = GEN6_BSD_RING_BASE },
95 { .gen = 4, .base = BSD_RING_BASE }
98 [VCS1] = {
99 .hw_id = VCS1_HW,
100 .class = VIDEO_DECODE_CLASS,
101 .instance = 1,
102 .mmio_bases = {
103 { .gen = 11, .base = GEN11_BSD2_RING_BASE },
104 { .gen = 8, .base = GEN8_BSD2_RING_BASE }
107 [VCS2] = {
108 .hw_id = VCS2_HW,
109 .class = VIDEO_DECODE_CLASS,
110 .instance = 2,
111 .mmio_bases = {
112 { .gen = 11, .base = GEN11_BSD3_RING_BASE }
115 [VCS3] = {
116 .hw_id = VCS3_HW,
117 .class = VIDEO_DECODE_CLASS,
118 .instance = 3,
119 .mmio_bases = {
120 { .gen = 11, .base = GEN11_BSD4_RING_BASE }
123 [VECS0] = {
124 .hw_id = VECS0_HW,
125 .class = VIDEO_ENHANCEMENT_CLASS,
126 .instance = 0,
127 .mmio_bases = {
128 { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
129 { .gen = 7, .base = VEBOX_RING_BASE }
132 [VECS1] = {
133 .hw_id = VECS1_HW,
134 .class = VIDEO_ENHANCEMENT_CLASS,
135 .instance = 1,
136 .mmio_bases = {
137 { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
143 * intel_engine_context_size() - return the size of the context for an engine
144 * @gt: the gt
145 * @class: engine class
147 * Each engine class may require a different amount of space for a context
148 * image.
150 * Return: size (in bytes) of an engine class specific context image
152 * Note: this size includes the HWSP, which is part of the context image
153 * in LRC mode, but does not include the "shared data page" used with
154 * GuC submission. The caller should account for this if using the GuC.
156 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 struct intel_uncore *uncore = gt->uncore;
159 u32 cxt_size;
161 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163 switch (class) {
164 case RENDER_CLASS:
165 switch (INTEL_GEN(gt->i915)) {
166 default:
167 MISSING_CASE(INTEL_GEN(gt->i915));
168 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169 case 12:
170 case 11:
171 return GEN11_LR_CONTEXT_RENDER_SIZE;
172 case 10:
173 return GEN10_LR_CONTEXT_RENDER_SIZE;
174 case 9:
175 return GEN9_LR_CONTEXT_RENDER_SIZE;
176 case 8:
177 return GEN8_LR_CONTEXT_RENDER_SIZE;
178 case 7:
179 if (IS_HASWELL(gt->i915))
180 return HSW_CXT_TOTAL_SIZE;
182 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
184 PAGE_SIZE);
185 case 6:
186 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
188 PAGE_SIZE);
189 case 5:
190 case 4:
192 * There is a discrepancy here between the size reported
193 * by the register and the size of the context layout
194 * in the docs. Both are described as authorative!
196 * The discrepancy is on the order of a few cachelines,
197 * but the total is under one page (4k), which is our
198 * minimum allocation anyway so it should all come
199 * out in the wash.
201 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202 DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
203 INTEL_GEN(gt->i915),
204 cxt_size * 64,
205 cxt_size - 1);
206 return round_up(cxt_size * 64, PAGE_SIZE);
207 case 3:
208 case 2:
209 /* For the special day when i810 gets merged. */
210 case 1:
211 return 0;
213 break;
214 default:
215 MISSING_CASE(class);
216 /* fall through */
217 case VIDEO_DECODE_CLASS:
218 case VIDEO_ENHANCEMENT_CLASS:
219 case COPY_ENGINE_CLASS:
220 if (INTEL_GEN(gt->i915) < 8)
221 return 0;
222 return GEN8_LR_CONTEXT_OTHER_SIZE;
226 static u32 __engine_mmio_base(struct drm_i915_private *i915,
227 const struct engine_mmio_base *bases)
229 int i;
231 for (i = 0; i < MAX_MMIO_BASES; i++)
232 if (INTEL_GEN(i915) >= bases[i].gen)
233 break;
235 GEM_BUG_ON(i == MAX_MMIO_BASES);
236 GEM_BUG_ON(!bases[i].base);
238 return bases[i].base;
241 static void __sprint_engine_name(struct intel_engine_cs *engine)
244 * Before we know what the uABI name for this engine will be,
245 * we still would like to keep track of this engine in the debug logs.
246 * We throw in a ' here as a reminder that this isn't its final name.
248 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
249 intel_engine_class_repr(engine->class),
250 engine->instance) >= sizeof(engine->name));
253 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
256 * Though they added more rings on g4x/ilk, they did not add
257 * per-engine HWSTAM until gen6.
259 if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260 return;
262 if (INTEL_GEN(engine->i915) >= 3)
263 ENGINE_WRITE(engine, RING_HWSTAM, mask);
264 else
265 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
268 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 /* Mask off all writes into the unknown HWSP */
271 intel_engine_set_hwsp_writemask(engine, ~0u);
274 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 const struct engine_info *info = &intel_engines[id];
277 struct intel_engine_cs *engine;
279 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
280 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
282 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
283 return -EINVAL;
285 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
286 return -EINVAL;
288 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
289 return -EINVAL;
291 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
292 return -EINVAL;
294 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
295 if (!engine)
296 return -ENOMEM;
298 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
300 engine->id = id;
301 engine->legacy_idx = INVALID_ENGINE;
302 engine->mask = BIT(id);
303 engine->i915 = gt->i915;
304 engine->gt = gt;
305 engine->uncore = gt->uncore;
306 engine->hw_id = engine->guc_id = info->hw_id;
307 engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
309 engine->class = info->class;
310 engine->instance = info->instance;
311 __sprint_engine_name(engine);
313 engine->props.heartbeat_interval_ms =
314 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
315 engine->props.preempt_timeout_ms =
316 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
317 engine->props.stop_timeout_ms =
318 CONFIG_DRM_I915_STOP_TIMEOUT;
319 engine->props.timeslice_duration_ms =
320 CONFIG_DRM_I915_TIMESLICE_DURATION;
322 engine->context_size = intel_engine_context_size(gt, engine->class);
323 if (WARN_ON(engine->context_size > BIT(20)))
324 engine->context_size = 0;
325 if (engine->context_size)
326 DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
328 /* Nothing to do here, execute in order of dependencies */
329 engine->schedule = NULL;
331 ewma__engine_latency_init(&engine->latency);
332 seqlock_init(&engine->stats.lock);
334 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
336 /* Scrub mmio state on takeover */
337 intel_engine_sanitize_mmio(engine);
339 gt->engine_class[info->class][info->instance] = engine;
340 gt->engine[id] = engine;
342 gt->i915->engine[id] = engine;
344 return 0;
347 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
349 struct drm_i915_private *i915 = engine->i915;
351 if (engine->class == VIDEO_DECODE_CLASS) {
353 * HEVC support is present on first engine instance
354 * before Gen11 and on all instances afterwards.
356 if (INTEL_GEN(i915) >= 11 ||
357 (INTEL_GEN(i915) >= 9 && engine->instance == 0))
358 engine->uabi_capabilities |=
359 I915_VIDEO_CLASS_CAPABILITY_HEVC;
362 * SFC block is present only on even logical engine
363 * instances.
365 if ((INTEL_GEN(i915) >= 11 &&
366 RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
367 (INTEL_GEN(i915) >= 9 && engine->instance == 0))
368 engine->uabi_capabilities |=
369 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
370 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
371 if (INTEL_GEN(i915) >= 9)
372 engine->uabi_capabilities |=
373 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
377 static void intel_setup_engine_capabilities(struct intel_gt *gt)
379 struct intel_engine_cs *engine;
380 enum intel_engine_id id;
382 for_each_engine(engine, gt, id)
383 __setup_engine_capabilities(engine);
387 * intel_engines_release() - free the resources allocated for Command Streamers
388 * @gt: pointer to struct intel_gt
390 void intel_engines_release(struct intel_gt *gt)
392 struct intel_engine_cs *engine;
393 enum intel_engine_id id;
395 /* Decouple the backend; but keep the layout for late GPU resets */
396 for_each_engine(engine, gt, id) {
397 if (!engine->release)
398 continue;
400 engine->release(engine);
401 engine->release = NULL;
403 memset(&engine->reset, 0, sizeof(engine->reset));
405 gt->i915->engine[id] = NULL;
409 void intel_engines_free(struct intel_gt *gt)
411 struct intel_engine_cs *engine;
412 enum intel_engine_id id;
414 for_each_engine(engine, gt, id) {
415 kfree(engine);
416 gt->engine[id] = NULL;
421 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
422 * @gt: pointer to struct intel_gt
424 * Return: non-zero if the initialization failed.
426 int intel_engines_init_mmio(struct intel_gt *gt)
428 struct drm_i915_private *i915 = gt->i915;
429 struct intel_device_info *device_info = mkwrite_device_info(i915);
430 const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
431 unsigned int mask = 0;
432 unsigned int i;
433 int err;
435 WARN_ON(engine_mask == 0);
436 WARN_ON(engine_mask &
437 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
439 if (i915_inject_probe_failure(i915))
440 return -ENODEV;
442 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
443 if (!HAS_ENGINE(i915, i))
444 continue;
446 err = intel_engine_setup(gt, i);
447 if (err)
448 goto cleanup;
450 mask |= BIT(i);
454 * Catch failures to update intel_engines table when the new engines
455 * are added to the driver by a warning and disabling the forgotten
456 * engines.
458 if (WARN_ON(mask != engine_mask))
459 device_info->engine_mask = mask;
461 RUNTIME_INFO(i915)->num_engines = hweight32(mask);
463 intel_gt_check_and_clear_faults(gt);
465 intel_setup_engine_capabilities(gt);
467 return 0;
469 cleanup:
470 intel_engines_free(gt);
471 return err;
474 void intel_engine_init_execlists(struct intel_engine_cs *engine)
476 struct intel_engine_execlists * const execlists = &engine->execlists;
478 execlists->port_mask = 1;
479 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
480 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
482 memset(execlists->pending, 0, sizeof(execlists->pending));
483 execlists->active =
484 memset(execlists->inflight, 0, sizeof(execlists->inflight));
486 execlists->queue_priority_hint = INT_MIN;
487 execlists->queue = RB_ROOT_CACHED;
490 static void cleanup_status_page(struct intel_engine_cs *engine)
492 struct i915_vma *vma;
494 /* Prevent writes into HWSP after returning the page to the system */
495 intel_engine_set_hwsp_writemask(engine, ~0u);
497 vma = fetch_and_zero(&engine->status_page.vma);
498 if (!vma)
499 return;
501 if (!HWS_NEEDS_PHYSICAL(engine->i915))
502 i915_vma_unpin(vma);
504 i915_gem_object_unpin_map(vma->obj);
505 i915_gem_object_put(vma->obj);
508 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
509 struct i915_vma *vma)
511 unsigned int flags;
513 flags = PIN_GLOBAL;
514 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
516 * On g33, we cannot place HWS above 256MiB, so
517 * restrict its pinning to the low mappable arena.
518 * Though this restriction is not documented for
519 * gen4, gen5, or byt, they also behave similarly
520 * and hang if the HWS is placed at the top of the
521 * GTT. To generalise, it appears that all !llc
522 * platforms have issues with us placing the HWS
523 * above the mappable region (even though we never
524 * actually map it).
526 flags |= PIN_MAPPABLE;
527 else
528 flags |= PIN_HIGH;
530 return i915_vma_pin(vma, 0, 0, flags);
533 static int init_status_page(struct intel_engine_cs *engine)
535 struct drm_i915_gem_object *obj;
536 struct i915_vma *vma;
537 void *vaddr;
538 int ret;
541 * Though the HWS register does support 36bit addresses, historically
542 * we have had hangs and corruption reported due to wild writes if
543 * the HWS is placed above 4G. We only allow objects to be allocated
544 * in GFP_DMA32 for i965, and no earlier physical address users had
545 * access to more than 4G.
547 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
548 if (IS_ERR(obj)) {
549 DRM_ERROR("Failed to allocate status page\n");
550 return PTR_ERR(obj);
553 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
555 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
556 if (IS_ERR(vma)) {
557 ret = PTR_ERR(vma);
558 goto err;
561 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
562 if (IS_ERR(vaddr)) {
563 ret = PTR_ERR(vaddr);
564 goto err;
567 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
568 engine->status_page.vma = vma;
570 if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
571 ret = pin_ggtt_status_page(engine, vma);
572 if (ret)
573 goto err_unpin;
576 return 0;
578 err_unpin:
579 i915_gem_object_unpin_map(obj);
580 err:
581 i915_gem_object_put(obj);
582 return ret;
585 static int engine_setup_common(struct intel_engine_cs *engine)
587 int err;
589 init_llist_head(&engine->barrier_tasks);
591 err = init_status_page(engine);
592 if (err)
593 return err;
595 intel_engine_init_active(engine, ENGINE_PHYSICAL);
596 intel_engine_init_breadcrumbs(engine);
597 intel_engine_init_execlists(engine);
598 intel_engine_init_cmd_parser(engine);
599 intel_engine_init__pm(engine);
600 intel_engine_init_retire(engine);
602 intel_engine_pool_init(&engine->pool);
604 /* Use the whole device by default */
605 engine->sseu =
606 intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
608 intel_engine_init_workarounds(engine);
609 intel_engine_init_whitelist(engine);
610 intel_engine_init_ctx_wa(engine);
612 return 0;
615 struct measure_breadcrumb {
616 struct i915_request rq;
617 struct intel_timeline timeline;
618 struct intel_ring ring;
619 u32 cs[1024];
622 static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
624 struct measure_breadcrumb *frame;
625 int dw = -ENOMEM;
627 GEM_BUG_ON(!engine->gt->scratch);
629 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
630 if (!frame)
631 return -ENOMEM;
633 if (intel_timeline_init(&frame->timeline,
634 engine->gt,
635 engine->status_page.vma))
636 goto out_frame;
638 mutex_lock(&frame->timeline.mutex);
640 frame->ring.vaddr = frame->cs;
641 frame->ring.size = sizeof(frame->cs);
642 frame->ring.effective_size = frame->ring.size;
643 intel_ring_update_space(&frame->ring);
645 frame->rq.i915 = engine->i915;
646 frame->rq.engine = engine;
647 frame->rq.ring = &frame->ring;
648 rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
650 dw = intel_timeline_pin(&frame->timeline);
651 if (dw < 0)
652 goto out_timeline;
654 spin_lock_irq(&engine->active.lock);
655 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
656 spin_unlock_irq(&engine->active.lock);
658 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
660 intel_timeline_unpin(&frame->timeline);
662 out_timeline:
663 mutex_unlock(&frame->timeline.mutex);
664 intel_timeline_fini(&frame->timeline);
665 out_frame:
666 kfree(frame);
667 return dw;
670 void
671 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
673 INIT_LIST_HEAD(&engine->active.requests);
675 spin_lock_init(&engine->active.lock);
676 lockdep_set_subclass(&engine->active.lock, subclass);
679 * Due to an interesting quirk in lockdep's internal debug tracking,
680 * after setting a subclass we must ensure the lock is used. Otherwise,
681 * nr_unused_locks is incremented once too often.
683 #ifdef CONFIG_DEBUG_LOCK_ALLOC
684 local_irq_disable();
685 lock_map_acquire(&engine->active.lock.dep_map);
686 lock_map_release(&engine->active.lock.dep_map);
687 local_irq_enable();
688 #endif
691 static struct intel_context *
692 create_kernel_context(struct intel_engine_cs *engine)
694 static struct lock_class_key kernel;
695 struct intel_context *ce;
696 int err;
698 ce = intel_context_create(engine);
699 if (IS_ERR(ce))
700 return ce;
702 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
704 err = intel_context_pin(ce); /* perma-pin so it is always available */
705 if (err) {
706 intel_context_put(ce);
707 return ERR_PTR(err);
711 * Give our perma-pinned kernel timelines a separate lockdep class,
712 * so that we can use them from within the normal user timelines
713 * should we need to inject GPU operations during their request
714 * construction.
716 lockdep_set_class(&ce->timeline->mutex, &kernel);
718 return ce;
722 * intel_engines_init_common - initialize cengine state which might require hw access
723 * @engine: Engine to initialize.
725 * Initializes @engine@ structure members shared between legacy and execlists
726 * submission modes which do require hardware access.
728 * Typcally done at later stages of submission mode specific engine setup.
730 * Returns zero on success or an error code on failure.
732 static int engine_init_common(struct intel_engine_cs *engine)
734 struct intel_context *ce;
735 int ret;
737 engine->set_default_submission(engine);
739 ret = measure_breadcrumb_dw(engine);
740 if (ret < 0)
741 return ret;
743 engine->emit_fini_breadcrumb_dw = ret;
746 * We may need to do things with the shrinker which
747 * require us to immediately switch back to the default
748 * context. This can cause a problem as pinning the
749 * default context also requires GTT space which may not
750 * be available. To avoid this we always pin the default
751 * context.
753 ce = create_kernel_context(engine);
754 if (IS_ERR(ce))
755 return PTR_ERR(ce);
757 engine->kernel_context = ce;
759 return 0;
762 int intel_engines_init(struct intel_gt *gt)
764 int (*setup)(struct intel_engine_cs *engine);
765 struct intel_engine_cs *engine;
766 enum intel_engine_id id;
767 int err;
769 if (HAS_EXECLISTS(gt->i915))
770 setup = intel_execlists_submission_setup;
771 else
772 setup = intel_ring_submission_setup;
774 for_each_engine(engine, gt, id) {
775 err = engine_setup_common(engine);
776 if (err)
777 return err;
779 err = setup(engine);
780 if (err)
781 return err;
783 err = engine_init_common(engine);
784 if (err)
785 return err;
787 intel_engine_add_user(engine);
790 return 0;
794 * intel_engines_cleanup_common - cleans up the engine state created by
795 * the common initiailizers.
796 * @engine: Engine to cleanup.
798 * This cleans up everything created by the common helpers.
800 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
802 GEM_BUG_ON(!list_empty(&engine->active.requests));
803 tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
805 cleanup_status_page(engine);
807 intel_engine_fini_retire(engine);
808 intel_engine_pool_fini(&engine->pool);
809 intel_engine_fini_breadcrumbs(engine);
810 intel_engine_cleanup_cmd_parser(engine);
812 if (engine->default_state)
813 i915_gem_object_put(engine->default_state);
815 if (engine->kernel_context) {
816 intel_context_unpin(engine->kernel_context);
817 intel_context_put(engine->kernel_context);
819 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
821 intel_wa_list_free(&engine->ctx_wa_list);
822 intel_wa_list_free(&engine->wa_list);
823 intel_wa_list_free(&engine->whitelist);
826 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
828 struct drm_i915_private *i915 = engine->i915;
830 u64 acthd;
832 if (INTEL_GEN(i915) >= 8)
833 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
834 else if (INTEL_GEN(i915) >= 4)
835 acthd = ENGINE_READ(engine, RING_ACTHD);
836 else
837 acthd = ENGINE_READ(engine, ACTHD);
839 return acthd;
842 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
844 u64 bbaddr;
846 if (INTEL_GEN(engine->i915) >= 8)
847 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
848 else
849 bbaddr = ENGINE_READ(engine, RING_BBADDR);
851 return bbaddr;
854 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
856 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
857 return 0;
860 * If we are doing a normal GPU reset, we can take our time and allow
861 * the engine to quiesce. We've stopped submission to the engine, and
862 * if we wait long enough an innocent context should complete and
863 * leave the engine idle. So they should not be caught unaware by
864 * the forthcoming GPU reset (which usually follows the stop_cs)!
866 return READ_ONCE(engine->props.stop_timeout_ms);
869 int intel_engine_stop_cs(struct intel_engine_cs *engine)
871 struct intel_uncore *uncore = engine->uncore;
872 const u32 base = engine->mmio_base;
873 const i915_reg_t mode = RING_MI_MODE(base);
874 int err;
876 if (INTEL_GEN(engine->i915) < 3)
877 return -ENODEV;
879 ENGINE_TRACE(engine, "\n");
881 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
883 err = 0;
884 if (__intel_wait_for_register_fw(uncore,
885 mode, MODE_IDLE, MODE_IDLE,
886 1000, stop_timeout(engine),
887 NULL)) {
888 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
889 err = -ETIMEDOUT;
892 /* A final mmio read to let GPU writes be hopefully flushed to memory */
893 intel_uncore_posting_read_fw(uncore, mode);
895 return err;
898 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
900 ENGINE_TRACE(engine, "\n");
902 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
905 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
907 switch (type) {
908 case I915_CACHE_NONE: return " uncached";
909 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
910 case I915_CACHE_L3_LLC: return " L3+LLC";
911 case I915_CACHE_WT: return " WT";
912 default: return "";
916 static u32
917 read_subslice_reg(const struct intel_engine_cs *engine,
918 int slice, int subslice, i915_reg_t reg)
920 struct drm_i915_private *i915 = engine->i915;
921 struct intel_uncore *uncore = engine->uncore;
922 u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
923 enum forcewake_domains fw_domains;
925 if (INTEL_GEN(i915) >= 11) {
926 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
927 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
928 } else {
929 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
930 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
933 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
934 FW_REG_READ);
935 fw_domains |= intel_uncore_forcewake_for_reg(uncore,
936 GEN8_MCR_SELECTOR,
937 FW_REG_READ | FW_REG_WRITE);
939 spin_lock_irq(&uncore->lock);
940 intel_uncore_forcewake_get__locked(uncore, fw_domains);
942 old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
944 mcr &= ~mcr_mask;
945 mcr |= mcr_ss;
946 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
948 val = intel_uncore_read_fw(uncore, reg);
950 mcr &= ~mcr_mask;
951 mcr |= old_mcr & mcr_mask;
953 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
955 intel_uncore_forcewake_put__locked(uncore, fw_domains);
956 spin_unlock_irq(&uncore->lock);
958 return val;
961 /* NB: please notice the memset */
962 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
963 struct intel_instdone *instdone)
965 struct drm_i915_private *i915 = engine->i915;
966 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
967 struct intel_uncore *uncore = engine->uncore;
968 u32 mmio_base = engine->mmio_base;
969 int slice;
970 int subslice;
972 memset(instdone, 0, sizeof(*instdone));
974 switch (INTEL_GEN(i915)) {
975 default:
976 instdone->instdone =
977 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
979 if (engine->id != RCS0)
980 break;
982 instdone->slice_common =
983 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
984 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
985 instdone->sampler[slice][subslice] =
986 read_subslice_reg(engine, slice, subslice,
987 GEN7_SAMPLER_INSTDONE);
988 instdone->row[slice][subslice] =
989 read_subslice_reg(engine, slice, subslice,
990 GEN7_ROW_INSTDONE);
992 break;
993 case 7:
994 instdone->instdone =
995 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
997 if (engine->id != RCS0)
998 break;
1000 instdone->slice_common =
1001 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1002 instdone->sampler[0][0] =
1003 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1004 instdone->row[0][0] =
1005 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1007 break;
1008 case 6:
1009 case 5:
1010 case 4:
1011 instdone->instdone =
1012 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1013 if (engine->id == RCS0)
1014 /* HACK: Using the wrong struct member */
1015 instdone->slice_common =
1016 intel_uncore_read(uncore, GEN4_INSTDONE1);
1017 break;
1018 case 3:
1019 case 2:
1020 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1021 break;
1025 static bool ring_is_idle(struct intel_engine_cs *engine)
1027 bool idle = true;
1029 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1030 return true;
1032 if (!intel_engine_pm_get_if_awake(engine))
1033 return true;
1035 /* First check that no commands are left in the ring */
1036 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1037 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1038 idle = false;
1040 /* No bit for gen2, so assume the CS parser is idle */
1041 if (INTEL_GEN(engine->i915) > 2 &&
1042 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1043 idle = false;
1045 intel_engine_pm_put(engine);
1047 return idle;
1050 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1052 struct tasklet_struct *t = &engine->execlists.tasklet;
1054 if (__tasklet_is_scheduled(t)) {
1055 local_bh_disable();
1056 if (tasklet_trylock(t)) {
1057 /* Must wait for any GPU reset in progress. */
1058 if (__tasklet_is_enabled(t))
1059 t->func(t->data);
1060 tasklet_unlock(t);
1062 local_bh_enable();
1065 /* Otherwise flush the tasklet if it was running on another cpu */
1066 tasklet_unlock_wait(t);
1070 * intel_engine_is_idle() - Report if the engine has finished process all work
1071 * @engine: the intel_engine_cs
1073 * Return true if there are no requests pending, nothing left to be submitted
1074 * to hardware, and that the engine is idle.
1076 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1078 /* More white lies, if wedged, hw state is inconsistent */
1079 if (intel_gt_is_wedged(engine->gt))
1080 return true;
1082 if (!intel_engine_pm_is_awake(engine))
1083 return true;
1085 /* Waiting to drain ELSP? */
1086 if (execlists_active(&engine->execlists)) {
1087 synchronize_hardirq(engine->i915->drm.pdev->irq);
1089 intel_engine_flush_submission(engine);
1091 if (execlists_active(&engine->execlists))
1092 return false;
1095 /* ELSP is empty, but there are ready requests? E.g. after reset */
1096 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1097 return false;
1099 /* Ring stopped? */
1100 return ring_is_idle(engine);
1103 bool intel_engines_are_idle(struct intel_gt *gt)
1105 struct intel_engine_cs *engine;
1106 enum intel_engine_id id;
1109 * If the driver is wedged, HW state may be very inconsistent and
1110 * report that it is still busy, even though we have stopped using it.
1112 if (intel_gt_is_wedged(gt))
1113 return true;
1115 /* Already parked (and passed an idleness test); must still be idle */
1116 if (!READ_ONCE(gt->awake))
1117 return true;
1119 for_each_engine(engine, gt, id) {
1120 if (!intel_engine_is_idle(engine))
1121 return false;
1124 return true;
1127 void intel_engines_reset_default_submission(struct intel_gt *gt)
1129 struct intel_engine_cs *engine;
1130 enum intel_engine_id id;
1132 for_each_engine(engine, gt, id)
1133 engine->set_default_submission(engine);
1136 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1138 switch (INTEL_GEN(engine->i915)) {
1139 case 2:
1140 return false; /* uses physical not virtual addresses */
1141 case 3:
1142 /* maybe only uses physical not virtual addresses */
1143 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1144 case 4:
1145 return !IS_I965G(engine->i915); /* who knows! */
1146 case 6:
1147 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1148 default:
1149 return true;
1153 static int print_sched_attr(struct drm_i915_private *i915,
1154 const struct i915_sched_attr *attr,
1155 char *buf, int x, int len)
1157 if (attr->priority == I915_PRIORITY_INVALID)
1158 return x;
1160 x += snprintf(buf + x, len - x,
1161 " prio=%d", attr->priority);
1163 return x;
1166 static void print_request(struct drm_printer *m,
1167 struct i915_request *rq,
1168 const char *prefix)
1170 const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1171 char buf[80] = "";
1172 int x = 0;
1174 x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1176 drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1177 prefix,
1178 rq->fence.context, rq->fence.seqno,
1179 i915_request_completed(rq) ? "!" :
1180 i915_request_started(rq) ? "*" :
1182 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1183 &rq->fence.flags) ? "+" :
1184 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1185 &rq->fence.flags) ? "-" :
1187 buf,
1188 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1189 name);
1192 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1194 const size_t rowsize = 8 * sizeof(u32);
1195 const void *prev = NULL;
1196 bool skip = false;
1197 size_t pos;
1199 for (pos = 0; pos < len; pos += rowsize) {
1200 char line[128];
1202 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1203 if (!skip) {
1204 drm_printf(m, "*\n");
1205 skip = true;
1207 continue;
1210 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1211 rowsize, sizeof(u32),
1212 line, sizeof(line),
1213 false) >= sizeof(line));
1214 drm_printf(m, "[%04zx] %s\n", pos, line);
1216 prev = buf + pos;
1217 skip = false;
1221 static struct intel_timeline *get_timeline(struct i915_request *rq)
1223 struct intel_timeline *tl;
1226 * Even though we are holding the engine->active.lock here, there
1227 * is no control over the submission queue per-se and we are
1228 * inspecting the active state at a random point in time, with an
1229 * unknown queue. Play safe and make sure the timeline remains valid.
1230 * (Only being used for pretty printing, one extra kref shouldn't
1231 * cause a camel stampede!)
1233 rcu_read_lock();
1234 tl = rcu_dereference(rq->timeline);
1235 if (!kref_get_unless_zero(&tl->kref))
1236 tl = NULL;
1237 rcu_read_unlock();
1239 return tl;
1242 static const char *repr_timer(const struct timer_list *t)
1244 if (!READ_ONCE(t->expires))
1245 return "inactive";
1247 if (timer_pending(t))
1248 return "active";
1250 return "expired";
1253 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1254 struct drm_printer *m)
1256 struct drm_i915_private *dev_priv = engine->i915;
1257 struct intel_engine_execlists * const execlists = &engine->execlists;
1258 u64 addr;
1260 if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1261 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1262 drm_printf(m, "\tRING_START: 0x%08x\n",
1263 ENGINE_READ(engine, RING_START));
1264 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
1265 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1266 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
1267 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1268 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
1269 ENGINE_READ(engine, RING_CTL),
1270 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1271 if (INTEL_GEN(engine->i915) > 2) {
1272 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
1273 ENGINE_READ(engine, RING_MI_MODE),
1274 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1277 if (INTEL_GEN(dev_priv) >= 6) {
1278 drm_printf(m, "\tRING_IMR: %08x\n",
1279 ENGINE_READ(engine, RING_IMR));
1282 addr = intel_engine_get_active_head(engine);
1283 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
1284 upper_32_bits(addr), lower_32_bits(addr));
1285 addr = intel_engine_get_last_batch_head(engine);
1286 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1287 upper_32_bits(addr), lower_32_bits(addr));
1288 if (INTEL_GEN(dev_priv) >= 8)
1289 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1290 else if (INTEL_GEN(dev_priv) >= 4)
1291 addr = ENGINE_READ(engine, RING_DMA_FADD);
1292 else
1293 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1294 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1295 upper_32_bits(addr), lower_32_bits(addr));
1296 if (INTEL_GEN(dev_priv) >= 4) {
1297 drm_printf(m, "\tIPEIR: 0x%08x\n",
1298 ENGINE_READ(engine, RING_IPEIR));
1299 drm_printf(m, "\tIPEHR: 0x%08x\n",
1300 ENGINE_READ(engine, RING_IPEHR));
1301 } else {
1302 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1303 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1306 if (HAS_EXECLISTS(dev_priv)) {
1307 struct i915_request * const *port, *rq;
1308 const u32 *hws =
1309 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1310 const u8 num_entries = execlists->csb_size;
1311 unsigned int idx;
1312 u8 read, write;
1314 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1315 yesno(test_bit(TASKLET_STATE_SCHED,
1316 &engine->execlists.tasklet.state)),
1317 enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1318 repr_timer(&engine->execlists.preempt),
1319 repr_timer(&engine->execlists.timer));
1321 read = execlists->csb_head;
1322 write = READ_ONCE(*execlists->csb_write);
1324 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1325 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1326 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1327 read, write, num_entries);
1329 if (read >= num_entries)
1330 read = 0;
1331 if (write >= num_entries)
1332 write = 0;
1333 if (read > write)
1334 write += num_entries;
1335 while (read < write) {
1336 idx = ++read % num_entries;
1337 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1338 idx, hws[idx * 2], hws[idx * 2 + 1]);
1341 execlists_active_lock_bh(execlists);
1342 rcu_read_lock();
1343 for (port = execlists->active; (rq = *port); port++) {
1344 char hdr[80];
1345 int len;
1347 len = snprintf(hdr, sizeof(hdr),
1348 "\t\tActive[%d]: ",
1349 (int)(port - execlists->active));
1350 if (!i915_request_signaled(rq)) {
1351 struct intel_timeline *tl = get_timeline(rq);
1353 len += snprintf(hdr + len, sizeof(hdr) - len,
1354 "ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
1355 i915_ggtt_offset(rq->ring->vma),
1356 tl ? tl->hwsp_offset : 0,
1357 hwsp_seqno(rq));
1359 if (tl)
1360 intel_timeline_put(tl);
1362 snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1363 print_request(m, rq, hdr);
1365 for (port = execlists->pending; (rq = *port); port++) {
1366 struct intel_timeline *tl = get_timeline(rq);
1367 char hdr[80];
1369 snprintf(hdr, sizeof(hdr),
1370 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1371 (int)(port - execlists->pending),
1372 i915_ggtt_offset(rq->ring->vma),
1373 tl ? tl->hwsp_offset : 0,
1374 hwsp_seqno(rq));
1375 print_request(m, rq, hdr);
1377 if (tl)
1378 intel_timeline_put(tl);
1380 rcu_read_unlock();
1381 execlists_active_unlock_bh(execlists);
1382 } else if (INTEL_GEN(dev_priv) > 6) {
1383 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1384 ENGINE_READ(engine, RING_PP_DIR_BASE));
1385 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1386 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1387 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1388 ENGINE_READ(engine, RING_PP_DIR_DCLV));
1392 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1394 void *ring;
1395 int size;
1397 drm_printf(m,
1398 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1399 rq->head, rq->postfix, rq->tail,
1400 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1401 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1403 size = rq->tail - rq->head;
1404 if (rq->tail < rq->head)
1405 size += rq->ring->size;
1407 ring = kmalloc(size, GFP_ATOMIC);
1408 if (ring) {
1409 const void *vaddr = rq->ring->vaddr;
1410 unsigned int head = rq->head;
1411 unsigned int len = 0;
1413 if (rq->tail < head) {
1414 len = rq->ring->size - head;
1415 memcpy(ring, vaddr + head, len);
1416 head = 0;
1418 memcpy(ring + len, vaddr + head, size - len);
1420 hexdump(m, ring, size);
1421 kfree(ring);
1425 void intel_engine_dump(struct intel_engine_cs *engine,
1426 struct drm_printer *m,
1427 const char *header, ...)
1429 struct i915_gpu_error * const error = &engine->i915->gpu_error;
1430 struct i915_request *rq;
1431 intel_wakeref_t wakeref;
1432 unsigned long flags;
1434 if (header) {
1435 va_list ap;
1437 va_start(ap, header);
1438 drm_vprintf(m, header, &ap);
1439 va_end(ap);
1442 if (intel_gt_is_wedged(engine->gt))
1443 drm_printf(m, "*** WEDGED ***\n");
1445 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1446 drm_printf(m, "\tBarriers?: %s\n",
1447 yesno(!llist_empty(&engine->barrier_tasks)));
1448 drm_printf(m, "\tLatency: %luus\n",
1449 ewma__engine_latency_read(&engine->latency));
1451 rcu_read_lock();
1452 rq = READ_ONCE(engine->heartbeat.systole);
1453 if (rq)
1454 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1455 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1456 rcu_read_unlock();
1457 drm_printf(m, "\tReset count: %d (global %d)\n",
1458 i915_reset_engine_count(error, engine),
1459 i915_reset_count(error));
1461 drm_printf(m, "\tRequests:\n");
1463 spin_lock_irqsave(&engine->active.lock, flags);
1464 rq = intel_engine_find_active_request(engine);
1465 if (rq) {
1466 struct intel_timeline *tl = get_timeline(rq);
1468 print_request(m, rq, "\t\tactive ");
1470 drm_printf(m, "\t\tring->start: 0x%08x\n",
1471 i915_ggtt_offset(rq->ring->vma));
1472 drm_printf(m, "\t\tring->head: 0x%08x\n",
1473 rq->ring->head);
1474 drm_printf(m, "\t\tring->tail: 0x%08x\n",
1475 rq->ring->tail);
1476 drm_printf(m, "\t\tring->emit: 0x%08x\n",
1477 rq->ring->emit);
1478 drm_printf(m, "\t\tring->space: 0x%08x\n",
1479 rq->ring->space);
1481 if (tl) {
1482 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
1483 tl->hwsp_offset);
1484 intel_timeline_put(tl);
1487 print_request_ring(m, rq);
1489 if (rq->context->lrc_reg_state) {
1490 drm_printf(m, "Logical Ring Context:\n");
1491 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1494 spin_unlock_irqrestore(&engine->active.lock, flags);
1496 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
1497 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1498 if (wakeref) {
1499 intel_engine_print_registers(engine, m);
1500 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1501 } else {
1502 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1505 intel_execlists_show_requests(engine, m, print_request, 8);
1507 drm_printf(m, "HWSP:\n");
1508 hexdump(m, engine->status_page.addr, PAGE_SIZE);
1510 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1512 intel_engine_print_breadcrumbs(engine, m);
1516 * intel_enable_engine_stats() - Enable engine busy tracking on engine
1517 * @engine: engine to enable stats collection
1519 * Start collecting the engine busyness data for @engine.
1521 * Returns 0 on success or a negative error code.
1523 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1525 struct intel_engine_execlists *execlists = &engine->execlists;
1526 unsigned long flags;
1527 int err = 0;
1529 if (!intel_engine_supports_stats(engine))
1530 return -ENODEV;
1532 execlists_active_lock_bh(execlists);
1533 write_seqlock_irqsave(&engine->stats.lock, flags);
1535 if (unlikely(engine->stats.enabled == ~0)) {
1536 err = -EBUSY;
1537 goto unlock;
1540 if (engine->stats.enabled++ == 0) {
1541 struct i915_request * const *port;
1542 struct i915_request *rq;
1544 engine->stats.enabled_at = ktime_get();
1546 /* XXX submission method oblivious? */
1547 for (port = execlists->active; (rq = *port); port++)
1548 engine->stats.active++;
1550 for (port = execlists->pending; (rq = *port); port++) {
1551 /* Exclude any contexts already counted in active */
1552 if (!intel_context_inflight_count(rq->context))
1553 engine->stats.active++;
1556 if (engine->stats.active)
1557 engine->stats.start = engine->stats.enabled_at;
1560 unlock:
1561 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1562 execlists_active_unlock_bh(execlists);
1564 return err;
1567 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1569 ktime_t total = engine->stats.total;
1572 * If the engine is executing something at the moment
1573 * add it to the total.
1575 if (engine->stats.active)
1576 total = ktime_add(total,
1577 ktime_sub(ktime_get(), engine->stats.start));
1579 return total;
1583 * intel_engine_get_busy_time() - Return current accumulated engine busyness
1584 * @engine: engine to report on
1586 * Returns accumulated time @engine was busy since engine stats were enabled.
1588 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1590 unsigned int seq;
1591 ktime_t total;
1593 do {
1594 seq = read_seqbegin(&engine->stats.lock);
1595 total = __intel_engine_get_busy_time(engine);
1596 } while (read_seqretry(&engine->stats.lock, seq));
1598 return total;
1602 * intel_disable_engine_stats() - Disable engine busy tracking on engine
1603 * @engine: engine to disable stats collection
1605 * Stops collecting the engine busyness data for @engine.
1607 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1609 unsigned long flags;
1611 if (!intel_engine_supports_stats(engine))
1612 return;
1614 write_seqlock_irqsave(&engine->stats.lock, flags);
1615 WARN_ON_ONCE(engine->stats.enabled == 0);
1616 if (--engine->stats.enabled == 0) {
1617 engine->stats.total = __intel_engine_get_busy_time(engine);
1618 engine->stats.active = 0;
1620 write_sequnlock_irqrestore(&engine->stats.lock, flags);
1623 static bool match_ring(struct i915_request *rq)
1625 u32 ring = ENGINE_READ(rq->engine, RING_START);
1627 return ring == i915_ggtt_offset(rq->ring->vma);
1630 struct i915_request *
1631 intel_engine_find_active_request(struct intel_engine_cs *engine)
1633 struct i915_request *request, *active = NULL;
1636 * We are called by the error capture, reset and to dump engine
1637 * state at random points in time. In particular, note that neither is
1638 * crucially ordered with an interrupt. After a hang, the GPU is dead
1639 * and we assume that no more writes can happen (we waited long enough
1640 * for all writes that were in transaction to be flushed) - adding an
1641 * extra delay for a recent interrupt is pointless. Hence, we do
1642 * not need an engine->irq_seqno_barrier() before the seqno reads.
1643 * At all other times, we must assume the GPU is still running, but
1644 * we only care about the snapshot of this moment.
1646 lockdep_assert_held(&engine->active.lock);
1647 list_for_each_entry(request, &engine->active.requests, sched.link) {
1648 if (i915_request_completed(request))
1649 continue;
1651 if (!i915_request_started(request))
1652 continue;
1654 /* More than one preemptible request may match! */
1655 if (!match_ring(request))
1656 continue;
1658 active = request;
1659 break;
1662 return active;
1665 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1666 #include "mock_engine.c"
1667 #include "selftest_engine.c"
1668 #include "selftest_engine_cs.c"
1669 #endif