Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
blob21a176cd8acc9c591b1394d6edc285a9ae2baff7
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
23 * Authors:
24 * Ke Yu
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
28 * Contributors:
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
37 #include <linux/slab.h>
39 #include "i915_drv.h"
40 #include "gt/intel_ring.h"
41 #include "gvt.h"
42 #include "i915_pvinfo.h"
43 #include "trace.h"
45 #define INVALID_OP (~0U)
47 #define OP_LEN_MI 9
48 #define OP_LEN_2D 10
49 #define OP_LEN_3D_MEDIA 16
50 #define OP_LEN_MFX_VC 16
51 #define OP_LEN_VEBOX 16
53 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
55 struct sub_op_bits {
56 int hi;
57 int low;
59 struct decode_info {
60 const char *name;
61 int op_len;
62 int nr_sub_op;
63 const struct sub_op_bits *sub_op;
66 #define MAX_CMD_BUDGET 0x7fffffff
67 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
68 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
69 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
71 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
72 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
73 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
75 /* Render Command Map */
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP 0x0
79 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
80 #define OP_MI_USER_INTERRUPT 0x2
81 #define OP_MI_WAIT_FOR_EVENT 0x3
82 #define OP_MI_FLUSH 0x4
83 #define OP_MI_ARB_CHECK 0x5
84 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
85 #define OP_MI_REPORT_HEAD 0x7
86 #define OP_MI_ARB_ON_OFF 0x8
87 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END 0xA
89 #define OP_MI_SUSPEND_FLUSH 0xB
90 #define OP_MI_PREDICATE 0xC /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
92 #define OP_MI_SET_APPID 0xE /* IVB+ */
93 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP 0x14
96 #define OP_MI_SEMAPHORE_MBOX 0x16
97 #define OP_MI_SET_CONTEXT 0x18
98 #define OP_MI_MATH 0x1A
99 #define OP_MI_URB_CLEAR 0x19
100 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
103 #define OP_MI_STORE_DATA_IMM 0x20
104 #define OP_MI_STORE_DATA_INDEX 0x21
105 #define OP_MI_LOAD_REGISTER_IMM 0x22
106 #define OP_MI_UPDATE_GTT 0x23
107 #define OP_MI_STORE_REGISTER_MEM 0x24
108 #define OP_MI_FLUSH_DW 0x26
109 #define OP_MI_CLFLUSH 0x27
110 #define OP_MI_REPORT_PERF_COUNT 0x28
111 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
115 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
116 #define OP_MI_2E 0x2E /* BDW+ */
117 #define OP_MI_2F 0x2F /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START 0x31
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x) ((2<<7) | x)
133 #define OP_XY_SETUP_BLT OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
138 #define OP_XY_TEXT_BLT OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
140 #define OP_XY_COLOR_BLT OP_2D(0x50)
141 #define OP_XY_PAT_BLT OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
145 #define OP_XY_FULL_BLT OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
162 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
164 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
168 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
170 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
172 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
173 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
174 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
175 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
176 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
177 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5)
179 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
180 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
181 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
182 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
184 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
185 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
186 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
187 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
188 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
189 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
190 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
191 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
192 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
193 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
194 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
195 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
196 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
197 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
198 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
199 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
200 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
201 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
202 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
203 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
204 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
205 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
206 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
207 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
208 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
209 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
210 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
211 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
212 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
214 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
215 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
226 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
227 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
228 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
229 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
241 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
243 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
251 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
252 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
253 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
254 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
255 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
256 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
257 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
258 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
259 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
260 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
261 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
263 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
264 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
265 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
266 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
267 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
268 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
269 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
270 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
271 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
273 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
274 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
275 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
276 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
277 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
283 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
284 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
285 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
286 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
287 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
288 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
289 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
290 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
292 /* VCCP Command Parser */
295 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
296 * git://anongit.freedesktop.org/vaapi/intel-driver
297 * src/i965_defines.h
301 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
302 (3 << 13 | \
303 (pipeline) << 11 | \
304 (op) << 8 | \
305 (sub_opa) << 5 | \
306 (sub_opb))
308 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
309 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
310 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
311 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
312 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
313 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
314 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
315 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
316 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
317 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
318 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
320 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
322 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
323 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
324 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
325 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
326 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
327 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
328 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
329 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
330 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
331 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
332 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
333 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
335 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
336 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
337 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
338 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
339 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
341 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
342 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
343 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
344 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
345 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
347 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
348 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
349 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
351 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
352 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
353 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
355 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
356 (3 << 13 | \
357 (pipeline) << 11 | \
358 (op) << 8 | \
359 (sub_opa) << 5 | \
360 (sub_opb))
362 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
363 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
364 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
366 struct parser_exec_state;
368 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
370 #define GVT_CMD_HASH_BITS 7
372 /* which DWords need address fix */
373 #define ADDR_FIX_1(x1) (1 << (x1))
374 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
375 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
376 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
377 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
379 #define DWORD_FIELD(dword, end, start) \
380 FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
382 #define OP_LENGTH_BIAS 2
383 #define CMD_LEN(value) (value + OP_LENGTH_BIAS)
385 static int gvt_check_valid_cmd_length(int len, int valid_len)
387 if (valid_len != len) {
388 gvt_err("len is not valid: len=%u valid_len=%u\n",
389 len, valid_len);
390 return -EFAULT;
392 return 0;
395 struct cmd_info {
396 const char *name;
397 u32 opcode;
399 #define F_LEN_MASK 3U
400 #define F_LEN_CONST 1U
401 #define F_LEN_VAR 0U
402 /* value is const although LEN maybe variable */
403 #define F_LEN_VAR_FIXED (1<<1)
406 * command has its own ip advance logic
407 * e.g. MI_BATCH_START, MI_BATCH_END
409 #define F_IP_ADVANCE_CUSTOM (1<<2)
410 u32 flag;
412 #define R_RCS BIT(RCS0)
413 #define R_VCS1 BIT(VCS0)
414 #define R_VCS2 BIT(VCS1)
415 #define R_VCS (R_VCS1 | R_VCS2)
416 #define R_BCS BIT(BCS0)
417 #define R_VECS BIT(VECS0)
418 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
419 /* rings that support this cmd: BLT/RCS/VCS/VECS */
420 u16 rings;
422 /* devices that support this cmd: SNB/IVB/HSW/... */
423 u16 devices;
425 /* which DWords are address that need fix up.
426 * bit 0 means a 32-bit non address operand in command
427 * bit 1 means address operand, which could be 32-bit
428 * or 64-bit depending on different architectures.(
429 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
430 * No matter the address length, each address only takes
431 * one bit in the bitmap.
433 u16 addr_bitmap;
435 /* flag == F_LEN_CONST : command length
436 * flag == F_LEN_VAR : length bias bits
437 * Note: length is in DWord
439 u32 len;
441 parser_cmd_handler handler;
443 /* valid length in DWord */
444 u32 valid_len;
447 struct cmd_entry {
448 struct hlist_node hlist;
449 const struct cmd_info *info;
452 enum {
453 RING_BUFFER_INSTRUCTION,
454 BATCH_BUFFER_INSTRUCTION,
455 BATCH_BUFFER_2ND_LEVEL,
458 enum {
459 GTT_BUFFER,
460 PPGTT_BUFFER
463 struct parser_exec_state {
464 struct intel_vgpu *vgpu;
465 int ring_id;
467 int buf_type;
469 /* batch buffer address type */
470 int buf_addr_type;
472 /* graphics memory address of ring buffer start */
473 unsigned long ring_start;
474 unsigned long ring_size;
475 unsigned long ring_head;
476 unsigned long ring_tail;
478 /* instruction graphics memory address */
479 unsigned long ip_gma;
481 /* mapped va of the instr_gma */
482 void *ip_va;
483 void *rb_va;
485 void *ret_bb_va;
486 /* next instruction when return from batch buffer to ring buffer */
487 unsigned long ret_ip_gma_ring;
489 /* next instruction when return from 2nd batch buffer to batch buffer */
490 unsigned long ret_ip_gma_bb;
492 /* batch buffer address type (GTT or PPGTT)
493 * used when ret from 2nd level batch buffer
495 int saved_buf_addr_type;
496 bool is_ctx_wa;
498 const struct cmd_info *info;
500 struct intel_vgpu_workload *workload;
503 #define gmadr_dw_number(s) \
504 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
506 static unsigned long bypass_scan_mask = 0;
508 /* ring ALL, type = 0 */
509 static const struct sub_op_bits sub_op_mi[] = {
510 {31, 29},
511 {28, 23},
514 static const struct decode_info decode_info_mi = {
515 "MI",
516 OP_LEN_MI,
517 ARRAY_SIZE(sub_op_mi),
518 sub_op_mi,
521 /* ring RCS, command type 2 */
522 static const struct sub_op_bits sub_op_2d[] = {
523 {31, 29},
524 {28, 22},
527 static const struct decode_info decode_info_2d = {
528 "2D",
529 OP_LEN_2D,
530 ARRAY_SIZE(sub_op_2d),
531 sub_op_2d,
534 /* ring RCS, command type 3 */
535 static const struct sub_op_bits sub_op_3d_media[] = {
536 {31, 29},
537 {28, 27},
538 {26, 24},
539 {23, 16},
542 static const struct decode_info decode_info_3d_media = {
543 "3D_Media",
544 OP_LEN_3D_MEDIA,
545 ARRAY_SIZE(sub_op_3d_media),
546 sub_op_3d_media,
549 /* ring VCS, command type 3 */
550 static const struct sub_op_bits sub_op_mfx_vc[] = {
551 {31, 29},
552 {28, 27},
553 {26, 24},
554 {23, 21},
555 {20, 16},
558 static const struct decode_info decode_info_mfx_vc = {
559 "MFX_VC",
560 OP_LEN_MFX_VC,
561 ARRAY_SIZE(sub_op_mfx_vc),
562 sub_op_mfx_vc,
565 /* ring VECS, command type 3 */
566 static const struct sub_op_bits sub_op_vebox[] = {
567 {31, 29},
568 {28, 27},
569 {26, 24},
570 {23, 21},
571 {20, 16},
574 static const struct decode_info decode_info_vebox = {
575 "VEBOX",
576 OP_LEN_VEBOX,
577 ARRAY_SIZE(sub_op_vebox),
578 sub_op_vebox,
581 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
582 [RCS0] = {
583 &decode_info_mi,
584 NULL,
585 NULL,
586 &decode_info_3d_media,
587 NULL,
588 NULL,
589 NULL,
590 NULL,
593 [VCS0] = {
594 &decode_info_mi,
595 NULL,
596 NULL,
597 &decode_info_mfx_vc,
598 NULL,
599 NULL,
600 NULL,
601 NULL,
604 [BCS0] = {
605 &decode_info_mi,
606 NULL,
607 &decode_info_2d,
608 NULL,
609 NULL,
610 NULL,
611 NULL,
612 NULL,
615 [VECS0] = {
616 &decode_info_mi,
617 NULL,
618 NULL,
619 &decode_info_vebox,
620 NULL,
621 NULL,
622 NULL,
623 NULL,
626 [VCS1] = {
627 &decode_info_mi,
628 NULL,
629 NULL,
630 &decode_info_mfx_vc,
631 NULL,
632 NULL,
633 NULL,
634 NULL,
638 static inline u32 get_opcode(u32 cmd, int ring_id)
640 const struct decode_info *d_info;
642 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
643 if (d_info == NULL)
644 return INVALID_OP;
646 return cmd >> (32 - d_info->op_len);
649 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
650 unsigned int opcode, int ring_id)
652 struct cmd_entry *e;
654 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
655 if (opcode == e->info->opcode && e->info->rings & BIT(ring_id))
656 return e->info;
658 return NULL;
661 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
662 u32 cmd, int ring_id)
664 u32 opcode;
666 opcode = get_opcode(cmd, ring_id);
667 if (opcode == INVALID_OP)
668 return NULL;
670 return find_cmd_entry(gvt, opcode, ring_id);
673 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
675 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
678 static inline void print_opcode(u32 cmd, int ring_id)
680 const struct decode_info *d_info;
681 int i;
683 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
684 if (d_info == NULL)
685 return;
687 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
688 cmd >> (32 - d_info->op_len), d_info->name);
690 for (i = 0; i < d_info->nr_sub_op; i++)
691 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
692 d_info->sub_op[i].low));
694 pr_err("\n");
697 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
699 return s->ip_va + (index << 2);
702 static inline u32 cmd_val(struct parser_exec_state *s, int index)
704 return *cmd_ptr(s, index);
707 static void parser_exec_state_dump(struct parser_exec_state *s)
709 int cnt = 0;
710 int i;
712 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
713 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
714 s->ring_id, s->ring_start, s->ring_start + s->ring_size,
715 s->ring_head, s->ring_tail);
717 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
718 s->buf_type == RING_BUFFER_INSTRUCTION ?
719 "RING_BUFFER" : "BATCH_BUFFER",
720 s->buf_addr_type == GTT_BUFFER ?
721 "GTT" : "PPGTT", s->ip_gma);
723 if (s->ip_va == NULL) {
724 gvt_dbg_cmd(" ip_va(NULL)");
725 return;
728 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
729 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
730 cmd_val(s, 2), cmd_val(s, 3));
732 print_opcode(cmd_val(s, 0), s->ring_id);
734 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
736 while (cnt < 1024) {
737 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
738 for (i = 0; i < 8; i++)
739 gvt_dbg_cmd("%08x ", cmd_val(s, i));
740 gvt_dbg_cmd("\n");
742 s->ip_va += 8 * sizeof(u32);
743 cnt += 8;
747 static inline void update_ip_va(struct parser_exec_state *s)
749 unsigned long len = 0;
751 if (WARN_ON(s->ring_head == s->ring_tail))
752 return;
754 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
755 unsigned long ring_top = s->ring_start + s->ring_size;
757 if (s->ring_head > s->ring_tail) {
758 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
759 len = (s->ip_gma - s->ring_head);
760 else if (s->ip_gma >= s->ring_start &&
761 s->ip_gma <= s->ring_tail)
762 len = (ring_top - s->ring_head) +
763 (s->ip_gma - s->ring_start);
764 } else
765 len = (s->ip_gma - s->ring_head);
767 s->ip_va = s->rb_va + len;
768 } else {/* shadow batch buffer */
769 s->ip_va = s->ret_bb_va;
773 static inline int ip_gma_set(struct parser_exec_state *s,
774 unsigned long ip_gma)
776 WARN_ON(!IS_ALIGNED(ip_gma, 4));
778 s->ip_gma = ip_gma;
779 update_ip_va(s);
780 return 0;
783 static inline int ip_gma_advance(struct parser_exec_state *s,
784 unsigned int dw_len)
786 s->ip_gma += (dw_len << 2);
788 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
789 if (s->ip_gma >= s->ring_start + s->ring_size)
790 s->ip_gma -= s->ring_size;
791 update_ip_va(s);
792 } else {
793 s->ip_va += (dw_len << 2);
796 return 0;
799 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
801 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
802 return info->len;
803 else
804 return (cmd & ((1U << info->len) - 1)) + 2;
805 return 0;
808 static inline int cmd_length(struct parser_exec_state *s)
810 return get_cmd_length(s->info, cmd_val(s, 0));
813 /* do not remove this, some platform may need clflush here */
814 #define patch_value(s, addr, val) do { \
815 *addr = val; \
816 } while (0)
818 static bool is_shadowed_mmio(unsigned int offset)
820 bool ret = false;
822 if ((offset == 0x2168) || /*BB current head register UDW */
823 (offset == 0x2140) || /*BB current header register */
824 (offset == 0x211c) || /*second BB header register UDW */
825 (offset == 0x2114)) { /*second BB header register UDW */
826 ret = true;
828 return ret;
831 static inline bool is_force_nonpriv_mmio(unsigned int offset)
833 return (offset >= 0x24d0 && offset < 0x2500);
836 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
837 unsigned int offset, unsigned int index, char *cmd)
839 struct intel_gvt *gvt = s->vgpu->gvt;
840 unsigned int data;
841 u32 ring_base;
842 u32 nopid;
843 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
845 if (!strcmp(cmd, "lri"))
846 data = cmd_val(s, index + 1);
847 else {
848 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
849 offset, cmd);
850 return -EINVAL;
853 ring_base = dev_priv->engine[s->ring_id]->mmio_base;
854 nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
856 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
857 data != nopid) {
858 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
859 offset, data);
860 patch_value(s, cmd_ptr(s, index), nopid);
861 return 0;
863 return 0;
866 static inline bool is_mocs_mmio(unsigned int offset)
868 return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
869 ((offset >= 0xb020) && (offset <= 0xb0a0));
872 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
873 unsigned int offset, unsigned int index)
875 if (!is_mocs_mmio(offset))
876 return -EINVAL;
877 vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
878 return 0;
881 static int cmd_reg_handler(struct parser_exec_state *s,
882 unsigned int offset, unsigned int index, char *cmd)
884 struct intel_vgpu *vgpu = s->vgpu;
885 struct intel_gvt *gvt = vgpu->gvt;
886 u32 ctx_sr_ctl;
888 if (offset + 4 > gvt->device_info.mmio_size) {
889 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
890 cmd, offset);
891 return -EFAULT;
894 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
895 gvt_vgpu_err("%s access to non-render register (%x)\n",
896 cmd, offset);
897 return -EBADRQC;
900 if (is_shadowed_mmio(offset)) {
901 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
902 return 0;
905 if (is_mocs_mmio(offset) &&
906 mocs_cmd_reg_handler(s, offset, index))
907 return -EINVAL;
909 if (is_force_nonpriv_mmio(offset) &&
910 force_nonpriv_reg_handler(s, offset, index, cmd))
911 return -EPERM;
913 if (offset == i915_mmio_reg_offset(DERRMR) ||
914 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
915 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
916 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
919 /* TODO
920 * In order to let workload with inhibit context to generate
921 * correct image data into memory, vregs values will be loaded to
922 * hw via LRIs in the workload with inhibit context. But as
923 * indirect context is loaded prior to LRIs in workload, we don't
924 * want reg values specified in indirect context overwritten by
925 * LRIs in workloads. So, when scanning an indirect context, we
926 * update reg values in it into vregs, so LRIs in workload with
927 * inhibit context will restore with correct values
929 if (IS_GEN(gvt->dev_priv, 9) &&
930 intel_gvt_mmio_is_in_ctx(gvt, offset) &&
931 !strncmp(cmd, "lri", 3)) {
932 intel_gvt_hypervisor_read_gpa(s->vgpu,
933 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
934 /* check inhibit context */
935 if (ctx_sr_ctl & 1) {
936 u32 data = cmd_val(s, index + 1);
938 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
939 intel_vgpu_mask_mmio_write(vgpu,
940 offset, &data, 4);
941 else
942 vgpu_vreg(vgpu, offset) = data;
946 /* TODO: Update the global mask if this MMIO is a masked-MMIO */
947 intel_gvt_mmio_set_cmd_accessed(gvt, offset);
948 return 0;
951 #define cmd_reg(s, i) \
952 (cmd_val(s, i) & GENMASK(22, 2))
954 #define cmd_reg_inhibit(s, i) \
955 (cmd_val(s, i) & GENMASK(22, 18))
957 #define cmd_gma(s, i) \
958 (cmd_val(s, i) & GENMASK(31, 2))
960 #define cmd_gma_hi(s, i) \
961 (cmd_val(s, i) & GENMASK(15, 0))
963 static int cmd_handler_lri(struct parser_exec_state *s)
965 int i, ret = 0;
966 int cmd_len = cmd_length(s);
967 struct intel_gvt *gvt = s->vgpu->gvt;
968 u32 valid_len = CMD_LEN(1);
971 * Official intel docs are somewhat sloppy , check the definition of
972 * MI_LOAD_REGISTER_IMM.
974 #define MAX_VALID_LEN 127
975 if ((cmd_len < valid_len) || (cmd_len > MAX_VALID_LEN)) {
976 gvt_err("len is not valid: len=%u valid_len=%u\n",
977 cmd_len, valid_len);
978 return -EFAULT;
981 for (i = 1; i < cmd_len; i += 2) {
982 if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) {
983 if (s->ring_id == BCS0 &&
984 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
985 ret |= 0;
986 else
987 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
989 if (ret)
990 break;
991 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
992 if (ret)
993 break;
995 return ret;
998 static int cmd_handler_lrr(struct parser_exec_state *s)
1000 int i, ret = 0;
1001 int cmd_len = cmd_length(s);
1003 for (i = 1; i < cmd_len; i += 2) {
1004 if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
1005 ret |= ((cmd_reg_inhibit(s, i) ||
1006 (cmd_reg_inhibit(s, i + 1)))) ?
1007 -EBADRQC : 0;
1008 if (ret)
1009 break;
1010 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1011 if (ret)
1012 break;
1013 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1014 if (ret)
1015 break;
1017 return ret;
1020 static inline int cmd_address_audit(struct parser_exec_state *s,
1021 unsigned long guest_gma, int op_size, bool index_mode);
1023 static int cmd_handler_lrm(struct parser_exec_state *s)
1025 struct intel_gvt *gvt = s->vgpu->gvt;
1026 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1027 unsigned long gma;
1028 int i, ret = 0;
1029 int cmd_len = cmd_length(s);
1031 for (i = 1; i < cmd_len;) {
1032 if (IS_BROADWELL(gvt->dev_priv))
1033 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1034 if (ret)
1035 break;
1036 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1037 if (ret)
1038 break;
1039 if (cmd_val(s, 0) & (1 << 22)) {
1040 gma = cmd_gma(s, i + 1);
1041 if (gmadr_bytes == 8)
1042 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1043 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1044 if (ret)
1045 break;
1047 i += gmadr_dw_number(s) + 1;
1049 return ret;
1052 static int cmd_handler_srm(struct parser_exec_state *s)
1054 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1055 unsigned long gma;
1056 int i, ret = 0;
1057 int cmd_len = cmd_length(s);
1059 for (i = 1; i < cmd_len;) {
1060 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1061 if (ret)
1062 break;
1063 if (cmd_val(s, 0) & (1 << 22)) {
1064 gma = cmd_gma(s, i + 1);
1065 if (gmadr_bytes == 8)
1066 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1067 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1068 if (ret)
1069 break;
1071 i += gmadr_dw_number(s) + 1;
1073 return ret;
1076 struct cmd_interrupt_event {
1077 int pipe_control_notify;
1078 int mi_flush_dw;
1079 int mi_user_interrupt;
1082 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1083 [RCS0] = {
1084 .pipe_control_notify = RCS_PIPE_CONTROL,
1085 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1086 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1088 [BCS0] = {
1089 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1090 .mi_flush_dw = BCS_MI_FLUSH_DW,
1091 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1093 [VCS0] = {
1094 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1095 .mi_flush_dw = VCS_MI_FLUSH_DW,
1096 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1098 [VCS1] = {
1099 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1100 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1101 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1103 [VECS0] = {
1104 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1105 .mi_flush_dw = VECS_MI_FLUSH_DW,
1106 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1110 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1112 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1113 unsigned long gma;
1114 bool index_mode = false;
1115 unsigned int post_sync;
1116 int ret = 0;
1117 u32 hws_pga, val;
1119 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1121 /* LRI post sync */
1122 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1123 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1124 /* post sync */
1125 else if (post_sync) {
1126 if (post_sync == 2)
1127 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1128 else if (post_sync == 3)
1129 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1130 else if (post_sync == 1) {
1131 /* check ggtt*/
1132 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1133 gma = cmd_val(s, 2) & GENMASK(31, 3);
1134 if (gmadr_bytes == 8)
1135 gma |= (cmd_gma_hi(s, 3)) << 32;
1136 /* Store Data Index */
1137 if (cmd_val(s, 1) & (1 << 21))
1138 index_mode = true;
1139 ret |= cmd_address_audit(s, gma, sizeof(u64),
1140 index_mode);
1141 if (ret)
1142 return ret;
1143 if (index_mode) {
1144 hws_pga = s->vgpu->hws_pga[s->ring_id];
1145 gma = hws_pga + gma;
1146 patch_value(s, cmd_ptr(s, 2), gma);
1147 val = cmd_val(s, 1) & (~(1 << 21));
1148 patch_value(s, cmd_ptr(s, 1), val);
1154 if (ret)
1155 return ret;
1157 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1158 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1159 s->workload->pending_events);
1160 return 0;
1163 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1165 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1166 s->workload->pending_events);
1167 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1168 return 0;
1171 static int cmd_advance_default(struct parser_exec_state *s)
1173 return ip_gma_advance(s, cmd_length(s));
1176 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1178 int ret;
1180 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1181 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1182 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1183 s->buf_addr_type = s->saved_buf_addr_type;
1184 } else {
1185 s->buf_type = RING_BUFFER_INSTRUCTION;
1186 s->buf_addr_type = GTT_BUFFER;
1187 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1188 s->ret_ip_gma_ring -= s->ring_size;
1189 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1191 return ret;
1194 struct mi_display_flip_command_info {
1195 int pipe;
1196 int plane;
1197 int event;
1198 i915_reg_t stride_reg;
1199 i915_reg_t ctrl_reg;
1200 i915_reg_t surf_reg;
1201 u64 stride_val;
1202 u64 tile_val;
1203 u64 surf_val;
1204 bool async_flip;
1207 struct plane_code_mapping {
1208 int pipe;
1209 int plane;
1210 int event;
1213 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1214 struct mi_display_flip_command_info *info)
1216 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1217 struct plane_code_mapping gen8_plane_code[] = {
1218 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1219 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1220 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1221 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1222 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1223 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1225 u32 dword0, dword1, dword2;
1226 u32 v;
1228 dword0 = cmd_val(s, 0);
1229 dword1 = cmd_val(s, 1);
1230 dword2 = cmd_val(s, 2);
1232 v = (dword0 & GENMASK(21, 19)) >> 19;
1233 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1234 return -EBADRQC;
1236 info->pipe = gen8_plane_code[v].pipe;
1237 info->plane = gen8_plane_code[v].plane;
1238 info->event = gen8_plane_code[v].event;
1239 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1240 info->tile_val = (dword1 & 0x1);
1241 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1242 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1244 if (info->plane == PLANE_A) {
1245 info->ctrl_reg = DSPCNTR(info->pipe);
1246 info->stride_reg = DSPSTRIDE(info->pipe);
1247 info->surf_reg = DSPSURF(info->pipe);
1248 } else if (info->plane == PLANE_B) {
1249 info->ctrl_reg = SPRCTL(info->pipe);
1250 info->stride_reg = SPRSTRIDE(info->pipe);
1251 info->surf_reg = SPRSURF(info->pipe);
1252 } else {
1253 WARN_ON(1);
1254 return -EBADRQC;
1256 return 0;
1259 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1260 struct mi_display_flip_command_info *info)
1262 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1263 struct intel_vgpu *vgpu = s->vgpu;
1264 u32 dword0 = cmd_val(s, 0);
1265 u32 dword1 = cmd_val(s, 1);
1266 u32 dword2 = cmd_val(s, 2);
1267 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1269 info->plane = PRIMARY_PLANE;
1271 switch (plane) {
1272 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1273 info->pipe = PIPE_A;
1274 info->event = PRIMARY_A_FLIP_DONE;
1275 break;
1276 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1277 info->pipe = PIPE_B;
1278 info->event = PRIMARY_B_FLIP_DONE;
1279 break;
1280 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1281 info->pipe = PIPE_C;
1282 info->event = PRIMARY_C_FLIP_DONE;
1283 break;
1285 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1286 info->pipe = PIPE_A;
1287 info->event = SPRITE_A_FLIP_DONE;
1288 info->plane = SPRITE_PLANE;
1289 break;
1290 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1291 info->pipe = PIPE_B;
1292 info->event = SPRITE_B_FLIP_DONE;
1293 info->plane = SPRITE_PLANE;
1294 break;
1295 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1296 info->pipe = PIPE_C;
1297 info->event = SPRITE_C_FLIP_DONE;
1298 info->plane = SPRITE_PLANE;
1299 break;
1301 default:
1302 gvt_vgpu_err("unknown plane code %d\n", plane);
1303 return -EBADRQC;
1306 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1307 info->tile_val = (dword1 & GENMASK(2, 0));
1308 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1309 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1311 info->ctrl_reg = DSPCNTR(info->pipe);
1312 info->stride_reg = DSPSTRIDE(info->pipe);
1313 info->surf_reg = DSPSURF(info->pipe);
1315 return 0;
1318 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1319 struct mi_display_flip_command_info *info)
1321 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1322 u32 stride, tile;
1324 if (!info->async_flip)
1325 return 0;
1327 if (INTEL_GEN(dev_priv) >= 9) {
1328 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1329 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1330 GENMASK(12, 10)) >> 10;
1331 } else {
1332 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1333 GENMASK(15, 6)) >> 6;
1334 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1337 if (stride != info->stride_val)
1338 gvt_dbg_cmd("cannot change stride during async flip\n");
1340 if (tile != info->tile_val)
1341 gvt_dbg_cmd("cannot change tile during async flip\n");
1343 return 0;
1346 static int gen8_update_plane_mmio_from_mi_display_flip(
1347 struct parser_exec_state *s,
1348 struct mi_display_flip_command_info *info)
1350 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1351 struct intel_vgpu *vgpu = s->vgpu;
1353 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1354 info->surf_val << 12);
1355 if (INTEL_GEN(dev_priv) >= 9) {
1356 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1357 info->stride_val);
1358 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1359 info->tile_val << 10);
1360 } else {
1361 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1362 info->stride_val << 6);
1363 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1364 info->tile_val << 10);
1367 if (info->plane == PLANE_PRIMARY)
1368 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1370 if (info->async_flip)
1371 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1372 else
1373 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1375 return 0;
1378 static int decode_mi_display_flip(struct parser_exec_state *s,
1379 struct mi_display_flip_command_info *info)
1381 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1383 if (IS_BROADWELL(dev_priv))
1384 return gen8_decode_mi_display_flip(s, info);
1385 if (INTEL_GEN(dev_priv) >= 9)
1386 return skl_decode_mi_display_flip(s, info);
1388 return -ENODEV;
1391 static int check_mi_display_flip(struct parser_exec_state *s,
1392 struct mi_display_flip_command_info *info)
1394 return gen8_check_mi_display_flip(s, info);
1397 static int update_plane_mmio_from_mi_display_flip(
1398 struct parser_exec_state *s,
1399 struct mi_display_flip_command_info *info)
1401 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1404 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1406 struct mi_display_flip_command_info info;
1407 struct intel_vgpu *vgpu = s->vgpu;
1408 int ret;
1409 int i;
1410 int len = cmd_length(s);
1411 u32 valid_len = CMD_LEN(1);
1413 /* Flip Type == Stereo 3D Flip */
1414 if (DWORD_FIELD(2, 1, 0) == 2)
1415 valid_len++;
1416 ret = gvt_check_valid_cmd_length(cmd_length(s),
1417 valid_len);
1418 if (ret)
1419 return ret;
1421 ret = decode_mi_display_flip(s, &info);
1422 if (ret) {
1423 gvt_vgpu_err("fail to decode MI display flip command\n");
1424 return ret;
1427 ret = check_mi_display_flip(s, &info);
1428 if (ret) {
1429 gvt_vgpu_err("invalid MI display flip command\n");
1430 return ret;
1433 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1434 if (ret) {
1435 gvt_vgpu_err("fail to update plane mmio\n");
1436 return ret;
1439 for (i = 0; i < len; i++)
1440 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1441 return 0;
1444 static bool is_wait_for_flip_pending(u32 cmd)
1446 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1447 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1448 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1449 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1450 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1451 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1454 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1456 u32 cmd = cmd_val(s, 0);
1458 if (!is_wait_for_flip_pending(cmd))
1459 return 0;
1461 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1462 return 0;
1465 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1467 unsigned long addr;
1468 unsigned long gma_high, gma_low;
1469 struct intel_vgpu *vgpu = s->vgpu;
1470 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1472 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1473 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1474 return INTEL_GVT_INVALID_ADDR;
1477 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1478 if (gmadr_bytes == 4) {
1479 addr = gma_low;
1480 } else {
1481 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1482 addr = (((unsigned long)gma_high) << 32) | gma_low;
1484 return addr;
1487 static inline int cmd_address_audit(struct parser_exec_state *s,
1488 unsigned long guest_gma, int op_size, bool index_mode)
1490 struct intel_vgpu *vgpu = s->vgpu;
1491 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1492 int i;
1493 int ret;
1495 if (op_size > max_surface_size) {
1496 gvt_vgpu_err("command address audit fail name %s\n",
1497 s->info->name);
1498 return -EFAULT;
1501 if (index_mode) {
1502 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1503 ret = -EFAULT;
1504 goto err;
1506 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1507 ret = -EFAULT;
1508 goto err;
1511 return 0;
1513 err:
1514 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1515 s->info->name, guest_gma, op_size);
1517 pr_err("cmd dump: ");
1518 for (i = 0; i < cmd_length(s); i++) {
1519 if (!(i % 4))
1520 pr_err("\n%08x ", cmd_val(s, i));
1521 else
1522 pr_err("%08x ", cmd_val(s, i));
1524 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1525 vgpu->id,
1526 vgpu_aperture_gmadr_base(vgpu),
1527 vgpu_aperture_gmadr_end(vgpu),
1528 vgpu_hidden_gmadr_base(vgpu),
1529 vgpu_hidden_gmadr_end(vgpu));
1530 return ret;
1533 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1535 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1536 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1537 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1538 unsigned long gma, gma_low, gma_high;
1539 u32 valid_len = CMD_LEN(2);
1540 int ret = 0;
1542 /* check ppggt */
1543 if (!(cmd_val(s, 0) & (1 << 22)))
1544 return 0;
1546 /* check if QWORD */
1547 if (DWORD_FIELD(0, 21, 21))
1548 valid_len++;
1549 ret = gvt_check_valid_cmd_length(cmd_length(s),
1550 valid_len);
1551 if (ret)
1552 return ret;
1554 gma = cmd_val(s, 2) & GENMASK(31, 2);
1556 if (gmadr_bytes == 8) {
1557 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1558 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1559 gma = (gma_high << 32) | gma_low;
1560 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1562 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1563 return ret;
1566 static inline int unexpected_cmd(struct parser_exec_state *s)
1568 struct intel_vgpu *vgpu = s->vgpu;
1570 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1572 return -EBADRQC;
1575 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1577 return unexpected_cmd(s);
1580 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1582 return unexpected_cmd(s);
1585 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1587 return unexpected_cmd(s);
1590 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1592 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1593 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1594 sizeof(u32);
1595 unsigned long gma, gma_high;
1596 u32 valid_len = CMD_LEN(1);
1597 int ret = 0;
1599 if (!(cmd_val(s, 0) & (1 << 22)))
1600 return ret;
1602 /* check inline data */
1603 if (cmd_val(s, 0) & BIT(18))
1604 valid_len = CMD_LEN(9);
1605 ret = gvt_check_valid_cmd_length(cmd_length(s),
1606 valid_len);
1607 if (ret)
1608 return ret;
1610 gma = cmd_val(s, 1) & GENMASK(31, 2);
1611 if (gmadr_bytes == 8) {
1612 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1613 gma = (gma_high << 32) | gma;
1615 ret = cmd_address_audit(s, gma, op_size, false);
1616 return ret;
1619 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1621 return unexpected_cmd(s);
1624 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1626 return unexpected_cmd(s);
1629 static int cmd_handler_mi_conditional_batch_buffer_end(
1630 struct parser_exec_state *s)
1632 return unexpected_cmd(s);
1635 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1637 return unexpected_cmd(s);
1640 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1642 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1643 unsigned long gma;
1644 bool index_mode = false;
1645 int ret = 0;
1646 u32 hws_pga, val;
1647 u32 valid_len = CMD_LEN(2);
1649 ret = gvt_check_valid_cmd_length(cmd_length(s),
1650 valid_len);
1651 if (ret) {
1652 /* Check again for Qword */
1653 ret = gvt_check_valid_cmd_length(cmd_length(s),
1654 ++valid_len);
1655 return ret;
1658 /* Check post-sync and ppgtt bit */
1659 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1660 gma = cmd_val(s, 1) & GENMASK(31, 3);
1661 if (gmadr_bytes == 8)
1662 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1663 /* Store Data Index */
1664 if (cmd_val(s, 0) & (1 << 21))
1665 index_mode = true;
1666 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1667 if (ret)
1668 return ret;
1669 if (index_mode) {
1670 hws_pga = s->vgpu->hws_pga[s->ring_id];
1671 gma = hws_pga + gma;
1672 patch_value(s, cmd_ptr(s, 1), gma);
1673 val = cmd_val(s, 0) & (~(1 << 21));
1674 patch_value(s, cmd_ptr(s, 0), val);
1677 /* Check notify bit */
1678 if ((cmd_val(s, 0) & (1 << 8)))
1679 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1680 s->workload->pending_events);
1681 return ret;
1684 static void addr_type_update_snb(struct parser_exec_state *s)
1686 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1687 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1688 s->buf_addr_type = PPGTT_BUFFER;
1693 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1694 unsigned long gma, unsigned long end_gma, void *va)
1696 unsigned long copy_len, offset;
1697 unsigned long len = 0;
1698 unsigned long gpa;
1700 while (gma != end_gma) {
1701 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1702 if (gpa == INTEL_GVT_INVALID_ADDR) {
1703 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1704 return -EFAULT;
1707 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1709 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1710 I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1712 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1714 len += copy_len;
1715 gma += copy_len;
1717 return len;
1722 * Check whether a batch buffer needs to be scanned. Currently
1723 * the only criteria is based on privilege.
1725 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1727 /* Decide privilege based on address space */
1728 if (cmd_val(s, 0) & (1 << 8) &&
1729 !(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1730 return 0;
1731 return 1;
1734 static int find_bb_size(struct parser_exec_state *s,
1735 unsigned long *bb_size,
1736 unsigned long *bb_end_cmd_offset)
1738 unsigned long gma = 0;
1739 const struct cmd_info *info;
1740 u32 cmd_len = 0;
1741 bool bb_end = false;
1742 struct intel_vgpu *vgpu = s->vgpu;
1743 u32 cmd;
1744 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1745 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1747 *bb_size = 0;
1748 *bb_end_cmd_offset = 0;
1750 /* get the start gm address of the batch buffer */
1751 gma = get_gma_bb_from_cmd(s, 1);
1752 if (gma == INTEL_GVT_INVALID_ADDR)
1753 return -EFAULT;
1755 cmd = cmd_val(s, 0);
1756 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1757 if (info == NULL) {
1758 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1759 cmd, get_opcode(cmd, s->ring_id),
1760 (s->buf_addr_type == PPGTT_BUFFER) ?
1761 "ppgtt" : "ggtt", s->ring_id, s->workload);
1762 return -EBADRQC;
1764 do {
1765 if (copy_gma_to_hva(s->vgpu, mm,
1766 gma, gma + 4, &cmd) < 0)
1767 return -EFAULT;
1768 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1769 if (info == NULL) {
1770 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1771 cmd, get_opcode(cmd, s->ring_id),
1772 (s->buf_addr_type == PPGTT_BUFFER) ?
1773 "ppgtt" : "ggtt", s->ring_id, s->workload);
1774 return -EBADRQC;
1777 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1778 bb_end = true;
1779 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1780 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1781 /* chained batch buffer */
1782 bb_end = true;
1785 if (bb_end)
1786 *bb_end_cmd_offset = *bb_size;
1788 cmd_len = get_cmd_length(info, cmd) << 2;
1789 *bb_size += cmd_len;
1790 gma += cmd_len;
1791 } while (!bb_end);
1793 return 0;
1796 static int audit_bb_end(struct parser_exec_state *s, void *va)
1798 struct intel_vgpu *vgpu = s->vgpu;
1799 u32 cmd = *(u32 *)va;
1800 const struct cmd_info *info;
1802 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1803 if (info == NULL) {
1804 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1805 cmd, get_opcode(cmd, s->ring_id),
1806 (s->buf_addr_type == PPGTT_BUFFER) ?
1807 "ppgtt" : "ggtt", s->ring_id, s->workload);
1808 return -EBADRQC;
1811 if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1812 ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1813 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1814 return 0;
1816 return -EBADRQC;
1819 static int perform_bb_shadow(struct parser_exec_state *s)
1821 struct intel_vgpu *vgpu = s->vgpu;
1822 struct intel_vgpu_shadow_bb *bb;
1823 unsigned long gma = 0;
1824 unsigned long bb_size;
1825 unsigned long bb_end_cmd_offset;
1826 int ret = 0;
1827 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1828 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1829 unsigned long start_offset = 0;
1831 /* get the start gm address of the batch buffer */
1832 gma = get_gma_bb_from_cmd(s, 1);
1833 if (gma == INTEL_GVT_INVALID_ADDR)
1834 return -EFAULT;
1836 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1837 if (ret)
1838 return ret;
1840 bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1841 if (!bb)
1842 return -ENOMEM;
1844 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1846 /* the start_offset stores the batch buffer's start gma's
1847 * offset relative to page boundary. so for non-privileged batch
1848 * buffer, the shadowed gem object holds exactly the same page
1849 * layout as original gem object. This is for the convience of
1850 * replacing the whole non-privilged batch buffer page to this
1851 * shadowed one in PPGTT at the same gma address. (this replacing
1852 * action is not implemented yet now, but may be necessary in
1853 * future).
1854 * for prileged batch buffer, we just change start gma address to
1855 * that of shadowed page.
1857 if (bb->ppgtt)
1858 start_offset = gma & ~I915_GTT_PAGE_MASK;
1860 bb->obj = i915_gem_object_create_shmem(s->vgpu->gvt->dev_priv,
1861 round_up(bb_size + start_offset,
1862 PAGE_SIZE));
1863 if (IS_ERR(bb->obj)) {
1864 ret = PTR_ERR(bb->obj);
1865 goto err_free_bb;
1868 ret = i915_gem_object_prepare_write(bb->obj, &bb->clflush);
1869 if (ret)
1870 goto err_free_obj;
1872 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1873 if (IS_ERR(bb->va)) {
1874 ret = PTR_ERR(bb->va);
1875 goto err_finish_shmem_access;
1878 if (bb->clflush & CLFLUSH_BEFORE) {
1879 drm_clflush_virt_range(bb->va, bb->obj->base.size);
1880 bb->clflush &= ~CLFLUSH_BEFORE;
1883 ret = copy_gma_to_hva(s->vgpu, mm,
1884 gma, gma + bb_size,
1885 bb->va + start_offset);
1886 if (ret < 0) {
1887 gvt_vgpu_err("fail to copy guest ring buffer\n");
1888 ret = -EFAULT;
1889 goto err_unmap;
1892 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1893 if (ret)
1894 goto err_unmap;
1896 INIT_LIST_HEAD(&bb->list);
1897 list_add(&bb->list, &s->workload->shadow_bb);
1899 bb->accessing = true;
1900 bb->bb_start_cmd_va = s->ip_va;
1902 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1903 bb->bb_offset = s->ip_va - s->rb_va;
1904 else
1905 bb->bb_offset = 0;
1908 * ip_va saves the virtual address of the shadow batch buffer, while
1909 * ip_gma saves the graphics address of the original batch buffer.
1910 * As the shadow batch buffer is just a copy from the originial one,
1911 * it should be right to use shadow batch buffer'va and original batch
1912 * buffer's gma in pair. After all, we don't want to pin the shadow
1913 * buffer here (too early).
1915 s->ip_va = bb->va + start_offset;
1916 s->ip_gma = gma;
1917 return 0;
1918 err_unmap:
1919 i915_gem_object_unpin_map(bb->obj);
1920 err_finish_shmem_access:
1921 i915_gem_object_finish_access(bb->obj);
1922 err_free_obj:
1923 i915_gem_object_put(bb->obj);
1924 err_free_bb:
1925 kfree(bb);
1926 return ret;
1929 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1931 bool second_level;
1932 int ret = 0;
1933 struct intel_vgpu *vgpu = s->vgpu;
1935 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1936 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1937 return -EFAULT;
1940 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1941 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1942 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1943 return -EFAULT;
1946 s->saved_buf_addr_type = s->buf_addr_type;
1947 addr_type_update_snb(s);
1948 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1949 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1950 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1951 } else if (second_level) {
1952 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1953 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1954 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1957 if (batch_buffer_needs_scan(s)) {
1958 ret = perform_bb_shadow(s);
1959 if (ret < 0)
1960 gvt_vgpu_err("invalid shadow batch buffer\n");
1961 } else {
1962 /* emulate a batch buffer end to do return right */
1963 ret = cmd_handler_mi_batch_buffer_end(s);
1964 if (ret < 0)
1965 return ret;
1967 return ret;
1970 static int mi_noop_index;
1972 static const struct cmd_info cmd_info[] = {
1973 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1975 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1976 0, 1, NULL},
1978 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1979 0, 1, cmd_handler_mi_user_interrupt},
1981 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1982 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1984 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1986 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1987 NULL},
1989 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1990 NULL},
1992 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1993 NULL},
1995 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1996 NULL},
1998 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1999 D_ALL, 0, 1, NULL},
2001 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2002 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2003 cmd_handler_mi_batch_buffer_end},
2005 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2006 0, 1, NULL},
2008 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2009 NULL},
2011 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2012 D_ALL, 0, 1, NULL},
2014 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2015 NULL},
2017 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2018 NULL},
2020 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2021 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2023 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2024 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2026 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2028 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2029 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2031 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2032 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2033 NULL, CMD_LEN(0)},
2035 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2036 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2037 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2039 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2040 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2042 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2043 0, 8, cmd_handler_mi_store_data_index},
2045 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2046 D_ALL, 0, 8, cmd_handler_lri},
2048 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2049 cmd_handler_mi_update_gtt},
2051 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2052 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2053 cmd_handler_srm, CMD_LEN(2)},
2055 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2056 cmd_handler_mi_flush_dw},
2058 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2059 10, cmd_handler_mi_clflush},
2061 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2062 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2063 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2065 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2066 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2067 cmd_handler_lrm, CMD_LEN(2)},
2069 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2070 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2071 cmd_handler_lrr, CMD_LEN(1)},
2073 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2074 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2075 8, NULL, CMD_LEN(2)},
2077 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2078 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2080 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2081 ADDR_FIX_1(2), 8, NULL},
2083 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2084 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2086 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2087 8, cmd_handler_mi_op_2f},
2089 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2090 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2091 cmd_handler_mi_batch_buffer_start},
2093 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2094 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2095 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2097 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2098 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2100 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2101 ADDR_FIX_2(4, 7), 8, NULL},
2103 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2104 0, 8, NULL},
2106 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2107 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2109 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2111 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2112 0, 8, NULL},
2114 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2115 ADDR_FIX_1(3), 8, NULL},
2117 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2118 D_ALL, 0, 8, NULL},
2120 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2121 ADDR_FIX_1(4), 8, NULL},
2123 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2124 ADDR_FIX_2(4, 5), 8, NULL},
2126 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2127 ADDR_FIX_1(4), 8, NULL},
2129 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2130 ADDR_FIX_2(4, 7), 8, NULL},
2132 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2133 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2135 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2137 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2138 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2140 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2141 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2143 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2144 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2145 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2147 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2148 D_ALL, ADDR_FIX_1(4), 8, NULL},
2150 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2151 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2153 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2154 D_ALL, ADDR_FIX_1(4), 8, NULL},
2156 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2157 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2159 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2160 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2162 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2163 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2164 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2166 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2167 ADDR_FIX_2(4, 5), 8, NULL},
2169 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2170 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2172 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2173 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2174 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2176 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2177 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2178 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2180 {"3DSTATE_BLEND_STATE_POINTERS",
2181 OP_3DSTATE_BLEND_STATE_POINTERS,
2182 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2184 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2185 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2186 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2188 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2189 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2190 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2192 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2193 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2194 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2196 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2197 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2198 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2200 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2201 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2202 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2204 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2205 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2206 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2208 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2209 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2210 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2212 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2213 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2214 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2216 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2217 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2218 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2220 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2221 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2222 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2224 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2225 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2226 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2228 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2229 0, 8, NULL},
2231 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2232 0, 8, NULL},
2234 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2235 0, 8, NULL},
2237 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2238 0, 8, NULL},
2240 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2241 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2243 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2247 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2250 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2252 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2253 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2255 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2256 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2258 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2259 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2261 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2262 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2264 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2265 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2267 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2268 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2270 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2271 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2274 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2276 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2277 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2279 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2282 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2283 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2285 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2286 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2288 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2289 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2291 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2292 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2294 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2295 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2297 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2298 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2300 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2301 D_BDW_PLUS, 0, 8, NULL},
2303 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2304 NULL},
2306 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2307 D_BDW_PLUS, 0, 8, NULL},
2309 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2310 D_BDW_PLUS, 0, 8, NULL},
2312 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2313 8, NULL},
2315 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2316 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2318 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2319 8, NULL},
2321 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2322 NULL},
2324 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2325 NULL},
2327 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2328 NULL},
2330 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2331 D_BDW_PLUS, 0, 8, NULL},
2333 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2334 R_RCS, D_ALL, 0, 8, NULL},
2336 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2337 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2339 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2340 R_RCS, D_ALL, 0, 1, NULL},
2342 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2344 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2345 R_RCS, D_ALL, 0, 8, NULL},
2347 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2348 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2350 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2352 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2354 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2356 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2357 D_BDW_PLUS, 0, 8, NULL},
2359 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2360 D_BDW_PLUS, 0, 8, NULL},
2362 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2363 D_ALL, 0, 8, NULL},
2365 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2366 D_BDW_PLUS, 0, 8, NULL},
2368 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2369 D_BDW_PLUS, 0, 8, NULL},
2371 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2373 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2375 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2377 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2378 D_ALL, 0, 8, NULL},
2380 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2382 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2384 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2385 R_RCS, D_ALL, 0, 8, NULL},
2387 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2388 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2390 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2391 0, 8, NULL},
2393 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2394 D_ALL, ADDR_FIX_1(2), 8, NULL},
2396 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2397 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2399 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2400 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2402 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2403 D_ALL, 0, 8, NULL},
2405 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2406 D_ALL, 0, 8, NULL},
2408 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2409 D_ALL, 0, 8, NULL},
2411 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2412 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2415 D_BDW_PLUS, 0, 8, NULL},
2417 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2418 D_ALL, ADDR_FIX_1(2), 8, NULL},
2420 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2421 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2423 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2424 R_RCS, D_ALL, 0, 8, NULL},
2426 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2427 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2429 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2430 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2432 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2433 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2436 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2438 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2439 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2441 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2442 R_RCS, D_ALL, 0, 8, NULL},
2444 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2445 D_ALL, 0, 9, NULL},
2447 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2448 ADDR_FIX_2(2, 4), 8, NULL},
2450 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2451 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2452 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2454 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2455 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2457 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2458 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2459 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2461 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2462 D_BDW_PLUS, 0, 8, NULL},
2464 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2465 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2467 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2469 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2470 1, NULL},
2472 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2473 ADDR_FIX_1(1), 8, NULL},
2475 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2477 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2478 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2480 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2481 ADDR_FIX_1(1), 8, NULL},
2483 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2485 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2487 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2488 0, 8, NULL},
2490 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2491 D_SKL_PLUS, 0, 8, NULL},
2493 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2494 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2496 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2497 0, 16, NULL},
2499 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2500 0, 16, NULL},
2502 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2503 0, 16, NULL},
2505 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2507 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2508 0, 16, NULL},
2510 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2511 0, 16, NULL},
2513 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2514 0, 16, NULL},
2516 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2517 0, 8, NULL},
2519 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2520 NULL},
2522 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2523 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2525 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2526 R_VCS, D_ALL, 0, 12, NULL},
2528 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2529 R_VCS, D_ALL, 0, 12, NULL},
2531 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2532 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2534 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2535 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2537 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2538 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2540 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2542 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2543 R_VCS, D_ALL, 0, 12, NULL},
2545 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2546 R_VCS, D_ALL, 0, 12, NULL},
2548 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2549 R_VCS, D_ALL, 0, 12, NULL},
2551 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2552 R_VCS, D_ALL, 0, 12, NULL},
2554 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2555 R_VCS, D_ALL, 0, 12, NULL},
2557 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2558 R_VCS, D_ALL, 0, 12, NULL},
2560 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2561 R_VCS, D_ALL, 0, 6, NULL},
2563 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2564 R_VCS, D_ALL, 0, 12, NULL},
2566 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2567 R_VCS, D_ALL, 0, 12, NULL},
2569 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2570 R_VCS, D_ALL, 0, 12, NULL},
2572 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2573 R_VCS, D_ALL, 0, 12, NULL},
2575 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2576 R_VCS, D_ALL, 0, 12, NULL},
2578 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2579 R_VCS, D_ALL, 0, 12, NULL},
2581 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2582 R_VCS, D_ALL, 0, 12, NULL},
2583 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2584 R_VCS, D_ALL, 0, 12, NULL},
2586 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2587 R_VCS, D_ALL, 0, 12, NULL},
2589 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2590 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2592 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2593 R_VCS, D_ALL, 0, 12, NULL},
2595 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2596 R_VCS, D_ALL, 0, 12, NULL},
2598 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2599 R_VCS, D_ALL, 0, 12, NULL},
2601 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2602 R_VCS, D_ALL, 0, 12, NULL},
2604 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2605 R_VCS, D_ALL, 0, 12, NULL},
2607 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2608 R_VCS, D_ALL, 0, 12, NULL},
2610 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2611 R_VCS, D_ALL, 0, 12, NULL},
2613 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2614 R_VCS, D_ALL, 0, 12, NULL},
2616 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2617 R_VCS, D_ALL, 0, 12, NULL},
2619 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2620 R_VCS, D_ALL, 0, 12, NULL},
2622 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2623 R_VCS, D_ALL, 0, 12, NULL},
2625 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2626 0, 16, NULL},
2628 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2630 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2632 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2633 R_VCS, D_ALL, 0, 12, NULL},
2635 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2636 R_VCS, D_ALL, 0, 12, NULL},
2638 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2639 R_VCS, D_ALL, 0, 12, NULL},
2641 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2643 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2644 0, 12, NULL},
2646 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2647 0, 12, NULL},
2650 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2652 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2655 /* call the cmd handler, and advance ip */
2656 static int cmd_parser_exec(struct parser_exec_state *s)
2658 struct intel_vgpu *vgpu = s->vgpu;
2659 const struct cmd_info *info;
2660 u32 cmd;
2661 int ret = 0;
2663 cmd = cmd_val(s, 0);
2665 /* fastpath for MI_NOOP */
2666 if (cmd == MI_NOOP)
2667 info = &cmd_info[mi_noop_index];
2668 else
2669 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2671 if (info == NULL) {
2672 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2673 cmd, get_opcode(cmd, s->ring_id),
2674 (s->buf_addr_type == PPGTT_BUFFER) ?
2675 "ppgtt" : "ggtt", s->ring_id, s->workload);
2676 return -EBADRQC;
2679 s->info = info;
2681 trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2682 cmd_length(s), s->buf_type, s->buf_addr_type,
2683 s->workload, info->name);
2685 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2686 ret = gvt_check_valid_cmd_length(cmd_length(s),
2687 info->valid_len);
2688 if (ret)
2689 return ret;
2692 if (info->handler) {
2693 ret = info->handler(s);
2694 if (ret < 0) {
2695 gvt_vgpu_err("%s handler error\n", info->name);
2696 return ret;
2700 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2701 ret = cmd_advance_default(s);
2702 if (ret) {
2703 gvt_vgpu_err("%s IP advance error\n", info->name);
2704 return ret;
2707 return 0;
2710 static inline bool gma_out_of_range(unsigned long gma,
2711 unsigned long gma_head, unsigned int gma_tail)
2713 if (gma_tail >= gma_head)
2714 return (gma < gma_head) || (gma > gma_tail);
2715 else
2716 return (gma > gma_tail) && (gma < gma_head);
2719 /* Keep the consistent return type, e.g EBADRQC for unknown
2720 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2721 * works as the input of VM healthy status.
2723 static int command_scan(struct parser_exec_state *s,
2724 unsigned long rb_head, unsigned long rb_tail,
2725 unsigned long rb_start, unsigned long rb_len)
2728 unsigned long gma_head, gma_tail, gma_bottom;
2729 int ret = 0;
2730 struct intel_vgpu *vgpu = s->vgpu;
2732 gma_head = rb_start + rb_head;
2733 gma_tail = rb_start + rb_tail;
2734 gma_bottom = rb_start + rb_len;
2736 while (s->ip_gma != gma_tail) {
2737 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2738 if (!(s->ip_gma >= rb_start) ||
2739 !(s->ip_gma < gma_bottom)) {
2740 gvt_vgpu_err("ip_gma %lx out of ring scope."
2741 "(base:0x%lx, bottom: 0x%lx)\n",
2742 s->ip_gma, rb_start,
2743 gma_bottom);
2744 parser_exec_state_dump(s);
2745 return -EFAULT;
2747 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2748 gvt_vgpu_err("ip_gma %lx out of range."
2749 "base 0x%lx head 0x%lx tail 0x%lx\n",
2750 s->ip_gma, rb_start,
2751 rb_head, rb_tail);
2752 parser_exec_state_dump(s);
2753 break;
2756 ret = cmd_parser_exec(s);
2757 if (ret) {
2758 gvt_vgpu_err("cmd parser error\n");
2759 parser_exec_state_dump(s);
2760 break;
2764 return ret;
2767 static int scan_workload(struct intel_vgpu_workload *workload)
2769 unsigned long gma_head, gma_tail, gma_bottom;
2770 struct parser_exec_state s;
2771 int ret = 0;
2773 /* ring base is page aligned */
2774 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2775 return -EINVAL;
2777 gma_head = workload->rb_start + workload->rb_head;
2778 gma_tail = workload->rb_start + workload->rb_tail;
2779 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
2781 s.buf_type = RING_BUFFER_INSTRUCTION;
2782 s.buf_addr_type = GTT_BUFFER;
2783 s.vgpu = workload->vgpu;
2784 s.ring_id = workload->ring_id;
2785 s.ring_start = workload->rb_start;
2786 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2787 s.ring_head = gma_head;
2788 s.ring_tail = gma_tail;
2789 s.rb_va = workload->shadow_ring_buffer_va;
2790 s.workload = workload;
2791 s.is_ctx_wa = false;
2793 if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2794 gma_head == gma_tail)
2795 return 0;
2797 ret = ip_gma_set(&s, gma_head);
2798 if (ret)
2799 goto out;
2801 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2802 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2804 out:
2805 return ret;
2808 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2811 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2812 struct parser_exec_state s;
2813 int ret = 0;
2814 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2815 struct intel_vgpu_workload,
2816 wa_ctx);
2818 /* ring base is page aligned */
2819 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2820 I915_GTT_PAGE_SIZE)))
2821 return -EINVAL;
2823 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2824 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2825 PAGE_SIZE);
2826 gma_head = wa_ctx->indirect_ctx.guest_gma;
2827 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2828 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2830 s.buf_type = RING_BUFFER_INSTRUCTION;
2831 s.buf_addr_type = GTT_BUFFER;
2832 s.vgpu = workload->vgpu;
2833 s.ring_id = workload->ring_id;
2834 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2835 s.ring_size = ring_size;
2836 s.ring_head = gma_head;
2837 s.ring_tail = gma_tail;
2838 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2839 s.workload = workload;
2840 s.is_ctx_wa = true;
2842 ret = ip_gma_set(&s, gma_head);
2843 if (ret)
2844 goto out;
2846 ret = command_scan(&s, 0, ring_tail,
2847 wa_ctx->indirect_ctx.guest_gma, ring_size);
2848 out:
2849 return ret;
2852 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2854 struct intel_vgpu *vgpu = workload->vgpu;
2855 struct intel_vgpu_submission *s = &vgpu->submission;
2856 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2857 void *shadow_ring_buffer_va;
2858 int ring_id = workload->ring_id;
2859 int ret;
2861 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2863 /* calculate workload ring buffer size */
2864 workload->rb_len = (workload->rb_tail + guest_rb_size -
2865 workload->rb_head) % guest_rb_size;
2867 gma_head = workload->rb_start + workload->rb_head;
2868 gma_tail = workload->rb_start + workload->rb_tail;
2869 gma_top = workload->rb_start + guest_rb_size;
2871 if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2872 void *p;
2874 /* realloc the new ring buffer if needed */
2875 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2876 GFP_KERNEL);
2877 if (!p) {
2878 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2879 return -ENOMEM;
2881 s->ring_scan_buffer[ring_id] = p;
2882 s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2885 shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2887 /* get shadow ring buffer va */
2888 workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2890 /* head > tail --> copy head <-> top */
2891 if (gma_head > gma_tail) {
2892 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2893 gma_head, gma_top, shadow_ring_buffer_va);
2894 if (ret < 0) {
2895 gvt_vgpu_err("fail to copy guest ring buffer\n");
2896 return ret;
2898 shadow_ring_buffer_va += ret;
2899 gma_head = workload->rb_start;
2902 /* copy head or start <-> tail */
2903 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2904 shadow_ring_buffer_va);
2905 if (ret < 0) {
2906 gvt_vgpu_err("fail to copy guest ring buffer\n");
2907 return ret;
2909 return 0;
2912 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2914 int ret;
2915 struct intel_vgpu *vgpu = workload->vgpu;
2917 ret = shadow_workload_ring_buffer(workload);
2918 if (ret) {
2919 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2920 return ret;
2923 ret = scan_workload(workload);
2924 if (ret) {
2925 gvt_vgpu_err("scan workload error\n");
2926 return ret;
2928 return 0;
2931 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2933 int ctx_size = wa_ctx->indirect_ctx.size;
2934 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2935 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2936 struct intel_vgpu_workload,
2937 wa_ctx);
2938 struct intel_vgpu *vgpu = workload->vgpu;
2939 struct drm_i915_gem_object *obj;
2940 int ret = 0;
2941 void *map;
2943 obj = i915_gem_object_create_shmem(workload->vgpu->gvt->dev_priv,
2944 roundup(ctx_size + CACHELINE_BYTES,
2945 PAGE_SIZE));
2946 if (IS_ERR(obj))
2947 return PTR_ERR(obj);
2949 /* get the va of the shadow batch buffer */
2950 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2951 if (IS_ERR(map)) {
2952 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2953 ret = PTR_ERR(map);
2954 goto put_obj;
2957 i915_gem_object_lock(obj);
2958 ret = i915_gem_object_set_to_cpu_domain(obj, false);
2959 i915_gem_object_unlock(obj);
2960 if (ret) {
2961 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2962 goto unmap_src;
2965 ret = copy_gma_to_hva(workload->vgpu,
2966 workload->vgpu->gtt.ggtt_mm,
2967 guest_gma, guest_gma + ctx_size,
2968 map);
2969 if (ret < 0) {
2970 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2971 goto unmap_src;
2974 wa_ctx->indirect_ctx.obj = obj;
2975 wa_ctx->indirect_ctx.shadow_va = map;
2976 return 0;
2978 unmap_src:
2979 i915_gem_object_unpin_map(obj);
2980 put_obj:
2981 i915_gem_object_put(obj);
2982 return ret;
2985 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2987 u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2988 unsigned char *bb_start_sva;
2990 if (!wa_ctx->per_ctx.valid)
2991 return 0;
2993 per_ctx_start[0] = 0x18800001;
2994 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2996 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2997 wa_ctx->indirect_ctx.size;
2999 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3001 return 0;
3004 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3006 int ret;
3007 struct intel_vgpu_workload *workload = container_of(wa_ctx,
3008 struct intel_vgpu_workload,
3009 wa_ctx);
3010 struct intel_vgpu *vgpu = workload->vgpu;
3012 if (wa_ctx->indirect_ctx.size == 0)
3013 return 0;
3015 ret = shadow_indirect_ctx(wa_ctx);
3016 if (ret) {
3017 gvt_vgpu_err("fail to shadow indirect ctx\n");
3018 return ret;
3021 combine_wa_ctx(wa_ctx);
3023 ret = scan_wa_ctx(wa_ctx);
3024 if (ret) {
3025 gvt_vgpu_err("scan wa ctx error\n");
3026 return ret;
3029 return 0;
3032 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
3033 unsigned int opcode, unsigned long rings)
3035 const struct cmd_info *info = NULL;
3036 unsigned int ring;
3038 for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
3039 info = find_cmd_entry(gvt, opcode, ring);
3040 if (info)
3041 break;
3043 return info;
3046 static int init_cmd_table(struct intel_gvt *gvt)
3048 int i;
3049 struct cmd_entry *e;
3050 const struct cmd_info *info;
3051 unsigned int gen_type;
3053 gen_type = intel_gvt_get_device_type(gvt);
3055 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3056 if (!(cmd_info[i].devices & gen_type))
3057 continue;
3059 e = kzalloc(sizeof(*e), GFP_KERNEL);
3060 if (!e)
3061 return -ENOMEM;
3063 e->info = &cmd_info[i];
3064 info = find_cmd_entry_any_ring(gvt,
3065 e->info->opcode, e->info->rings);
3066 if (info) {
3067 gvt_err("%s %s duplicated\n", e->info->name,
3068 info->name);
3069 kfree(e);
3070 return -EEXIST;
3072 if (cmd_info[i].opcode == OP_MI_NOOP)
3073 mi_noop_index = i;
3075 INIT_HLIST_NODE(&e->hlist);
3076 add_cmd_entry(gvt, e);
3077 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3078 e->info->name, e->info->opcode, e->info->flag,
3079 e->info->devices, e->info->rings);
3081 return 0;
3084 static void clean_cmd_table(struct intel_gvt *gvt)
3086 struct hlist_node *tmp;
3087 struct cmd_entry *e;
3088 int i;
3090 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3091 kfree(e);
3093 hash_init(gvt->cmd_table);
3096 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3098 clean_cmd_table(gvt);
3101 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3103 int ret;
3105 ret = init_cmd_table(gvt);
3106 if (ret) {
3107 intel_gvt_clean_cmd_parser(gvt);
3108 return ret;
3110 return 0;