2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
37 #include <linux/slab.h>
40 #include "gt/intel_ring.h"
42 #include "i915_pvinfo.h"
45 #define INVALID_OP (~0U)
49 #define OP_LEN_3D_MEDIA 16
50 #define OP_LEN_MFX_VC 16
51 #define OP_LEN_VEBOX 16
53 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
63 const struct sub_op_bits
*sub_op
;
66 #define MAX_CMD_BUDGET 0x7fffffff
67 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
68 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
69 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
71 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
72 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
73 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
75 /* Render Command Map */
77 /* MI_* command Opcode (28:23) */
78 #define OP_MI_NOOP 0x0
79 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
80 #define OP_MI_USER_INTERRUPT 0x2
81 #define OP_MI_WAIT_FOR_EVENT 0x3
82 #define OP_MI_FLUSH 0x4
83 #define OP_MI_ARB_CHECK 0x5
84 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
85 #define OP_MI_REPORT_HEAD 0x7
86 #define OP_MI_ARB_ON_OFF 0x8
87 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
88 #define OP_MI_BATCH_BUFFER_END 0xA
89 #define OP_MI_SUSPEND_FLUSH 0xB
90 #define OP_MI_PREDICATE 0xC /* IVB+ */
91 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
92 #define OP_MI_SET_APPID 0xE /* IVB+ */
93 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
94 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
95 #define OP_MI_DISPLAY_FLIP 0x14
96 #define OP_MI_SEMAPHORE_MBOX 0x16
97 #define OP_MI_SET_CONTEXT 0x18
98 #define OP_MI_MATH 0x1A
99 #define OP_MI_URB_CLEAR 0x19
100 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
101 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
103 #define OP_MI_STORE_DATA_IMM 0x20
104 #define OP_MI_STORE_DATA_INDEX 0x21
105 #define OP_MI_LOAD_REGISTER_IMM 0x22
106 #define OP_MI_UPDATE_GTT 0x23
107 #define OP_MI_STORE_REGISTER_MEM 0x24
108 #define OP_MI_FLUSH_DW 0x26
109 #define OP_MI_CLFLUSH 0x27
110 #define OP_MI_REPORT_PERF_COUNT 0x28
111 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
112 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
113 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
114 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
115 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
116 #define OP_MI_2E 0x2E /* BDW+ */
117 #define OP_MI_2F 0x2F /* BDW+ */
118 #define OP_MI_BATCH_BUFFER_START 0x31
120 /* Bit definition for dword 0 */
121 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
123 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
125 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
126 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
127 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
128 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
130 /* 2D command: Opcode (28:22) */
131 #define OP_2D(x) ((2<<7) | x)
133 #define OP_XY_SETUP_BLT OP_2D(0x1)
134 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
135 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
136 #define OP_XY_PIXEL_BLT OP_2D(0x24)
137 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
138 #define OP_XY_TEXT_BLT OP_2D(0x26)
139 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
140 #define OP_XY_COLOR_BLT OP_2D(0x50)
141 #define OP_XY_PAT_BLT OP_2D(0x51)
142 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
143 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
144 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
145 #define OP_XY_FULL_BLT OP_2D(0x55)
146 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
147 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
148 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
149 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
150 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
151 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
152 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
153 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
154 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
155 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
156 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
158 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
159 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
160 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
162 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
164 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
165 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
166 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
168 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
170 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
172 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
173 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
174 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
175 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
176 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
177 #define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5)
179 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
180 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
181 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
182 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
184 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
185 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
186 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
187 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
188 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
189 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
190 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
191 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
192 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
193 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
194 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
195 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
196 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
197 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
198 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
199 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
200 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
201 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
202 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
203 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
204 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
205 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
206 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
207 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
208 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
209 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
210 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
211 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
212 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
213 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
214 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
215 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
219 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
220 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
224 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
225 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
226 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
227 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
228 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
229 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
233 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
234 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
239 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
240 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
241 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
242 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
243 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
244 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
248 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
249 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
251 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
252 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
253 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
254 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
255 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
256 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
257 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
258 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
259 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
260 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
261 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
263 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
264 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
265 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
266 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
267 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
268 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
269 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
270 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
271 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
272 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
273 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
274 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
275 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
276 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
277 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
281 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
282 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
283 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
284 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
285 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
286 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
287 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
288 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
289 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
290 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
292 /* VCCP Command Parser */
295 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
296 * git://anongit.freedesktop.org/vaapi/intel-driver
301 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
308 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
309 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
310 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
311 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
312 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
313 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
314 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
315 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
316 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
317 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
318 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
320 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
322 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
323 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
324 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
325 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
326 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
327 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
328 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
329 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
330 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
331 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
332 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
333 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
335 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
336 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
337 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
338 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
339 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
341 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
342 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
343 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
344 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
345 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
347 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
348 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
349 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
351 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
352 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
353 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
355 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
362 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
363 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
364 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
366 struct parser_exec_state
;
368 typedef int (*parser_cmd_handler
)(struct parser_exec_state
*s
);
370 #define GVT_CMD_HASH_BITS 7
372 /* which DWords need address fix */
373 #define ADDR_FIX_1(x1) (1 << (x1))
374 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
375 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
376 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
377 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
379 #define DWORD_FIELD(dword, end, start) \
380 FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
382 #define OP_LENGTH_BIAS 2
383 #define CMD_LEN(value) (value + OP_LENGTH_BIAS)
385 static int gvt_check_valid_cmd_length(int len
, int valid_len
)
387 if (valid_len
!= len
) {
388 gvt_err("len is not valid: len=%u valid_len=%u\n",
399 #define F_LEN_MASK 3U
400 #define F_LEN_CONST 1U
402 /* value is const although LEN maybe variable */
403 #define F_LEN_VAR_FIXED (1<<1)
406 * command has its own ip advance logic
407 * e.g. MI_BATCH_START, MI_BATCH_END
409 #define F_IP_ADVANCE_CUSTOM (1<<2)
412 #define R_RCS BIT(RCS0)
413 #define R_VCS1 BIT(VCS0)
414 #define R_VCS2 BIT(VCS1)
415 #define R_VCS (R_VCS1 | R_VCS2)
416 #define R_BCS BIT(BCS0)
417 #define R_VECS BIT(VECS0)
418 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
419 /* rings that support this cmd: BLT/RCS/VCS/VECS */
422 /* devices that support this cmd: SNB/IVB/HSW/... */
425 /* which DWords are address that need fix up.
426 * bit 0 means a 32-bit non address operand in command
427 * bit 1 means address operand, which could be 32-bit
428 * or 64-bit depending on different architectures.(
429 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
430 * No matter the address length, each address only takes
431 * one bit in the bitmap.
435 /* flag == F_LEN_CONST : command length
436 * flag == F_LEN_VAR : length bias bits
437 * Note: length is in DWord
441 parser_cmd_handler handler
;
443 /* valid length in DWord */
448 struct hlist_node hlist
;
449 const struct cmd_info
*info
;
453 RING_BUFFER_INSTRUCTION
,
454 BATCH_BUFFER_INSTRUCTION
,
455 BATCH_BUFFER_2ND_LEVEL
,
463 struct parser_exec_state
{
464 struct intel_vgpu
*vgpu
;
469 /* batch buffer address type */
472 /* graphics memory address of ring buffer start */
473 unsigned long ring_start
;
474 unsigned long ring_size
;
475 unsigned long ring_head
;
476 unsigned long ring_tail
;
478 /* instruction graphics memory address */
479 unsigned long ip_gma
;
481 /* mapped va of the instr_gma */
486 /* next instruction when return from batch buffer to ring buffer */
487 unsigned long ret_ip_gma_ring
;
489 /* next instruction when return from 2nd batch buffer to batch buffer */
490 unsigned long ret_ip_gma_bb
;
492 /* batch buffer address type (GTT or PPGTT)
493 * used when ret from 2nd level batch buffer
495 int saved_buf_addr_type
;
498 const struct cmd_info
*info
;
500 struct intel_vgpu_workload
*workload
;
503 #define gmadr_dw_number(s) \
504 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
506 static unsigned long bypass_scan_mask
= 0;
508 /* ring ALL, type = 0 */
509 static const struct sub_op_bits sub_op_mi
[] = {
514 static const struct decode_info decode_info_mi
= {
517 ARRAY_SIZE(sub_op_mi
),
521 /* ring RCS, command type 2 */
522 static const struct sub_op_bits sub_op_2d
[] = {
527 static const struct decode_info decode_info_2d
= {
530 ARRAY_SIZE(sub_op_2d
),
534 /* ring RCS, command type 3 */
535 static const struct sub_op_bits sub_op_3d_media
[] = {
542 static const struct decode_info decode_info_3d_media
= {
545 ARRAY_SIZE(sub_op_3d_media
),
549 /* ring VCS, command type 3 */
550 static const struct sub_op_bits sub_op_mfx_vc
[] = {
558 static const struct decode_info decode_info_mfx_vc
= {
561 ARRAY_SIZE(sub_op_mfx_vc
),
565 /* ring VECS, command type 3 */
566 static const struct sub_op_bits sub_op_vebox
[] = {
574 static const struct decode_info decode_info_vebox
= {
577 ARRAY_SIZE(sub_op_vebox
),
581 static const struct decode_info
*ring_decode_info
[I915_NUM_ENGINES
][8] = {
586 &decode_info_3d_media
,
638 static inline u32
get_opcode(u32 cmd
, int ring_id
)
640 const struct decode_info
*d_info
;
642 d_info
= ring_decode_info
[ring_id
][CMD_TYPE(cmd
)];
646 return cmd
>> (32 - d_info
->op_len
);
649 static inline const struct cmd_info
*find_cmd_entry(struct intel_gvt
*gvt
,
650 unsigned int opcode
, int ring_id
)
654 hash_for_each_possible(gvt
->cmd_table
, e
, hlist
, opcode
) {
655 if (opcode
== e
->info
->opcode
&& e
->info
->rings
& BIT(ring_id
))
661 static inline const struct cmd_info
*get_cmd_info(struct intel_gvt
*gvt
,
662 u32 cmd
, int ring_id
)
666 opcode
= get_opcode(cmd
, ring_id
);
667 if (opcode
== INVALID_OP
)
670 return find_cmd_entry(gvt
, opcode
, ring_id
);
673 static inline u32
sub_op_val(u32 cmd
, u32 hi
, u32 low
)
675 return (cmd
>> low
) & ((1U << (hi
- low
+ 1)) - 1);
678 static inline void print_opcode(u32 cmd
, int ring_id
)
680 const struct decode_info
*d_info
;
683 d_info
= ring_decode_info
[ring_id
][CMD_TYPE(cmd
)];
687 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
688 cmd
>> (32 - d_info
->op_len
), d_info
->name
);
690 for (i
= 0; i
< d_info
->nr_sub_op
; i
++)
691 pr_err("0x%x ", sub_op_val(cmd
, d_info
->sub_op
[i
].hi
,
692 d_info
->sub_op
[i
].low
));
697 static inline u32
*cmd_ptr(struct parser_exec_state
*s
, int index
)
699 return s
->ip_va
+ (index
<< 2);
702 static inline u32
cmd_val(struct parser_exec_state
*s
, int index
)
704 return *cmd_ptr(s
, index
);
707 static void parser_exec_state_dump(struct parser_exec_state
*s
)
712 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
713 " ring_head(%08lx) ring_tail(%08lx)\n", s
->vgpu
->id
,
714 s
->ring_id
, s
->ring_start
, s
->ring_start
+ s
->ring_size
,
715 s
->ring_head
, s
->ring_tail
);
717 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
718 s
->buf_type
== RING_BUFFER_INSTRUCTION
?
719 "RING_BUFFER" : "BATCH_BUFFER",
720 s
->buf_addr_type
== GTT_BUFFER
?
721 "GTT" : "PPGTT", s
->ip_gma
);
723 if (s
->ip_va
== NULL
) {
724 gvt_dbg_cmd(" ip_va(NULL)");
728 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
729 s
->ip_va
, cmd_val(s
, 0), cmd_val(s
, 1),
730 cmd_val(s
, 2), cmd_val(s
, 3));
732 print_opcode(cmd_val(s
, 0), s
->ring_id
);
734 s
->ip_va
= (u32
*)((((u64
)s
->ip_va
) >> 12) << 12);
737 gvt_dbg_cmd("ip_va=%p: ", s
->ip_va
);
738 for (i
= 0; i
< 8; i
++)
739 gvt_dbg_cmd("%08x ", cmd_val(s
, i
));
742 s
->ip_va
+= 8 * sizeof(u32
);
747 static inline void update_ip_va(struct parser_exec_state
*s
)
749 unsigned long len
= 0;
751 if (WARN_ON(s
->ring_head
== s
->ring_tail
))
754 if (s
->buf_type
== RING_BUFFER_INSTRUCTION
) {
755 unsigned long ring_top
= s
->ring_start
+ s
->ring_size
;
757 if (s
->ring_head
> s
->ring_tail
) {
758 if (s
->ip_gma
>= s
->ring_head
&& s
->ip_gma
< ring_top
)
759 len
= (s
->ip_gma
- s
->ring_head
);
760 else if (s
->ip_gma
>= s
->ring_start
&&
761 s
->ip_gma
<= s
->ring_tail
)
762 len
= (ring_top
- s
->ring_head
) +
763 (s
->ip_gma
- s
->ring_start
);
765 len
= (s
->ip_gma
- s
->ring_head
);
767 s
->ip_va
= s
->rb_va
+ len
;
768 } else {/* shadow batch buffer */
769 s
->ip_va
= s
->ret_bb_va
;
773 static inline int ip_gma_set(struct parser_exec_state
*s
,
774 unsigned long ip_gma
)
776 WARN_ON(!IS_ALIGNED(ip_gma
, 4));
783 static inline int ip_gma_advance(struct parser_exec_state
*s
,
786 s
->ip_gma
+= (dw_len
<< 2);
788 if (s
->buf_type
== RING_BUFFER_INSTRUCTION
) {
789 if (s
->ip_gma
>= s
->ring_start
+ s
->ring_size
)
790 s
->ip_gma
-= s
->ring_size
;
793 s
->ip_va
+= (dw_len
<< 2);
799 static inline int get_cmd_length(const struct cmd_info
*info
, u32 cmd
)
801 if ((info
->flag
& F_LEN_MASK
) == F_LEN_CONST
)
804 return (cmd
& ((1U << info
->len
) - 1)) + 2;
808 static inline int cmd_length(struct parser_exec_state
*s
)
810 return get_cmd_length(s
->info
, cmd_val(s
, 0));
813 /* do not remove this, some platform may need clflush here */
814 #define patch_value(s, addr, val) do { \
818 static bool is_shadowed_mmio(unsigned int offset
)
822 if ((offset
== 0x2168) || /*BB current head register UDW */
823 (offset
== 0x2140) || /*BB current header register */
824 (offset
== 0x211c) || /*second BB header register UDW */
825 (offset
== 0x2114)) { /*second BB header register UDW */
831 static inline bool is_force_nonpriv_mmio(unsigned int offset
)
833 return (offset
>= 0x24d0 && offset
< 0x2500);
836 static int force_nonpriv_reg_handler(struct parser_exec_state
*s
,
837 unsigned int offset
, unsigned int index
, char *cmd
)
839 struct intel_gvt
*gvt
= s
->vgpu
->gvt
;
843 struct drm_i915_private
*dev_priv
= s
->vgpu
->gvt
->dev_priv
;
845 if (!strcmp(cmd
, "lri"))
846 data
= cmd_val(s
, index
+ 1);
848 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
853 ring_base
= dev_priv
->engine
[s
->ring_id
]->mmio_base
;
854 nopid
= i915_mmio_reg_offset(RING_NOPID(ring_base
));
856 if (!intel_gvt_in_force_nonpriv_whitelist(gvt
, data
) &&
858 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
860 patch_value(s
, cmd_ptr(s
, index
), nopid
);
866 static inline bool is_mocs_mmio(unsigned int offset
)
868 return ((offset
>= 0xc800) && (offset
<= 0xcff8)) ||
869 ((offset
>= 0xb020) && (offset
<= 0xb0a0));
872 static int mocs_cmd_reg_handler(struct parser_exec_state
*s
,
873 unsigned int offset
, unsigned int index
)
875 if (!is_mocs_mmio(offset
))
877 vgpu_vreg(s
->vgpu
, offset
) = cmd_val(s
, index
+ 1);
881 static int cmd_reg_handler(struct parser_exec_state
*s
,
882 unsigned int offset
, unsigned int index
, char *cmd
)
884 struct intel_vgpu
*vgpu
= s
->vgpu
;
885 struct intel_gvt
*gvt
= vgpu
->gvt
;
888 if (offset
+ 4 > gvt
->device_info
.mmio_size
) {
889 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
894 if (!intel_gvt_mmio_is_cmd_access(gvt
, offset
)) {
895 gvt_vgpu_err("%s access to non-render register (%x)\n",
900 if (is_shadowed_mmio(offset
)) {
901 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset
);
905 if (is_mocs_mmio(offset
) &&
906 mocs_cmd_reg_handler(s
, offset
, index
))
909 if (is_force_nonpriv_mmio(offset
) &&
910 force_nonpriv_reg_handler(s
, offset
, index
, cmd
))
913 if (offset
== i915_mmio_reg_offset(DERRMR
) ||
914 offset
== i915_mmio_reg_offset(FORCEWAKE_MT
)) {
915 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
916 patch_value(s
, cmd_ptr(s
, index
), VGT_PVINFO_PAGE
);
920 * In order to let workload with inhibit context to generate
921 * correct image data into memory, vregs values will be loaded to
922 * hw via LRIs in the workload with inhibit context. But as
923 * indirect context is loaded prior to LRIs in workload, we don't
924 * want reg values specified in indirect context overwritten by
925 * LRIs in workloads. So, when scanning an indirect context, we
926 * update reg values in it into vregs, so LRIs in workload with
927 * inhibit context will restore with correct values
929 if (IS_GEN(gvt
->dev_priv
, 9) &&
930 intel_gvt_mmio_is_in_ctx(gvt
, offset
) &&
931 !strncmp(cmd
, "lri", 3)) {
932 intel_gvt_hypervisor_read_gpa(s
->vgpu
,
933 s
->workload
->ring_context_gpa
+ 12, &ctx_sr_ctl
, 4);
934 /* check inhibit context */
935 if (ctx_sr_ctl
& 1) {
936 u32 data
= cmd_val(s
, index
+ 1);
938 if (intel_gvt_mmio_has_mode_mask(s
->vgpu
->gvt
, offset
))
939 intel_vgpu_mask_mmio_write(vgpu
,
942 vgpu_vreg(vgpu
, offset
) = data
;
946 /* TODO: Update the global mask if this MMIO is a masked-MMIO */
947 intel_gvt_mmio_set_cmd_accessed(gvt
, offset
);
951 #define cmd_reg(s, i) \
952 (cmd_val(s, i) & GENMASK(22, 2))
954 #define cmd_reg_inhibit(s, i) \
955 (cmd_val(s, i) & GENMASK(22, 18))
957 #define cmd_gma(s, i) \
958 (cmd_val(s, i) & GENMASK(31, 2))
960 #define cmd_gma_hi(s, i) \
961 (cmd_val(s, i) & GENMASK(15, 0))
963 static int cmd_handler_lri(struct parser_exec_state
*s
)
966 int cmd_len
= cmd_length(s
);
967 struct intel_gvt
*gvt
= s
->vgpu
->gvt
;
968 u32 valid_len
= CMD_LEN(1);
971 * Official intel docs are somewhat sloppy , check the definition of
972 * MI_LOAD_REGISTER_IMM.
974 #define MAX_VALID_LEN 127
975 if ((cmd_len
< valid_len
) || (cmd_len
> MAX_VALID_LEN
)) {
976 gvt_err("len is not valid: len=%u valid_len=%u\n",
981 for (i
= 1; i
< cmd_len
; i
+= 2) {
982 if (IS_BROADWELL(gvt
->dev_priv
) && s
->ring_id
!= RCS0
) {
983 if (s
->ring_id
== BCS0
&&
984 cmd_reg(s
, i
) == i915_mmio_reg_offset(DERRMR
))
987 ret
|= cmd_reg_inhibit(s
, i
) ? -EBADRQC
: 0;
991 ret
|= cmd_reg_handler(s
, cmd_reg(s
, i
), i
, "lri");
998 static int cmd_handler_lrr(struct parser_exec_state
*s
)
1001 int cmd_len
= cmd_length(s
);
1003 for (i
= 1; i
< cmd_len
; i
+= 2) {
1004 if (IS_BROADWELL(s
->vgpu
->gvt
->dev_priv
))
1005 ret
|= ((cmd_reg_inhibit(s
, i
) ||
1006 (cmd_reg_inhibit(s
, i
+ 1)))) ?
1010 ret
|= cmd_reg_handler(s
, cmd_reg(s
, i
), i
, "lrr-src");
1013 ret
|= cmd_reg_handler(s
, cmd_reg(s
, i
+ 1), i
, "lrr-dst");
1020 static inline int cmd_address_audit(struct parser_exec_state
*s
,
1021 unsigned long guest_gma
, int op_size
, bool index_mode
);
1023 static int cmd_handler_lrm(struct parser_exec_state
*s
)
1025 struct intel_gvt
*gvt
= s
->vgpu
->gvt
;
1026 int gmadr_bytes
= gvt
->device_info
.gmadr_bytes_in_cmd
;
1029 int cmd_len
= cmd_length(s
);
1031 for (i
= 1; i
< cmd_len
;) {
1032 if (IS_BROADWELL(gvt
->dev_priv
))
1033 ret
|= (cmd_reg_inhibit(s
, i
)) ? -EBADRQC
: 0;
1036 ret
|= cmd_reg_handler(s
, cmd_reg(s
, i
), i
, "lrm");
1039 if (cmd_val(s
, 0) & (1 << 22)) {
1040 gma
= cmd_gma(s
, i
+ 1);
1041 if (gmadr_bytes
== 8)
1042 gma
|= (cmd_gma_hi(s
, i
+ 2)) << 32;
1043 ret
|= cmd_address_audit(s
, gma
, sizeof(u32
), false);
1047 i
+= gmadr_dw_number(s
) + 1;
1052 static int cmd_handler_srm(struct parser_exec_state
*s
)
1054 int gmadr_bytes
= s
->vgpu
->gvt
->device_info
.gmadr_bytes_in_cmd
;
1057 int cmd_len
= cmd_length(s
);
1059 for (i
= 1; i
< cmd_len
;) {
1060 ret
|= cmd_reg_handler(s
, cmd_reg(s
, i
), i
, "srm");
1063 if (cmd_val(s
, 0) & (1 << 22)) {
1064 gma
= cmd_gma(s
, i
+ 1);
1065 if (gmadr_bytes
== 8)
1066 gma
|= (cmd_gma_hi(s
, i
+ 2)) << 32;
1067 ret
|= cmd_address_audit(s
, gma
, sizeof(u32
), false);
1071 i
+= gmadr_dw_number(s
) + 1;
1076 struct cmd_interrupt_event
{
1077 int pipe_control_notify
;
1079 int mi_user_interrupt
;
1082 static struct cmd_interrupt_event cmd_interrupt_events
[] = {
1084 .pipe_control_notify
= RCS_PIPE_CONTROL
,
1085 .mi_flush_dw
= INTEL_GVT_EVENT_RESERVED
,
1086 .mi_user_interrupt
= RCS_MI_USER_INTERRUPT
,
1089 .pipe_control_notify
= INTEL_GVT_EVENT_RESERVED
,
1090 .mi_flush_dw
= BCS_MI_FLUSH_DW
,
1091 .mi_user_interrupt
= BCS_MI_USER_INTERRUPT
,
1094 .pipe_control_notify
= INTEL_GVT_EVENT_RESERVED
,
1095 .mi_flush_dw
= VCS_MI_FLUSH_DW
,
1096 .mi_user_interrupt
= VCS_MI_USER_INTERRUPT
,
1099 .pipe_control_notify
= INTEL_GVT_EVENT_RESERVED
,
1100 .mi_flush_dw
= VCS2_MI_FLUSH_DW
,
1101 .mi_user_interrupt
= VCS2_MI_USER_INTERRUPT
,
1104 .pipe_control_notify
= INTEL_GVT_EVENT_RESERVED
,
1105 .mi_flush_dw
= VECS_MI_FLUSH_DW
,
1106 .mi_user_interrupt
= VECS_MI_USER_INTERRUPT
,
1110 static int cmd_handler_pipe_control(struct parser_exec_state
*s
)
1112 int gmadr_bytes
= s
->vgpu
->gvt
->device_info
.gmadr_bytes_in_cmd
;
1114 bool index_mode
= false;
1115 unsigned int post_sync
;
1119 post_sync
= (cmd_val(s
, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK
) >> 14;
1122 if (cmd_val(s
, 1) & PIPE_CONTROL_MMIO_WRITE
)
1123 ret
= cmd_reg_handler(s
, cmd_reg(s
, 2), 1, "pipe_ctrl");
1125 else if (post_sync
) {
1127 ret
= cmd_reg_handler(s
, 0x2350, 1, "pipe_ctrl");
1128 else if (post_sync
== 3)
1129 ret
= cmd_reg_handler(s
, 0x2358, 1, "pipe_ctrl");
1130 else if (post_sync
== 1) {
1132 if ((cmd_val(s
, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB
)) {
1133 gma
= cmd_val(s
, 2) & GENMASK(31, 3);
1134 if (gmadr_bytes
== 8)
1135 gma
|= (cmd_gma_hi(s
, 3)) << 32;
1136 /* Store Data Index */
1137 if (cmd_val(s
, 1) & (1 << 21))
1139 ret
|= cmd_address_audit(s
, gma
, sizeof(u64
),
1144 hws_pga
= s
->vgpu
->hws_pga
[s
->ring_id
];
1145 gma
= hws_pga
+ gma
;
1146 patch_value(s
, cmd_ptr(s
, 2), gma
);
1147 val
= cmd_val(s
, 1) & (~(1 << 21));
1148 patch_value(s
, cmd_ptr(s
, 1), val
);
1157 if (cmd_val(s
, 1) & PIPE_CONTROL_NOTIFY
)
1158 set_bit(cmd_interrupt_events
[s
->ring_id
].pipe_control_notify
,
1159 s
->workload
->pending_events
);
1163 static int cmd_handler_mi_user_interrupt(struct parser_exec_state
*s
)
1165 set_bit(cmd_interrupt_events
[s
->ring_id
].mi_user_interrupt
,
1166 s
->workload
->pending_events
);
1167 patch_value(s
, cmd_ptr(s
, 0), MI_NOOP
);
1171 static int cmd_advance_default(struct parser_exec_state
*s
)
1173 return ip_gma_advance(s
, cmd_length(s
));
1176 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state
*s
)
1180 if (s
->buf_type
== BATCH_BUFFER_2ND_LEVEL
) {
1181 s
->buf_type
= BATCH_BUFFER_INSTRUCTION
;
1182 ret
= ip_gma_set(s
, s
->ret_ip_gma_bb
);
1183 s
->buf_addr_type
= s
->saved_buf_addr_type
;
1185 s
->buf_type
= RING_BUFFER_INSTRUCTION
;
1186 s
->buf_addr_type
= GTT_BUFFER
;
1187 if (s
->ret_ip_gma_ring
>= s
->ring_start
+ s
->ring_size
)
1188 s
->ret_ip_gma_ring
-= s
->ring_size
;
1189 ret
= ip_gma_set(s
, s
->ret_ip_gma_ring
);
1194 struct mi_display_flip_command_info
{
1198 i915_reg_t stride_reg
;
1199 i915_reg_t ctrl_reg
;
1200 i915_reg_t surf_reg
;
1207 struct plane_code_mapping
{
1213 static int gen8_decode_mi_display_flip(struct parser_exec_state
*s
,
1214 struct mi_display_flip_command_info
*info
)
1216 struct drm_i915_private
*dev_priv
= s
->vgpu
->gvt
->dev_priv
;
1217 struct plane_code_mapping gen8_plane_code
[] = {
1218 [0] = {PIPE_A
, PLANE_A
, PRIMARY_A_FLIP_DONE
},
1219 [1] = {PIPE_B
, PLANE_A
, PRIMARY_B_FLIP_DONE
},
1220 [2] = {PIPE_A
, PLANE_B
, SPRITE_A_FLIP_DONE
},
1221 [3] = {PIPE_B
, PLANE_B
, SPRITE_B_FLIP_DONE
},
1222 [4] = {PIPE_C
, PLANE_A
, PRIMARY_C_FLIP_DONE
},
1223 [5] = {PIPE_C
, PLANE_B
, SPRITE_C_FLIP_DONE
},
1225 u32 dword0
, dword1
, dword2
;
1228 dword0
= cmd_val(s
, 0);
1229 dword1
= cmd_val(s
, 1);
1230 dword2
= cmd_val(s
, 2);
1232 v
= (dword0
& GENMASK(21, 19)) >> 19;
1233 if (WARN_ON(v
>= ARRAY_SIZE(gen8_plane_code
)))
1236 info
->pipe
= gen8_plane_code
[v
].pipe
;
1237 info
->plane
= gen8_plane_code
[v
].plane
;
1238 info
->event
= gen8_plane_code
[v
].event
;
1239 info
->stride_val
= (dword1
& GENMASK(15, 6)) >> 6;
1240 info
->tile_val
= (dword1
& 0x1);
1241 info
->surf_val
= (dword2
& GENMASK(31, 12)) >> 12;
1242 info
->async_flip
= ((dword2
& GENMASK(1, 0)) == 0x1);
1244 if (info
->plane
== PLANE_A
) {
1245 info
->ctrl_reg
= DSPCNTR(info
->pipe
);
1246 info
->stride_reg
= DSPSTRIDE(info
->pipe
);
1247 info
->surf_reg
= DSPSURF(info
->pipe
);
1248 } else if (info
->plane
== PLANE_B
) {
1249 info
->ctrl_reg
= SPRCTL(info
->pipe
);
1250 info
->stride_reg
= SPRSTRIDE(info
->pipe
);
1251 info
->surf_reg
= SPRSURF(info
->pipe
);
1259 static int skl_decode_mi_display_flip(struct parser_exec_state
*s
,
1260 struct mi_display_flip_command_info
*info
)
1262 struct drm_i915_private
*dev_priv
= s
->vgpu
->gvt
->dev_priv
;
1263 struct intel_vgpu
*vgpu
= s
->vgpu
;
1264 u32 dword0
= cmd_val(s
, 0);
1265 u32 dword1
= cmd_val(s
, 1);
1266 u32 dword2
= cmd_val(s
, 2);
1267 u32 plane
= (dword0
& GENMASK(12, 8)) >> 8;
1269 info
->plane
= PRIMARY_PLANE
;
1272 case MI_DISPLAY_FLIP_SKL_PLANE_1_A
:
1273 info
->pipe
= PIPE_A
;
1274 info
->event
= PRIMARY_A_FLIP_DONE
;
1276 case MI_DISPLAY_FLIP_SKL_PLANE_1_B
:
1277 info
->pipe
= PIPE_B
;
1278 info
->event
= PRIMARY_B_FLIP_DONE
;
1280 case MI_DISPLAY_FLIP_SKL_PLANE_1_C
:
1281 info
->pipe
= PIPE_C
;
1282 info
->event
= PRIMARY_C_FLIP_DONE
;
1285 case MI_DISPLAY_FLIP_SKL_PLANE_2_A
:
1286 info
->pipe
= PIPE_A
;
1287 info
->event
= SPRITE_A_FLIP_DONE
;
1288 info
->plane
= SPRITE_PLANE
;
1290 case MI_DISPLAY_FLIP_SKL_PLANE_2_B
:
1291 info
->pipe
= PIPE_B
;
1292 info
->event
= SPRITE_B_FLIP_DONE
;
1293 info
->plane
= SPRITE_PLANE
;
1295 case MI_DISPLAY_FLIP_SKL_PLANE_2_C
:
1296 info
->pipe
= PIPE_C
;
1297 info
->event
= SPRITE_C_FLIP_DONE
;
1298 info
->plane
= SPRITE_PLANE
;
1302 gvt_vgpu_err("unknown plane code %d\n", plane
);
1306 info
->stride_val
= (dword1
& GENMASK(15, 6)) >> 6;
1307 info
->tile_val
= (dword1
& GENMASK(2, 0));
1308 info
->surf_val
= (dword2
& GENMASK(31, 12)) >> 12;
1309 info
->async_flip
= ((dword2
& GENMASK(1, 0)) == 0x1);
1311 info
->ctrl_reg
= DSPCNTR(info
->pipe
);
1312 info
->stride_reg
= DSPSTRIDE(info
->pipe
);
1313 info
->surf_reg
= DSPSURF(info
->pipe
);
1318 static int gen8_check_mi_display_flip(struct parser_exec_state
*s
,
1319 struct mi_display_flip_command_info
*info
)
1321 struct drm_i915_private
*dev_priv
= s
->vgpu
->gvt
->dev_priv
;
1324 if (!info
->async_flip
)
1327 if (INTEL_GEN(dev_priv
) >= 9) {
1328 stride
= vgpu_vreg_t(s
->vgpu
, info
->stride_reg
) & GENMASK(9, 0);
1329 tile
= (vgpu_vreg_t(s
->vgpu
, info
->ctrl_reg
) &
1330 GENMASK(12, 10)) >> 10;
1332 stride
= (vgpu_vreg_t(s
->vgpu
, info
->stride_reg
) &
1333 GENMASK(15, 6)) >> 6;
1334 tile
= (vgpu_vreg_t(s
->vgpu
, info
->ctrl_reg
) & (1 << 10)) >> 10;
1337 if (stride
!= info
->stride_val
)
1338 gvt_dbg_cmd("cannot change stride during async flip\n");
1340 if (tile
!= info
->tile_val
)
1341 gvt_dbg_cmd("cannot change tile during async flip\n");
1346 static int gen8_update_plane_mmio_from_mi_display_flip(
1347 struct parser_exec_state
*s
,
1348 struct mi_display_flip_command_info
*info
)
1350 struct drm_i915_private
*dev_priv
= s
->vgpu
->gvt
->dev_priv
;
1351 struct intel_vgpu
*vgpu
= s
->vgpu
;
1353 set_mask_bits(&vgpu_vreg_t(vgpu
, info
->surf_reg
), GENMASK(31, 12),
1354 info
->surf_val
<< 12);
1355 if (INTEL_GEN(dev_priv
) >= 9) {
1356 set_mask_bits(&vgpu_vreg_t(vgpu
, info
->stride_reg
), GENMASK(9, 0),
1358 set_mask_bits(&vgpu_vreg_t(vgpu
, info
->ctrl_reg
), GENMASK(12, 10),
1359 info
->tile_val
<< 10);
1361 set_mask_bits(&vgpu_vreg_t(vgpu
, info
->stride_reg
), GENMASK(15, 6),
1362 info
->stride_val
<< 6);
1363 set_mask_bits(&vgpu_vreg_t(vgpu
, info
->ctrl_reg
), GENMASK(10, 10),
1364 info
->tile_val
<< 10);
1367 if (info
->plane
== PLANE_PRIMARY
)
1368 vgpu_vreg_t(vgpu
, PIPE_FLIPCOUNT_G4X(info
->pipe
))++;
1370 if (info
->async_flip
)
1371 intel_vgpu_trigger_virtual_event(vgpu
, info
->event
);
1373 set_bit(info
->event
, vgpu
->irq
.flip_done_event
[info
->pipe
]);
1378 static int decode_mi_display_flip(struct parser_exec_state
*s
,
1379 struct mi_display_flip_command_info
*info
)
1381 struct drm_i915_private
*dev_priv
= s
->vgpu
->gvt
->dev_priv
;
1383 if (IS_BROADWELL(dev_priv
))
1384 return gen8_decode_mi_display_flip(s
, info
);
1385 if (INTEL_GEN(dev_priv
) >= 9)
1386 return skl_decode_mi_display_flip(s
, info
);
1391 static int check_mi_display_flip(struct parser_exec_state
*s
,
1392 struct mi_display_flip_command_info
*info
)
1394 return gen8_check_mi_display_flip(s
, info
);
1397 static int update_plane_mmio_from_mi_display_flip(
1398 struct parser_exec_state
*s
,
1399 struct mi_display_flip_command_info
*info
)
1401 return gen8_update_plane_mmio_from_mi_display_flip(s
, info
);
1404 static int cmd_handler_mi_display_flip(struct parser_exec_state
*s
)
1406 struct mi_display_flip_command_info info
;
1407 struct intel_vgpu
*vgpu
= s
->vgpu
;
1410 int len
= cmd_length(s
);
1411 u32 valid_len
= CMD_LEN(1);
1413 /* Flip Type == Stereo 3D Flip */
1414 if (DWORD_FIELD(2, 1, 0) == 2)
1416 ret
= gvt_check_valid_cmd_length(cmd_length(s
),
1421 ret
= decode_mi_display_flip(s
, &info
);
1423 gvt_vgpu_err("fail to decode MI display flip command\n");
1427 ret
= check_mi_display_flip(s
, &info
);
1429 gvt_vgpu_err("invalid MI display flip command\n");
1433 ret
= update_plane_mmio_from_mi_display_flip(s
, &info
);
1435 gvt_vgpu_err("fail to update plane mmio\n");
1439 for (i
= 0; i
< len
; i
++)
1440 patch_value(s
, cmd_ptr(s
, i
), MI_NOOP
);
1444 static bool is_wait_for_flip_pending(u32 cmd
)
1446 return cmd
& (MI_WAIT_FOR_PLANE_A_FLIP_PENDING
|
1447 MI_WAIT_FOR_PLANE_B_FLIP_PENDING
|
1448 MI_WAIT_FOR_PLANE_C_FLIP_PENDING
|
1449 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING
|
1450 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING
|
1451 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING
);
1454 static int cmd_handler_mi_wait_for_event(struct parser_exec_state
*s
)
1456 u32 cmd
= cmd_val(s
, 0);
1458 if (!is_wait_for_flip_pending(cmd
))
1461 patch_value(s
, cmd_ptr(s
, 0), MI_NOOP
);
1465 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state
*s
, int index
)
1468 unsigned long gma_high
, gma_low
;
1469 struct intel_vgpu
*vgpu
= s
->vgpu
;
1470 int gmadr_bytes
= vgpu
->gvt
->device_info
.gmadr_bytes_in_cmd
;
1472 if (WARN_ON(gmadr_bytes
!= 4 && gmadr_bytes
!= 8)) {
1473 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes
);
1474 return INTEL_GVT_INVALID_ADDR
;
1477 gma_low
= cmd_val(s
, index
) & BATCH_BUFFER_ADDR_MASK
;
1478 if (gmadr_bytes
== 4) {
1481 gma_high
= cmd_val(s
, index
+ 1) & BATCH_BUFFER_ADDR_HIGH_MASK
;
1482 addr
= (((unsigned long)gma_high
) << 32) | gma_low
;
1487 static inline int cmd_address_audit(struct parser_exec_state
*s
,
1488 unsigned long guest_gma
, int op_size
, bool index_mode
)
1490 struct intel_vgpu
*vgpu
= s
->vgpu
;
1491 u32 max_surface_size
= vgpu
->gvt
->device_info
.max_surface_size
;
1495 if (op_size
> max_surface_size
) {
1496 gvt_vgpu_err("command address audit fail name %s\n",
1502 if (guest_gma
>= I915_GTT_PAGE_SIZE
) {
1506 } else if (!intel_gvt_ggtt_validate_range(vgpu
, guest_gma
, op_size
)) {
1514 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1515 s
->info
->name
, guest_gma
, op_size
);
1517 pr_err("cmd dump: ");
1518 for (i
= 0; i
< cmd_length(s
); i
++) {
1520 pr_err("\n%08x ", cmd_val(s
, i
));
1522 pr_err("%08x ", cmd_val(s
, i
));
1524 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1526 vgpu_aperture_gmadr_base(vgpu
),
1527 vgpu_aperture_gmadr_end(vgpu
),
1528 vgpu_hidden_gmadr_base(vgpu
),
1529 vgpu_hidden_gmadr_end(vgpu
));
1533 static int cmd_handler_mi_store_data_imm(struct parser_exec_state
*s
)
1535 int gmadr_bytes
= s
->vgpu
->gvt
->device_info
.gmadr_bytes_in_cmd
;
1536 int op_size
= (cmd_length(s
) - 3) * sizeof(u32
);
1537 int core_id
= (cmd_val(s
, 2) & (1 << 0)) ? 1 : 0;
1538 unsigned long gma
, gma_low
, gma_high
;
1539 u32 valid_len
= CMD_LEN(2);
1543 if (!(cmd_val(s
, 0) & (1 << 22)))
1546 /* check if QWORD */
1547 if (DWORD_FIELD(0, 21, 21))
1549 ret
= gvt_check_valid_cmd_length(cmd_length(s
),
1554 gma
= cmd_val(s
, 2) & GENMASK(31, 2);
1556 if (gmadr_bytes
== 8) {
1557 gma_low
= cmd_val(s
, 1) & GENMASK(31, 2);
1558 gma_high
= cmd_val(s
, 2) & GENMASK(15, 0);
1559 gma
= (gma_high
<< 32) | gma_low
;
1560 core_id
= (cmd_val(s
, 1) & (1 << 0)) ? 1 : 0;
1562 ret
= cmd_address_audit(s
, gma
+ op_size
* core_id
, op_size
, false);
1566 static inline int unexpected_cmd(struct parser_exec_state
*s
)
1568 struct intel_vgpu
*vgpu
= s
->vgpu
;
1570 gvt_vgpu_err("Unexpected %s in command buffer!\n", s
->info
->name
);
1575 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state
*s
)
1577 return unexpected_cmd(s
);
1580 static int cmd_handler_mi_report_perf_count(struct parser_exec_state
*s
)
1582 return unexpected_cmd(s
);
1585 static int cmd_handler_mi_op_2e(struct parser_exec_state
*s
)
1587 return unexpected_cmd(s
);
1590 static int cmd_handler_mi_op_2f(struct parser_exec_state
*s
)
1592 int gmadr_bytes
= s
->vgpu
->gvt
->device_info
.gmadr_bytes_in_cmd
;
1593 int op_size
= (1 << ((cmd_val(s
, 0) & GENMASK(20, 19)) >> 19)) *
1595 unsigned long gma
, gma_high
;
1596 u32 valid_len
= CMD_LEN(1);
1599 if (!(cmd_val(s
, 0) & (1 << 22)))
1602 /* check inline data */
1603 if (cmd_val(s
, 0) & BIT(18))
1604 valid_len
= CMD_LEN(9);
1605 ret
= gvt_check_valid_cmd_length(cmd_length(s
),
1610 gma
= cmd_val(s
, 1) & GENMASK(31, 2);
1611 if (gmadr_bytes
== 8) {
1612 gma_high
= cmd_val(s
, 2) & GENMASK(15, 0);
1613 gma
= (gma_high
<< 32) | gma
;
1615 ret
= cmd_address_audit(s
, gma
, op_size
, false);
1619 static int cmd_handler_mi_store_data_index(struct parser_exec_state
*s
)
1621 return unexpected_cmd(s
);
1624 static int cmd_handler_mi_clflush(struct parser_exec_state
*s
)
1626 return unexpected_cmd(s
);
1629 static int cmd_handler_mi_conditional_batch_buffer_end(
1630 struct parser_exec_state
*s
)
1632 return unexpected_cmd(s
);
1635 static int cmd_handler_mi_update_gtt(struct parser_exec_state
*s
)
1637 return unexpected_cmd(s
);
1640 static int cmd_handler_mi_flush_dw(struct parser_exec_state
*s
)
1642 int gmadr_bytes
= s
->vgpu
->gvt
->device_info
.gmadr_bytes_in_cmd
;
1644 bool index_mode
= false;
1647 u32 valid_len
= CMD_LEN(2);
1649 ret
= gvt_check_valid_cmd_length(cmd_length(s
),
1652 /* Check again for Qword */
1653 ret
= gvt_check_valid_cmd_length(cmd_length(s
),
1658 /* Check post-sync and ppgtt bit */
1659 if (((cmd_val(s
, 0) >> 14) & 0x3) && (cmd_val(s
, 1) & (1 << 2))) {
1660 gma
= cmd_val(s
, 1) & GENMASK(31, 3);
1661 if (gmadr_bytes
== 8)
1662 gma
|= (cmd_val(s
, 2) & GENMASK(15, 0)) << 32;
1663 /* Store Data Index */
1664 if (cmd_val(s
, 0) & (1 << 21))
1666 ret
= cmd_address_audit(s
, gma
, sizeof(u64
), index_mode
);
1670 hws_pga
= s
->vgpu
->hws_pga
[s
->ring_id
];
1671 gma
= hws_pga
+ gma
;
1672 patch_value(s
, cmd_ptr(s
, 1), gma
);
1673 val
= cmd_val(s
, 0) & (~(1 << 21));
1674 patch_value(s
, cmd_ptr(s
, 0), val
);
1677 /* Check notify bit */
1678 if ((cmd_val(s
, 0) & (1 << 8)))
1679 set_bit(cmd_interrupt_events
[s
->ring_id
].mi_flush_dw
,
1680 s
->workload
->pending_events
);
1684 static void addr_type_update_snb(struct parser_exec_state
*s
)
1686 if ((s
->buf_type
== RING_BUFFER_INSTRUCTION
) &&
1687 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s
, 0)) == 1)) {
1688 s
->buf_addr_type
= PPGTT_BUFFER
;
1693 static int copy_gma_to_hva(struct intel_vgpu
*vgpu
, struct intel_vgpu_mm
*mm
,
1694 unsigned long gma
, unsigned long end_gma
, void *va
)
1696 unsigned long copy_len
, offset
;
1697 unsigned long len
= 0;
1700 while (gma
!= end_gma
) {
1701 gpa
= intel_vgpu_gma_to_gpa(mm
, gma
);
1702 if (gpa
== INTEL_GVT_INVALID_ADDR
) {
1703 gvt_vgpu_err("invalid gma address: %lx\n", gma
);
1707 offset
= gma
& (I915_GTT_PAGE_SIZE
- 1);
1709 copy_len
= (end_gma
- gma
) >= (I915_GTT_PAGE_SIZE
- offset
) ?
1710 I915_GTT_PAGE_SIZE
- offset
: end_gma
- gma
;
1712 intel_gvt_hypervisor_read_gpa(vgpu
, gpa
, va
+ len
, copy_len
);
1722 * Check whether a batch buffer needs to be scanned. Currently
1723 * the only criteria is based on privilege.
1725 static int batch_buffer_needs_scan(struct parser_exec_state
*s
)
1727 /* Decide privilege based on address space */
1728 if (cmd_val(s
, 0) & (1 << 8) &&
1729 !(s
->vgpu
->scan_nonprivbb
& (1 << s
->ring_id
)))
1734 static int find_bb_size(struct parser_exec_state
*s
,
1735 unsigned long *bb_size
,
1736 unsigned long *bb_end_cmd_offset
)
1738 unsigned long gma
= 0;
1739 const struct cmd_info
*info
;
1741 bool bb_end
= false;
1742 struct intel_vgpu
*vgpu
= s
->vgpu
;
1744 struct intel_vgpu_mm
*mm
= (s
->buf_addr_type
== GTT_BUFFER
) ?
1745 s
->vgpu
->gtt
.ggtt_mm
: s
->workload
->shadow_mm
;
1748 *bb_end_cmd_offset
= 0;
1750 /* get the start gm address of the batch buffer */
1751 gma
= get_gma_bb_from_cmd(s
, 1);
1752 if (gma
== INTEL_GVT_INVALID_ADDR
)
1755 cmd
= cmd_val(s
, 0);
1756 info
= get_cmd_info(s
->vgpu
->gvt
, cmd
, s
->ring_id
);
1758 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1759 cmd
, get_opcode(cmd
, s
->ring_id
),
1760 (s
->buf_addr_type
== PPGTT_BUFFER
) ?
1761 "ppgtt" : "ggtt", s
->ring_id
, s
->workload
);
1765 if (copy_gma_to_hva(s
->vgpu
, mm
,
1766 gma
, gma
+ 4, &cmd
) < 0)
1768 info
= get_cmd_info(s
->vgpu
->gvt
, cmd
, s
->ring_id
);
1770 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1771 cmd
, get_opcode(cmd
, s
->ring_id
),
1772 (s
->buf_addr_type
== PPGTT_BUFFER
) ?
1773 "ppgtt" : "ggtt", s
->ring_id
, s
->workload
);
1777 if (info
->opcode
== OP_MI_BATCH_BUFFER_END
) {
1779 } else if (info
->opcode
== OP_MI_BATCH_BUFFER_START
) {
1780 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd
) == 0)
1781 /* chained batch buffer */
1786 *bb_end_cmd_offset
= *bb_size
;
1788 cmd_len
= get_cmd_length(info
, cmd
) << 2;
1789 *bb_size
+= cmd_len
;
1796 static int audit_bb_end(struct parser_exec_state
*s
, void *va
)
1798 struct intel_vgpu
*vgpu
= s
->vgpu
;
1799 u32 cmd
= *(u32
*)va
;
1800 const struct cmd_info
*info
;
1802 info
= get_cmd_info(s
->vgpu
->gvt
, cmd
, s
->ring_id
);
1804 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1805 cmd
, get_opcode(cmd
, s
->ring_id
),
1806 (s
->buf_addr_type
== PPGTT_BUFFER
) ?
1807 "ppgtt" : "ggtt", s
->ring_id
, s
->workload
);
1811 if ((info
->opcode
== OP_MI_BATCH_BUFFER_END
) ||
1812 ((info
->opcode
== OP_MI_BATCH_BUFFER_START
) &&
1813 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd
) == 0)))
1819 static int perform_bb_shadow(struct parser_exec_state
*s
)
1821 struct intel_vgpu
*vgpu
= s
->vgpu
;
1822 struct intel_vgpu_shadow_bb
*bb
;
1823 unsigned long gma
= 0;
1824 unsigned long bb_size
;
1825 unsigned long bb_end_cmd_offset
;
1827 struct intel_vgpu_mm
*mm
= (s
->buf_addr_type
== GTT_BUFFER
) ?
1828 s
->vgpu
->gtt
.ggtt_mm
: s
->workload
->shadow_mm
;
1829 unsigned long start_offset
= 0;
1831 /* get the start gm address of the batch buffer */
1832 gma
= get_gma_bb_from_cmd(s
, 1);
1833 if (gma
== INTEL_GVT_INVALID_ADDR
)
1836 ret
= find_bb_size(s
, &bb_size
, &bb_end_cmd_offset
);
1840 bb
= kzalloc(sizeof(*bb
), GFP_KERNEL
);
1844 bb
->ppgtt
= (s
->buf_addr_type
== GTT_BUFFER
) ? false : true;
1846 /* the start_offset stores the batch buffer's start gma's
1847 * offset relative to page boundary. so for non-privileged batch
1848 * buffer, the shadowed gem object holds exactly the same page
1849 * layout as original gem object. This is for the convience of
1850 * replacing the whole non-privilged batch buffer page to this
1851 * shadowed one in PPGTT at the same gma address. (this replacing
1852 * action is not implemented yet now, but may be necessary in
1854 * for prileged batch buffer, we just change start gma address to
1855 * that of shadowed page.
1858 start_offset
= gma
& ~I915_GTT_PAGE_MASK
;
1860 bb
->obj
= i915_gem_object_create_shmem(s
->vgpu
->gvt
->dev_priv
,
1861 round_up(bb_size
+ start_offset
,
1863 if (IS_ERR(bb
->obj
)) {
1864 ret
= PTR_ERR(bb
->obj
);
1868 ret
= i915_gem_object_prepare_write(bb
->obj
, &bb
->clflush
);
1872 bb
->va
= i915_gem_object_pin_map(bb
->obj
, I915_MAP_WB
);
1873 if (IS_ERR(bb
->va
)) {
1874 ret
= PTR_ERR(bb
->va
);
1875 goto err_finish_shmem_access
;
1878 if (bb
->clflush
& CLFLUSH_BEFORE
) {
1879 drm_clflush_virt_range(bb
->va
, bb
->obj
->base
.size
);
1880 bb
->clflush
&= ~CLFLUSH_BEFORE
;
1883 ret
= copy_gma_to_hva(s
->vgpu
, mm
,
1885 bb
->va
+ start_offset
);
1887 gvt_vgpu_err("fail to copy guest ring buffer\n");
1892 ret
= audit_bb_end(s
, bb
->va
+ start_offset
+ bb_end_cmd_offset
);
1896 INIT_LIST_HEAD(&bb
->list
);
1897 list_add(&bb
->list
, &s
->workload
->shadow_bb
);
1899 bb
->accessing
= true;
1900 bb
->bb_start_cmd_va
= s
->ip_va
;
1902 if ((s
->buf_type
== BATCH_BUFFER_INSTRUCTION
) && (!s
->is_ctx_wa
))
1903 bb
->bb_offset
= s
->ip_va
- s
->rb_va
;
1908 * ip_va saves the virtual address of the shadow batch buffer, while
1909 * ip_gma saves the graphics address of the original batch buffer.
1910 * As the shadow batch buffer is just a copy from the originial one,
1911 * it should be right to use shadow batch buffer'va and original batch
1912 * buffer's gma in pair. After all, we don't want to pin the shadow
1913 * buffer here (too early).
1915 s
->ip_va
= bb
->va
+ start_offset
;
1919 i915_gem_object_unpin_map(bb
->obj
);
1920 err_finish_shmem_access
:
1921 i915_gem_object_finish_access(bb
->obj
);
1923 i915_gem_object_put(bb
->obj
);
1929 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state
*s
)
1933 struct intel_vgpu
*vgpu
= s
->vgpu
;
1935 if (s
->buf_type
== BATCH_BUFFER_2ND_LEVEL
) {
1936 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1940 second_level
= BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s
, 0)) == 1;
1941 if (second_level
&& (s
->buf_type
!= BATCH_BUFFER_INSTRUCTION
)) {
1942 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1946 s
->saved_buf_addr_type
= s
->buf_addr_type
;
1947 addr_type_update_snb(s
);
1948 if (s
->buf_type
== RING_BUFFER_INSTRUCTION
) {
1949 s
->ret_ip_gma_ring
= s
->ip_gma
+ cmd_length(s
) * sizeof(u32
);
1950 s
->buf_type
= BATCH_BUFFER_INSTRUCTION
;
1951 } else if (second_level
) {
1952 s
->buf_type
= BATCH_BUFFER_2ND_LEVEL
;
1953 s
->ret_ip_gma_bb
= s
->ip_gma
+ cmd_length(s
) * sizeof(u32
);
1954 s
->ret_bb_va
= s
->ip_va
+ cmd_length(s
) * sizeof(u32
);
1957 if (batch_buffer_needs_scan(s
)) {
1958 ret
= perform_bb_shadow(s
);
1960 gvt_vgpu_err("invalid shadow batch buffer\n");
1962 /* emulate a batch buffer end to do return right */
1963 ret
= cmd_handler_mi_batch_buffer_end(s
);
1970 static int mi_noop_index
;
1972 static const struct cmd_info cmd_info
[] = {
1973 {"MI_NOOP", OP_MI_NOOP
, F_LEN_CONST
, R_ALL
, D_ALL
, 0, 1, NULL
},
1975 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE
, F_LEN_CONST
, R_ALL
, D_ALL
,
1978 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT
, F_LEN_CONST
, R_ALL
, D_ALL
,
1979 0, 1, cmd_handler_mi_user_interrupt
},
1981 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT
, F_LEN_CONST
, R_RCS
| R_BCS
,
1982 D_ALL
, 0, 1, cmd_handler_mi_wait_for_event
},
1984 {"MI_FLUSH", OP_MI_FLUSH
, F_LEN_CONST
, R_ALL
, D_ALL
, 0, 1, NULL
},
1986 {"MI_ARB_CHECK", OP_MI_ARB_CHECK
, F_LEN_CONST
, R_ALL
, D_ALL
, 0, 1,
1989 {"MI_RS_CONTROL", OP_MI_RS_CONTROL
, F_LEN_CONST
, R_RCS
, D_ALL
, 0, 1,
1992 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD
, F_LEN_CONST
, R_ALL
, D_ALL
, 0, 1,
1995 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF
, F_LEN_CONST
, R_ALL
, D_ALL
, 0, 1,
1998 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC
, F_LEN_CONST
, R_RCS
,
2001 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END
,
2002 F_IP_ADVANCE_CUSTOM
| F_LEN_CONST
, R_ALL
, D_ALL
, 0, 1,
2003 cmd_handler_mi_batch_buffer_end
},
2005 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH
, F_LEN_CONST
, R_ALL
, D_ALL
,
2008 {"MI_PREDICATE", OP_MI_PREDICATE
, F_LEN_CONST
, R_RCS
, D_ALL
, 0, 1,
2011 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER
, F_LEN_CONST
, R_ALL
,
2014 {"MI_SET_APPID", OP_MI_SET_APPID
, F_LEN_CONST
, R_ALL
, D_ALL
, 0, 1,
2017 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT
, F_LEN_CONST
, R_RCS
, D_ALL
, 0, 1,
2020 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP
, F_LEN_VAR
,
2021 R_RCS
| R_BCS
, D_ALL
, 0, 8, cmd_handler_mi_display_flip
},
2023 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX
, F_LEN_VAR
| F_LEN_VAR_FIXED
,
2024 R_ALL
, D_ALL
, 0, 8, NULL
, CMD_LEN(1)},
2026 {"MI_MATH", OP_MI_MATH
, F_LEN_VAR
, R_ALL
, D_ALL
, 0, 8, NULL
},
2028 {"MI_URB_CLEAR", OP_MI_URB_CLEAR
, F_LEN_VAR
| F_LEN_VAR_FIXED
, R_RCS
,
2029 D_ALL
, 0, 8, NULL
, CMD_LEN(0)},
2031 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL
,
2032 F_LEN_VAR
| F_LEN_VAR_FIXED
, R_ALL
, D_BDW_PLUS
, 0, 8,
2035 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT
,
2036 F_LEN_VAR
| F_LEN_VAR_FIXED
, R_ALL
, D_BDW_PLUS
, ADDR_FIX_1(2),
2037 8, cmd_handler_mi_semaphore_wait
, CMD_LEN(2)},
2039 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM
, F_LEN_VAR
, R_ALL
, D_BDW_PLUS
,
2040 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm
},
2042 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX
, F_LEN_VAR
, R_ALL
, D_ALL
,
2043 0, 8, cmd_handler_mi_store_data_index
},
2045 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM
, F_LEN_VAR
, R_ALL
,
2046 D_ALL
, 0, 8, cmd_handler_lri
},
2048 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT
, F_LEN_VAR
, R_ALL
, D_BDW_PLUS
, 0, 10,
2049 cmd_handler_mi_update_gtt
},
2051 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM
,
2052 F_LEN_VAR
| F_LEN_VAR_FIXED
, R_ALL
, D_ALL
, ADDR_FIX_1(2), 8,
2053 cmd_handler_srm
, CMD_LEN(2)},
2055 {"MI_FLUSH_DW", OP_MI_FLUSH_DW
, F_LEN_VAR
, R_ALL
, D_ALL
, 0, 6,
2056 cmd_handler_mi_flush_dw
},
2058 {"MI_CLFLUSH", OP_MI_CLFLUSH
, F_LEN_VAR
, R_ALL
, D_ALL
, ADDR_FIX_1(1),
2059 10, cmd_handler_mi_clflush
},
2061 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT
,
2062 F_LEN_VAR
| F_LEN_VAR_FIXED
, R_ALL
, D_ALL
, ADDR_FIX_1(1), 6,
2063 cmd_handler_mi_report_perf_count
, CMD_LEN(2)},
2065 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM
,
2066 F_LEN_VAR
| F_LEN_VAR_FIXED
, R_ALL
, D_ALL
, ADDR_FIX_1(2), 8,
2067 cmd_handler_lrm
, CMD_LEN(2)},
2069 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG
,
2070 F_LEN_VAR
| F_LEN_VAR_FIXED
, R_ALL
, D_ALL
, 0, 8,
2071 cmd_handler_lrr
, CMD_LEN(1)},
2073 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM
,
2074 F_LEN_VAR
| F_LEN_VAR_FIXED
, R_RCS
, D_ALL
, 0,
2075 8, NULL
, CMD_LEN(2)},
2077 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM
, F_LEN_VAR
| F_LEN_VAR_FIXED
,
2078 R_RCS
, D_ALL
, ADDR_FIX_1(2), 8, NULL
, CMD_LEN(2)},
2080 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM
, F_LEN_VAR
, R_RCS
, D_ALL
,
2081 ADDR_FIX_1(2), 8, NULL
},
2083 {"MI_OP_2E", OP_MI_2E
, F_LEN_VAR
| F_LEN_VAR_FIXED
, R_ALL
, D_BDW_PLUS
,
2084 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e
, CMD_LEN(3)},
2086 {"MI_OP_2F", OP_MI_2F
, F_LEN_VAR
, R_ALL
, D_BDW_PLUS
, ADDR_FIX_1(1),
2087 8, cmd_handler_mi_op_2f
},
2089 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START
,
2090 F_IP_ADVANCE_CUSTOM
, R_ALL
, D_ALL
, 0, 8,
2091 cmd_handler_mi_batch_buffer_start
},
2093 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END
,
2094 F_LEN_VAR
| F_LEN_VAR_FIXED
, R_ALL
, D_ALL
, ADDR_FIX_1(2), 8,
2095 cmd_handler_mi_conditional_batch_buffer_end
, CMD_LEN(2)},
2097 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL
, F_LEN_CONST
,
2098 R_RCS
| R_BCS
, D_ALL
, 0, 2, NULL
},
2100 {"XY_SETUP_BLT", OP_XY_SETUP_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2101 ADDR_FIX_2(4, 7), 8, NULL
},
2103 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2106 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT
,
2107 F_LEN_VAR
, R_BCS
, D_ALL
, ADDR_FIX_1(4), 8, NULL
},
2109 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
, 0, 8, NULL
},
2111 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2114 {"XY_TEXT_BLT", OP_XY_TEXT_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2115 ADDR_FIX_1(3), 8, NULL
},
2117 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT
, F_LEN_VAR
, R_BCS
,
2120 {"XY_COLOR_BLT", OP_XY_COLOR_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2121 ADDR_FIX_1(4), 8, NULL
},
2123 {"XY_PAT_BLT", OP_XY_PAT_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2124 ADDR_FIX_2(4, 5), 8, NULL
},
2126 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2127 ADDR_FIX_1(4), 8, NULL
},
2129 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2130 ADDR_FIX_2(4, 7), 8, NULL
},
2132 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT
, F_LEN_VAR
, R_BCS
,
2133 D_ALL
, ADDR_FIX_2(4, 5), 8, NULL
},
2135 {"XY_FULL_BLT", OP_XY_FULL_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
, 0, 8, NULL
},
2137 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT
, F_LEN_VAR
, R_BCS
,
2138 D_ALL
, ADDR_FIX_3(4, 5, 8), 8, NULL
},
2140 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT
, F_LEN_VAR
,
2141 R_BCS
, D_ALL
, ADDR_FIX_2(4, 7), 8, NULL
},
2143 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2144 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT
,
2145 F_LEN_VAR
, R_BCS
, D_ALL
, ADDR_FIX_2(4, 5), 8, NULL
},
2147 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT
, F_LEN_VAR
, R_BCS
,
2148 D_ALL
, ADDR_FIX_1(4), 8, NULL
},
2150 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT
,
2151 F_LEN_VAR
, R_BCS
, D_ALL
, ADDR_FIX_1(4), 8, NULL
},
2153 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE
, F_LEN_VAR
, R_BCS
,
2154 D_ALL
, ADDR_FIX_1(4), 8, NULL
},
2156 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT
, F_LEN_VAR
, R_BCS
,
2157 D_ALL
, ADDR_FIX_2(4, 7), 8, NULL
},
2159 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT
,
2160 F_LEN_VAR
, R_BCS
, D_ALL
, ADDR_FIX_2(4, 7), 8, NULL
},
2162 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2163 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT
,
2164 F_LEN_VAR
, R_BCS
, D_ALL
, ADDR_FIX_2(4, 5), 8, NULL
},
2166 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT
, F_LEN_VAR
, R_BCS
, D_ALL
,
2167 ADDR_FIX_2(4, 5), 8, NULL
},
2169 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE
,
2170 F_LEN_VAR
, R_BCS
, D_ALL
, ADDR_FIX_1(4), 8, NULL
},
2172 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2173 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP
,
2174 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2176 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2177 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC
,
2178 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2180 {"3DSTATE_BLEND_STATE_POINTERS",
2181 OP_3DSTATE_BLEND_STATE_POINTERS
,
2182 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2184 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2185 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS
,
2186 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2188 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2189 OP_3DSTATE_BINDING_TABLE_POINTERS_VS
,
2190 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2192 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2193 OP_3DSTATE_BINDING_TABLE_POINTERS_HS
,
2194 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2196 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2197 OP_3DSTATE_BINDING_TABLE_POINTERS_DS
,
2198 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2200 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2201 OP_3DSTATE_BINDING_TABLE_POINTERS_GS
,
2202 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2204 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2205 OP_3DSTATE_BINDING_TABLE_POINTERS_PS
,
2206 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2208 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2209 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS
,
2210 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2212 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2213 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS
,
2214 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2216 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2217 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS
,
2218 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2220 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2221 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS
,
2222 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2224 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2225 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS
,
2226 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2228 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS
, F_LEN_VAR
, R_RCS
, D_ALL
,
2231 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS
, F_LEN_VAR
, R_RCS
, D_ALL
,
2234 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS
, F_LEN_VAR
, R_RCS
, D_ALL
,
2237 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS
, F_LEN_VAR
, R_RCS
, D_ALL
,
2240 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS
,
2241 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2243 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS
,
2244 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2246 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS
,
2247 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2249 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS
,
2250 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2252 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS
,
2253 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2255 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS
,
2256 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 11, NULL
},
2258 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS
,
2259 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 11, NULL
},
2261 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS
,
2262 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2264 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS
,
2265 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2267 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS
,
2268 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2270 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS
,
2271 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2273 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS
,
2274 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2276 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS
,
2277 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2279 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS
,
2280 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2282 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS
,
2283 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2285 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS
,
2286 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 9, NULL
},
2288 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS
,
2289 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 9, NULL
},
2291 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS
,
2292 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 9, NULL
},
2294 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS
,
2295 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 9, NULL
},
2297 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS
,
2298 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 9, NULL
},
2300 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING
, F_LEN_VAR
, R_RCS
,
2301 D_BDW_PLUS
, 0, 8, NULL
},
2303 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, 0, 8,
2306 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY
, F_LEN_VAR
, R_RCS
,
2307 D_BDW_PLUS
, 0, 8, NULL
},
2309 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY
, F_LEN_VAR
, R_RCS
,
2310 D_BDW_PLUS
, 0, 8, NULL
},
2312 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, 0,
2315 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL
, F_LEN_VAR
,
2316 R_RCS
, D_BDW_PLUS
, 0, 8, NULL
},
2318 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, 0,
2321 {"3DSTATE_RASTER", OP_3DSTATE_RASTER
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, 0, 8,
2324 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, 0, 8,
2327 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, 0, 8,
2330 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS
, F_LEN_VAR
, R_RCS
,
2331 D_BDW_PLUS
, 0, 8, NULL
},
2333 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS
, F_LEN_VAR
,
2334 R_RCS
, D_ALL
, 0, 8, NULL
},
2336 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER
, F_LEN_VAR
, R_RCS
,
2337 D_BDW_PLUS
, ADDR_FIX_1(2), 8, NULL
},
2339 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS
, F_LEN_CONST
,
2340 R_RCS
, D_ALL
, 0, 1, NULL
},
2342 {"3DSTATE_VF", OP_3DSTATE_VF
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2344 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS
, F_LEN_VAR
,
2345 R_RCS
, D_ALL
, 0, 8, NULL
},
2347 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS
,
2348 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2350 {"3DSTATE_GS", OP_3DSTATE_GS
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2352 {"3DSTATE_CLIP", OP_3DSTATE_CLIP
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2354 {"3DSTATE_WM", OP_3DSTATE_WM
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2356 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS
, F_LEN_VAR
, R_RCS
,
2357 D_BDW_PLUS
, 0, 8, NULL
},
2359 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS
, F_LEN_VAR
, R_RCS
,
2360 D_BDW_PLUS
, 0, 8, NULL
},
2362 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK
, F_LEN_VAR
, R_RCS
,
2365 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS
, F_LEN_VAR
, R_RCS
,
2366 D_BDW_PLUS
, 0, 8, NULL
},
2368 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS
, F_LEN_VAR
, R_RCS
,
2369 D_BDW_PLUS
, 0, 8, NULL
},
2371 {"3DSTATE_HS", OP_3DSTATE_HS
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2373 {"3DSTATE_TE", OP_3DSTATE_TE
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2375 {"3DSTATE_DS", OP_3DSTATE_DS
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2377 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT
, F_LEN_VAR
, R_RCS
,
2380 {"3DSTATE_SBE", OP_3DSTATE_SBE
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2382 {"3DSTATE_PS", OP_3DSTATE_PS
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2384 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE
, F_LEN_VAR
,
2385 R_RCS
, D_ALL
, 0, 8, NULL
},
2387 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0
,
2388 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2390 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY
, F_LEN_VAR
, R_RCS
, D_ALL
,
2393 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER
, F_LEN_VAR
, R_RCS
,
2394 D_ALL
, ADDR_FIX_1(2), 8, NULL
},
2396 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET
,
2397 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2399 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN
,
2400 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2402 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE
, F_LEN_VAR
, R_RCS
,
2405 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS
, F_LEN_VAR
, R_RCS
,
2408 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX
, F_LEN_VAR
, R_RCS
,
2411 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1
,
2412 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2414 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW
, F_LEN_VAR
, R_RCS
,
2415 D_BDW_PLUS
, 0, 8, NULL
},
2417 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER
, F_LEN_VAR
, R_RCS
,
2418 D_ALL
, ADDR_FIX_1(2), 8, NULL
},
2420 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER
, F_LEN_VAR
,
2421 R_RCS
, D_ALL
, ADDR_FIX_1(2), 8, NULL
},
2423 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS
, F_LEN_VAR
,
2424 R_RCS
, D_ALL
, 0, 8, NULL
},
2426 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS
,
2427 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2429 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS
,
2430 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2432 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS
,
2433 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2435 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS
,
2436 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2438 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS
,
2439 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2441 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE
, F_LEN_VAR
,
2442 R_RCS
, D_ALL
, 0, 8, NULL
},
2444 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST
, F_LEN_VAR
, R_RCS
,
2447 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
,
2448 ADDR_FIX_2(2, 4), 8, NULL
},
2450 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2451 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC
,
2452 F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, ADDR_FIX_1(1), 8, NULL
},
2454 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC
,
2455 F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, ADDR_FIX_1(1), 8, NULL
},
2457 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2458 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC
,
2459 F_LEN_VAR
, R_RCS
, D_BDW_PLUS
, ADDR_FIX_1(1), 8, NULL
},
2461 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN
, F_LEN_VAR
, R_RCS
,
2462 D_BDW_PLUS
, 0, 8, NULL
},
2464 {"PIPE_CONTROL", OP_PIPE_CONTROL
, F_LEN_VAR
, R_RCS
, D_ALL
,
2465 ADDR_FIX_1(2), 8, cmd_handler_pipe_control
},
2467 {"3DPRIMITIVE", OP_3DPRIMITIVE
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2469 {"PIPELINE_SELECT", OP_PIPELINE_SELECT
, F_LEN_CONST
, R_RCS
, D_ALL
, 0,
2472 {"STATE_PREFETCH", OP_STATE_PREFETCH
, F_LEN_VAR
, R_RCS
, D_ALL
,
2473 ADDR_FIX_1(1), 8, NULL
},
2475 {"STATE_SIP", OP_STATE_SIP
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2477 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
,
2478 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL
},
2480 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4
, F_LEN_VAR
, R_RCS
, D_ALL
,
2481 ADDR_FIX_1(1), 8, NULL
},
2483 {"3DSTATE_VS", OP_3DSTATE_VS
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2485 {"3DSTATE_SF", OP_3DSTATE_SF
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 8, NULL
},
2487 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS
, F_LEN_VAR
, R_RCS
, D_BDW_PLUS
,
2490 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING
, F_LEN_VAR
, R_RCS
,
2491 D_SKL_PLUS
, 0, 8, NULL
},
2493 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD
,
2494 F_LEN_VAR
, R_RCS
, D_ALL
, 0, 16, NULL
},
2496 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE
, F_LEN_VAR
, R_RCS
, D_ALL
,
2499 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH
, F_LEN_VAR
, R_RCS
, D_ALL
,
2502 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE
, F_LEN_VAR
, R_RCS
, D_ALL
,
2505 {"MEDIA_OBJECT", OP_MEDIA_OBJECT
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 16, NULL
},
2507 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD
, F_LEN_VAR
, R_RCS
, D_ALL
,
2510 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT
, F_LEN_VAR
, R_RCS
, D_ALL
,
2513 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER
, F_LEN_VAR
, R_RCS
, D_ALL
,
2516 {"GPGPU_WALKER", OP_GPGPU_WALKER
, F_LEN_VAR
, R_RCS
, D_ALL
,
2519 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE
, F_LEN_VAR
, R_RCS
, D_ALL
, 0, 16,
2522 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45
,
2523 F_LEN_CONST
, R_ALL
, D_ALL
, 0, 1, NULL
},
2525 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT
, F_LEN_VAR
,
2526 R_VCS
, D_ALL
, 0, 12, NULL
},
2528 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE
, F_LEN_VAR
,
2529 R_VCS
, D_ALL
, 0, 12, NULL
},
2531 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE
, F_LEN_VAR
,
2532 R_VCS
, D_BDW_PLUS
, 0, 12, NULL
},
2534 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE
,
2535 F_LEN_VAR
, R_VCS
, D_BDW_PLUS
, 0, 12, NULL
},
2537 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE
,
2538 F_LEN_VAR
, R_VCS
, D_BDW_PLUS
, ADDR_FIX_3(1, 3, 5), 12, NULL
},
2540 {"OP_2_0_0_5", OP_2_0_0_5
, F_LEN_VAR
, R_VCS
, D_BDW_PLUS
, 0, 12, NULL
},
2542 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER
, F_LEN_VAR
,
2543 R_VCS
, D_ALL
, 0, 12, NULL
},
2545 {"MFX_QM_STATE", OP_MFX_QM_STATE
, F_LEN_VAR
,
2546 R_VCS
, D_ALL
, 0, 12, NULL
},
2548 {"MFX_FQM_STATE", OP_MFX_FQM_STATE
, F_LEN_VAR
,
2549 R_VCS
, D_ALL
, 0, 12, NULL
},
2551 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT
, F_LEN_VAR
,
2552 R_VCS
, D_ALL
, 0, 12, NULL
},
2554 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT
, F_LEN_VAR
,
2555 R_VCS
, D_ALL
, 0, 12, NULL
},
2557 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT
, F_LEN_VAR
,
2558 R_VCS
, D_ALL
, 0, 12, NULL
},
2560 {"MFX_WAIT", OP_MFX_WAIT
, F_LEN_VAR
,
2561 R_VCS
, D_ALL
, 0, 6, NULL
},
2563 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE
, F_LEN_VAR
,
2564 R_VCS
, D_ALL
, 0, 12, NULL
},
2566 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE
, F_LEN_VAR
,
2567 R_VCS
, D_ALL
, 0, 12, NULL
},
2569 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE
, F_LEN_VAR
,
2570 R_VCS
, D_ALL
, 0, 12, NULL
},
2572 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE
, F_LEN_VAR
,
2573 R_VCS
, D_ALL
, 0, 12, NULL
},
2575 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE
, F_LEN_VAR
,
2576 R_VCS
, D_ALL
, 0, 12, NULL
},
2578 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE
, F_LEN_VAR
,
2579 R_VCS
, D_ALL
, 0, 12, NULL
},
2581 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE
, F_LEN_VAR
,
2582 R_VCS
, D_ALL
, 0, 12, NULL
},
2583 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE
, F_LEN_VAR
,
2584 R_VCS
, D_ALL
, 0, 12, NULL
},
2586 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT
, F_LEN_VAR
,
2587 R_VCS
, D_ALL
, 0, 12, NULL
},
2589 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR
, F_LEN_VAR
,
2590 R_VCS
, D_ALL
, ADDR_FIX_1(2), 12, NULL
},
2592 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT
, F_LEN_VAR
,
2593 R_VCS
, D_ALL
, 0, 12, NULL
},
2595 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE
, F_LEN_VAR
,
2596 R_VCS
, D_ALL
, 0, 12, NULL
},
2598 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE
, F_LEN_VAR
,
2599 R_VCS
, D_ALL
, 0, 12, NULL
},
2601 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE
, F_LEN_VAR
,
2602 R_VCS
, D_ALL
, 0, 12, NULL
},
2604 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE
, F_LEN_VAR
,
2605 R_VCS
, D_ALL
, 0, 12, NULL
},
2607 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT
, F_LEN_VAR
,
2608 R_VCS
, D_ALL
, 0, 12, NULL
},
2610 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE
, F_LEN_VAR
,
2611 R_VCS
, D_ALL
, 0, 12, NULL
},
2613 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT
, F_LEN_VAR
,
2614 R_VCS
, D_ALL
, 0, 12, NULL
},
2616 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE
, F_LEN_VAR
,
2617 R_VCS
, D_ALL
, 0, 12, NULL
},
2619 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE
, F_LEN_VAR
,
2620 R_VCS
, D_ALL
, 0, 12, NULL
},
2622 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT
, F_LEN_VAR
,
2623 R_VCS
, D_ALL
, 0, 12, NULL
},
2625 {"MFX_2_6_0_0", OP_MFX_2_6_0_0
, F_LEN_VAR
, R_VCS
, D_ALL
,
2628 {"MFX_2_6_0_9", OP_MFX_2_6_0_9
, F_LEN_VAR
, R_VCS
, D_ALL
, 0, 16, NULL
},
2630 {"MFX_2_6_0_8", OP_MFX_2_6_0_8
, F_LEN_VAR
, R_VCS
, D_ALL
, 0, 16, NULL
},
2632 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE
, F_LEN_VAR
,
2633 R_VCS
, D_ALL
, 0, 12, NULL
},
2635 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE
, F_LEN_VAR
,
2636 R_VCS
, D_ALL
, 0, 12, NULL
},
2638 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT
, F_LEN_VAR
,
2639 R_VCS
, D_ALL
, 0, 12, NULL
},
2641 {"VEBOX_STATE", OP_VEB_STATE
, F_LEN_VAR
, R_VECS
, D_ALL
, 0, 12, NULL
},
2643 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE
, F_LEN_VAR
, R_VECS
, D_ALL
,
2646 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE
, F_LEN_VAR
, R_VECS
, D_BDW_PLUS
,
2650 static void add_cmd_entry(struct intel_gvt
*gvt
, struct cmd_entry
*e
)
2652 hash_add(gvt
->cmd_table
, &e
->hlist
, e
->info
->opcode
);
2655 /* call the cmd handler, and advance ip */
2656 static int cmd_parser_exec(struct parser_exec_state
*s
)
2658 struct intel_vgpu
*vgpu
= s
->vgpu
;
2659 const struct cmd_info
*info
;
2663 cmd
= cmd_val(s
, 0);
2665 /* fastpath for MI_NOOP */
2667 info
= &cmd_info
[mi_noop_index
];
2669 info
= get_cmd_info(s
->vgpu
->gvt
, cmd
, s
->ring_id
);
2672 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2673 cmd
, get_opcode(cmd
, s
->ring_id
),
2674 (s
->buf_addr_type
== PPGTT_BUFFER
) ?
2675 "ppgtt" : "ggtt", s
->ring_id
, s
->workload
);
2681 trace_gvt_command(vgpu
->id
, s
->ring_id
, s
->ip_gma
, s
->ip_va
,
2682 cmd_length(s
), s
->buf_type
, s
->buf_addr_type
,
2683 s
->workload
, info
->name
);
2685 if ((info
->flag
& F_LEN_MASK
) == F_LEN_VAR_FIXED
) {
2686 ret
= gvt_check_valid_cmd_length(cmd_length(s
),
2692 if (info
->handler
) {
2693 ret
= info
->handler(s
);
2695 gvt_vgpu_err("%s handler error\n", info
->name
);
2700 if (!(info
->flag
& F_IP_ADVANCE_CUSTOM
)) {
2701 ret
= cmd_advance_default(s
);
2703 gvt_vgpu_err("%s IP advance error\n", info
->name
);
2710 static inline bool gma_out_of_range(unsigned long gma
,
2711 unsigned long gma_head
, unsigned int gma_tail
)
2713 if (gma_tail
>= gma_head
)
2714 return (gma
< gma_head
) || (gma
> gma_tail
);
2716 return (gma
> gma_tail
) && (gma
< gma_head
);
2719 /* Keep the consistent return type, e.g EBADRQC for unknown
2720 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2721 * works as the input of VM healthy status.
2723 static int command_scan(struct parser_exec_state
*s
,
2724 unsigned long rb_head
, unsigned long rb_tail
,
2725 unsigned long rb_start
, unsigned long rb_len
)
2728 unsigned long gma_head
, gma_tail
, gma_bottom
;
2730 struct intel_vgpu
*vgpu
= s
->vgpu
;
2732 gma_head
= rb_start
+ rb_head
;
2733 gma_tail
= rb_start
+ rb_tail
;
2734 gma_bottom
= rb_start
+ rb_len
;
2736 while (s
->ip_gma
!= gma_tail
) {
2737 if (s
->buf_type
== RING_BUFFER_INSTRUCTION
) {
2738 if (!(s
->ip_gma
>= rb_start
) ||
2739 !(s
->ip_gma
< gma_bottom
)) {
2740 gvt_vgpu_err("ip_gma %lx out of ring scope."
2741 "(base:0x%lx, bottom: 0x%lx)\n",
2742 s
->ip_gma
, rb_start
,
2744 parser_exec_state_dump(s
);
2747 if (gma_out_of_range(s
->ip_gma
, gma_head
, gma_tail
)) {
2748 gvt_vgpu_err("ip_gma %lx out of range."
2749 "base 0x%lx head 0x%lx tail 0x%lx\n",
2750 s
->ip_gma
, rb_start
,
2752 parser_exec_state_dump(s
);
2756 ret
= cmd_parser_exec(s
);
2758 gvt_vgpu_err("cmd parser error\n");
2759 parser_exec_state_dump(s
);
2767 static int scan_workload(struct intel_vgpu_workload
*workload
)
2769 unsigned long gma_head
, gma_tail
, gma_bottom
;
2770 struct parser_exec_state s
;
2773 /* ring base is page aligned */
2774 if (WARN_ON(!IS_ALIGNED(workload
->rb_start
, I915_GTT_PAGE_SIZE
)))
2777 gma_head
= workload
->rb_start
+ workload
->rb_head
;
2778 gma_tail
= workload
->rb_start
+ workload
->rb_tail
;
2779 gma_bottom
= workload
->rb_start
+ _RING_CTL_BUF_SIZE(workload
->rb_ctl
);
2781 s
.buf_type
= RING_BUFFER_INSTRUCTION
;
2782 s
.buf_addr_type
= GTT_BUFFER
;
2783 s
.vgpu
= workload
->vgpu
;
2784 s
.ring_id
= workload
->ring_id
;
2785 s
.ring_start
= workload
->rb_start
;
2786 s
.ring_size
= _RING_CTL_BUF_SIZE(workload
->rb_ctl
);
2787 s
.ring_head
= gma_head
;
2788 s
.ring_tail
= gma_tail
;
2789 s
.rb_va
= workload
->shadow_ring_buffer_va
;
2790 s
.workload
= workload
;
2791 s
.is_ctx_wa
= false;
2793 if ((bypass_scan_mask
& (1 << workload
->ring_id
)) ||
2794 gma_head
== gma_tail
)
2797 ret
= ip_gma_set(&s
, gma_head
);
2801 ret
= command_scan(&s
, workload
->rb_head
, workload
->rb_tail
,
2802 workload
->rb_start
, _RING_CTL_BUF_SIZE(workload
->rb_ctl
));
2808 static int scan_wa_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
2811 unsigned long gma_head
, gma_tail
, gma_bottom
, ring_size
, ring_tail
;
2812 struct parser_exec_state s
;
2814 struct intel_vgpu_workload
*workload
= container_of(wa_ctx
,
2815 struct intel_vgpu_workload
,
2818 /* ring base is page aligned */
2819 if (WARN_ON(!IS_ALIGNED(wa_ctx
->indirect_ctx
.guest_gma
,
2820 I915_GTT_PAGE_SIZE
)))
2823 ring_tail
= wa_ctx
->indirect_ctx
.size
+ 3 * sizeof(u32
);
2824 ring_size
= round_up(wa_ctx
->indirect_ctx
.size
+ CACHELINE_BYTES
,
2826 gma_head
= wa_ctx
->indirect_ctx
.guest_gma
;
2827 gma_tail
= wa_ctx
->indirect_ctx
.guest_gma
+ ring_tail
;
2828 gma_bottom
= wa_ctx
->indirect_ctx
.guest_gma
+ ring_size
;
2830 s
.buf_type
= RING_BUFFER_INSTRUCTION
;
2831 s
.buf_addr_type
= GTT_BUFFER
;
2832 s
.vgpu
= workload
->vgpu
;
2833 s
.ring_id
= workload
->ring_id
;
2834 s
.ring_start
= wa_ctx
->indirect_ctx
.guest_gma
;
2835 s
.ring_size
= ring_size
;
2836 s
.ring_head
= gma_head
;
2837 s
.ring_tail
= gma_tail
;
2838 s
.rb_va
= wa_ctx
->indirect_ctx
.shadow_va
;
2839 s
.workload
= workload
;
2842 ret
= ip_gma_set(&s
, gma_head
);
2846 ret
= command_scan(&s
, 0, ring_tail
,
2847 wa_ctx
->indirect_ctx
.guest_gma
, ring_size
);
2852 static int shadow_workload_ring_buffer(struct intel_vgpu_workload
*workload
)
2854 struct intel_vgpu
*vgpu
= workload
->vgpu
;
2855 struct intel_vgpu_submission
*s
= &vgpu
->submission
;
2856 unsigned long gma_head
, gma_tail
, gma_top
, guest_rb_size
;
2857 void *shadow_ring_buffer_va
;
2858 int ring_id
= workload
->ring_id
;
2861 guest_rb_size
= _RING_CTL_BUF_SIZE(workload
->rb_ctl
);
2863 /* calculate workload ring buffer size */
2864 workload
->rb_len
= (workload
->rb_tail
+ guest_rb_size
-
2865 workload
->rb_head
) % guest_rb_size
;
2867 gma_head
= workload
->rb_start
+ workload
->rb_head
;
2868 gma_tail
= workload
->rb_start
+ workload
->rb_tail
;
2869 gma_top
= workload
->rb_start
+ guest_rb_size
;
2871 if (workload
->rb_len
> s
->ring_scan_buffer_size
[ring_id
]) {
2874 /* realloc the new ring buffer if needed */
2875 p
= krealloc(s
->ring_scan_buffer
[ring_id
], workload
->rb_len
,
2878 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2881 s
->ring_scan_buffer
[ring_id
] = p
;
2882 s
->ring_scan_buffer_size
[ring_id
] = workload
->rb_len
;
2885 shadow_ring_buffer_va
= s
->ring_scan_buffer
[ring_id
];
2887 /* get shadow ring buffer va */
2888 workload
->shadow_ring_buffer_va
= shadow_ring_buffer_va
;
2890 /* head > tail --> copy head <-> top */
2891 if (gma_head
> gma_tail
) {
2892 ret
= copy_gma_to_hva(vgpu
, vgpu
->gtt
.ggtt_mm
,
2893 gma_head
, gma_top
, shadow_ring_buffer_va
);
2895 gvt_vgpu_err("fail to copy guest ring buffer\n");
2898 shadow_ring_buffer_va
+= ret
;
2899 gma_head
= workload
->rb_start
;
2902 /* copy head or start <-> tail */
2903 ret
= copy_gma_to_hva(vgpu
, vgpu
->gtt
.ggtt_mm
, gma_head
, gma_tail
,
2904 shadow_ring_buffer_va
);
2906 gvt_vgpu_err("fail to copy guest ring buffer\n");
2912 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload
*workload
)
2915 struct intel_vgpu
*vgpu
= workload
->vgpu
;
2917 ret
= shadow_workload_ring_buffer(workload
);
2919 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2923 ret
= scan_workload(workload
);
2925 gvt_vgpu_err("scan workload error\n");
2931 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
2933 int ctx_size
= wa_ctx
->indirect_ctx
.size
;
2934 unsigned long guest_gma
= wa_ctx
->indirect_ctx
.guest_gma
;
2935 struct intel_vgpu_workload
*workload
= container_of(wa_ctx
,
2936 struct intel_vgpu_workload
,
2938 struct intel_vgpu
*vgpu
= workload
->vgpu
;
2939 struct drm_i915_gem_object
*obj
;
2943 obj
= i915_gem_object_create_shmem(workload
->vgpu
->gvt
->dev_priv
,
2944 roundup(ctx_size
+ CACHELINE_BYTES
,
2947 return PTR_ERR(obj
);
2949 /* get the va of the shadow batch buffer */
2950 map
= i915_gem_object_pin_map(obj
, I915_MAP_WB
);
2952 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2957 i915_gem_object_lock(obj
);
2958 ret
= i915_gem_object_set_to_cpu_domain(obj
, false);
2959 i915_gem_object_unlock(obj
);
2961 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2965 ret
= copy_gma_to_hva(workload
->vgpu
,
2966 workload
->vgpu
->gtt
.ggtt_mm
,
2967 guest_gma
, guest_gma
+ ctx_size
,
2970 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2974 wa_ctx
->indirect_ctx
.obj
= obj
;
2975 wa_ctx
->indirect_ctx
.shadow_va
= map
;
2979 i915_gem_object_unpin_map(obj
);
2981 i915_gem_object_put(obj
);
2985 static int combine_wa_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
2987 u32 per_ctx_start
[CACHELINE_DWORDS
] = {0};
2988 unsigned char *bb_start_sva
;
2990 if (!wa_ctx
->per_ctx
.valid
)
2993 per_ctx_start
[0] = 0x18800001;
2994 per_ctx_start
[1] = wa_ctx
->per_ctx
.guest_gma
;
2996 bb_start_sva
= (unsigned char *)wa_ctx
->indirect_ctx
.shadow_va
+
2997 wa_ctx
->indirect_ctx
.size
;
2999 memcpy(bb_start_sva
, per_ctx_start
, CACHELINE_BYTES
);
3004 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx
*wa_ctx
)
3007 struct intel_vgpu_workload
*workload
= container_of(wa_ctx
,
3008 struct intel_vgpu_workload
,
3010 struct intel_vgpu
*vgpu
= workload
->vgpu
;
3012 if (wa_ctx
->indirect_ctx
.size
== 0)
3015 ret
= shadow_indirect_ctx(wa_ctx
);
3017 gvt_vgpu_err("fail to shadow indirect ctx\n");
3021 combine_wa_ctx(wa_ctx
);
3023 ret
= scan_wa_ctx(wa_ctx
);
3025 gvt_vgpu_err("scan wa ctx error\n");
3032 static const struct cmd_info
*find_cmd_entry_any_ring(struct intel_gvt
*gvt
,
3033 unsigned int opcode
, unsigned long rings
)
3035 const struct cmd_info
*info
= NULL
;
3038 for_each_set_bit(ring
, &rings
, I915_NUM_ENGINES
) {
3039 info
= find_cmd_entry(gvt
, opcode
, ring
);
3046 static int init_cmd_table(struct intel_gvt
*gvt
)
3049 struct cmd_entry
*e
;
3050 const struct cmd_info
*info
;
3051 unsigned int gen_type
;
3053 gen_type
= intel_gvt_get_device_type(gvt
);
3055 for (i
= 0; i
< ARRAY_SIZE(cmd_info
); i
++) {
3056 if (!(cmd_info
[i
].devices
& gen_type
))
3059 e
= kzalloc(sizeof(*e
), GFP_KERNEL
);
3063 e
->info
= &cmd_info
[i
];
3064 info
= find_cmd_entry_any_ring(gvt
,
3065 e
->info
->opcode
, e
->info
->rings
);
3067 gvt_err("%s %s duplicated\n", e
->info
->name
,
3072 if (cmd_info
[i
].opcode
== OP_MI_NOOP
)
3075 INIT_HLIST_NODE(&e
->hlist
);
3076 add_cmd_entry(gvt
, e
);
3077 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3078 e
->info
->name
, e
->info
->opcode
, e
->info
->flag
,
3079 e
->info
->devices
, e
->info
->rings
);
3084 static void clean_cmd_table(struct intel_gvt
*gvt
)
3086 struct hlist_node
*tmp
;
3087 struct cmd_entry
*e
;
3090 hash_for_each_safe(gvt
->cmd_table
, i
, tmp
, e
, hlist
)
3093 hash_init(gvt
->cmd_table
);
3096 void intel_gvt_clean_cmd_parser(struct intel_gvt
*gvt
)
3098 clean_cmd_table(gvt
);
3101 int intel_gvt_init_cmd_parser(struct intel_gvt
*gvt
)
3105 ret
= init_cmd_table(gvt
);
3107 intel_gvt_clean_cmd_parser(gvt
);