2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Robert Bragg <robert@sixbynine.org>
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207 #include "oa/i915_oa_hsw.h"
208 #include "oa/i915_oa_bdw.h"
209 #include "oa/i915_oa_chv.h"
210 #include "oa/i915_oa_sklgt2.h"
211 #include "oa/i915_oa_sklgt3.h"
212 #include "oa/i915_oa_sklgt4.h"
213 #include "oa/i915_oa_bxt.h"
214 #include "oa/i915_oa_kblgt2.h"
215 #include "oa/i915_oa_kblgt3.h"
216 #include "oa/i915_oa_glk.h"
217 #include "oa/i915_oa_cflgt2.h"
218 #include "oa/i915_oa_cflgt3.h"
219 #include "oa/i915_oa_cnl.h"
220 #include "oa/i915_oa_icl.h"
221 #include "oa/i915_oa_tgl.h"
223 /* HW requires this to be a power of two, between 128k and 16M, though driver
224 * is currently generally designed assuming the largest 16M size is used such
225 * that the overflow cases are unlikely in normal operation.
227 #define OA_BUFFER_SIZE SZ_16M
229 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
232 * DOC: OA Tail Pointer Race
234 * There's a HW race condition between OA unit tail pointer register updates and
235 * writes to memory whereby the tail pointer can sometimes get ahead of what's
236 * been written out to the OA buffer so far (in terms of what's visible to the
239 * Although this can be observed explicitly while copying reports to userspace
240 * by checking for a zeroed report-id field in tail reports, we want to account
241 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
244 * In effect we define a tail pointer for reading that lags the real tail
245 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
246 * time for the corresponding reports to become visible to the CPU.
248 * To manage this we actually track two tail pointers:
249 * 1) An 'aging' tail with an associated timestamp that is tracked until we
250 * can trust the corresponding data is visible to the CPU; at which point
251 * it is considered 'aged'.
252 * 2) An 'aged' tail that can be used for read()ing.
254 * The two separate pointers let us decouple read()s from tail pointer aging.
256 * The tail pointers are checked and updated at a limited rate within a hrtimer
257 * callback (the same callback that is used for delivering EPOLLIN events)
259 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
260 * indicates that an updated tail pointer is needed.
262 * Most of the implementation details for this workaround are in
263 * oa_buffer_check_unlocked() and _append_oa_reports()
265 * Note for posterity: previously the driver used to define an effective tail
266 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
267 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
268 * This was flawed considering that the OA unit may also automatically generate
269 * non-periodic reports (such as on context switch) or the OA unit may be
270 * enabled without any periodic sampling.
272 #define OA_TAIL_MARGIN_NSEC 100000ULL
273 #define INVALID_TAIL_PTR 0xffffffff
275 /* frequency for checking whether the OA unit has written new reports to the
276 * circular OA buffer...
278 #define POLL_FREQUENCY 200
279 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
281 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
282 static u32 i915_perf_stream_paranoid
= true;
284 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
285 * of the 64bit timestamp bits to trigger reports from) but there's currently
286 * no known use case for sampling as infrequently as once per 47 thousand years.
288 * Since the timestamps included in OA reports are only 32bits it seems
289 * reasonable to limit the OA exponent where it's still possible to account for
290 * overflow in OA report timestamps.
292 #define OA_EXPONENT_MAX 31
294 #define INVALID_CTX_ID 0xffffffff
296 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
297 #define OAREPORT_REASON_MASK 0x3f
298 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
299 #define OAREPORT_REASON_SHIFT 19
300 #define OAREPORT_REASON_TIMER (1<<0)
301 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
302 #define OAREPORT_REASON_CLK_RATIO (1<<5)
305 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
307 * The highest sampling frequency we can theoretically program the OA unit
308 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
310 * Initialized just before we register the sysctl parameter.
312 static int oa_sample_rate_hard_limit
;
314 /* Theoretically we can program the OA unit to sample every 160ns but don't
315 * allow that by default unless root...
317 * The default threshold of 100000Hz is based on perf's similar
318 * kernel.perf_event_max_sample_rate sysctl parameter.
320 static u32 i915_oa_max_sample_rate
= 100000;
322 /* XXX: beware if future OA HW adds new report formats that the current
323 * code assumes all reports have a power-of-two size and ~(size - 1) can
324 * be used as a mask to align the OA tail pointer.
326 static const struct i915_oa_format hsw_oa_formats
[I915_OA_FORMAT_MAX
] = {
327 [I915_OA_FORMAT_A13
] = { 0, 64 },
328 [I915_OA_FORMAT_A29
] = { 1, 128 },
329 [I915_OA_FORMAT_A13_B8_C8
] = { 2, 128 },
330 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
331 [I915_OA_FORMAT_B4_C8
] = { 4, 64 },
332 [I915_OA_FORMAT_A45_B8_C8
] = { 5, 256 },
333 [I915_OA_FORMAT_B4_C8_A16
] = { 6, 128 },
334 [I915_OA_FORMAT_C4_B8
] = { 7, 64 },
337 static const struct i915_oa_format gen8_plus_oa_formats
[I915_OA_FORMAT_MAX
] = {
338 [I915_OA_FORMAT_A12
] = { 0, 64 },
339 [I915_OA_FORMAT_A12_B8_C8
] = { 2, 128 },
340 [I915_OA_FORMAT_A32u40_A4u32_B8_C8
] = { 5, 256 },
341 [I915_OA_FORMAT_C4_B8
] = { 7, 64 },
344 static const struct i915_oa_format gen12_oa_formats
[I915_OA_FORMAT_MAX
] = {
345 [I915_OA_FORMAT_A32u40_A4u32_B8_C8
] = { 5, 256 },
348 #define SAMPLE_OA_REPORT (1<<0)
351 * struct perf_open_properties - for validated properties given to open a stream
352 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
353 * @single_context: Whether a single or all gpu contexts should be monitored
354 * @hold_preemption: Whether the preemption is disabled for the filtered
356 * @ctx_handle: A gem ctx handle for use with @single_context
357 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
358 * @oa_format: An OA unit HW report format
359 * @oa_periodic: Whether to enable periodic OA unit sampling
360 * @oa_period_exponent: The OA unit sampling period is derived from this
361 * @engine: The engine (typically rcs0) being monitored by the OA unit
363 * As read_properties_unlocked() enumerates and validates the properties given
364 * to open a stream of metrics the configuration is built up in the structure
365 * which starts out zero initialized.
367 struct perf_open_properties
{
370 u64 single_context
:1;
371 u64 hold_preemption
:1;
374 /* OA sampling state */
378 int oa_period_exponent
;
380 struct intel_engine_cs
*engine
;
383 struct i915_oa_config_bo
{
384 struct llist_node node
;
386 struct i915_oa_config
*oa_config
;
387 struct i915_vma
*vma
;
390 static struct ctl_table_header
*sysctl_header
;
392 static enum hrtimer_restart
oa_poll_check_timer_cb(struct hrtimer
*hrtimer
);
394 void i915_oa_config_release(struct kref
*ref
)
396 struct i915_oa_config
*oa_config
=
397 container_of(ref
, typeof(*oa_config
), ref
);
399 kfree(oa_config
->flex_regs
);
400 kfree(oa_config
->b_counter_regs
);
401 kfree(oa_config
->mux_regs
);
403 kfree_rcu(oa_config
, rcu
);
406 struct i915_oa_config
*
407 i915_perf_get_oa_config(struct i915_perf
*perf
, int metrics_set
)
409 struct i915_oa_config
*oa_config
;
412 if (metrics_set
== 1)
413 oa_config
= &perf
->test_config
;
415 oa_config
= idr_find(&perf
->metrics_idr
, metrics_set
);
417 oa_config
= i915_oa_config_get(oa_config
);
423 static void free_oa_config_bo(struct i915_oa_config_bo
*oa_bo
)
425 i915_oa_config_put(oa_bo
->oa_config
);
426 i915_vma_put(oa_bo
->vma
);
430 static u32
gen12_oa_hw_tail_read(struct i915_perf_stream
*stream
)
432 struct intel_uncore
*uncore
= stream
->uncore
;
434 return intel_uncore_read(uncore
, GEN12_OAG_OATAILPTR
) &
435 GEN12_OAG_OATAILPTR_MASK
;
438 static u32
gen8_oa_hw_tail_read(struct i915_perf_stream
*stream
)
440 struct intel_uncore
*uncore
= stream
->uncore
;
442 return intel_uncore_read(uncore
, GEN8_OATAILPTR
) & GEN8_OATAILPTR_MASK
;
445 static u32
gen7_oa_hw_tail_read(struct i915_perf_stream
*stream
)
447 struct intel_uncore
*uncore
= stream
->uncore
;
448 u32 oastatus1
= intel_uncore_read(uncore
, GEN7_OASTATUS1
);
450 return oastatus1
& GEN7_OASTATUS1_TAIL_MASK
;
454 * oa_buffer_check_unlocked - check for data and update tail ptr state
455 * @stream: i915 stream instance
457 * This is either called via fops (for blocking reads in user ctx) or the poll
458 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
459 * if there is data available for userspace to read.
461 * This function is central to providing a workaround for the OA unit tail
462 * pointer having a race with respect to what data is visible to the CPU.
463 * It is responsible for reading tail pointers from the hardware and giving
464 * the pointers time to 'age' before they are made available for reading.
465 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
467 * Besides returning true when there is data available to read() this function
468 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
469 * and .aged_tail_idx state used for reading.
471 * Note: It's safe to read OA config state here unlocked, assuming that this is
472 * only called while the stream is enabled, while the global OA configuration
475 * Returns: %true if the OA buffer contains data, else %false
477 static bool oa_buffer_check_unlocked(struct i915_perf_stream
*stream
)
479 int report_size
= stream
->oa_buffer
.format_size
;
481 unsigned int aged_idx
;
482 u32 head
, hw_tail
, aged_tail
, aging_tail
;
485 /* We have to consider the (unlikely) possibility that read() errors
486 * could result in an OA buffer reset which might reset the head,
487 * tails[] and aged_tail state.
489 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
491 /* NB: The head we observe here might effectively be a little out of
492 * date (between head and tails[aged_idx].offset if there is currently
493 * a read() in progress.
495 head
= stream
->oa_buffer
.head
;
497 aged_idx
= stream
->oa_buffer
.aged_tail_idx
;
498 aged_tail
= stream
->oa_buffer
.tails
[aged_idx
].offset
;
499 aging_tail
= stream
->oa_buffer
.tails
[!aged_idx
].offset
;
501 hw_tail
= stream
->perf
->ops
.oa_hw_tail_read(stream
);
503 /* The tail pointer increases in 64 byte increments,
504 * not in report_size steps...
506 hw_tail
&= ~(report_size
- 1);
508 now
= ktime_get_mono_fast_ns();
510 /* Update the aged tail
512 * Flip the tail pointer available for read()s once the aging tail is
513 * old enough to trust that the corresponding data will be visible to
516 * Do this before updating the aging pointer in case we may be able to
517 * immediately start aging a new pointer too (if new data has become
518 * available) without needing to wait for a later hrtimer callback.
520 if (aging_tail
!= INVALID_TAIL_PTR
&&
521 ((now
- stream
->oa_buffer
.aging_timestamp
) >
522 OA_TAIL_MARGIN_NSEC
)) {
525 stream
->oa_buffer
.aged_tail_idx
= aged_idx
;
527 aged_tail
= aging_tail
;
529 /* Mark that we need a new pointer to start aging... */
530 stream
->oa_buffer
.tails
[!aged_idx
].offset
= INVALID_TAIL_PTR
;
531 aging_tail
= INVALID_TAIL_PTR
;
534 /* Update the aging tail
536 * We throttle aging tail updates until we have a new tail that
537 * represents >= one report more data than is already available for
538 * reading. This ensures there will be enough data for a successful
539 * read once this new pointer has aged and ensures we will give the new
540 * pointer time to age.
542 if (aging_tail
== INVALID_TAIL_PTR
&&
543 (aged_tail
== INVALID_TAIL_PTR
||
544 OA_TAKEN(hw_tail
, aged_tail
) >= report_size
)) {
545 struct i915_vma
*vma
= stream
->oa_buffer
.vma
;
546 u32 gtt_offset
= i915_ggtt_offset(vma
);
548 /* Be paranoid and do a bounds check on the pointer read back
549 * from hardware, just in case some spurious hardware condition
550 * could put the tail out of bounds...
552 if (hw_tail
>= gtt_offset
&&
553 hw_tail
< (gtt_offset
+ OA_BUFFER_SIZE
)) {
554 stream
->oa_buffer
.tails
[!aged_idx
].offset
=
555 aging_tail
= hw_tail
;
556 stream
->oa_buffer
.aging_timestamp
= now
;
558 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %x\n",
563 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
565 return aged_tail
== INVALID_TAIL_PTR
?
566 false : OA_TAKEN(aged_tail
, head
) >= report_size
;
570 * append_oa_status - Appends a status record to a userspace read() buffer.
571 * @stream: An i915-perf stream opened for OA metrics
572 * @buf: destination buffer given by userspace
573 * @count: the number of bytes userspace wants to read
574 * @offset: (inout): the current position for writing into @buf
575 * @type: The kind of status to report to userspace
577 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
578 * into the userspace read() buffer.
580 * The @buf @offset will only be updated on success.
582 * Returns: 0 on success, negative error code on failure.
584 static int append_oa_status(struct i915_perf_stream
*stream
,
588 enum drm_i915_perf_record_type type
)
590 struct drm_i915_perf_record_header header
= { type
, 0, sizeof(header
) };
592 if ((count
- *offset
) < header
.size
)
595 if (copy_to_user(buf
+ *offset
, &header
, sizeof(header
)))
598 (*offset
) += header
.size
;
604 * append_oa_sample - Copies single OA report into userspace read() buffer.
605 * @stream: An i915-perf stream opened for OA metrics
606 * @buf: destination buffer given by userspace
607 * @count: the number of bytes userspace wants to read
608 * @offset: (inout): the current position for writing into @buf
609 * @report: A single OA report to (optionally) include as part of the sample
611 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
612 * properties when opening a stream, tracked as `stream->sample_flags`. This
613 * function copies the requested components of a single sample to the given
616 * The @buf @offset will only be updated on success.
618 * Returns: 0 on success, negative error code on failure.
620 static int append_oa_sample(struct i915_perf_stream
*stream
,
626 int report_size
= stream
->oa_buffer
.format_size
;
627 struct drm_i915_perf_record_header header
;
628 u32 sample_flags
= stream
->sample_flags
;
630 header
.type
= DRM_I915_PERF_RECORD_SAMPLE
;
632 header
.size
= stream
->sample_size
;
634 if ((count
- *offset
) < header
.size
)
638 if (copy_to_user(buf
, &header
, sizeof(header
)))
640 buf
+= sizeof(header
);
642 if (sample_flags
& SAMPLE_OA_REPORT
) {
643 if (copy_to_user(buf
, report
, report_size
))
647 (*offset
) += header
.size
;
653 * Copies all buffered OA reports into userspace read() buffer.
654 * @stream: An i915-perf stream opened for OA metrics
655 * @buf: destination buffer given by userspace
656 * @count: the number of bytes userspace wants to read
657 * @offset: (inout): the current position for writing into @buf
659 * Notably any error condition resulting in a short read (-%ENOSPC or
660 * -%EFAULT) will be returned even though one or more records may
661 * have been successfully copied. In this case it's up to the caller
662 * to decide if the error should be squashed before returning to
665 * Note: reports are consumed from the head, and appended to the
666 * tail, so the tail chases the head?... If you think that's mad
667 * and back-to-front you're not alone, but this follows the
668 * Gen PRM naming convention.
670 * Returns: 0 on success, negative error code on failure.
672 static int gen8_append_oa_reports(struct i915_perf_stream
*stream
,
677 struct intel_uncore
*uncore
= stream
->uncore
;
678 int report_size
= stream
->oa_buffer
.format_size
;
679 u8
*oa_buf_base
= stream
->oa_buffer
.vaddr
;
680 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
681 u32 mask
= (OA_BUFFER_SIZE
- 1);
682 size_t start_offset
= *offset
;
684 unsigned int aged_tail_idx
;
689 if (WARN_ON(!stream
->enabled
))
692 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
694 head
= stream
->oa_buffer
.head
;
695 aged_tail_idx
= stream
->oa_buffer
.aged_tail_idx
;
696 tail
= stream
->oa_buffer
.tails
[aged_tail_idx
].offset
;
698 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
701 * An invalid tail pointer here means we're still waiting for the poll
702 * hrtimer callback to give us a pointer
704 if (tail
== INVALID_TAIL_PTR
)
708 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
709 * while indexing relative to oa_buf_base.
715 * An out of bounds or misaligned head or tail pointer implies a driver
716 * bug since we validate + align the tail pointers we read from the
717 * hardware and we are in full control of the head pointer which should
718 * only be incremented by multiples of the report size (notably also
719 * all a power of two).
721 if (WARN_ONCE(head
> OA_BUFFER_SIZE
|| head
% report_size
||
722 tail
> OA_BUFFER_SIZE
|| tail
% report_size
,
723 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
729 (taken
= OA_TAKEN(tail
, head
));
730 head
= (head
+ report_size
) & mask
) {
731 u8
*report
= oa_buf_base
+ head
;
732 u32
*report32
= (void *)report
;
737 * All the report sizes factor neatly into the buffer
738 * size so we never expect to see a report split
739 * between the beginning and end of the buffer.
741 * Given the initial alignment check a misalignment
742 * here would imply a driver bug that would result
745 if (WARN_ON((OA_BUFFER_SIZE
- head
) < report_size
)) {
746 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
751 * The reason field includes flags identifying what
752 * triggered this specific report (mostly timer
753 * triggered or e.g. due to a context switch).
755 * This field is never expected to be zero so we can
756 * check that the report isn't invalid before copying
759 reason
= ((report32
[0] >> OAREPORT_REASON_SHIFT
) &
760 (IS_GEN(stream
->perf
->i915
, 12) ?
761 OAREPORT_REASON_MASK_EXTENDED
:
762 OAREPORT_REASON_MASK
));
764 if (__ratelimit(&stream
->perf
->spurious_report_rs
))
765 DRM_NOTE("Skipping spurious, invalid OA report\n");
769 ctx_id
= report32
[2] & stream
->specific_ctx_id_mask
;
772 * Squash whatever is in the CTX_ID field if it's marked as
773 * invalid to be sure we avoid false-positive, single-context
776 * Note: that we don't clear the valid_ctx_bit so userspace can
777 * understand that the ID has been squashed by the kernel.
779 if (!(report32
[0] & stream
->perf
->gen8_valid_ctx_bit
) &&
780 INTEL_GEN(stream
->perf
->i915
) <= 11)
781 ctx_id
= report32
[2] = INVALID_CTX_ID
;
784 * NB: For Gen 8 the OA unit no longer supports clock gating
785 * off for a specific context and the kernel can't securely
786 * stop the counters from updating as system-wide / global
789 * Automatic reports now include a context ID so reports can be
790 * filtered on the cpu but it's not worth trying to
791 * automatically subtract/hide counter progress for other
792 * contexts while filtering since we can't stop userspace
793 * issuing MI_REPORT_PERF_COUNT commands which would still
794 * provide a side-band view of the real values.
796 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
797 * to normalize counters for a single filtered context then it
798 * needs be forwarded bookend context-switch reports so that it
799 * can track switches in between MI_REPORT_PERF_COUNT commands
800 * and can itself subtract/ignore the progress of counters
801 * associated with other contexts. Note that the hardware
802 * automatically triggers reports when switching to a new
803 * context which are tagged with the ID of the newly active
804 * context. To avoid the complexity (and likely fragility) of
805 * reading ahead while parsing reports to try and minimize
806 * forwarding redundant context switch reports (i.e. between
807 * other, unrelated contexts) we simply elect to forward them
810 * We don't rely solely on the reason field to identify context
811 * switches since it's not-uncommon for periodic samples to
812 * identify a switch before any 'context switch' report.
814 if (!stream
->perf
->exclusive_stream
->ctx
||
815 stream
->specific_ctx_id
== ctx_id
||
816 stream
->oa_buffer
.last_ctx_id
== stream
->specific_ctx_id
||
817 reason
& OAREPORT_REASON_CTX_SWITCH
) {
820 * While filtering for a single context we avoid
821 * leaking the IDs of other contexts.
823 if (stream
->perf
->exclusive_stream
->ctx
&&
824 stream
->specific_ctx_id
!= ctx_id
) {
825 report32
[2] = INVALID_CTX_ID
;
828 ret
= append_oa_sample(stream
, buf
, count
, offset
,
833 stream
->oa_buffer
.last_ctx_id
= ctx_id
;
837 * The above reason field sanity check is based on
838 * the assumption that the OA buffer is initially
839 * zeroed and we reset the field after copying so the
840 * check is still meaningful once old reports start
846 if (start_offset
!= *offset
) {
847 i915_reg_t oaheadptr
;
849 oaheadptr
= IS_GEN(stream
->perf
->i915
, 12) ?
850 GEN12_OAG_OAHEADPTR
: GEN8_OAHEADPTR
;
852 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
855 * We removed the gtt_offset for the copy loop above, indexing
856 * relative to oa_buf_base so put back here...
859 intel_uncore_write(uncore
, oaheadptr
,
860 head
& GEN12_OAG_OAHEADPTR_MASK
);
861 stream
->oa_buffer
.head
= head
;
863 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
870 * gen8_oa_read - copy status records then buffered OA reports
871 * @stream: An i915-perf stream opened for OA metrics
872 * @buf: destination buffer given by userspace
873 * @count: the number of bytes userspace wants to read
874 * @offset: (inout): the current position for writing into @buf
876 * Checks OA unit status registers and if necessary appends corresponding
877 * status records for userspace (such as for a buffer full condition) and then
878 * initiate appending any buffered OA reports.
880 * Updates @offset according to the number of bytes successfully copied into
881 * the userspace buffer.
883 * NB: some data may be successfully copied to the userspace buffer
884 * even if an error is returned, and this is reflected in the
887 * Returns: zero on success or a negative error code
889 static int gen8_oa_read(struct i915_perf_stream
*stream
,
894 struct intel_uncore
*uncore
= stream
->uncore
;
896 i915_reg_t oastatus_reg
;
899 if (WARN_ON(!stream
->oa_buffer
.vaddr
))
902 oastatus_reg
= IS_GEN(stream
->perf
->i915
, 12) ?
903 GEN12_OAG_OASTATUS
: GEN8_OASTATUS
;
905 oastatus
= intel_uncore_read(uncore
, oastatus_reg
);
908 * We treat OABUFFER_OVERFLOW as a significant error:
910 * Although theoretically we could handle this more gracefully
911 * sometimes, some Gens don't correctly suppress certain
912 * automatically triggered reports in this condition and so we
913 * have to assume that old reports are now being trampled
916 * Considering how we don't currently give userspace control
917 * over the OA buffer size and always configure a large 16MB
918 * buffer, then a buffer overflow does anyway likely indicate
919 * that something has gone quite badly wrong.
921 if (oastatus
& GEN8_OASTATUS_OABUFFER_OVERFLOW
) {
922 ret
= append_oa_status(stream
, buf
, count
, offset
,
923 DRM_I915_PERF_RECORD_OA_BUFFER_LOST
);
927 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
928 stream
->period_exponent
);
930 stream
->perf
->ops
.oa_disable(stream
);
931 stream
->perf
->ops
.oa_enable(stream
);
934 * Note: .oa_enable() is expected to re-init the oabuffer and
935 * reset GEN8_OASTATUS for us
937 oastatus
= intel_uncore_read(uncore
, oastatus_reg
);
940 if (oastatus
& GEN8_OASTATUS_REPORT_LOST
) {
941 ret
= append_oa_status(stream
, buf
, count
, offset
,
942 DRM_I915_PERF_RECORD_OA_REPORT_LOST
);
945 intel_uncore_write(uncore
, oastatus_reg
,
946 oastatus
& ~GEN8_OASTATUS_REPORT_LOST
);
949 return gen8_append_oa_reports(stream
, buf
, count
, offset
);
953 * Copies all buffered OA reports into userspace read() buffer.
954 * @stream: An i915-perf stream opened for OA metrics
955 * @buf: destination buffer given by userspace
956 * @count: the number of bytes userspace wants to read
957 * @offset: (inout): the current position for writing into @buf
959 * Notably any error condition resulting in a short read (-%ENOSPC or
960 * -%EFAULT) will be returned even though one or more records may
961 * have been successfully copied. In this case it's up to the caller
962 * to decide if the error should be squashed before returning to
965 * Note: reports are consumed from the head, and appended to the
966 * tail, so the tail chases the head?... If you think that's mad
967 * and back-to-front you're not alone, but this follows the
968 * Gen PRM naming convention.
970 * Returns: 0 on success, negative error code on failure.
972 static int gen7_append_oa_reports(struct i915_perf_stream
*stream
,
977 struct intel_uncore
*uncore
= stream
->uncore
;
978 int report_size
= stream
->oa_buffer
.format_size
;
979 u8
*oa_buf_base
= stream
->oa_buffer
.vaddr
;
980 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
981 u32 mask
= (OA_BUFFER_SIZE
- 1);
982 size_t start_offset
= *offset
;
984 unsigned int aged_tail_idx
;
989 if (WARN_ON(!stream
->enabled
))
992 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
994 head
= stream
->oa_buffer
.head
;
995 aged_tail_idx
= stream
->oa_buffer
.aged_tail_idx
;
996 tail
= stream
->oa_buffer
.tails
[aged_tail_idx
].offset
;
998 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1000 /* An invalid tail pointer here means we're still waiting for the poll
1001 * hrtimer callback to give us a pointer
1003 if (tail
== INVALID_TAIL_PTR
)
1006 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
1007 * while indexing relative to oa_buf_base.
1012 /* An out of bounds or misaligned head or tail pointer implies a driver
1013 * bug since we validate + align the tail pointers we read from the
1014 * hardware and we are in full control of the head pointer which should
1015 * only be incremented by multiples of the report size (notably also
1016 * all a power of two).
1018 if (WARN_ONCE(head
> OA_BUFFER_SIZE
|| head
% report_size
||
1019 tail
> OA_BUFFER_SIZE
|| tail
% report_size
,
1020 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
1026 (taken
= OA_TAKEN(tail
, head
));
1027 head
= (head
+ report_size
) & mask
) {
1028 u8
*report
= oa_buf_base
+ head
;
1029 u32
*report32
= (void *)report
;
1031 /* All the report sizes factor neatly into the buffer
1032 * size so we never expect to see a report split
1033 * between the beginning and end of the buffer.
1035 * Given the initial alignment check a misalignment
1036 * here would imply a driver bug that would result
1039 if (WARN_ON((OA_BUFFER_SIZE
- head
) < report_size
)) {
1040 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1044 /* The report-ID field for periodic samples includes
1045 * some undocumented flags related to what triggered
1046 * the report and is never expected to be zero so we
1047 * can check that the report isn't invalid before
1048 * copying it to userspace...
1050 if (report32
[0] == 0) {
1051 if (__ratelimit(&stream
->perf
->spurious_report_rs
))
1052 DRM_NOTE("Skipping spurious, invalid OA report\n");
1056 ret
= append_oa_sample(stream
, buf
, count
, offset
, report
);
1060 /* The above report-id field sanity check is based on
1061 * the assumption that the OA buffer is initially
1062 * zeroed and we reset the field after copying so the
1063 * check is still meaningful once old reports start
1064 * being overwritten.
1069 if (start_offset
!= *offset
) {
1070 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
1072 /* We removed the gtt_offset for the copy loop above, indexing
1073 * relative to oa_buf_base so put back here...
1077 intel_uncore_write(uncore
, GEN7_OASTATUS2
,
1078 (head
& GEN7_OASTATUS2_HEAD_MASK
) |
1079 GEN7_OASTATUS2_MEM_SELECT_GGTT
);
1080 stream
->oa_buffer
.head
= head
;
1082 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1089 * gen7_oa_read - copy status records then buffered OA reports
1090 * @stream: An i915-perf stream opened for OA metrics
1091 * @buf: destination buffer given by userspace
1092 * @count: the number of bytes userspace wants to read
1093 * @offset: (inout): the current position for writing into @buf
1095 * Checks Gen 7 specific OA unit status registers and if necessary appends
1096 * corresponding status records for userspace (such as for a buffer full
1097 * condition) and then initiate appending any buffered OA reports.
1099 * Updates @offset according to the number of bytes successfully copied into
1100 * the userspace buffer.
1102 * Returns: zero on success or a negative error code
1104 static int gen7_oa_read(struct i915_perf_stream
*stream
,
1109 struct intel_uncore
*uncore
= stream
->uncore
;
1113 if (WARN_ON(!stream
->oa_buffer
.vaddr
))
1116 oastatus1
= intel_uncore_read(uncore
, GEN7_OASTATUS1
);
1118 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1119 * bits while the OA unit is enabled (while the tail pointer
1120 * may be updated asynchronously) so we ignore status bits
1121 * that have already been reported to userspace.
1123 oastatus1
&= ~stream
->perf
->gen7_latched_oastatus1
;
1125 /* We treat OABUFFER_OVERFLOW as a significant error:
1127 * - The status can be interpreted to mean that the buffer is
1128 * currently full (with a higher precedence than OA_TAKEN()
1129 * which will start to report a near-empty buffer after an
1130 * overflow) but it's awkward that we can't clear the status
1131 * on Haswell, so without a reset we won't be able to catch
1134 * - Since it also implies the HW has started overwriting old
1135 * reports it may also affect our sanity checks for invalid
1136 * reports when copying to userspace that assume new reports
1137 * are being written to cleared memory.
1139 * - In the future we may want to introduce a flight recorder
1140 * mode where the driver will automatically maintain a safe
1141 * guard band between head/tail, avoiding this overflow
1142 * condition, but we avoid the added driver complexity for
1145 if (unlikely(oastatus1
& GEN7_OASTATUS1_OABUFFER_OVERFLOW
)) {
1146 ret
= append_oa_status(stream
, buf
, count
, offset
,
1147 DRM_I915_PERF_RECORD_OA_BUFFER_LOST
);
1151 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1152 stream
->period_exponent
);
1154 stream
->perf
->ops
.oa_disable(stream
);
1155 stream
->perf
->ops
.oa_enable(stream
);
1157 oastatus1
= intel_uncore_read(uncore
, GEN7_OASTATUS1
);
1160 if (unlikely(oastatus1
& GEN7_OASTATUS1_REPORT_LOST
)) {
1161 ret
= append_oa_status(stream
, buf
, count
, offset
,
1162 DRM_I915_PERF_RECORD_OA_REPORT_LOST
);
1165 stream
->perf
->gen7_latched_oastatus1
|=
1166 GEN7_OASTATUS1_REPORT_LOST
;
1169 return gen7_append_oa_reports(stream
, buf
, count
, offset
);
1173 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1174 * @stream: An i915-perf stream opened for OA metrics
1176 * Called when userspace tries to read() from a blocking stream FD opened
1177 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1178 * OA buffer and wakes us.
1180 * Note: it's acceptable to have this return with some false positives
1181 * since any subsequent read handling will return -EAGAIN if there isn't
1182 * really data ready for userspace yet.
1184 * Returns: zero on success or a negative error code
1186 static int i915_oa_wait_unlocked(struct i915_perf_stream
*stream
)
1188 /* We would wait indefinitely if periodic sampling is not enabled */
1189 if (!stream
->periodic
)
1192 return wait_event_interruptible(stream
->poll_wq
,
1193 oa_buffer_check_unlocked(stream
));
1197 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1198 * @stream: An i915-perf stream opened for OA metrics
1199 * @file: An i915 perf stream file
1200 * @wait: poll() state table
1202 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1203 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1204 * when it sees data ready to read in the circular OA buffer.
1206 static void i915_oa_poll_wait(struct i915_perf_stream
*stream
,
1210 poll_wait(file
, &stream
->poll_wq
, wait
);
1214 * i915_oa_read - just calls through to &i915_oa_ops->read
1215 * @stream: An i915-perf stream opened for OA metrics
1216 * @buf: destination buffer given by userspace
1217 * @count: the number of bytes userspace wants to read
1218 * @offset: (inout): the current position for writing into @buf
1220 * Updates @offset according to the number of bytes successfully copied into
1221 * the userspace buffer.
1223 * Returns: zero on success or a negative error code
1225 static int i915_oa_read(struct i915_perf_stream
*stream
,
1230 return stream
->perf
->ops
.read(stream
, buf
, count
, offset
);
1233 static struct intel_context
*oa_pin_context(struct i915_perf_stream
*stream
)
1235 struct i915_gem_engines_iter it
;
1236 struct i915_gem_context
*ctx
= stream
->ctx
;
1237 struct intel_context
*ce
;
1240 for_each_gem_engine(ce
, i915_gem_context_lock_engines(ctx
), it
) {
1241 if (ce
->engine
!= stream
->engine
) /* first match! */
1245 * As the ID is the gtt offset of the context's vma we
1246 * pin the vma to ensure the ID remains fixed.
1248 err
= intel_context_pin(ce
);
1250 stream
->pinned_ctx
= ce
;
1254 i915_gem_context_unlock_engines(ctx
);
1256 return stream
->pinned_ctx
;
1260 * oa_get_render_ctx_id - determine and hold ctx hw id
1261 * @stream: An i915-perf stream opened for OA metrics
1263 * Determine the render context hw id, and ensure it remains fixed for the
1264 * lifetime of the stream. This ensures that we don't have to worry about
1265 * updating the context ID in OACONTROL on the fly.
1267 * Returns: zero on success or a negative error code
1269 static int oa_get_render_ctx_id(struct i915_perf_stream
*stream
)
1271 struct intel_context
*ce
;
1273 ce
= oa_pin_context(stream
);
1277 switch (INTEL_GEN(ce
->engine
->i915
)) {
1280 * On Haswell we don't do any post processing of the reports
1281 * and don't need to use the mask.
1283 stream
->specific_ctx_id
= i915_ggtt_offset(ce
->state
);
1284 stream
->specific_ctx_id_mask
= 0;
1291 if (intel_engine_in_execlists_submission_mode(ce
->engine
)) {
1292 stream
->specific_ctx_id_mask
=
1293 (1U << GEN8_CTX_ID_WIDTH
) - 1;
1294 stream
->specific_ctx_id
= stream
->specific_ctx_id_mask
;
1297 * When using GuC, the context descriptor we write in
1298 * i915 is read by GuC and rewritten before it's
1299 * actually written into the hardware. The LRCA is
1300 * what is put into the context id field of the
1301 * context descriptor by GuC. Because it's aligned to
1302 * a page, the lower 12bits are always at 0 and
1303 * dropped by GuC. They won't be part of the context
1304 * ID in the OA reports, so squash those lower bits.
1306 stream
->specific_ctx_id
=
1307 lower_32_bits(ce
->lrc_desc
) >> 12;
1310 * GuC uses the top bit to signal proxy submission, so
1313 stream
->specific_ctx_id_mask
=
1314 (1U << (GEN8_CTX_ID_WIDTH
- 1)) - 1;
1320 stream
->specific_ctx_id_mask
=
1321 ((1U << GEN11_SW_CTX_ID_WIDTH
) - 1) << (GEN11_SW_CTX_ID_SHIFT
- 32);
1322 stream
->specific_ctx_id
= stream
->specific_ctx_id_mask
;
1327 MISSING_CASE(INTEL_GEN(ce
->engine
->i915
));
1330 ce
->tag
= stream
->specific_ctx_id_mask
;
1332 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1333 stream
->specific_ctx_id
,
1334 stream
->specific_ctx_id_mask
);
1340 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1341 * @stream: An i915-perf stream opened for OA metrics
1343 * In case anything needed doing to ensure the context HW ID would remain valid
1344 * for the lifetime of the stream, then that can be undone here.
1346 static void oa_put_render_ctx_id(struct i915_perf_stream
*stream
)
1348 struct intel_context
*ce
;
1350 ce
= fetch_and_zero(&stream
->pinned_ctx
);
1352 ce
->tag
= 0; /* recomputed on next submission after parking */
1353 intel_context_unpin(ce
);
1356 stream
->specific_ctx_id
= INVALID_CTX_ID
;
1357 stream
->specific_ctx_id_mask
= 0;
1361 free_oa_buffer(struct i915_perf_stream
*stream
)
1363 i915_vma_unpin_and_release(&stream
->oa_buffer
.vma
,
1364 I915_VMA_RELEASE_MAP
);
1366 stream
->oa_buffer
.vaddr
= NULL
;
1370 free_oa_configs(struct i915_perf_stream
*stream
)
1372 struct i915_oa_config_bo
*oa_bo
, *tmp
;
1374 i915_oa_config_put(stream
->oa_config
);
1375 llist_for_each_entry_safe(oa_bo
, tmp
, stream
->oa_config_bos
.first
, node
)
1376 free_oa_config_bo(oa_bo
);
1380 free_noa_wait(struct i915_perf_stream
*stream
)
1382 i915_vma_unpin_and_release(&stream
->noa_wait
, 0);
1385 static void i915_oa_stream_destroy(struct i915_perf_stream
*stream
)
1387 struct i915_perf
*perf
= stream
->perf
;
1389 BUG_ON(stream
!= perf
->exclusive_stream
);
1392 * Unset exclusive_stream first, it will be checked while disabling
1393 * the metric set on gen8+.
1395 perf
->exclusive_stream
= NULL
;
1396 perf
->ops
.disable_metric_set(stream
);
1398 free_oa_buffer(stream
);
1400 intel_uncore_forcewake_put(stream
->uncore
, FORCEWAKE_ALL
);
1401 intel_engine_pm_put(stream
->engine
);
1404 oa_put_render_ctx_id(stream
);
1406 free_oa_configs(stream
);
1407 free_noa_wait(stream
);
1409 if (perf
->spurious_report_rs
.missed
) {
1410 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1411 perf
->spurious_report_rs
.missed
);
1415 static void gen7_init_oa_buffer(struct i915_perf_stream
*stream
)
1417 struct intel_uncore
*uncore
= stream
->uncore
;
1418 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
1419 unsigned long flags
;
1421 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
1423 /* Pre-DevBDW: OABUFFER must be set with counters off,
1424 * before OASTATUS1, but after OASTATUS2
1426 intel_uncore_write(uncore
, GEN7_OASTATUS2
, /* head */
1427 gtt_offset
| GEN7_OASTATUS2_MEM_SELECT_GGTT
);
1428 stream
->oa_buffer
.head
= gtt_offset
;
1430 intel_uncore_write(uncore
, GEN7_OABUFFER
, gtt_offset
);
1432 intel_uncore_write(uncore
, GEN7_OASTATUS1
, /* tail */
1433 gtt_offset
| OABUFFER_SIZE_16M
);
1435 /* Mark that we need updated tail pointers to read from... */
1436 stream
->oa_buffer
.tails
[0].offset
= INVALID_TAIL_PTR
;
1437 stream
->oa_buffer
.tails
[1].offset
= INVALID_TAIL_PTR
;
1439 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1441 /* On Haswell we have to track which OASTATUS1 flags we've
1442 * already seen since they can't be cleared while periodic
1443 * sampling is enabled.
1445 stream
->perf
->gen7_latched_oastatus1
= 0;
1447 /* NB: although the OA buffer will initially be allocated
1448 * zeroed via shmfs (and so this memset is redundant when
1449 * first allocating), we may re-init the OA buffer, either
1450 * when re-enabling a stream or in error/reset paths.
1452 * The reason we clear the buffer for each re-init is for the
1453 * sanity check in gen7_append_oa_reports() that looks at the
1454 * report-id field to make sure it's non-zero which relies on
1455 * the assumption that new reports are being written to zeroed
1458 memset(stream
->oa_buffer
.vaddr
, 0, OA_BUFFER_SIZE
);
1460 stream
->pollin
= false;
1463 static void gen8_init_oa_buffer(struct i915_perf_stream
*stream
)
1465 struct intel_uncore
*uncore
= stream
->uncore
;
1466 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
1467 unsigned long flags
;
1469 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
1471 intel_uncore_write(uncore
, GEN8_OASTATUS
, 0);
1472 intel_uncore_write(uncore
, GEN8_OAHEADPTR
, gtt_offset
);
1473 stream
->oa_buffer
.head
= gtt_offset
;
1475 intel_uncore_write(uncore
, GEN8_OABUFFER_UDW
, 0);
1480 * "This MMIO must be set before the OATAILPTR
1481 * register and after the OAHEADPTR register. This is
1482 * to enable proper functionality of the overflow
1485 intel_uncore_write(uncore
, GEN8_OABUFFER
, gtt_offset
|
1486 OABUFFER_SIZE_16M
| GEN8_OABUFFER_MEM_SELECT_GGTT
);
1487 intel_uncore_write(uncore
, GEN8_OATAILPTR
, gtt_offset
& GEN8_OATAILPTR_MASK
);
1489 /* Mark that we need updated tail pointers to read from... */
1490 stream
->oa_buffer
.tails
[0].offset
= INVALID_TAIL_PTR
;
1491 stream
->oa_buffer
.tails
[1].offset
= INVALID_TAIL_PTR
;
1494 * Reset state used to recognise context switches, affecting which
1495 * reports we will forward to userspace while filtering for a single
1498 stream
->oa_buffer
.last_ctx_id
= INVALID_CTX_ID
;
1500 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1503 * NB: although the OA buffer will initially be allocated
1504 * zeroed via shmfs (and so this memset is redundant when
1505 * first allocating), we may re-init the OA buffer, either
1506 * when re-enabling a stream or in error/reset paths.
1508 * The reason we clear the buffer for each re-init is for the
1509 * sanity check in gen8_append_oa_reports() that looks at the
1510 * reason field to make sure it's non-zero which relies on
1511 * the assumption that new reports are being written to zeroed
1514 memset(stream
->oa_buffer
.vaddr
, 0, OA_BUFFER_SIZE
);
1516 stream
->pollin
= false;
1519 static void gen12_init_oa_buffer(struct i915_perf_stream
*stream
)
1521 struct intel_uncore
*uncore
= stream
->uncore
;
1522 u32 gtt_offset
= i915_ggtt_offset(stream
->oa_buffer
.vma
);
1523 unsigned long flags
;
1525 spin_lock_irqsave(&stream
->oa_buffer
.ptr_lock
, flags
);
1527 intel_uncore_write(uncore
, GEN12_OAG_OASTATUS
, 0);
1528 intel_uncore_write(uncore
, GEN12_OAG_OAHEADPTR
,
1529 gtt_offset
& GEN12_OAG_OAHEADPTR_MASK
);
1530 stream
->oa_buffer
.head
= gtt_offset
;
1535 * "This MMIO must be set before the OATAILPTR
1536 * register and after the OAHEADPTR register. This is
1537 * to enable proper functionality of the overflow
1540 intel_uncore_write(uncore
, GEN12_OAG_OABUFFER
, gtt_offset
|
1541 OABUFFER_SIZE_16M
| GEN8_OABUFFER_MEM_SELECT_GGTT
);
1542 intel_uncore_write(uncore
, GEN12_OAG_OATAILPTR
,
1543 gtt_offset
& GEN12_OAG_OATAILPTR_MASK
);
1545 /* Mark that we need updated tail pointers to read from... */
1546 stream
->oa_buffer
.tails
[0].offset
= INVALID_TAIL_PTR
;
1547 stream
->oa_buffer
.tails
[1].offset
= INVALID_TAIL_PTR
;
1550 * Reset state used to recognise context switches, affecting which
1551 * reports we will forward to userspace while filtering for a single
1554 stream
->oa_buffer
.last_ctx_id
= INVALID_CTX_ID
;
1556 spin_unlock_irqrestore(&stream
->oa_buffer
.ptr_lock
, flags
);
1559 * NB: although the OA buffer will initially be allocated
1560 * zeroed via shmfs (and so this memset is redundant when
1561 * first allocating), we may re-init the OA buffer, either
1562 * when re-enabling a stream or in error/reset paths.
1564 * The reason we clear the buffer for each re-init is for the
1565 * sanity check in gen8_append_oa_reports() that looks at the
1566 * reason field to make sure it's non-zero which relies on
1567 * the assumption that new reports are being written to zeroed
1570 memset(stream
->oa_buffer
.vaddr
, 0,
1571 stream
->oa_buffer
.vma
->size
);
1573 stream
->pollin
= false;
1576 static int alloc_oa_buffer(struct i915_perf_stream
*stream
)
1578 struct drm_i915_gem_object
*bo
;
1579 struct i915_vma
*vma
;
1582 if (WARN_ON(stream
->oa_buffer
.vma
))
1585 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE
);
1586 BUILD_BUG_ON(OA_BUFFER_SIZE
< SZ_128K
|| OA_BUFFER_SIZE
> SZ_16M
);
1588 bo
= i915_gem_object_create_shmem(stream
->perf
->i915
, OA_BUFFER_SIZE
);
1590 DRM_ERROR("Failed to allocate OA buffer\n");
1594 i915_gem_object_set_cache_coherency(bo
, I915_CACHE_LLC
);
1596 /* PreHSW required 512K alignment, HSW requires 16M */
1597 vma
= i915_gem_object_ggtt_pin(bo
, NULL
, 0, SZ_16M
, 0);
1602 stream
->oa_buffer
.vma
= vma
;
1604 stream
->oa_buffer
.vaddr
=
1605 i915_gem_object_pin_map(bo
, I915_MAP_WB
);
1606 if (IS_ERR(stream
->oa_buffer
.vaddr
)) {
1607 ret
= PTR_ERR(stream
->oa_buffer
.vaddr
);
1614 __i915_vma_unpin(vma
);
1617 i915_gem_object_put(bo
);
1619 stream
->oa_buffer
.vaddr
= NULL
;
1620 stream
->oa_buffer
.vma
= NULL
;
1625 static u32
*save_restore_register(struct i915_perf_stream
*stream
, u32
*cs
,
1626 bool save
, i915_reg_t reg
, u32 offset
,
1632 cmd
= save
? MI_STORE_REGISTER_MEM
: MI_LOAD_REGISTER_MEM
;
1633 if (INTEL_GEN(stream
->perf
->i915
) >= 8)
1636 for (d
= 0; d
< dword_count
; d
++) {
1638 *cs
++ = i915_mmio_reg_offset(reg
) + 4 * d
;
1639 *cs
++ = intel_gt_scratch_offset(stream
->engine
->gt
,
1647 static int alloc_noa_wait(struct i915_perf_stream
*stream
)
1649 struct drm_i915_private
*i915
= stream
->perf
->i915
;
1650 struct drm_i915_gem_object
*bo
;
1651 struct i915_vma
*vma
;
1652 const u64 delay_ticks
= 0xffffffffffffffff -
1654 atomic64_read(&stream
->perf
->noa_programming_delay
) *
1655 RUNTIME_INFO(i915
)->cs_timestamp_frequency_khz
,
1657 const u32 base
= stream
->engine
->mmio_base
;
1658 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1659 u32
*batch
, *ts0
, *cs
, *jump
;
1670 bo
= i915_gem_object_create_internal(i915
, 4096);
1672 DRM_ERROR("Failed to allocate NOA wait batchbuffer\n");
1677 * We pin in GGTT because we jump into this buffer now because
1678 * multiple OA config BOs will have a jump to this address and it
1679 * needs to be fixed during the lifetime of the i915/perf stream.
1681 vma
= i915_gem_object_ggtt_pin(bo
, NULL
, 0, 0, PIN_HIGH
);
1687 batch
= cs
= i915_gem_object_pin_map(bo
, I915_MAP_WB
);
1688 if (IS_ERR(batch
)) {
1689 ret
= PTR_ERR(batch
);
1693 /* Save registers. */
1694 for (i
= 0; i
< N_CS_GPR
; i
++)
1695 cs
= save_restore_register(
1696 stream
, cs
, true /* save */, CS_GPR(i
),
1697 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR
+ 8 * i
, 2);
1698 cs
= save_restore_register(
1699 stream
, cs
, true /* save */, MI_PREDICATE_RESULT_1
,
1700 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1
, 1);
1702 /* First timestamp snapshot location. */
1706 * Initial snapshot of the timestamp register to implement the wait.
1707 * We work with 32b values, so clear out the top 32b bits of the
1708 * register because the ALU works 64bits.
1710 *cs
++ = MI_LOAD_REGISTER_IMM(1);
1711 *cs
++ = i915_mmio_reg_offset(CS_GPR(START_TS
)) + 4;
1713 *cs
++ = MI_LOAD_REGISTER_REG
| (3 - 2);
1714 *cs
++ = i915_mmio_reg_offset(RING_TIMESTAMP(base
));
1715 *cs
++ = i915_mmio_reg_offset(CS_GPR(START_TS
));
1718 * This is the location we're going to jump back into until the
1719 * required amount of time has passed.
1724 * Take another snapshot of the timestamp register. Take care to clear
1725 * up the top 32bits of CS_GPR(1) as we're using it for other
1728 *cs
++ = MI_LOAD_REGISTER_IMM(1);
1729 *cs
++ = i915_mmio_reg_offset(CS_GPR(NOW_TS
)) + 4;
1731 *cs
++ = MI_LOAD_REGISTER_REG
| (3 - 2);
1732 *cs
++ = i915_mmio_reg_offset(RING_TIMESTAMP(base
));
1733 *cs
++ = i915_mmio_reg_offset(CS_GPR(NOW_TS
));
1736 * Do a diff between the 2 timestamps and store the result back into
1740 *cs
++ = MI_MATH_LOAD(MI_MATH_REG_SRCA
, MI_MATH_REG(NOW_TS
));
1741 *cs
++ = MI_MATH_LOAD(MI_MATH_REG_SRCB
, MI_MATH_REG(START_TS
));
1742 *cs
++ = MI_MATH_SUB
;
1743 *cs
++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS
), MI_MATH_REG_ACCU
);
1744 *cs
++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE
), MI_MATH_REG_CF
);
1747 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1748 * timestamp have rolled over the 32bits) into the predicate register
1749 * to be used for the predicated jump.
1751 *cs
++ = MI_LOAD_REGISTER_REG
| (3 - 2);
1752 *cs
++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE
));
1753 *cs
++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1
);
1755 /* Restart from the beginning if we had timestamps roll over. */
1756 *cs
++ = (INTEL_GEN(i915
) < 8 ?
1757 MI_BATCH_BUFFER_START
:
1758 MI_BATCH_BUFFER_START_GEN8
) |
1760 *cs
++ = i915_ggtt_offset(vma
) + (ts0
- batch
) * 4;
1764 * Now add the diff between to previous timestamps and add it to :
1765 * (((1 * << 64) - 1) - delay_ns)
1767 * When the Carry Flag contains 1 this means the elapsed time is
1768 * longer than the expected delay, and we can exit the wait loop.
1770 *cs
++ = MI_LOAD_REGISTER_IMM(2);
1771 *cs
++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET
));
1772 *cs
++ = lower_32_bits(delay_ticks
);
1773 *cs
++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET
)) + 4;
1774 *cs
++ = upper_32_bits(delay_ticks
);
1777 *cs
++ = MI_MATH_LOAD(MI_MATH_REG_SRCA
, MI_MATH_REG(DELTA_TS
));
1778 *cs
++ = MI_MATH_LOAD(MI_MATH_REG_SRCB
, MI_MATH_REG(DELTA_TARGET
));
1779 *cs
++ = MI_MATH_ADD
;
1780 *cs
++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE
), MI_MATH_REG_CF
);
1782 *cs
++ = MI_ARB_CHECK
;
1785 * Transfer the result into the predicate register to be used for the
1788 *cs
++ = MI_LOAD_REGISTER_REG
| (3 - 2);
1789 *cs
++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE
));
1790 *cs
++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1
);
1792 /* Predicate the jump. */
1793 *cs
++ = (INTEL_GEN(i915
) < 8 ?
1794 MI_BATCH_BUFFER_START
:
1795 MI_BATCH_BUFFER_START_GEN8
) |
1797 *cs
++ = i915_ggtt_offset(vma
) + (jump
- batch
) * 4;
1800 /* Restore registers. */
1801 for (i
= 0; i
< N_CS_GPR
; i
++)
1802 cs
= save_restore_register(
1803 stream
, cs
, false /* restore */, CS_GPR(i
),
1804 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR
+ 8 * i
, 2);
1805 cs
= save_restore_register(
1806 stream
, cs
, false /* restore */, MI_PREDICATE_RESULT_1
,
1807 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1
, 1);
1809 /* And return to the ring. */
1810 *cs
++ = MI_BATCH_BUFFER_END
;
1812 GEM_BUG_ON(cs
- batch
> PAGE_SIZE
/ sizeof(*batch
));
1814 i915_gem_object_flush_map(bo
);
1815 i915_gem_object_unpin_map(bo
);
1817 stream
->noa_wait
= vma
;
1821 i915_vma_unpin_and_release(&vma
, 0);
1823 i915_gem_object_put(bo
);
1827 static u32
*write_cs_mi_lri(u32
*cs
,
1828 const struct i915_oa_reg
*reg_data
,
1833 for (i
= 0; i
< n_regs
; i
++) {
1834 if ((i
% MI_LOAD_REGISTER_IMM_MAX_REGS
) == 0) {
1835 u32 n_lri
= min_t(u32
,
1837 MI_LOAD_REGISTER_IMM_MAX_REGS
);
1839 *cs
++ = MI_LOAD_REGISTER_IMM(n_lri
);
1841 *cs
++ = i915_mmio_reg_offset(reg_data
[i
].addr
);
1842 *cs
++ = reg_data
[i
].value
;
1848 static int num_lri_dwords(int num_regs
)
1853 count
+= DIV_ROUND_UP(num_regs
, MI_LOAD_REGISTER_IMM_MAX_REGS
);
1854 count
+= num_regs
* 2;
1860 static struct i915_oa_config_bo
*
1861 alloc_oa_config_buffer(struct i915_perf_stream
*stream
,
1862 struct i915_oa_config
*oa_config
)
1864 struct drm_i915_gem_object
*obj
;
1865 struct i915_oa_config_bo
*oa_bo
;
1866 size_t config_length
= 0;
1870 oa_bo
= kzalloc(sizeof(*oa_bo
), GFP_KERNEL
);
1872 return ERR_PTR(-ENOMEM
);
1874 config_length
+= num_lri_dwords(oa_config
->mux_regs_len
);
1875 config_length
+= num_lri_dwords(oa_config
->b_counter_regs_len
);
1876 config_length
+= num_lri_dwords(oa_config
->flex_regs_len
);
1877 config_length
+= 3; /* MI_BATCH_BUFFER_START */
1878 config_length
= ALIGN(sizeof(u32
) * config_length
, I915_GTT_PAGE_SIZE
);
1880 obj
= i915_gem_object_create_shmem(stream
->perf
->i915
, config_length
);
1886 cs
= i915_gem_object_pin_map(obj
, I915_MAP_WB
);
1892 cs
= write_cs_mi_lri(cs
,
1893 oa_config
->mux_regs
,
1894 oa_config
->mux_regs_len
);
1895 cs
= write_cs_mi_lri(cs
,
1896 oa_config
->b_counter_regs
,
1897 oa_config
->b_counter_regs_len
);
1898 cs
= write_cs_mi_lri(cs
,
1899 oa_config
->flex_regs
,
1900 oa_config
->flex_regs_len
);
1902 /* Jump into the active wait. */
1903 *cs
++ = (INTEL_GEN(stream
->perf
->i915
) < 8 ?
1904 MI_BATCH_BUFFER_START
:
1905 MI_BATCH_BUFFER_START_GEN8
);
1906 *cs
++ = i915_ggtt_offset(stream
->noa_wait
);
1909 i915_gem_object_flush_map(obj
);
1910 i915_gem_object_unpin_map(obj
);
1912 oa_bo
->vma
= i915_vma_instance(obj
,
1913 &stream
->engine
->gt
->ggtt
->vm
,
1915 if (IS_ERR(oa_bo
->vma
)) {
1916 err
= PTR_ERR(oa_bo
->vma
);
1920 oa_bo
->oa_config
= i915_oa_config_get(oa_config
);
1921 llist_add(&oa_bo
->node
, &stream
->oa_config_bos
);
1926 i915_gem_object_put(obj
);
1929 return ERR_PTR(err
);
1932 static struct i915_vma
*
1933 get_oa_vma(struct i915_perf_stream
*stream
, struct i915_oa_config
*oa_config
)
1935 struct i915_oa_config_bo
*oa_bo
;
1938 * Look for the buffer in the already allocated BOs attached
1941 llist_for_each_entry(oa_bo
, stream
->oa_config_bos
.first
, node
) {
1942 if (oa_bo
->oa_config
== oa_config
&&
1943 memcmp(oa_bo
->oa_config
->uuid
,
1945 sizeof(oa_config
->uuid
)) == 0)
1949 oa_bo
= alloc_oa_config_buffer(stream
, oa_config
);
1951 return ERR_CAST(oa_bo
);
1954 return i915_vma_get(oa_bo
->vma
);
1957 static int emit_oa_config(struct i915_perf_stream
*stream
,
1958 struct i915_oa_config
*oa_config
,
1959 struct intel_context
*ce
)
1961 struct i915_request
*rq
;
1962 struct i915_vma
*vma
;
1965 vma
= get_oa_vma(stream
, oa_config
);
1967 return PTR_ERR(vma
);
1969 err
= i915_vma_pin(vma
, 0, 0, PIN_GLOBAL
| PIN_HIGH
);
1973 intel_engine_pm_get(ce
->engine
);
1974 rq
= i915_request_create(ce
);
1975 intel_engine_pm_put(ce
->engine
);
1982 err
= i915_request_await_object(rq
, vma
->obj
, 0);
1984 err
= i915_vma_move_to_active(vma
, rq
, 0);
1985 i915_vma_unlock(vma
);
1987 goto err_add_request
;
1989 err
= rq
->engine
->emit_bb_start(rq
,
1991 I915_DISPATCH_SECURE
);
1993 i915_request_add(rq
);
1995 i915_vma_unpin(vma
);
2001 static struct intel_context
*oa_context(struct i915_perf_stream
*stream
)
2003 return stream
->pinned_ctx
?: stream
->engine
->kernel_context
;
2006 static int hsw_enable_metric_set(struct i915_perf_stream
*stream
)
2008 struct intel_uncore
*uncore
= stream
->uncore
;
2013 * OA unit is using “crclk” for its functionality. When trunk
2014 * level clock gating takes place, OA clock would be gated,
2015 * unable to count the events from non-render clock domain.
2016 * Render clock gating must be disabled when OA is enabled to
2017 * count the events from non-render domain. Unit level clock
2018 * gating for RCS should also be disabled.
2020 intel_uncore_rmw(uncore
, GEN7_MISCCPCTL
,
2021 GEN7_DOP_CLOCK_GATE_ENABLE
, 0);
2022 intel_uncore_rmw(uncore
, GEN6_UCGCTL1
,
2023 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE
);
2025 return emit_oa_config(stream
, stream
->oa_config
, oa_context(stream
));
2028 static void hsw_disable_metric_set(struct i915_perf_stream
*stream
)
2030 struct intel_uncore
*uncore
= stream
->uncore
;
2032 intel_uncore_rmw(uncore
, GEN6_UCGCTL1
,
2033 GEN6_CSUNIT_CLOCK_GATE_DISABLE
, 0);
2034 intel_uncore_rmw(uncore
, GEN7_MISCCPCTL
,
2035 0, GEN7_DOP_CLOCK_GATE_ENABLE
);
2037 intel_uncore_rmw(uncore
, GDT_CHICKEN_BITS
, GT_NOA_ENABLE
, 0);
2040 static u32
oa_config_flex_reg(const struct i915_oa_config
*oa_config
,
2043 u32 mmio
= i915_mmio_reg_offset(reg
);
2047 * This arbitrary default will select the 'EU FPU0 Pipeline
2048 * Active' event. In the future it's anticipated that there
2049 * will be an explicit 'No Event' we can select, but not yet...
2054 for (i
= 0; i
< oa_config
->flex_regs_len
; i
++) {
2055 if (i915_mmio_reg_offset(oa_config
->flex_regs
[i
].addr
) == mmio
)
2056 return oa_config
->flex_regs
[i
].value
;
2062 * NB: It must always remain pointer safe to run this even if the OA unit
2063 * has been disabled.
2065 * It's fine to put out-of-date values into these per-context registers
2066 * in the case that the OA unit has been disabled.
2069 gen8_update_reg_state_unlocked(const struct intel_context
*ce
,
2070 const struct i915_perf_stream
*stream
)
2072 u32 ctx_oactxctrl
= stream
->perf
->ctx_oactxctrl_offset
;
2073 u32 ctx_flexeu0
= stream
->perf
->ctx_flexeu0_offset
;
2074 /* The MMIO offsets for Flex EU registers aren't contiguous */
2075 i915_reg_t flex_regs
[] = {
2084 u32
*reg_state
= ce
->lrc_reg_state
;
2087 reg_state
[ctx_oactxctrl
+ 1] =
2088 (stream
->period_exponent
<< GEN8_OA_TIMER_PERIOD_SHIFT
) |
2089 (stream
->periodic
? GEN8_OA_TIMER_ENABLE
: 0) |
2090 GEN8_OA_COUNTER_RESUME
;
2092 for (i
= 0; i
< ARRAY_SIZE(flex_regs
); i
++)
2093 reg_state
[ctx_flexeu0
+ i
* 2 + 1] =
2094 oa_config_flex_reg(stream
->oa_config
, flex_regs
[i
]);
2096 reg_state
[CTX_R_PWR_CLK_STATE
] =
2097 intel_sseu_make_rpcs(ce
->engine
->i915
, &ce
->sseu
);
2107 gen8_store_flex(struct i915_request
*rq
,
2108 struct intel_context
*ce
,
2109 const struct flex
*flex
, unsigned int count
)
2114 cs
= intel_ring_begin(rq
, 4 * count
);
2118 offset
= i915_ggtt_offset(ce
->state
) + LRC_STATE_PN
* PAGE_SIZE
;
2120 *cs
++ = MI_STORE_DWORD_IMM_GEN4
| MI_USE_GGTT
;
2121 *cs
++ = offset
+ flex
->offset
* sizeof(u32
);
2123 *cs
++ = flex
->value
;
2124 } while (flex
++, --count
);
2126 intel_ring_advance(rq
, cs
);
2132 gen8_load_flex(struct i915_request
*rq
,
2133 struct intel_context
*ce
,
2134 const struct flex
*flex
, unsigned int count
)
2138 GEM_BUG_ON(!count
|| count
> 63);
2140 cs
= intel_ring_begin(rq
, 2 * count
+ 2);
2144 *cs
++ = MI_LOAD_REGISTER_IMM(count
);
2146 *cs
++ = i915_mmio_reg_offset(flex
->reg
);
2147 *cs
++ = flex
->value
;
2148 } while (flex
++, --count
);
2151 intel_ring_advance(rq
, cs
);
2156 static int gen8_modify_context(struct intel_context
*ce
,
2157 const struct flex
*flex
, unsigned int count
)
2159 struct i915_request
*rq
;
2162 rq
= intel_engine_create_kernel_request(ce
->engine
);
2166 /* Serialise with the remote context */
2167 err
= intel_context_prepare_remote_request(ce
, rq
);
2169 err
= gen8_store_flex(rq
, ce
, flex
, count
);
2171 i915_request_add(rq
);
2175 static int gen8_modify_self(struct intel_context
*ce
,
2176 const struct flex
*flex
, unsigned int count
)
2178 struct i915_request
*rq
;
2181 rq
= i915_request_create(ce
);
2185 err
= gen8_load_flex(rq
, ce
, flex
, count
);
2187 i915_request_add(rq
);
2191 static int gen8_configure_context(struct i915_gem_context
*ctx
,
2192 struct flex
*flex
, unsigned int count
)
2194 struct i915_gem_engines_iter it
;
2195 struct intel_context
*ce
;
2198 for_each_gem_engine(ce
, i915_gem_context_lock_engines(ctx
), it
) {
2199 GEM_BUG_ON(ce
== ce
->engine
->kernel_context
);
2201 if (ce
->engine
->class != RENDER_CLASS
)
2204 /* Otherwise OA settings will be set upon first use */
2205 if (!intel_context_pin_if_active(ce
))
2208 flex
->value
= intel_sseu_make_rpcs(ctx
->i915
, &ce
->sseu
);
2209 err
= gen8_modify_context(ce
, flex
, count
);
2211 intel_context_unpin(ce
);
2215 i915_gem_context_unlock_engines(ctx
);
2220 static int gen12_configure_oar_context(struct i915_perf_stream
*stream
, bool enable
)
2223 struct intel_context
*ce
= stream
->pinned_ctx
;
2224 u32 format
= stream
->oa_buffer
.format
;
2225 struct flex regs_context
[] = {
2228 stream
->perf
->ctx_oactxctrl_offset
+ 1,
2229 enable
? GEN8_OA_COUNTER_RESUME
: 0,
2232 /* Offsets in regs_lri are not used since this configuration is only
2233 * applied using LRI. Initialize the correct offsets for posterity.
2235 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2236 struct flex regs_lri
[] = {
2238 GEN12_OAR_OACONTROL
,
2239 GEN12_OAR_OACONTROL_OFFSET
+ 1,
2240 (format
<< GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT
) |
2241 (enable
? GEN12_OAR_OACONTROL_COUNTER_ENABLE
: 0)
2244 RING_CONTEXT_CONTROL(ce
->engine
->mmio_base
),
2245 CTX_CONTEXT_CONTROL
,
2246 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE
,
2248 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE
:
2253 /* Modify the context image of pinned context with regs_context*/
2254 err
= intel_context_lock_pinned(ce
);
2258 err
= gen8_modify_context(ce
, regs_context
, ARRAY_SIZE(regs_context
));
2259 intel_context_unlock_pinned(ce
);
2263 /* Apply regs_lri using LRI with pinned context */
2264 return gen8_modify_self(ce
, regs_lri
, ARRAY_SIZE(regs_lri
));
2268 * Manages updating the per-context aspects of the OA stream
2269 * configuration across all contexts.
2271 * The awkward consideration here is that OACTXCONTROL controls the
2272 * exponent for periodic sampling which is primarily used for system
2273 * wide profiling where we'd like a consistent sampling period even in
2274 * the face of context switches.
2276 * Our approach of updating the register state context (as opposed to
2277 * say using a workaround batch buffer) ensures that the hardware
2278 * won't automatically reload an out-of-date timer exponent even
2279 * transiently before a WA BB could be parsed.
2281 * This function needs to:
2282 * - Ensure the currently running context's per-context OA state is
2284 * - Ensure that all existing contexts will have the correct per-context
2285 * OA state if they are scheduled for use.
2286 * - Ensure any new contexts will be initialized with the correct
2287 * per-context OA state.
2289 * Note: it's only the RCS/Render context that has any OA state.
2290 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2292 static int oa_configure_all_contexts(struct i915_perf_stream
*stream
,
2296 struct drm_i915_private
*i915
= stream
->perf
->i915
;
2297 struct intel_engine_cs
*engine
;
2298 struct i915_gem_context
*ctx
, *cn
;
2301 lockdep_assert_held(&stream
->perf
->lock
);
2304 * The OA register config is setup through the context image. This image
2305 * might be written to by the GPU on context switch (in particular on
2306 * lite-restore). This means we can't safely update a context's image,
2307 * if this context is scheduled/submitted to run on the GPU.
2309 * We could emit the OA register config through the batch buffer but
2310 * this might leave small interval of time where the OA unit is
2311 * configured at an invalid sampling period.
2313 * Note that since we emit all requests from a single ring, there
2314 * is still an implicit global barrier here that may cause a high
2315 * priority context to wait for an otherwise independent low priority
2316 * context. Contexts idle at the time of reconfiguration are not
2317 * trapped behind the barrier.
2319 spin_lock(&i915
->gem
.contexts
.lock
);
2320 list_for_each_entry_safe(ctx
, cn
, &i915
->gem
.contexts
.list
, link
) {
2321 if (!kref_get_unless_zero(&ctx
->ref
))
2324 spin_unlock(&i915
->gem
.contexts
.lock
);
2326 err
= gen8_configure_context(ctx
, regs
, num_regs
);
2328 i915_gem_context_put(ctx
);
2332 spin_lock(&i915
->gem
.contexts
.lock
);
2333 list_safe_reset_next(ctx
, cn
, link
);
2334 i915_gem_context_put(ctx
);
2336 spin_unlock(&i915
->gem
.contexts
.lock
);
2339 * After updating all other contexts, we need to modify ourselves.
2340 * If we don't modify the kernel_context, we do not get events while
2343 for_each_uabi_engine(engine
, i915
) {
2344 struct intel_context
*ce
= engine
->kernel_context
;
2346 if (engine
->class != RENDER_CLASS
)
2349 regs
[0].value
= intel_sseu_make_rpcs(i915
, &ce
->sseu
);
2351 err
= gen8_modify_self(ce
, regs
, num_regs
);
2359 static int gen12_configure_all_contexts(struct i915_perf_stream
*stream
,
2360 const struct i915_oa_config
*oa_config
)
2362 struct flex regs
[] = {
2364 GEN8_R_PWR_CLK_STATE
,
2365 CTX_R_PWR_CLK_STATE
,
2369 return oa_configure_all_contexts(stream
, regs
, ARRAY_SIZE(regs
));
2372 static int lrc_configure_all_contexts(struct i915_perf_stream
*stream
,
2373 const struct i915_oa_config
*oa_config
)
2375 /* The MMIO offsets for Flex EU registers aren't contiguous */
2376 const u32 ctx_flexeu0
= stream
->perf
->ctx_flexeu0_offset
;
2377 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2378 struct flex regs
[] = {
2380 GEN8_R_PWR_CLK_STATE
,
2381 CTX_R_PWR_CLK_STATE
,
2385 stream
->perf
->ctx_oactxctrl_offset
+ 1,
2387 { EU_PERF_CNTL0
, ctx_flexeuN(0) },
2388 { EU_PERF_CNTL1
, ctx_flexeuN(1) },
2389 { EU_PERF_CNTL2
, ctx_flexeuN(2) },
2390 { EU_PERF_CNTL3
, ctx_flexeuN(3) },
2391 { EU_PERF_CNTL4
, ctx_flexeuN(4) },
2392 { EU_PERF_CNTL5
, ctx_flexeuN(5) },
2393 { EU_PERF_CNTL6
, ctx_flexeuN(6) },
2399 (stream
->period_exponent
<< GEN8_OA_TIMER_PERIOD_SHIFT
) |
2400 (stream
->periodic
? GEN8_OA_TIMER_ENABLE
: 0) |
2401 GEN8_OA_COUNTER_RESUME
;
2403 for (i
= 2; i
< ARRAY_SIZE(regs
); i
++)
2404 regs
[i
].value
= oa_config_flex_reg(oa_config
, regs
[i
].reg
);
2406 return oa_configure_all_contexts(stream
, regs
, ARRAY_SIZE(regs
));
2409 static int gen8_enable_metric_set(struct i915_perf_stream
*stream
)
2411 struct intel_uncore
*uncore
= stream
->uncore
;
2412 struct i915_oa_config
*oa_config
= stream
->oa_config
;
2416 * We disable slice/unslice clock ratio change reports on SKL since
2417 * they are too noisy. The HW generates a lot of redundant reports
2418 * where the ratio hasn't really changed causing a lot of redundant
2419 * work to processes and increasing the chances we'll hit buffer
2422 * Although we don't currently use the 'disable overrun' OABUFFER
2423 * feature it's worth noting that clock ratio reports have to be
2424 * disabled before considering to use that feature since the HW doesn't
2425 * correctly block these reports.
2427 * Currently none of the high-level metrics we have depend on knowing
2428 * this ratio to normalize.
2430 * Note: This register is not power context saved and restored, but
2431 * that's OK considering that we disable RC6 while the OA unit is
2434 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2435 * be read back from automatically triggered reports, as part of the
2438 if (IS_GEN_RANGE(stream
->perf
->i915
, 9, 11)) {
2439 intel_uncore_write(uncore
, GEN8_OA_DEBUG
,
2440 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS
|
2441 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO
));
2445 * Update all contexts prior writing the mux configurations as we need
2446 * to make sure all slices/subslices are ON before writing to NOA
2449 ret
= lrc_configure_all_contexts(stream
, oa_config
);
2453 return emit_oa_config(stream
, oa_config
, oa_context(stream
));
2456 static u32
oag_report_ctx_switches(const struct i915_perf_stream
*stream
)
2458 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS
,
2459 (stream
->sample_flags
& SAMPLE_OA_REPORT
) ?
2460 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS
);
2463 static int gen12_enable_metric_set(struct i915_perf_stream
*stream
)
2465 struct intel_uncore
*uncore
= stream
->uncore
;
2466 struct i915_oa_config
*oa_config
= stream
->oa_config
;
2467 bool periodic
= stream
->periodic
;
2468 u32 period_exponent
= stream
->period_exponent
;
2471 intel_uncore_write(uncore
, GEN12_OAG_OA_DEBUG
,
2472 /* Disable clk ratio reports, like previous Gens. */
2473 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS
|
2474 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO
) |
2476 * If the user didn't require OA reports, instruct
2477 * the hardware not to emit ctx switch reports.
2479 oag_report_ctx_switches(stream
));
2481 intel_uncore_write(uncore
, GEN12_OAG_OAGLBCTXCTRL
, periodic
?
2482 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME
|
2483 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE
|
2484 (period_exponent
<< GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT
))
2488 * Update all contexts prior writing the mux configurations as we need
2489 * to make sure all slices/subslices are ON before writing to NOA
2492 ret
= gen12_configure_all_contexts(stream
, oa_config
);
2497 * For Gen12, performance counters are context
2498 * saved/restored. Only enable it for the context that
2502 ret
= gen12_configure_oar_context(stream
, true);
2507 return emit_oa_config(stream
, oa_config
, oa_context(stream
));
2510 static void gen8_disable_metric_set(struct i915_perf_stream
*stream
)
2512 struct intel_uncore
*uncore
= stream
->uncore
;
2514 /* Reset all contexts' slices/subslices configurations. */
2515 lrc_configure_all_contexts(stream
, NULL
);
2517 intel_uncore_rmw(uncore
, GDT_CHICKEN_BITS
, GT_NOA_ENABLE
, 0);
2520 static void gen10_disable_metric_set(struct i915_perf_stream
*stream
)
2522 struct intel_uncore
*uncore
= stream
->uncore
;
2524 /* Reset all contexts' slices/subslices configurations. */
2525 lrc_configure_all_contexts(stream
, NULL
);
2527 /* Make sure we disable noa to save power. */
2528 intel_uncore_rmw(uncore
, RPM_CONFIG1
, GEN10_GT_NOA_ENABLE
, 0);
2531 static void gen12_disable_metric_set(struct i915_perf_stream
*stream
)
2533 struct intel_uncore
*uncore
= stream
->uncore
;
2535 /* Reset all contexts' slices/subslices configurations. */
2536 gen12_configure_all_contexts(stream
, NULL
);
2538 /* disable the context save/restore or OAR counters */
2540 gen12_configure_oar_context(stream
, false);
2542 /* Make sure we disable noa to save power. */
2543 intel_uncore_rmw(uncore
, RPM_CONFIG1
, GEN10_GT_NOA_ENABLE
, 0);
2546 static void gen7_oa_enable(struct i915_perf_stream
*stream
)
2548 struct intel_uncore
*uncore
= stream
->uncore
;
2549 struct i915_gem_context
*ctx
= stream
->ctx
;
2550 u32 ctx_id
= stream
->specific_ctx_id
;
2551 bool periodic
= stream
->periodic
;
2552 u32 period_exponent
= stream
->period_exponent
;
2553 u32 report_format
= stream
->oa_buffer
.format
;
2556 * Reset buf pointers so we don't forward reports from before now.
2558 * Think carefully if considering trying to avoid this, since it
2559 * also ensures status flags and the buffer itself are cleared
2560 * in error paths, and we have checks for invalid reports based
2561 * on the assumption that certain fields are written to zeroed
2562 * memory which this helps maintains.
2564 gen7_init_oa_buffer(stream
);
2566 intel_uncore_write(uncore
, GEN7_OACONTROL
,
2567 (ctx_id
& GEN7_OACONTROL_CTX_MASK
) |
2569 GEN7_OACONTROL_TIMER_PERIOD_SHIFT
) |
2570 (periodic
? GEN7_OACONTROL_TIMER_ENABLE
: 0) |
2571 (report_format
<< GEN7_OACONTROL_FORMAT_SHIFT
) |
2572 (ctx
? GEN7_OACONTROL_PER_CTX_ENABLE
: 0) |
2573 GEN7_OACONTROL_ENABLE
);
2576 static void gen8_oa_enable(struct i915_perf_stream
*stream
)
2578 struct intel_uncore
*uncore
= stream
->uncore
;
2579 u32 report_format
= stream
->oa_buffer
.format
;
2582 * Reset buf pointers so we don't forward reports from before now.
2584 * Think carefully if considering trying to avoid this, since it
2585 * also ensures status flags and the buffer itself are cleared
2586 * in error paths, and we have checks for invalid reports based
2587 * on the assumption that certain fields are written to zeroed
2588 * memory which this helps maintains.
2590 gen8_init_oa_buffer(stream
);
2593 * Note: we don't rely on the hardware to perform single context
2594 * filtering and instead filter on the cpu based on the context-id
2597 intel_uncore_write(uncore
, GEN8_OACONTROL
,
2598 (report_format
<< GEN8_OA_REPORT_FORMAT_SHIFT
) |
2599 GEN8_OA_COUNTER_ENABLE
);
2602 static void gen12_oa_enable(struct i915_perf_stream
*stream
)
2604 struct intel_uncore
*uncore
= stream
->uncore
;
2605 u32 report_format
= stream
->oa_buffer
.format
;
2608 * If we don't want OA reports from the OA buffer, then we don't even
2609 * need to program the OAG unit.
2611 if (!(stream
->sample_flags
& SAMPLE_OA_REPORT
))
2614 gen12_init_oa_buffer(stream
);
2616 intel_uncore_write(uncore
, GEN12_OAG_OACONTROL
,
2617 (report_format
<< GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT
) |
2618 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE
);
2622 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2623 * @stream: An i915 perf stream opened for OA metrics
2625 * [Re]enables hardware periodic sampling according to the period configured
2626 * when opening the stream. This also starts a hrtimer that will periodically
2627 * check for data in the circular OA buffer for notifying userspace (e.g.
2628 * during a read() or poll()).
2630 static void i915_oa_stream_enable(struct i915_perf_stream
*stream
)
2632 stream
->perf
->ops
.oa_enable(stream
);
2634 if (stream
->periodic
)
2635 hrtimer_start(&stream
->poll_check_timer
,
2636 ns_to_ktime(POLL_PERIOD
),
2637 HRTIMER_MODE_REL_PINNED
);
2640 static void gen7_oa_disable(struct i915_perf_stream
*stream
)
2642 struct intel_uncore
*uncore
= stream
->uncore
;
2644 intel_uncore_write(uncore
, GEN7_OACONTROL
, 0);
2645 if (intel_wait_for_register(uncore
,
2646 GEN7_OACONTROL
, GEN7_OACONTROL_ENABLE
, 0,
2648 DRM_ERROR("wait for OA to be disabled timed out\n");
2651 static void gen8_oa_disable(struct i915_perf_stream
*stream
)
2653 struct intel_uncore
*uncore
= stream
->uncore
;
2655 intel_uncore_write(uncore
, GEN8_OACONTROL
, 0);
2656 if (intel_wait_for_register(uncore
,
2657 GEN8_OACONTROL
, GEN8_OA_COUNTER_ENABLE
, 0,
2659 DRM_ERROR("wait for OA to be disabled timed out\n");
2662 static void gen12_oa_disable(struct i915_perf_stream
*stream
)
2664 struct intel_uncore
*uncore
= stream
->uncore
;
2666 intel_uncore_write(uncore
, GEN12_OAG_OACONTROL
, 0);
2667 if (intel_wait_for_register(uncore
,
2668 GEN12_OAG_OACONTROL
,
2669 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE
, 0,
2671 DRM_ERROR("wait for OA to be disabled timed out\n");
2675 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2676 * @stream: An i915 perf stream opened for OA metrics
2678 * Stops the OA unit from periodically writing counter reports into the
2679 * circular OA buffer. This also stops the hrtimer that periodically checks for
2680 * data in the circular OA buffer, for notifying userspace.
2682 static void i915_oa_stream_disable(struct i915_perf_stream
*stream
)
2684 stream
->perf
->ops
.oa_disable(stream
);
2686 if (stream
->periodic
)
2687 hrtimer_cancel(&stream
->poll_check_timer
);
2690 static const struct i915_perf_stream_ops i915_oa_stream_ops
= {
2691 .destroy
= i915_oa_stream_destroy
,
2692 .enable
= i915_oa_stream_enable
,
2693 .disable
= i915_oa_stream_disable
,
2694 .wait_unlocked
= i915_oa_wait_unlocked
,
2695 .poll_wait
= i915_oa_poll_wait
,
2696 .read
= i915_oa_read
,
2700 * i915_oa_stream_init - validate combined props for OA stream and init
2701 * @stream: An i915 perf stream
2702 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2703 * @props: The property state that configures stream (individually validated)
2705 * While read_properties_unlocked() validates properties in isolation it
2706 * doesn't ensure that the combination necessarily makes sense.
2708 * At this point it has been determined that userspace wants a stream of
2709 * OA metrics, but still we need to further validate the combined
2710 * properties are OK.
2712 * If the configuration makes sense then we can allocate memory for
2713 * a circular OA buffer and apply the requested metric set configuration.
2715 * Returns: zero on success or a negative error code.
2717 static int i915_oa_stream_init(struct i915_perf_stream
*stream
,
2718 struct drm_i915_perf_open_param
*param
,
2719 struct perf_open_properties
*props
)
2721 struct i915_perf
*perf
= stream
->perf
;
2725 if (!props
->engine
) {
2726 DRM_DEBUG("OA engine not specified\n");
2731 * If the sysfs metrics/ directory wasn't registered for some
2732 * reason then don't let userspace try their luck with config
2735 if (!perf
->metrics_kobj
) {
2736 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2740 if (!(props
->sample_flags
& SAMPLE_OA_REPORT
) &&
2741 (INTEL_GEN(perf
->i915
) < 12 || !stream
->ctx
)) {
2742 DRM_DEBUG("Only OA report sampling supported\n");
2746 if (!perf
->ops
.enable_metric_set
) {
2747 DRM_DEBUG("OA unit not supported\n");
2752 * To avoid the complexity of having to accurately filter
2753 * counter reports and marshal to the appropriate client
2754 * we currently only allow exclusive access
2756 if (perf
->exclusive_stream
) {
2757 DRM_DEBUG("OA unit already in use\n");
2761 if (!props
->oa_format
) {
2762 DRM_DEBUG("OA report format not specified\n");
2766 stream
->engine
= props
->engine
;
2767 stream
->uncore
= stream
->engine
->gt
->uncore
;
2769 stream
->sample_size
= sizeof(struct drm_i915_perf_record_header
);
2771 format_size
= perf
->oa_formats
[props
->oa_format
].size
;
2773 stream
->sample_flags
= props
->sample_flags
;
2774 stream
->sample_size
+= format_size
;
2776 stream
->oa_buffer
.format_size
= format_size
;
2777 if (WARN_ON(stream
->oa_buffer
.format_size
== 0))
2780 stream
->hold_preemption
= props
->hold_preemption
;
2782 stream
->oa_buffer
.format
=
2783 perf
->oa_formats
[props
->oa_format
].format
;
2785 stream
->periodic
= props
->oa_periodic
;
2786 if (stream
->periodic
)
2787 stream
->period_exponent
= props
->oa_period_exponent
;
2790 ret
= oa_get_render_ctx_id(stream
);
2792 DRM_DEBUG("Invalid context id to filter with\n");
2797 ret
= alloc_noa_wait(stream
);
2799 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2800 goto err_noa_wait_alloc
;
2803 stream
->oa_config
= i915_perf_get_oa_config(perf
, props
->metrics_set
);
2804 if (!stream
->oa_config
) {
2805 DRM_DEBUG("Invalid OA config id=%i\n", props
->metrics_set
);
2810 /* PRM - observability performance counters:
2812 * OACONTROL, performance counter enable, note:
2814 * "When this bit is set, in order to have coherent counts,
2815 * RC6 power state and trunk clock gating must be disabled.
2816 * This can be achieved by programming MMIO registers as
2817 * 0xA094=0 and 0xA090[31]=1"
2819 * In our case we are expecting that taking pm + FORCEWAKE
2820 * references will effectively disable RC6.
2822 intel_engine_pm_get(stream
->engine
);
2823 intel_uncore_forcewake_get(stream
->uncore
, FORCEWAKE_ALL
);
2825 ret
= alloc_oa_buffer(stream
);
2827 goto err_oa_buf_alloc
;
2829 stream
->ops
= &i915_oa_stream_ops
;
2830 perf
->exclusive_stream
= stream
;
2832 ret
= perf
->ops
.enable_metric_set(stream
);
2834 DRM_DEBUG("Unable to enable metric set\n");
2838 DRM_DEBUG("opening stream oa config uuid=%s\n",
2839 stream
->oa_config
->uuid
);
2841 hrtimer_init(&stream
->poll_check_timer
,
2842 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
2843 stream
->poll_check_timer
.function
= oa_poll_check_timer_cb
;
2844 init_waitqueue_head(&stream
->poll_wq
);
2845 spin_lock_init(&stream
->oa_buffer
.ptr_lock
);
2850 perf
->exclusive_stream
= NULL
;
2851 perf
->ops
.disable_metric_set(stream
);
2853 free_oa_buffer(stream
);
2856 free_oa_configs(stream
);
2858 intel_uncore_forcewake_put(stream
->uncore
, FORCEWAKE_ALL
);
2859 intel_engine_pm_put(stream
->engine
);
2862 free_noa_wait(stream
);
2866 oa_put_render_ctx_id(stream
);
2871 void i915_oa_init_reg_state(const struct intel_context
*ce
,
2872 const struct intel_engine_cs
*engine
)
2874 struct i915_perf_stream
*stream
;
2876 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2878 if (engine
->class != RENDER_CLASS
)
2881 stream
= engine
->i915
->perf
.exclusive_stream
;
2883 * For gen12, only CTX_R_PWR_CLK_STATE needs update, but the caller
2884 * is already doing that, so nothing to be done for gen12 here.
2886 if (stream
&& INTEL_GEN(stream
->perf
->i915
) < 12)
2887 gen8_update_reg_state_unlocked(ce
, stream
);
2891 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2892 * @stream: An i915 perf stream
2893 * @file: An i915 perf stream file
2894 * @buf: destination buffer given by userspace
2895 * @count: the number of bytes userspace wants to read
2896 * @ppos: (inout) file seek position (unused)
2898 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2899 * ensure that if we've successfully copied any data then reporting that takes
2900 * precedence over any internal error status, so the data isn't lost.
2902 * For example ret will be -ENOSPC whenever there is more buffered data than
2903 * can be copied to userspace, but that's only interesting if we weren't able
2904 * to copy some data because it implies the userspace buffer is too small to
2905 * receive a single record (and we never split records).
2907 * Another case with ret == -EFAULT is more of a grey area since it would seem
2908 * like bad form for userspace to ask us to overrun its buffer, but the user
2911 * http://yarchive.net/comp/linux/partial_reads_writes.html
2913 * Returns: The number of bytes copied or a negative error code on failure.
2915 static ssize_t
i915_perf_read_locked(struct i915_perf_stream
*stream
,
2921 /* Note we keep the offset (aka bytes read) separate from any
2922 * error status so that the final check for whether we return
2923 * the bytes read with a higher precedence than any error (see
2924 * comment below) doesn't need to be handled/duplicated in
2925 * stream->ops->read() implementations.
2928 int ret
= stream
->ops
->read(stream
, buf
, count
, &offset
);
2930 return offset
?: (ret
?: -EAGAIN
);
2934 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2935 * @file: An i915 perf stream file
2936 * @buf: destination buffer given by userspace
2937 * @count: the number of bytes userspace wants to read
2938 * @ppos: (inout) file seek position (unused)
2940 * The entry point for handling a read() on a stream file descriptor from
2941 * userspace. Most of the work is left to the i915_perf_read_locked() and
2942 * &i915_perf_stream_ops->read but to save having stream implementations (of
2943 * which we might have multiple later) we handle blocking read here.
2945 * We can also consistently treat trying to read from a disabled stream
2946 * as an IO error so implementations can assume the stream is enabled
2949 * Returns: The number of bytes copied or a negative error code on failure.
2951 static ssize_t
i915_perf_read(struct file
*file
,
2956 struct i915_perf_stream
*stream
= file
->private_data
;
2957 struct i915_perf
*perf
= stream
->perf
;
2960 /* To ensure it's handled consistently we simply treat all reads of a
2961 * disabled stream as an error. In particular it might otherwise lead
2962 * to a deadlock for blocking file descriptors...
2964 if (!stream
->enabled
)
2967 if (!(file
->f_flags
& O_NONBLOCK
)) {
2968 /* There's the small chance of false positives from
2969 * stream->ops->wait_unlocked.
2971 * E.g. with single context filtering since we only wait until
2972 * oabuffer has >= 1 report we don't immediately know whether
2973 * any reports really belong to the current context
2976 ret
= stream
->ops
->wait_unlocked(stream
);
2980 mutex_lock(&perf
->lock
);
2981 ret
= i915_perf_read_locked(stream
, file
,
2983 mutex_unlock(&perf
->lock
);
2984 } while (ret
== -EAGAIN
);
2986 mutex_lock(&perf
->lock
);
2987 ret
= i915_perf_read_locked(stream
, file
, buf
, count
, ppos
);
2988 mutex_unlock(&perf
->lock
);
2991 /* We allow the poll checking to sometimes report false positive EPOLLIN
2992 * events where we might actually report EAGAIN on read() if there's
2993 * not really any data available. In this situation though we don't
2994 * want to enter a busy loop between poll() reporting a EPOLLIN event
2995 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2996 * effectively ensures we back off until the next hrtimer callback
2997 * before reporting another EPOLLIN event.
2999 if (ret
>= 0 || ret
== -EAGAIN
) {
3000 /* Maybe make ->pollin per-stream state if we support multiple
3001 * concurrent streams in the future.
3003 stream
->pollin
= false;
3009 static enum hrtimer_restart
oa_poll_check_timer_cb(struct hrtimer
*hrtimer
)
3011 struct i915_perf_stream
*stream
=
3012 container_of(hrtimer
, typeof(*stream
), poll_check_timer
);
3014 if (oa_buffer_check_unlocked(stream
)) {
3015 stream
->pollin
= true;
3016 wake_up(&stream
->poll_wq
);
3019 hrtimer_forward_now(hrtimer
, ns_to_ktime(POLL_PERIOD
));
3021 return HRTIMER_RESTART
;
3025 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3026 * @stream: An i915 perf stream
3027 * @file: An i915 perf stream file
3028 * @wait: poll() state table
3030 * For handling userspace polling on an i915 perf stream, this calls through to
3031 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3032 * will be woken for new stream data.
3034 * Note: The &perf->lock mutex has been taken to serialize
3035 * with any non-file-operation driver hooks.
3037 * Returns: any poll events that are ready without sleeping
3039 static __poll_t
i915_perf_poll_locked(struct i915_perf_stream
*stream
,
3043 __poll_t events
= 0;
3045 stream
->ops
->poll_wait(stream
, file
, wait
);
3047 /* Note: we don't explicitly check whether there's something to read
3048 * here since this path may be very hot depending on what else
3049 * userspace is polling, or on the timeout in use. We rely solely on
3050 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3060 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3061 * @file: An i915 perf stream file
3062 * @wait: poll() state table
3064 * For handling userspace polling on an i915 perf stream, this ensures
3065 * poll_wait() gets called with a wait queue that will be woken for new stream
3068 * Note: Implementation deferred to i915_perf_poll_locked()
3070 * Returns: any poll events that are ready without sleeping
3072 static __poll_t
i915_perf_poll(struct file
*file
, poll_table
*wait
)
3074 struct i915_perf_stream
*stream
= file
->private_data
;
3075 struct i915_perf
*perf
= stream
->perf
;
3078 mutex_lock(&perf
->lock
);
3079 ret
= i915_perf_poll_locked(stream
, file
, wait
);
3080 mutex_unlock(&perf
->lock
);
3086 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3087 * @stream: A disabled i915 perf stream
3089 * [Re]enables the associated capture of data for this stream.
3091 * If a stream was previously enabled then there's currently no intention
3092 * to provide userspace any guarantee about the preservation of previously
3095 static void i915_perf_enable_locked(struct i915_perf_stream
*stream
)
3097 if (stream
->enabled
)
3100 /* Allow stream->ops->enable() to refer to this */
3101 stream
->enabled
= true;
3103 if (stream
->ops
->enable
)
3104 stream
->ops
->enable(stream
);
3106 if (stream
->hold_preemption
)
3107 intel_context_set_nopreempt(stream
->pinned_ctx
);
3111 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3112 * @stream: An enabled i915 perf stream
3114 * Disables the associated capture of data for this stream.
3116 * The intention is that disabling an re-enabling a stream will ideally be
3117 * cheaper than destroying and re-opening a stream with the same configuration,
3118 * though there are no formal guarantees about what state or buffered data
3119 * must be retained between disabling and re-enabling a stream.
3121 * Note: while a stream is disabled it's considered an error for userspace
3122 * to attempt to read from the stream (-EIO).
3124 static void i915_perf_disable_locked(struct i915_perf_stream
*stream
)
3126 if (!stream
->enabled
)
3129 /* Allow stream->ops->disable() to refer to this */
3130 stream
->enabled
= false;
3132 if (stream
->hold_preemption
)
3133 intel_context_clear_nopreempt(stream
->pinned_ctx
);
3135 if (stream
->ops
->disable
)
3136 stream
->ops
->disable(stream
);
3139 static long i915_perf_config_locked(struct i915_perf_stream
*stream
,
3140 unsigned long metrics_set
)
3142 struct i915_oa_config
*config
;
3143 long ret
= stream
->oa_config
->id
;
3145 config
= i915_perf_get_oa_config(stream
->perf
, metrics_set
);
3149 if (config
!= stream
->oa_config
) {
3153 * If OA is bound to a specific context, emit the
3154 * reconfiguration inline from that context. The update
3155 * will then be ordered with respect to submission on that
3158 * When set globally, we use a low priority kernel context,
3159 * so it will effectively take effect when idle.
3161 err
= emit_oa_config(stream
, config
, oa_context(stream
));
3163 config
= xchg(&stream
->oa_config
, config
);
3168 i915_oa_config_put(config
);
3174 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3175 * @stream: An i915 perf stream
3176 * @cmd: the ioctl request
3177 * @arg: the ioctl data
3179 * Note: The &perf->lock mutex has been taken to serialize
3180 * with any non-file-operation driver hooks.
3182 * Returns: zero on success or a negative error code. Returns -EINVAL for
3183 * an unknown ioctl request.
3185 static long i915_perf_ioctl_locked(struct i915_perf_stream
*stream
,
3190 case I915_PERF_IOCTL_ENABLE
:
3191 i915_perf_enable_locked(stream
);
3193 case I915_PERF_IOCTL_DISABLE
:
3194 i915_perf_disable_locked(stream
);
3196 case I915_PERF_IOCTL_CONFIG
:
3197 return i915_perf_config_locked(stream
, arg
);
3204 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3205 * @file: An i915 perf stream file
3206 * @cmd: the ioctl request
3207 * @arg: the ioctl data
3209 * Implementation deferred to i915_perf_ioctl_locked().
3211 * Returns: zero on success or a negative error code. Returns -EINVAL for
3212 * an unknown ioctl request.
3214 static long i915_perf_ioctl(struct file
*file
,
3218 struct i915_perf_stream
*stream
= file
->private_data
;
3219 struct i915_perf
*perf
= stream
->perf
;
3222 mutex_lock(&perf
->lock
);
3223 ret
= i915_perf_ioctl_locked(stream
, cmd
, arg
);
3224 mutex_unlock(&perf
->lock
);
3230 * i915_perf_destroy_locked - destroy an i915 perf stream
3231 * @stream: An i915 perf stream
3233 * Frees all resources associated with the given i915 perf @stream, disabling
3234 * any associated data capture in the process.
3236 * Note: The &perf->lock mutex has been taken to serialize
3237 * with any non-file-operation driver hooks.
3239 static void i915_perf_destroy_locked(struct i915_perf_stream
*stream
)
3241 if (stream
->enabled
)
3242 i915_perf_disable_locked(stream
);
3244 if (stream
->ops
->destroy
)
3245 stream
->ops
->destroy(stream
);
3248 i915_gem_context_put(stream
->ctx
);
3254 * i915_perf_release - handles userspace close() of a stream file
3255 * @inode: anonymous inode associated with file
3256 * @file: An i915 perf stream file
3258 * Cleans up any resources associated with an open i915 perf stream file.
3260 * NB: close() can't really fail from the userspace point of view.
3262 * Returns: zero on success or a negative error code.
3264 static int i915_perf_release(struct inode
*inode
, struct file
*file
)
3266 struct i915_perf_stream
*stream
= file
->private_data
;
3267 struct i915_perf
*perf
= stream
->perf
;
3269 mutex_lock(&perf
->lock
);
3270 i915_perf_destroy_locked(stream
);
3271 mutex_unlock(&perf
->lock
);
3273 /* Release the reference the perf stream kept on the driver. */
3274 drm_dev_put(&perf
->i915
->drm
);
3280 static const struct file_operations fops
= {
3281 .owner
= THIS_MODULE
,
3282 .llseek
= no_llseek
,
3283 .release
= i915_perf_release
,
3284 .poll
= i915_perf_poll
,
3285 .read
= i915_perf_read
,
3286 .unlocked_ioctl
= i915_perf_ioctl
,
3287 /* Our ioctl have no arguments, so it's safe to use the same function
3288 * to handle 32bits compatibility.
3290 .compat_ioctl
= i915_perf_ioctl
,
3295 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3296 * @perf: i915 perf instance
3297 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3298 * @props: individually validated u64 property value pairs
3301 * See i915_perf_ioctl_open() for interface details.
3303 * Implements further stream config validation and stream initialization on
3304 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3305 * taken to serialize with any non-file-operation driver hooks.
3307 * Note: at this point the @props have only been validated in isolation and
3308 * it's still necessary to validate that the combination of properties makes
3311 * In the case where userspace is interested in OA unit metrics then further
3312 * config validation and stream initialization details will be handled by
3313 * i915_oa_stream_init(). The code here should only validate config state that
3314 * will be relevant to all stream types / backends.
3316 * Returns: zero on success or a negative error code.
3319 i915_perf_open_ioctl_locked(struct i915_perf
*perf
,
3320 struct drm_i915_perf_open_param
*param
,
3321 struct perf_open_properties
*props
,
3322 struct drm_file
*file
)
3324 struct i915_gem_context
*specific_ctx
= NULL
;
3325 struct i915_perf_stream
*stream
= NULL
;
3326 unsigned long f_flags
= 0;
3327 bool privileged_op
= true;
3331 if (props
->single_context
) {
3332 u32 ctx_handle
= props
->ctx_handle
;
3333 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
3335 specific_ctx
= i915_gem_context_lookup(file_priv
, ctx_handle
);
3336 if (!specific_ctx
) {
3337 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3345 * On Haswell the OA unit supports clock gating off for a specific
3346 * context and in this mode there's no visibility of metrics for the
3347 * rest of the system, which we consider acceptable for a
3348 * non-privileged client.
3350 * For Gen8->11 the OA unit no longer supports clock gating off for a
3351 * specific context and the kernel can't securely stop the counters
3352 * from updating as system-wide / global values. Even though we can
3353 * filter reports based on the included context ID we can't block
3354 * clients from seeing the raw / global counter values via
3355 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3356 * enable the OA unit by default.
3358 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3359 * per context basis. So we can relax requirements there if the user
3360 * doesn't request global stream access (i.e. query based sampling
3361 * using MI_RECORD_PERF_COUNT.
3363 if (IS_HASWELL(perf
->i915
) && specific_ctx
)
3364 privileged_op
= false;
3365 else if (IS_GEN(perf
->i915
, 12) && specific_ctx
&&
3366 (props
->sample_flags
& SAMPLE_OA_REPORT
) == 0)
3367 privileged_op
= false;
3369 if (props
->hold_preemption
) {
3370 if (!props
->single_context
) {
3371 DRM_DEBUG("preemption disable with no context\n");
3375 privileged_op
= true;
3378 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3379 * we check a dev.i915.perf_stream_paranoid sysctl option
3380 * to determine if it's ok to access system wide OA counters
3381 * without CAP_SYS_ADMIN privileges.
3383 if (privileged_op
&&
3384 i915_perf_stream_paranoid
&& !capable(CAP_SYS_ADMIN
)) {
3385 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3390 stream
= kzalloc(sizeof(*stream
), GFP_KERNEL
);
3396 stream
->perf
= perf
;
3397 stream
->ctx
= specific_ctx
;
3399 ret
= i915_oa_stream_init(stream
, param
, props
);
3403 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3404 * to have _stream_init check the combination of sample flags more
3405 * thoroughly, but still this is the expected result at this point.
3407 if (WARN_ON(stream
->sample_flags
!= props
->sample_flags
)) {
3412 if (param
->flags
& I915_PERF_FLAG_FD_CLOEXEC
)
3413 f_flags
|= O_CLOEXEC
;
3414 if (param
->flags
& I915_PERF_FLAG_FD_NONBLOCK
)
3415 f_flags
|= O_NONBLOCK
;
3417 stream_fd
= anon_inode_getfd("[i915_perf]", &fops
, stream
, f_flags
);
3418 if (stream_fd
< 0) {
3423 if (!(param
->flags
& I915_PERF_FLAG_DISABLED
))
3424 i915_perf_enable_locked(stream
);
3426 /* Take a reference on the driver that will be kept with stream_fd
3427 * until its release.
3429 drm_dev_get(&perf
->i915
->drm
);
3434 if (stream
->ops
->destroy
)
3435 stream
->ops
->destroy(stream
);
3440 i915_gem_context_put(specific_ctx
);
3445 static u64
oa_exponent_to_ns(struct i915_perf
*perf
, int exponent
)
3447 return div64_u64(1000000000ULL * (2ULL << exponent
),
3448 1000ULL * RUNTIME_INFO(perf
->i915
)->cs_timestamp_frequency_khz
);
3452 * read_properties_unlocked - validate + copy userspace stream open properties
3453 * @perf: i915 perf instance
3454 * @uprops: The array of u64 key value pairs given by userspace
3455 * @n_props: The number of key value pairs expected in @uprops
3456 * @props: The stream configuration built up while validating properties
3458 * Note this function only validates properties in isolation it doesn't
3459 * validate that the combination of properties makes sense or that all
3460 * properties necessary for a particular kind of stream have been set.
3462 * Note that there currently aren't any ordering requirements for properties so
3463 * we shouldn't validate or assume anything about ordering here. This doesn't
3464 * rule out defining new properties with ordering requirements in the future.
3466 static int read_properties_unlocked(struct i915_perf
*perf
,
3469 struct perf_open_properties
*props
)
3471 u64 __user
*uprop
= uprops
;
3474 memset(props
, 0, sizeof(struct perf_open_properties
));
3477 DRM_DEBUG("No i915 perf properties given\n");
3481 /* At the moment we only support using i915-perf on the RCS. */
3482 props
->engine
= intel_engine_lookup_user(perf
->i915
,
3483 I915_ENGINE_CLASS_RENDER
,
3485 if (!props
->engine
) {
3486 DRM_DEBUG("No RENDER-capable engines\n");
3490 /* Considering that ID = 0 is reserved and assuming that we don't
3491 * (currently) expect any configurations to ever specify duplicate
3492 * values for a particular property ID then the last _PROP_MAX value is
3493 * one greater than the maximum number of properties we expect to get
3496 if (n_props
>= DRM_I915_PERF_PROP_MAX
) {
3497 DRM_DEBUG("More i915 perf properties specified than exist\n");
3501 for (i
= 0; i
< n_props
; i
++) {
3502 u64 oa_period
, oa_freq_hz
;
3506 ret
= get_user(id
, uprop
);
3510 ret
= get_user(value
, uprop
+ 1);
3514 if (id
== 0 || id
>= DRM_I915_PERF_PROP_MAX
) {
3515 DRM_DEBUG("Unknown i915 perf property ID\n");
3519 switch ((enum drm_i915_perf_property_id
)id
) {
3520 case DRM_I915_PERF_PROP_CTX_HANDLE
:
3521 props
->single_context
= 1;
3522 props
->ctx_handle
= value
;
3524 case DRM_I915_PERF_PROP_SAMPLE_OA
:
3526 props
->sample_flags
|= SAMPLE_OA_REPORT
;
3528 case DRM_I915_PERF_PROP_OA_METRICS_SET
:
3530 DRM_DEBUG("Unknown OA metric set ID\n");
3533 props
->metrics_set
= value
;
3535 case DRM_I915_PERF_PROP_OA_FORMAT
:
3536 if (value
== 0 || value
>= I915_OA_FORMAT_MAX
) {
3537 DRM_DEBUG("Out-of-range OA report format %llu\n",
3541 if (!perf
->oa_formats
[value
].size
) {
3542 DRM_DEBUG("Unsupported OA report format %llu\n",
3546 props
->oa_format
= value
;
3548 case DRM_I915_PERF_PROP_OA_EXPONENT
:
3549 if (value
> OA_EXPONENT_MAX
) {
3550 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3555 /* Theoretically we can program the OA unit to sample
3556 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3557 * for BXT. We don't allow such high sampling
3558 * frequencies by default unless root.
3561 BUILD_BUG_ON(sizeof(oa_period
) != 8);
3562 oa_period
= oa_exponent_to_ns(perf
, value
);
3564 /* This check is primarily to ensure that oa_period <=
3565 * UINT32_MAX (before passing to do_div which only
3566 * accepts a u32 denominator), but we can also skip
3567 * checking anything < 1Hz which implicitly can't be
3568 * limited via an integer oa_max_sample_rate.
3570 if (oa_period
<= NSEC_PER_SEC
) {
3571 u64 tmp
= NSEC_PER_SEC
;
3572 do_div(tmp
, oa_period
);
3577 if (oa_freq_hz
> i915_oa_max_sample_rate
&&
3578 !capable(CAP_SYS_ADMIN
)) {
3579 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
3580 i915_oa_max_sample_rate
);
3584 props
->oa_periodic
= true;
3585 props
->oa_period_exponent
= value
;
3587 case DRM_I915_PERF_PROP_HOLD_PREEMPTION
:
3588 props
->hold_preemption
= !!value
;
3590 case DRM_I915_PERF_PROP_MAX
:
3602 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3604 * @data: ioctl data copied from userspace (unvalidated)
3607 * Validates the stream open parameters given by userspace including flags
3608 * and an array of u64 key, value pair properties.
3610 * Very little is assumed up front about the nature of the stream being
3611 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3612 * i915-perf stream is expected to be a suitable interface for other forms of
3613 * buffered data written by the GPU besides periodic OA metrics.
3615 * Note we copy the properties from userspace outside of the i915 perf
3616 * mutex to avoid an awkward lockdep with mmap_sem.
3618 * Most of the implementation details are handled by
3619 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3620 * mutex for serializing with any non-file-operation driver hooks.
3622 * Return: A newly opened i915 Perf stream file descriptor or negative
3623 * error code on failure.
3625 int i915_perf_open_ioctl(struct drm_device
*dev
, void *data
,
3626 struct drm_file
*file
)
3628 struct i915_perf
*perf
= &to_i915(dev
)->perf
;
3629 struct drm_i915_perf_open_param
*param
= data
;
3630 struct perf_open_properties props
;
3631 u32 known_open_flags
;
3635 DRM_DEBUG("i915 perf interface not available for this system\n");
3639 known_open_flags
= I915_PERF_FLAG_FD_CLOEXEC
|
3640 I915_PERF_FLAG_FD_NONBLOCK
|
3641 I915_PERF_FLAG_DISABLED
;
3642 if (param
->flags
& ~known_open_flags
) {
3643 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3647 ret
= read_properties_unlocked(perf
,
3648 u64_to_user_ptr(param
->properties_ptr
),
3649 param
->num_properties
,
3654 mutex_lock(&perf
->lock
);
3655 ret
= i915_perf_open_ioctl_locked(perf
, param
, &props
, file
);
3656 mutex_unlock(&perf
->lock
);
3662 * i915_perf_register - exposes i915-perf to userspace
3663 * @i915: i915 device instance
3665 * In particular OA metric sets are advertised under a sysfs metrics/
3666 * directory allowing userspace to enumerate valid IDs that can be
3667 * used to open an i915-perf stream.
3669 void i915_perf_register(struct drm_i915_private
*i915
)
3671 struct i915_perf
*perf
= &i915
->perf
;
3677 /* To be sure we're synchronized with an attempted
3678 * i915_perf_open_ioctl(); considering that we register after
3679 * being exposed to userspace.
3681 mutex_lock(&perf
->lock
);
3683 perf
->metrics_kobj
=
3684 kobject_create_and_add("metrics",
3685 &i915
->drm
.primary
->kdev
->kobj
);
3686 if (!perf
->metrics_kobj
)
3689 sysfs_attr_init(&perf
->test_config
.sysfs_metric_id
.attr
);
3691 if (IS_TIGERLAKE(i915
)) {
3692 i915_perf_load_test_config_tgl(i915
);
3693 } else if (INTEL_GEN(i915
) >= 11) {
3694 i915_perf_load_test_config_icl(i915
);
3695 } else if (IS_CANNONLAKE(i915
)) {
3696 i915_perf_load_test_config_cnl(i915
);
3697 } else if (IS_COFFEELAKE(i915
)) {
3698 if (IS_CFL_GT2(i915
))
3699 i915_perf_load_test_config_cflgt2(i915
);
3700 if (IS_CFL_GT3(i915
))
3701 i915_perf_load_test_config_cflgt3(i915
);
3702 } else if (IS_GEMINILAKE(i915
)) {
3703 i915_perf_load_test_config_glk(i915
);
3704 } else if (IS_KABYLAKE(i915
)) {
3705 if (IS_KBL_GT2(i915
))
3706 i915_perf_load_test_config_kblgt2(i915
);
3707 else if (IS_KBL_GT3(i915
))
3708 i915_perf_load_test_config_kblgt3(i915
);
3709 } else if (IS_BROXTON(i915
)) {
3710 i915_perf_load_test_config_bxt(i915
);
3711 } else if (IS_SKYLAKE(i915
)) {
3712 if (IS_SKL_GT2(i915
))
3713 i915_perf_load_test_config_sklgt2(i915
);
3714 else if (IS_SKL_GT3(i915
))
3715 i915_perf_load_test_config_sklgt3(i915
);
3716 else if (IS_SKL_GT4(i915
))
3717 i915_perf_load_test_config_sklgt4(i915
);
3718 } else if (IS_CHERRYVIEW(i915
)) {
3719 i915_perf_load_test_config_chv(i915
);
3720 } else if (IS_BROADWELL(i915
)) {
3721 i915_perf_load_test_config_bdw(i915
);
3722 } else if (IS_HASWELL(i915
)) {
3723 i915_perf_load_test_config_hsw(i915
);
3726 if (perf
->test_config
.id
== 0)
3729 ret
= sysfs_create_group(perf
->metrics_kobj
,
3730 &perf
->test_config
.sysfs_metric
);
3734 perf
->test_config
.perf
= perf
;
3735 kref_init(&perf
->test_config
.ref
);
3740 kobject_put(perf
->metrics_kobj
);
3741 perf
->metrics_kobj
= NULL
;
3744 mutex_unlock(&perf
->lock
);
3748 * i915_perf_unregister - hide i915-perf from userspace
3749 * @i915: i915 device instance
3751 * i915-perf state cleanup is split up into an 'unregister' and
3752 * 'deinit' phase where the interface is first hidden from
3753 * userspace by i915_perf_unregister() before cleaning up
3754 * remaining state in i915_perf_fini().
3756 void i915_perf_unregister(struct drm_i915_private
*i915
)
3758 struct i915_perf
*perf
= &i915
->perf
;
3760 if (!perf
->metrics_kobj
)
3763 sysfs_remove_group(perf
->metrics_kobj
,
3764 &perf
->test_config
.sysfs_metric
);
3766 kobject_put(perf
->metrics_kobj
);
3767 perf
->metrics_kobj
= NULL
;
3770 static bool gen8_is_valid_flex_addr(struct i915_perf
*perf
, u32 addr
)
3772 static const i915_reg_t flex_eu_regs
[] = {
3783 for (i
= 0; i
< ARRAY_SIZE(flex_eu_regs
); i
++) {
3784 if (i915_mmio_reg_offset(flex_eu_regs
[i
]) == addr
)
3790 #define ADDR_IN_RANGE(addr, start, end) \
3791 ((addr) >= (start) && \
3794 #define REG_IN_RANGE(addr, start, end) \
3795 ((addr) >= i915_mmio_reg_offset(start) && \
3796 (addr) <= i915_mmio_reg_offset(end))
3798 #define REG_EQUAL(addr, mmio) \
3799 ((addr) == i915_mmio_reg_offset(mmio))
3801 static bool gen7_is_valid_b_counter_addr(struct i915_perf
*perf
, u32 addr
)
3803 return REG_IN_RANGE(addr
, OASTARTTRIG1
, OASTARTTRIG8
) ||
3804 REG_IN_RANGE(addr
, OAREPORTTRIG1
, OAREPORTTRIG8
) ||
3805 REG_IN_RANGE(addr
, OACEC0_0
, OACEC7_1
);
3808 static bool gen7_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3810 return REG_EQUAL(addr
, HALF_SLICE_CHICKEN2
) ||
3811 REG_IN_RANGE(addr
, MICRO_BP0_0
, NOA_WRITE
) ||
3812 REG_IN_RANGE(addr
, OA_PERFCNT1_LO
, OA_PERFCNT2_HI
) ||
3813 REG_IN_RANGE(addr
, OA_PERFMATRIX_LO
, OA_PERFMATRIX_HI
);
3816 static bool gen8_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3818 return gen7_is_valid_mux_addr(perf
, addr
) ||
3819 REG_EQUAL(addr
, WAIT_FOR_RC6_EXIT
) ||
3820 REG_IN_RANGE(addr
, RPM_CONFIG0
, NOA_CONFIG(8));
3823 static bool gen10_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3825 return gen8_is_valid_mux_addr(perf
, addr
) ||
3826 REG_EQUAL(addr
, GEN10_NOA_WRITE_HIGH
) ||
3827 REG_IN_RANGE(addr
, OA_PERFCNT3_LO
, OA_PERFCNT4_HI
);
3830 static bool hsw_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3832 return gen7_is_valid_mux_addr(perf
, addr
) ||
3833 ADDR_IN_RANGE(addr
, 0x25100, 0x2FF90) ||
3834 REG_IN_RANGE(addr
, HSW_MBVID2_NOA0
, HSW_MBVID2_NOA9
) ||
3835 REG_EQUAL(addr
, HSW_MBVID2_MISR0
);
3838 static bool chv_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3840 return gen7_is_valid_mux_addr(perf
, addr
) ||
3841 ADDR_IN_RANGE(addr
, 0x182300, 0x1823A4);
3844 static bool gen12_is_valid_b_counter_addr(struct i915_perf
*perf
, u32 addr
)
3846 return REG_IN_RANGE(addr
, GEN12_OAG_OASTARTTRIG1
, GEN12_OAG_OASTARTTRIG8
) ||
3847 REG_IN_RANGE(addr
, GEN12_OAG_OAREPORTTRIG1
, GEN12_OAG_OAREPORTTRIG8
) ||
3848 REG_IN_RANGE(addr
, GEN12_OAG_CEC0_0
, GEN12_OAG_CEC7_1
) ||
3849 REG_IN_RANGE(addr
, GEN12_OAG_SCEC0_0
, GEN12_OAG_SCEC7_1
) ||
3850 REG_EQUAL(addr
, GEN12_OAA_DBG_REG
) ||
3851 REG_EQUAL(addr
, GEN12_OAG_OA_PESS
) ||
3852 REG_EQUAL(addr
, GEN12_OAG_SPCTR_CNF
);
3855 static bool gen12_is_valid_mux_addr(struct i915_perf
*perf
, u32 addr
)
3857 return REG_EQUAL(addr
, NOA_WRITE
) ||
3858 REG_EQUAL(addr
, GEN10_NOA_WRITE_HIGH
) ||
3859 REG_EQUAL(addr
, GDT_CHICKEN_BITS
) ||
3860 REG_EQUAL(addr
, WAIT_FOR_RC6_EXIT
) ||
3861 REG_EQUAL(addr
, RPM_CONFIG0
) ||
3862 REG_EQUAL(addr
, RPM_CONFIG1
) ||
3863 REG_IN_RANGE(addr
, NOA_CONFIG(0), NOA_CONFIG(8));
3866 static u32
mask_reg_value(u32 reg
, u32 val
)
3868 /* HALF_SLICE_CHICKEN2 is programmed with a the
3869 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3870 * programmed by userspace doesn't change this.
3872 if (REG_EQUAL(reg
, HALF_SLICE_CHICKEN2
))
3873 val
= val
& ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE
);
3875 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3876 * indicated by its name and a bunch of selection fields used by OA
3879 if (REG_EQUAL(reg
, WAIT_FOR_RC6_EXIT
))
3880 val
= val
& ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE
);
3885 static struct i915_oa_reg
*alloc_oa_regs(struct i915_perf
*perf
,
3886 bool (*is_valid
)(struct i915_perf
*perf
, u32 addr
),
3890 struct i915_oa_reg
*oa_regs
;
3897 if (!access_ok(regs
, n_regs
* sizeof(u32
) * 2))
3898 return ERR_PTR(-EFAULT
);
3900 /* No is_valid function means we're not allowing any register to be programmed. */
3901 GEM_BUG_ON(!is_valid
);
3903 return ERR_PTR(-EINVAL
);
3905 oa_regs
= kmalloc_array(n_regs
, sizeof(*oa_regs
), GFP_KERNEL
);
3907 return ERR_PTR(-ENOMEM
);
3909 for (i
= 0; i
< n_regs
; i
++) {
3912 err
= get_user(addr
, regs
);
3916 if (!is_valid(perf
, addr
)) {
3917 DRM_DEBUG("Invalid oa_reg address: %X\n", addr
);
3922 err
= get_user(value
, regs
+ 1);
3926 oa_regs
[i
].addr
= _MMIO(addr
);
3927 oa_regs
[i
].value
= mask_reg_value(addr
, value
);
3936 return ERR_PTR(err
);
3939 static ssize_t
show_dynamic_id(struct device
*dev
,
3940 struct device_attribute
*attr
,
3943 struct i915_oa_config
*oa_config
=
3944 container_of(attr
, typeof(*oa_config
), sysfs_metric_id
);
3946 return sprintf(buf
, "%d\n", oa_config
->id
);
3949 static int create_dynamic_oa_sysfs_entry(struct i915_perf
*perf
,
3950 struct i915_oa_config
*oa_config
)
3952 sysfs_attr_init(&oa_config
->sysfs_metric_id
.attr
);
3953 oa_config
->sysfs_metric_id
.attr
.name
= "id";
3954 oa_config
->sysfs_metric_id
.attr
.mode
= S_IRUGO
;
3955 oa_config
->sysfs_metric_id
.show
= show_dynamic_id
;
3956 oa_config
->sysfs_metric_id
.store
= NULL
;
3958 oa_config
->attrs
[0] = &oa_config
->sysfs_metric_id
.attr
;
3959 oa_config
->attrs
[1] = NULL
;
3961 oa_config
->sysfs_metric
.name
= oa_config
->uuid
;
3962 oa_config
->sysfs_metric
.attrs
= oa_config
->attrs
;
3964 return sysfs_create_group(perf
->metrics_kobj
,
3965 &oa_config
->sysfs_metric
);
3969 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3971 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3972 * userspace (unvalidated)
3975 * Validates the submitted OA register to be saved into a new OA config that
3976 * can then be used for programming the OA unit and its NOA network.
3978 * Returns: A new allocated config number to be used with the perf open ioctl
3979 * or a negative error code on failure.
3981 int i915_perf_add_config_ioctl(struct drm_device
*dev
, void *data
,
3982 struct drm_file
*file
)
3984 struct i915_perf
*perf
= &to_i915(dev
)->perf
;
3985 struct drm_i915_perf_oa_config
*args
= data
;
3986 struct i915_oa_config
*oa_config
, *tmp
;
3987 struct i915_oa_reg
*regs
;
3991 DRM_DEBUG("i915 perf interface not available for this system\n");
3995 if (!perf
->metrics_kobj
) {
3996 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4000 if (i915_perf_stream_paranoid
&& !capable(CAP_SYS_ADMIN
)) {
4001 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4005 if ((!args
->mux_regs_ptr
|| !args
->n_mux_regs
) &&
4006 (!args
->boolean_regs_ptr
|| !args
->n_boolean_regs
) &&
4007 (!args
->flex_regs_ptr
|| !args
->n_flex_regs
)) {
4008 DRM_DEBUG("No OA registers given\n");
4012 oa_config
= kzalloc(sizeof(*oa_config
), GFP_KERNEL
);
4014 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4018 oa_config
->perf
= perf
;
4019 kref_init(&oa_config
->ref
);
4021 if (!uuid_is_valid(args
->uuid
)) {
4022 DRM_DEBUG("Invalid uuid format for OA config\n");
4027 /* Last character in oa_config->uuid will be 0 because oa_config is
4030 memcpy(oa_config
->uuid
, args
->uuid
, sizeof(args
->uuid
));
4032 oa_config
->mux_regs_len
= args
->n_mux_regs
;
4033 regs
= alloc_oa_regs(perf
,
4034 perf
->ops
.is_valid_mux_reg
,
4035 u64_to_user_ptr(args
->mux_regs_ptr
),
4039 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4040 err
= PTR_ERR(regs
);
4043 oa_config
->mux_regs
= regs
;
4045 oa_config
->b_counter_regs_len
= args
->n_boolean_regs
;
4046 regs
= alloc_oa_regs(perf
,
4047 perf
->ops
.is_valid_b_counter_reg
,
4048 u64_to_user_ptr(args
->boolean_regs_ptr
),
4049 args
->n_boolean_regs
);
4052 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4053 err
= PTR_ERR(regs
);
4056 oa_config
->b_counter_regs
= regs
;
4058 if (INTEL_GEN(perf
->i915
) < 8) {
4059 if (args
->n_flex_regs
!= 0) {
4064 oa_config
->flex_regs_len
= args
->n_flex_regs
;
4065 regs
= alloc_oa_regs(perf
,
4066 perf
->ops
.is_valid_flex_reg
,
4067 u64_to_user_ptr(args
->flex_regs_ptr
),
4071 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4072 err
= PTR_ERR(regs
);
4075 oa_config
->flex_regs
= regs
;
4078 err
= mutex_lock_interruptible(&perf
->metrics_lock
);
4082 /* We shouldn't have too many configs, so this iteration shouldn't be
4085 idr_for_each_entry(&perf
->metrics_idr
, tmp
, id
) {
4086 if (!strcmp(tmp
->uuid
, oa_config
->uuid
)) {
4087 DRM_DEBUG("OA config already exists with this uuid\n");
4093 err
= create_dynamic_oa_sysfs_entry(perf
, oa_config
);
4095 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4099 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4100 oa_config
->id
= idr_alloc(&perf
->metrics_idr
,
4103 if (oa_config
->id
< 0) {
4104 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4105 err
= oa_config
->id
;
4109 mutex_unlock(&perf
->metrics_lock
);
4111 DRM_DEBUG("Added config %s id=%i\n", oa_config
->uuid
, oa_config
->id
);
4113 return oa_config
->id
;
4116 mutex_unlock(&perf
->metrics_lock
);
4118 i915_oa_config_put(oa_config
);
4119 DRM_DEBUG("Failed to add new OA config\n");
4124 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4126 * @data: ioctl data (pointer to u64 integer) copied from userspace
4129 * Configs can be removed while being used, the will stop appearing in sysfs
4130 * and their content will be freed when the stream using the config is closed.
4132 * Returns: 0 on success or a negative error code on failure.
4134 int i915_perf_remove_config_ioctl(struct drm_device
*dev
, void *data
,
4135 struct drm_file
*file
)
4137 struct i915_perf
*perf
= &to_i915(dev
)->perf
;
4139 struct i915_oa_config
*oa_config
;
4143 DRM_DEBUG("i915 perf interface not available for this system\n");
4147 if (i915_perf_stream_paranoid
&& !capable(CAP_SYS_ADMIN
)) {
4148 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4152 ret
= mutex_lock_interruptible(&perf
->metrics_lock
);
4156 oa_config
= idr_find(&perf
->metrics_idr
, *arg
);
4158 DRM_DEBUG("Failed to remove unknown OA config\n");
4163 GEM_BUG_ON(*arg
!= oa_config
->id
);
4165 sysfs_remove_group(perf
->metrics_kobj
, &oa_config
->sysfs_metric
);
4167 idr_remove(&perf
->metrics_idr
, *arg
);
4169 mutex_unlock(&perf
->metrics_lock
);
4171 DRM_DEBUG("Removed config %s id=%i\n", oa_config
->uuid
, oa_config
->id
);
4173 i915_oa_config_put(oa_config
);
4178 mutex_unlock(&perf
->metrics_lock
);
4182 static struct ctl_table oa_table
[] = {
4184 .procname
= "perf_stream_paranoid",
4185 .data
= &i915_perf_stream_paranoid
,
4186 .maxlen
= sizeof(i915_perf_stream_paranoid
),
4188 .proc_handler
= proc_dointvec_minmax
,
4189 .extra1
= SYSCTL_ZERO
,
4190 .extra2
= SYSCTL_ONE
,
4193 .procname
= "oa_max_sample_rate",
4194 .data
= &i915_oa_max_sample_rate
,
4195 .maxlen
= sizeof(i915_oa_max_sample_rate
),
4197 .proc_handler
= proc_dointvec_minmax
,
4198 .extra1
= SYSCTL_ZERO
,
4199 .extra2
= &oa_sample_rate_hard_limit
,
4204 static struct ctl_table i915_root
[] = {
4214 static struct ctl_table dev_root
[] = {
4225 * i915_perf_init - initialize i915-perf state on module bind
4226 * @i915: i915 device instance
4228 * Initializes i915-perf state without exposing anything to userspace.
4230 * Note: i915-perf initialization is split into an 'init' and 'register'
4231 * phase with the i915_perf_register() exposing state to userspace.
4233 void i915_perf_init(struct drm_i915_private
*i915
)
4235 struct i915_perf
*perf
= &i915
->perf
;
4237 /* XXX const struct i915_perf_ops! */
4239 if (IS_HASWELL(i915
)) {
4240 perf
->ops
.is_valid_b_counter_reg
= gen7_is_valid_b_counter_addr
;
4241 perf
->ops
.is_valid_mux_reg
= hsw_is_valid_mux_addr
;
4242 perf
->ops
.is_valid_flex_reg
= NULL
;
4243 perf
->ops
.enable_metric_set
= hsw_enable_metric_set
;
4244 perf
->ops
.disable_metric_set
= hsw_disable_metric_set
;
4245 perf
->ops
.oa_enable
= gen7_oa_enable
;
4246 perf
->ops
.oa_disable
= gen7_oa_disable
;
4247 perf
->ops
.read
= gen7_oa_read
;
4248 perf
->ops
.oa_hw_tail_read
= gen7_oa_hw_tail_read
;
4250 perf
->oa_formats
= hsw_oa_formats
;
4251 } else if (HAS_LOGICAL_RING_CONTEXTS(i915
)) {
4252 /* Note: that although we could theoretically also support the
4253 * legacy ringbuffer mode on BDW (and earlier iterations of
4254 * this driver, before upstreaming did this) it didn't seem
4255 * worth the complexity to maintain now that BDW+ enable
4256 * execlist mode by default.
4258 perf
->ops
.read
= gen8_oa_read
;
4260 if (IS_GEN_RANGE(i915
, 8, 9)) {
4261 perf
->oa_formats
= gen8_plus_oa_formats
;
4263 perf
->ops
.is_valid_b_counter_reg
=
4264 gen7_is_valid_b_counter_addr
;
4265 perf
->ops
.is_valid_mux_reg
=
4266 gen8_is_valid_mux_addr
;
4267 perf
->ops
.is_valid_flex_reg
=
4268 gen8_is_valid_flex_addr
;
4270 if (IS_CHERRYVIEW(i915
)) {
4271 perf
->ops
.is_valid_mux_reg
=
4272 chv_is_valid_mux_addr
;
4275 perf
->ops
.oa_enable
= gen8_oa_enable
;
4276 perf
->ops
.oa_disable
= gen8_oa_disable
;
4277 perf
->ops
.enable_metric_set
= gen8_enable_metric_set
;
4278 perf
->ops
.disable_metric_set
= gen8_disable_metric_set
;
4279 perf
->ops
.oa_hw_tail_read
= gen8_oa_hw_tail_read
;
4281 if (IS_GEN(i915
, 8)) {
4282 perf
->ctx_oactxctrl_offset
= 0x120;
4283 perf
->ctx_flexeu0_offset
= 0x2ce;
4285 perf
->gen8_valid_ctx_bit
= BIT(25);
4287 perf
->ctx_oactxctrl_offset
= 0x128;
4288 perf
->ctx_flexeu0_offset
= 0x3de;
4290 perf
->gen8_valid_ctx_bit
= BIT(16);
4292 } else if (IS_GEN_RANGE(i915
, 10, 11)) {
4293 perf
->oa_formats
= gen8_plus_oa_formats
;
4295 perf
->ops
.is_valid_b_counter_reg
=
4296 gen7_is_valid_b_counter_addr
;
4297 perf
->ops
.is_valid_mux_reg
=
4298 gen10_is_valid_mux_addr
;
4299 perf
->ops
.is_valid_flex_reg
=
4300 gen8_is_valid_flex_addr
;
4302 perf
->ops
.oa_enable
= gen8_oa_enable
;
4303 perf
->ops
.oa_disable
= gen8_oa_disable
;
4304 perf
->ops
.enable_metric_set
= gen8_enable_metric_set
;
4305 perf
->ops
.disable_metric_set
= gen10_disable_metric_set
;
4306 perf
->ops
.oa_hw_tail_read
= gen8_oa_hw_tail_read
;
4308 if (IS_GEN(i915
, 10)) {
4309 perf
->ctx_oactxctrl_offset
= 0x128;
4310 perf
->ctx_flexeu0_offset
= 0x3de;
4312 perf
->ctx_oactxctrl_offset
= 0x124;
4313 perf
->ctx_flexeu0_offset
= 0x78e;
4315 perf
->gen8_valid_ctx_bit
= BIT(16);
4316 } else if (IS_GEN(i915
, 12)) {
4317 perf
->oa_formats
= gen12_oa_formats
;
4319 perf
->ops
.is_valid_b_counter_reg
=
4320 gen12_is_valid_b_counter_addr
;
4321 perf
->ops
.is_valid_mux_reg
=
4322 gen12_is_valid_mux_addr
;
4323 perf
->ops
.is_valid_flex_reg
=
4324 gen8_is_valid_flex_addr
;
4326 perf
->ops
.oa_enable
= gen12_oa_enable
;
4327 perf
->ops
.oa_disable
= gen12_oa_disable
;
4328 perf
->ops
.enable_metric_set
= gen12_enable_metric_set
;
4329 perf
->ops
.disable_metric_set
= gen12_disable_metric_set
;
4330 perf
->ops
.oa_hw_tail_read
= gen12_oa_hw_tail_read
;
4332 perf
->ctx_flexeu0_offset
= 0;
4333 perf
->ctx_oactxctrl_offset
= 0x144;
4337 if (perf
->ops
.enable_metric_set
) {
4338 mutex_init(&perf
->lock
);
4340 oa_sample_rate_hard_limit
= 1000 *
4341 (RUNTIME_INFO(i915
)->cs_timestamp_frequency_khz
/ 2);
4343 mutex_init(&perf
->metrics_lock
);
4344 idr_init(&perf
->metrics_idr
);
4346 /* We set up some ratelimit state to potentially throttle any
4347 * _NOTES about spurious, invalid OA reports which we don't
4348 * forward to userspace.
4350 * We print a _NOTE about any throttling when closing the
4351 * stream instead of waiting until driver _fini which no one
4354 * Using the same limiting factors as printk_ratelimit()
4356 ratelimit_state_init(&perf
->spurious_report_rs
, 5 * HZ
, 10);
4357 /* Since we use a DRM_NOTE for spurious reports it would be
4358 * inconsistent to let __ratelimit() automatically print a
4359 * warning for throttling.
4361 ratelimit_set_flags(&perf
->spurious_report_rs
,
4362 RATELIMIT_MSG_ON_RELEASE
);
4364 atomic64_set(&perf
->noa_programming_delay
,
4365 500 * 1000 /* 500us */);
4371 static int destroy_config(int id
, void *p
, void *data
)
4373 i915_oa_config_put(p
);
4377 void i915_perf_sysctl_register(void)
4379 sysctl_header
= register_sysctl_table(dev_root
);
4382 void i915_perf_sysctl_unregister(void)
4384 unregister_sysctl_table(sysctl_header
);
4388 * i915_perf_fini - Counter part to i915_perf_init()
4389 * @i915: i915 device instance
4391 void i915_perf_fini(struct drm_i915_private
*i915
)
4393 struct i915_perf
*perf
= &i915
->perf
;
4398 idr_for_each(&perf
->metrics_idr
, destroy_config
, perf
);
4399 idr_destroy(&perf
->metrics_idr
);
4401 memset(&perf
->ops
, 0, sizeof(perf
->ops
));
4406 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4408 * This version number is used by userspace to detect available features.
4410 int i915_perf_ioctl_version(void)
4413 * 1: Initial version
4414 * I915_PERF_IOCTL_ENABLE
4415 * I915_PERF_IOCTL_DISABLE
4417 * 2: Added runtime modification of OA config.
4418 * I915_PERF_IOCTL_CONFIG
4420 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4421 * preemption on a particular context so that performance data is
4422 * accessible from a delta of MI_RPC reports without looking at the
4428 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4429 #include "selftests/i915_perf.c"