Merge branch 'akpm' (patches from Andrew)
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_request.c
blobbe185886e4fcc56dcc9b62f3ebe61e08ee543554
1 /*
2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
32 #include "gem/i915_gem_context.h"
33 #include "gt/intel_context.h"
34 #include "gt/intel_ring.h"
35 #include "gt/intel_rps.h"
37 #include "i915_active.h"
38 #include "i915_drv.h"
39 #include "i915_globals.h"
40 #include "i915_trace.h"
41 #include "intel_pm.h"
43 struct execute_cb {
44 struct list_head link;
45 struct irq_work work;
46 struct i915_sw_fence *fence;
47 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 struct i915_request *signal;
51 static struct i915_global_request {
52 struct i915_global base;
53 struct kmem_cache *slab_requests;
54 struct kmem_cache *slab_dependencies;
55 struct kmem_cache *slab_execute_cbs;
56 } global;
58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
60 return dev_name(to_request(fence)->i915->drm.dev);
63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
65 const struct i915_gem_context *ctx;
68 * The timeline struct (as part of the ppgtt underneath a context)
69 * may be freed when the request is no longer in use by the GPU.
70 * We could extend the life of a context to beyond that of all
71 * fences, possibly keeping the hw resource around indefinitely,
72 * or we just give them a false name. Since
73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 * lie seems justifiable.
76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 return "signaled";
79 ctx = i915_request_gem_context(to_request(fence));
80 if (!ctx)
81 return "[" DRIVER_NAME "]";
83 return ctx->name;
86 static bool i915_fence_signaled(struct dma_fence *fence)
88 return i915_request_completed(to_request(fence));
91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
93 return i915_request_enable_breadcrumb(to_request(fence));
96 static signed long i915_fence_wait(struct dma_fence *fence,
97 bool interruptible,
98 signed long timeout)
100 return i915_request_wait(to_request(fence),
101 interruptible | I915_WAIT_PRIORITY,
102 timeout);
105 static void i915_fence_release(struct dma_fence *fence)
107 struct i915_request *rq = to_request(fence);
110 * The request is put onto a RCU freelist (i.e. the address
111 * is immediately reused), mark the fences as being freed now.
112 * Otherwise the debugobjects for the fences are only marked as
113 * freed when the slab cache itself is freed, and so we would get
114 * caught trying to reuse dead objects.
116 i915_sw_fence_fini(&rq->submit);
117 i915_sw_fence_fini(&rq->semaphore);
119 kmem_cache_free(global.slab_requests, rq);
122 const struct dma_fence_ops i915_fence_ops = {
123 .get_driver_name = i915_fence_get_driver_name,
124 .get_timeline_name = i915_fence_get_timeline_name,
125 .enable_signaling = i915_fence_enable_signaling,
126 .signaled = i915_fence_signaled,
127 .wait = i915_fence_wait,
128 .release = i915_fence_release,
131 static void irq_execute_cb(struct irq_work *wrk)
133 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
135 i915_sw_fence_complete(cb->fence);
136 kmem_cache_free(global.slab_execute_cbs, cb);
139 static void irq_execute_cb_hook(struct irq_work *wrk)
141 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
143 cb->hook(container_of(cb->fence, struct i915_request, submit),
144 &cb->signal->fence);
145 i915_request_put(cb->signal);
147 irq_execute_cb(wrk);
150 static void __notify_execute_cb(struct i915_request *rq)
152 struct execute_cb *cb;
154 lockdep_assert_held(&rq->lock);
156 if (list_empty(&rq->execute_cb))
157 return;
159 list_for_each_entry(cb, &rq->execute_cb, link)
160 irq_work_queue(&cb->work);
163 * XXX Rollback on __i915_request_unsubmit()
165 * In the future, perhaps when we have an active time-slicing scheduler,
166 * it will be interesting to unsubmit parallel execution and remove
167 * busywaits from the GPU until their master is restarted. This is
168 * quite hairy, we have to carefully rollback the fence and do a
169 * preempt-to-idle cycle on the target engine, all the while the
170 * master execute_cb may refire.
172 INIT_LIST_HEAD(&rq->execute_cb);
175 static inline void
176 remove_from_client(struct i915_request *request)
178 struct drm_i915_file_private *file_priv;
180 if (!READ_ONCE(request->file_priv))
181 return;
183 rcu_read_lock();
184 file_priv = xchg(&request->file_priv, NULL);
185 if (file_priv) {
186 spin_lock(&file_priv->mm.lock);
187 list_del(&request->client_link);
188 spin_unlock(&file_priv->mm.lock);
190 rcu_read_unlock();
193 static void free_capture_list(struct i915_request *request)
195 struct i915_capture_list *capture;
197 capture = fetch_and_zero(&request->capture_list);
198 while (capture) {
199 struct i915_capture_list *next = capture->next;
201 kfree(capture);
202 capture = next;
206 static void remove_from_engine(struct i915_request *rq)
208 struct intel_engine_cs *engine, *locked;
211 * Virtual engines complicate acquiring the engine timeline lock,
212 * as their rq->engine pointer is not stable until under that
213 * engine lock. The simple ploy we use is to take the lock then
214 * check that the rq still belongs to the newly locked engine.
216 locked = READ_ONCE(rq->engine);
217 spin_lock_irq(&locked->active.lock);
218 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
219 spin_unlock(&locked->active.lock);
220 spin_lock(&engine->active.lock);
221 locked = engine;
223 list_del_init(&rq->sched.link);
224 spin_unlock_irq(&locked->active.lock);
227 bool i915_request_retire(struct i915_request *rq)
229 if (!i915_request_completed(rq))
230 return false;
232 RQ_TRACE(rq, "\n");
234 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
235 trace_i915_request_retire(rq);
238 * We know the GPU must have read the request to have
239 * sent us the seqno + interrupt, so use the position
240 * of tail of the request to update the last known position
241 * of the GPU head.
243 * Note this requires that we are always called in request
244 * completion order.
246 GEM_BUG_ON(!list_is_first(&rq->link,
247 &i915_request_timeline(rq)->requests));
248 rq->ring->head = rq->postfix;
251 * We only loosely track inflight requests across preemption,
252 * and so we may find ourselves attempting to retire a _completed_
253 * request that we have removed from the HW and put back on a run
254 * queue.
256 remove_from_engine(rq);
258 spin_lock_irq(&rq->lock);
259 i915_request_mark_complete(rq);
260 if (!i915_request_signaled(rq))
261 dma_fence_signal_locked(&rq->fence);
262 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
263 i915_request_cancel_breadcrumb(rq);
264 if (i915_request_has_waitboost(rq)) {
265 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
266 atomic_dec(&rq->engine->gt->rps.num_waiters);
268 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
269 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
270 __notify_execute_cb(rq);
272 GEM_BUG_ON(!list_empty(&rq->execute_cb));
273 spin_unlock_irq(&rq->lock);
275 remove_from_client(rq);
276 list_del(&rq->link);
278 intel_context_exit(rq->context);
279 intel_context_unpin(rq->context);
281 free_capture_list(rq);
282 i915_sched_node_fini(&rq->sched);
283 i915_request_put(rq);
285 return true;
288 void i915_request_retire_upto(struct i915_request *rq)
290 struct intel_timeline * const tl = i915_request_timeline(rq);
291 struct i915_request *tmp;
293 RQ_TRACE(rq, "\n");
295 GEM_BUG_ON(!i915_request_completed(rq));
297 do {
298 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
299 } while (i915_request_retire(tmp) && tmp != rq);
302 static int
303 __await_execution(struct i915_request *rq,
304 struct i915_request *signal,
305 void (*hook)(struct i915_request *rq,
306 struct dma_fence *signal),
307 gfp_t gfp)
309 struct execute_cb *cb;
311 if (i915_request_is_active(signal)) {
312 if (hook)
313 hook(rq, &signal->fence);
314 return 0;
317 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
318 if (!cb)
319 return -ENOMEM;
321 cb->fence = &rq->submit;
322 i915_sw_fence_await(cb->fence);
323 init_irq_work(&cb->work, irq_execute_cb);
325 if (hook) {
326 cb->hook = hook;
327 cb->signal = i915_request_get(signal);
328 cb->work.func = irq_execute_cb_hook;
331 spin_lock_irq(&signal->lock);
332 if (i915_request_is_active(signal)) {
333 if (hook) {
334 hook(rq, &signal->fence);
335 i915_request_put(signal);
337 i915_sw_fence_complete(cb->fence);
338 kmem_cache_free(global.slab_execute_cbs, cb);
339 } else {
340 list_add_tail(&cb->link, &signal->execute_cb);
342 spin_unlock_irq(&signal->lock);
344 /* Copy across semaphore status as we need the same behaviour */
345 rq->sched.flags |= signal->sched.flags;
346 return 0;
349 bool __i915_request_submit(struct i915_request *request)
351 struct intel_engine_cs *engine = request->engine;
352 bool result = false;
354 RQ_TRACE(request, "\n");
356 GEM_BUG_ON(!irqs_disabled());
357 lockdep_assert_held(&engine->active.lock);
360 * With the advent of preempt-to-busy, we frequently encounter
361 * requests that we have unsubmitted from HW, but left running
362 * until the next ack and so have completed in the meantime. On
363 * resubmission of that completed request, we can skip
364 * updating the payload, and execlists can even skip submitting
365 * the request.
367 * We must remove the request from the caller's priority queue,
368 * and the caller must only call us when the request is in their
369 * priority queue, under the active.lock. This ensures that the
370 * request has *not* yet been retired and we can safely move
371 * the request into the engine->active.list where it will be
372 * dropped upon retiring. (Otherwise if resubmit a *retired*
373 * request, this would be a horrible use-after-free.)
375 if (i915_request_completed(request))
376 goto xfer;
378 if (intel_context_is_banned(request->context))
379 i915_request_skip(request, -EIO);
382 * Are we using semaphores when the gpu is already saturated?
384 * Using semaphores incurs a cost in having the GPU poll a
385 * memory location, busywaiting for it to change. The continual
386 * memory reads can have a noticeable impact on the rest of the
387 * system with the extra bus traffic, stalling the cpu as it too
388 * tries to access memory across the bus (perf stat -e bus-cycles).
390 * If we installed a semaphore on this request and we only submit
391 * the request after the signaler completed, that indicates the
392 * system is overloaded and using semaphores at this time only
393 * increases the amount of work we are doing. If so, we disable
394 * further use of semaphores until we are idle again, whence we
395 * optimistically try again.
397 if (request->sched.semaphores &&
398 i915_sw_fence_signaled(&request->semaphore))
399 engine->saturated |= request->sched.semaphores;
401 engine->emit_fini_breadcrumb(request,
402 request->ring->vaddr + request->postfix);
404 trace_i915_request_execute(request);
405 engine->serial++;
406 result = true;
408 xfer: /* We may be recursing from the signal callback of another i915 fence */
409 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
411 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags))
412 list_move_tail(&request->sched.link, &engine->active.requests);
414 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
415 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
416 !i915_request_enable_breadcrumb(request))
417 intel_engine_signal_breadcrumbs(engine);
419 __notify_execute_cb(request);
421 spin_unlock(&request->lock);
423 return result;
426 void i915_request_submit(struct i915_request *request)
428 struct intel_engine_cs *engine = request->engine;
429 unsigned long flags;
431 /* Will be called from irq-context when using foreign fences. */
432 spin_lock_irqsave(&engine->active.lock, flags);
434 __i915_request_submit(request);
436 spin_unlock_irqrestore(&engine->active.lock, flags);
439 void __i915_request_unsubmit(struct i915_request *request)
441 struct intel_engine_cs *engine = request->engine;
443 RQ_TRACE(request, "\n");
445 GEM_BUG_ON(!irqs_disabled());
446 lockdep_assert_held(&engine->active.lock);
449 * Only unwind in reverse order, required so that the per-context list
450 * is kept in seqno/ring order.
453 /* We may be recursing from the signal callback of another i915 fence */
454 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
456 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
457 i915_request_cancel_breadcrumb(request);
459 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
460 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
462 spin_unlock(&request->lock);
464 /* We've already spun, don't charge on resubmitting. */
465 if (request->sched.semaphores && i915_request_started(request)) {
466 request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
467 request->sched.semaphores = 0;
471 * We don't need to wake_up any waiters on request->execute, they
472 * will get woken by any other event or us re-adding this request
473 * to the engine timeline (__i915_request_submit()). The waiters
474 * should be quite adapt at finding that the request now has a new
475 * global_seqno to the one they went to sleep on.
479 void i915_request_unsubmit(struct i915_request *request)
481 struct intel_engine_cs *engine = request->engine;
482 unsigned long flags;
484 /* Will be called from irq-context when using foreign fences. */
485 spin_lock_irqsave(&engine->active.lock, flags);
487 __i915_request_unsubmit(request);
489 spin_unlock_irqrestore(&engine->active.lock, flags);
492 static int __i915_sw_fence_call
493 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
495 struct i915_request *request =
496 container_of(fence, typeof(*request), submit);
498 switch (state) {
499 case FENCE_COMPLETE:
500 trace_i915_request_submit(request);
502 if (unlikely(fence->error))
503 i915_request_skip(request, fence->error);
506 * We need to serialize use of the submit_request() callback
507 * with its hotplugging performed during an emergency
508 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
509 * critical section in order to force i915_gem_set_wedged() to
510 * wait until the submit_request() is completed before
511 * proceeding.
513 rcu_read_lock();
514 request->engine->submit_request(request);
515 rcu_read_unlock();
516 break;
518 case FENCE_FREE:
519 i915_request_put(request);
520 break;
523 return NOTIFY_DONE;
526 static int __i915_sw_fence_call
527 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
529 struct i915_request *request =
530 container_of(fence, typeof(*request), semaphore);
532 switch (state) {
533 case FENCE_COMPLETE:
534 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
535 break;
537 case FENCE_FREE:
538 i915_request_put(request);
539 break;
542 return NOTIFY_DONE;
545 static void retire_requests(struct intel_timeline *tl)
547 struct i915_request *rq, *rn;
549 list_for_each_entry_safe(rq, rn, &tl->requests, link)
550 if (!i915_request_retire(rq))
551 break;
554 static noinline struct i915_request *
555 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
557 struct i915_request *rq;
559 if (list_empty(&tl->requests))
560 goto out;
562 if (!gfpflags_allow_blocking(gfp))
563 goto out;
565 /* Move our oldest request to the slab-cache (if not in use!) */
566 rq = list_first_entry(&tl->requests, typeof(*rq), link);
567 i915_request_retire(rq);
569 rq = kmem_cache_alloc(global.slab_requests,
570 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
571 if (rq)
572 return rq;
574 /* Ratelimit ourselves to prevent oom from malicious clients */
575 rq = list_last_entry(&tl->requests, typeof(*rq), link);
576 cond_synchronize_rcu(rq->rcustate);
578 /* Retire our old requests in the hope that we free some */
579 retire_requests(tl);
581 out:
582 return kmem_cache_alloc(global.slab_requests, gfp);
585 static void __i915_request_ctor(void *arg)
587 struct i915_request *rq = arg;
589 spin_lock_init(&rq->lock);
590 i915_sched_node_init(&rq->sched);
591 i915_sw_fence_init(&rq->submit, submit_notify);
592 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
594 rq->file_priv = NULL;
595 rq->capture_list = NULL;
597 INIT_LIST_HEAD(&rq->execute_cb);
600 struct i915_request *
601 __i915_request_create(struct intel_context *ce, gfp_t gfp)
603 struct intel_timeline *tl = ce->timeline;
604 struct i915_request *rq;
605 u32 seqno;
606 int ret;
608 might_sleep_if(gfpflags_allow_blocking(gfp));
610 /* Check that the caller provided an already pinned context */
611 __intel_context_pin(ce);
614 * Beware: Dragons be flying overhead.
616 * We use RCU to look up requests in flight. The lookups may
617 * race with the request being allocated from the slab freelist.
618 * That is the request we are writing to here, may be in the process
619 * of being read by __i915_active_request_get_rcu(). As such,
620 * we have to be very careful when overwriting the contents. During
621 * the RCU lookup, we change chase the request->engine pointer,
622 * read the request->global_seqno and increment the reference count.
624 * The reference count is incremented atomically. If it is zero,
625 * the lookup knows the request is unallocated and complete. Otherwise,
626 * it is either still in use, or has been reallocated and reset
627 * with dma_fence_init(). This increment is safe for release as we
628 * check that the request we have a reference to and matches the active
629 * request.
631 * Before we increment the refcount, we chase the request->engine
632 * pointer. We must not call kmem_cache_zalloc() or else we set
633 * that pointer to NULL and cause a crash during the lookup. If
634 * we see the request is completed (based on the value of the
635 * old engine and seqno), the lookup is complete and reports NULL.
636 * If we decide the request is not completed (new engine or seqno),
637 * then we grab a reference and double check that it is still the
638 * active request - which it won't be and restart the lookup.
640 * Do not use kmem_cache_zalloc() here!
642 rq = kmem_cache_alloc(global.slab_requests,
643 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
644 if (unlikely(!rq)) {
645 rq = request_alloc_slow(tl, gfp);
646 if (!rq) {
647 ret = -ENOMEM;
648 goto err_unreserve;
652 ret = intel_timeline_get_seqno(tl, rq, &seqno);
653 if (ret)
654 goto err_free;
656 rq->i915 = ce->engine->i915;
657 rq->context = ce;
658 rq->engine = ce->engine;
659 rq->ring = ce->ring;
660 rq->execution_mask = ce->engine->mask;
662 RCU_INIT_POINTER(rq->timeline, tl);
663 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
664 rq->hwsp_seqno = tl->hwsp_seqno;
666 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
668 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
669 tl->fence_context, seqno);
671 /* We bump the ref for the fence chain */
672 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
673 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
675 i915_sched_node_reinit(&rq->sched);
677 /* No zalloc, everything must be cleared after use */
678 rq->batch = NULL;
679 GEM_BUG_ON(rq->file_priv);
680 GEM_BUG_ON(rq->capture_list);
681 GEM_BUG_ON(!list_empty(&rq->execute_cb));
684 * Reserve space in the ring buffer for all the commands required to
685 * eventually emit this request. This is to guarantee that the
686 * i915_request_add() call can't fail. Note that the reserve may need
687 * to be redone if the request is not actually submitted straight
688 * away, e.g. because a GPU scheduler has deferred it.
690 * Note that due to how we add reserved_space to intel_ring_begin()
691 * we need to double our request to ensure that if we need to wrap
692 * around inside i915_request_add() there is sufficient space at
693 * the beginning of the ring as well.
695 rq->reserved_space =
696 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
699 * Record the position of the start of the request so that
700 * should we detect the updated seqno part-way through the
701 * GPU processing the request, we never over-estimate the
702 * position of the head.
704 rq->head = rq->ring->emit;
706 ret = rq->engine->request_alloc(rq);
707 if (ret)
708 goto err_unwind;
710 rq->infix = rq->ring->emit; /* end of header; start of user payload */
712 intel_context_mark_active(ce);
713 return rq;
715 err_unwind:
716 ce->ring->emit = rq->head;
718 /* Make sure we didn't add ourselves to external state before freeing */
719 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
720 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
722 err_free:
723 kmem_cache_free(global.slab_requests, rq);
724 err_unreserve:
725 intel_context_unpin(ce);
726 return ERR_PTR(ret);
729 struct i915_request *
730 i915_request_create(struct intel_context *ce)
732 struct i915_request *rq;
733 struct intel_timeline *tl;
735 tl = intel_context_timeline_lock(ce);
736 if (IS_ERR(tl))
737 return ERR_CAST(tl);
739 /* Move our oldest request to the slab-cache (if not in use!) */
740 rq = list_first_entry(&tl->requests, typeof(*rq), link);
741 if (!list_is_last(&rq->link, &tl->requests))
742 i915_request_retire(rq);
744 intel_context_enter(ce);
745 rq = __i915_request_create(ce, GFP_KERNEL);
746 intel_context_exit(ce); /* active reference transferred to request */
747 if (IS_ERR(rq))
748 goto err_unlock;
750 /* Check that we do not interrupt ourselves with a new request */
751 rq->cookie = lockdep_pin_lock(&tl->mutex);
753 return rq;
755 err_unlock:
756 intel_context_timeline_unlock(tl);
757 return rq;
760 static int
761 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
763 struct dma_fence *fence;
764 int err;
766 GEM_BUG_ON(i915_request_timeline(rq) ==
767 rcu_access_pointer(signal->timeline));
769 fence = NULL;
770 rcu_read_lock();
771 spin_lock_irq(&signal->lock);
772 if (!i915_request_started(signal) &&
773 !list_is_first(&signal->link,
774 &rcu_dereference(signal->timeline)->requests)) {
775 struct i915_request *prev = list_prev_entry(signal, link);
778 * Peek at the request before us in the timeline. That
779 * request will only be valid before it is retired, so
780 * after acquiring a reference to it, confirm that it is
781 * still part of the signaler's timeline.
783 if (i915_request_get_rcu(prev)) {
784 if (list_next_entry(prev, link) == signal)
785 fence = &prev->fence;
786 else
787 i915_request_put(prev);
790 spin_unlock_irq(&signal->lock);
791 rcu_read_unlock();
792 if (!fence)
793 return 0;
795 err = 0;
796 if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
797 err = i915_sw_fence_await_dma_fence(&rq->submit,
798 fence, 0,
799 I915_FENCE_GFP);
800 dma_fence_put(fence);
802 return err;
805 static intel_engine_mask_t
806 already_busywaiting(struct i915_request *rq)
809 * Polling a semaphore causes bus traffic, delaying other users of
810 * both the GPU and CPU. We want to limit the impact on others,
811 * while taking advantage of early submission to reduce GPU
812 * latency. Therefore we restrict ourselves to not using more
813 * than one semaphore from each source, and not using a semaphore
814 * if we have detected the engine is saturated (i.e. would not be
815 * submitted early and cause bus traffic reading an already passed
816 * semaphore).
818 * See the are-we-too-late? check in __i915_request_submit().
820 return rq->sched.semaphores | rq->engine->saturated;
823 static int
824 __emit_semaphore_wait(struct i915_request *to,
825 struct i915_request *from,
826 u32 seqno)
828 const int has_token = INTEL_GEN(to->i915) >= 12;
829 u32 hwsp_offset;
830 int len, err;
831 u32 *cs;
833 GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
835 /* We need to pin the signaler's HWSP until we are finished reading. */
836 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
837 if (err)
838 return err;
840 len = 4;
841 if (has_token)
842 len += 2;
844 cs = intel_ring_begin(to, len);
845 if (IS_ERR(cs))
846 return PTR_ERR(cs);
849 * Using greater-than-or-equal here means we have to worry
850 * about seqno wraparound. To side step that issue, we swap
851 * the timeline HWSP upon wrapping, so that everyone listening
852 * for the old (pre-wrap) values do not see the much smaller
853 * (post-wrap) values than they were expecting (and so wait
854 * forever).
856 *cs++ = (MI_SEMAPHORE_WAIT |
857 MI_SEMAPHORE_GLOBAL_GTT |
858 MI_SEMAPHORE_POLL |
859 MI_SEMAPHORE_SAD_GTE_SDD) +
860 has_token;
861 *cs++ = seqno;
862 *cs++ = hwsp_offset;
863 *cs++ = 0;
864 if (has_token) {
865 *cs++ = 0;
866 *cs++ = MI_NOOP;
869 intel_ring_advance(to, cs);
870 return 0;
873 static int
874 emit_semaphore_wait(struct i915_request *to,
875 struct i915_request *from,
876 gfp_t gfp)
878 /* Just emit the first semaphore we see as request space is limited. */
879 if (already_busywaiting(to) & from->engine->mask)
880 goto await_fence;
882 if (i915_request_await_start(to, from) < 0)
883 goto await_fence;
885 /* Only submit our spinner after the signaler is running! */
886 if (__await_execution(to, from, NULL, gfp))
887 goto await_fence;
889 if (__emit_semaphore_wait(to, from, from->fence.seqno))
890 goto await_fence;
892 to->sched.semaphores |= from->engine->mask;
893 to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
894 return 0;
896 await_fence:
897 return i915_sw_fence_await_dma_fence(&to->submit,
898 &from->fence, 0,
899 I915_FENCE_GFP);
902 static int
903 i915_request_await_request(struct i915_request *to, struct i915_request *from)
905 int ret;
907 GEM_BUG_ON(to == from);
908 GEM_BUG_ON(to->timeline == from->timeline);
910 if (i915_request_completed(from))
911 return 0;
913 if (to->engine->schedule) {
914 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
915 if (ret < 0)
916 return ret;
919 if (to->engine == from->engine)
920 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
921 &from->submit,
922 I915_FENCE_GFP);
923 else if (intel_context_use_semaphores(to->context))
924 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
925 else
926 ret = i915_sw_fence_await_dma_fence(&to->submit,
927 &from->fence, 0,
928 I915_FENCE_GFP);
929 if (ret < 0)
930 return ret;
932 if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
933 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
934 &from->fence, 0,
935 I915_FENCE_GFP);
936 if (ret < 0)
937 return ret;
940 return 0;
944 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
946 struct dma_fence **child = &fence;
947 unsigned int nchild = 1;
948 int ret;
951 * Note that if the fence-array was created in signal-on-any mode,
952 * we should *not* decompose it into its individual fences. However,
953 * we don't currently store which mode the fence-array is operating
954 * in. Fortunately, the only user of signal-on-any is private to
955 * amdgpu and we should not see any incoming fence-array from
956 * sync-file being in signal-on-any mode.
958 if (dma_fence_is_array(fence)) {
959 struct dma_fence_array *array = to_dma_fence_array(fence);
961 child = array->fences;
962 nchild = array->num_fences;
963 GEM_BUG_ON(!nchild);
966 do {
967 fence = *child++;
968 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
969 i915_sw_fence_set_error_once(&rq->submit, fence->error);
970 continue;
974 * Requests on the same timeline are explicitly ordered, along
975 * with their dependencies, by i915_request_add() which ensures
976 * that requests are submitted in-order through each ring.
978 if (fence->context == rq->fence.context)
979 continue;
981 /* Squash repeated waits to the same timelines */
982 if (fence->context &&
983 intel_timeline_sync_is_later(i915_request_timeline(rq),
984 fence))
985 continue;
987 if (dma_fence_is_i915(fence))
988 ret = i915_request_await_request(rq, to_request(fence));
989 else
990 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
991 fence->context ? I915_FENCE_TIMEOUT : 0,
992 I915_FENCE_GFP);
993 if (ret < 0)
994 return ret;
996 /* Record the latest fence used against each timeline */
997 if (fence->context)
998 intel_timeline_sync_set(i915_request_timeline(rq),
999 fence);
1000 } while (--nchild);
1002 return 0;
1005 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1006 struct dma_fence *fence)
1008 return __intel_timeline_sync_is_later(tl,
1009 fence->context,
1010 fence->seqno - 1);
1013 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1014 const struct dma_fence *fence)
1016 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1019 static int
1020 __i915_request_await_execution(struct i915_request *to,
1021 struct i915_request *from,
1022 void (*hook)(struct i915_request *rq,
1023 struct dma_fence *signal))
1025 int err;
1027 /* Submit both requests at the same time */
1028 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1029 if (err)
1030 return err;
1032 /* Squash repeated depenendices to the same timelines */
1033 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1034 &from->fence))
1035 return 0;
1037 /* Ensure both start together [after all semaphores in signal] */
1038 if (intel_engine_has_semaphores(to->engine))
1039 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1040 else
1041 err = i915_request_await_start(to, from);
1042 if (err < 0)
1043 return err;
1045 /* Couple the dependency tree for PI on this exposed to->fence */
1046 if (to->engine->schedule) {
1047 err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1048 if (err < 0)
1049 return err;
1052 return intel_timeline_sync_set_start(i915_request_timeline(to),
1053 &from->fence);
1057 i915_request_await_execution(struct i915_request *rq,
1058 struct dma_fence *fence,
1059 void (*hook)(struct i915_request *rq,
1060 struct dma_fence *signal))
1062 struct dma_fence **child = &fence;
1063 unsigned int nchild = 1;
1064 int ret;
1066 if (dma_fence_is_array(fence)) {
1067 struct dma_fence_array *array = to_dma_fence_array(fence);
1069 /* XXX Error for signal-on-any fence arrays */
1071 child = array->fences;
1072 nchild = array->num_fences;
1073 GEM_BUG_ON(!nchild);
1076 do {
1077 fence = *child++;
1078 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1079 i915_sw_fence_set_error_once(&rq->submit, fence->error);
1080 continue;
1084 * We don't squash repeated fence dependencies here as we
1085 * want to run our callback in all cases.
1088 if (dma_fence_is_i915(fence))
1089 ret = __i915_request_await_execution(rq,
1090 to_request(fence),
1091 hook);
1092 else
1093 ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1094 I915_FENCE_TIMEOUT,
1095 GFP_KERNEL);
1096 if (ret < 0)
1097 return ret;
1098 } while (--nchild);
1100 return 0;
1104 * i915_request_await_object - set this request to (async) wait upon a bo
1105 * @to: request we are wishing to use
1106 * @obj: object which may be in use on another ring.
1107 * @write: whether the wait is on behalf of a writer
1109 * This code is meant to abstract object synchronization with the GPU.
1110 * Conceptually we serialise writes between engines inside the GPU.
1111 * We only allow one engine to write into a buffer at any time, but
1112 * multiple readers. To ensure each has a coherent view of memory, we must:
1114 * - If there is an outstanding write request to the object, the new
1115 * request must wait for it to complete (either CPU or in hw, requests
1116 * on the same ring will be naturally ordered).
1118 * - If we are a write request (pending_write_domain is set), the new
1119 * request must wait for outstanding read requests to complete.
1121 * Returns 0 if successful, else propagates up the lower layer error.
1124 i915_request_await_object(struct i915_request *to,
1125 struct drm_i915_gem_object *obj,
1126 bool write)
1128 struct dma_fence *excl;
1129 int ret = 0;
1131 if (write) {
1132 struct dma_fence **shared;
1133 unsigned int count, i;
1135 ret = dma_resv_get_fences_rcu(obj->base.resv,
1136 &excl, &count, &shared);
1137 if (ret)
1138 return ret;
1140 for (i = 0; i < count; i++) {
1141 ret = i915_request_await_dma_fence(to, shared[i]);
1142 if (ret)
1143 break;
1145 dma_fence_put(shared[i]);
1148 for (; i < count; i++)
1149 dma_fence_put(shared[i]);
1150 kfree(shared);
1151 } else {
1152 excl = dma_resv_get_excl_rcu(obj->base.resv);
1155 if (excl) {
1156 if (ret == 0)
1157 ret = i915_request_await_dma_fence(to, excl);
1159 dma_fence_put(excl);
1162 return ret;
1165 void i915_request_skip(struct i915_request *rq, int error)
1167 void *vaddr = rq->ring->vaddr;
1168 u32 head;
1170 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1171 dma_fence_set_error(&rq->fence, error);
1173 if (rq->infix == rq->postfix)
1174 return;
1177 * As this request likely depends on state from the lost
1178 * context, clear out all the user operations leaving the
1179 * breadcrumb at the end (so we get the fence notifications).
1181 head = rq->infix;
1182 if (rq->postfix < head) {
1183 memset(vaddr + head, 0, rq->ring->size - head);
1184 head = 0;
1186 memset(vaddr + head, 0, rq->postfix - head);
1187 rq->infix = rq->postfix;
1190 static struct i915_request *
1191 __i915_request_add_to_timeline(struct i915_request *rq)
1193 struct intel_timeline *timeline = i915_request_timeline(rq);
1194 struct i915_request *prev;
1197 * Dependency tracking and request ordering along the timeline
1198 * is special cased so that we can eliminate redundant ordering
1199 * operations while building the request (we know that the timeline
1200 * itself is ordered, and here we guarantee it).
1202 * As we know we will need to emit tracking along the timeline,
1203 * we embed the hooks into our request struct -- at the cost of
1204 * having to have specialised no-allocation interfaces (which will
1205 * be beneficial elsewhere).
1207 * A second benefit to open-coding i915_request_await_request is
1208 * that we can apply a slight variant of the rules specialised
1209 * for timelines that jump between engines (such as virtual engines).
1210 * If we consider the case of virtual engine, we must emit a dma-fence
1211 * to prevent scheduling of the second request until the first is
1212 * complete (to maximise our greedy late load balancing) and this
1213 * precludes optimising to use semaphores serialisation of a single
1214 * timeline across engines.
1216 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1217 &rq->fence));
1218 if (prev && !i915_request_completed(prev)) {
1219 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1220 i915_sw_fence_await_sw_fence(&rq->submit,
1221 &prev->submit,
1222 &rq->submitq);
1223 else
1224 __i915_sw_fence_await_dma_fence(&rq->submit,
1225 &prev->fence,
1226 &rq->dmaq);
1227 if (rq->engine->schedule)
1228 __i915_sched_node_add_dependency(&rq->sched,
1229 &prev->sched,
1230 &rq->dep,
1234 list_add_tail(&rq->link, &timeline->requests);
1237 * Make sure that no request gazumped us - if it was allocated after
1238 * our i915_request_alloc() and called __i915_request_add() before
1239 * us, the timeline will hold its seqno which is later than ours.
1241 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1243 return prev;
1247 * NB: This function is not allowed to fail. Doing so would mean the the
1248 * request is not being tracked for completion but the work itself is
1249 * going to happen on the hardware. This would be a Bad Thing(tm).
1251 struct i915_request *__i915_request_commit(struct i915_request *rq)
1253 struct intel_engine_cs *engine = rq->engine;
1254 struct intel_ring *ring = rq->ring;
1255 u32 *cs;
1257 RQ_TRACE(rq, "\n");
1260 * To ensure that this call will not fail, space for its emissions
1261 * should already have been reserved in the ring buffer. Let the ring
1262 * know that it is time to use that space up.
1264 GEM_BUG_ON(rq->reserved_space > ring->space);
1265 rq->reserved_space = 0;
1266 rq->emitted_jiffies = jiffies;
1269 * Record the position of the start of the breadcrumb so that
1270 * should we detect the updated seqno part-way through the
1271 * GPU processing the request, we never over-estimate the
1272 * position of the ring's HEAD.
1274 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1275 GEM_BUG_ON(IS_ERR(cs));
1276 rq->postfix = intel_ring_offset(rq, cs);
1278 return __i915_request_add_to_timeline(rq);
1281 void __i915_request_queue(struct i915_request *rq,
1282 const struct i915_sched_attr *attr)
1285 * Let the backend know a new request has arrived that may need
1286 * to adjust the existing execution schedule due to a high priority
1287 * request - i.e. we may want to preempt the current request in order
1288 * to run a high priority dependency chain *before* we can execute this
1289 * request.
1291 * This is called before the request is ready to run so that we can
1292 * decide whether to preempt the entire chain so that it is ready to
1293 * run at the earliest possible convenience.
1295 i915_sw_fence_commit(&rq->semaphore);
1296 if (attr && rq->engine->schedule)
1297 rq->engine->schedule(rq, attr);
1298 i915_sw_fence_commit(&rq->submit);
1301 void i915_request_add(struct i915_request *rq)
1303 struct intel_timeline * const tl = i915_request_timeline(rq);
1304 struct i915_sched_attr attr = {};
1305 struct i915_request *prev;
1307 lockdep_assert_held(&tl->mutex);
1308 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1310 trace_i915_request_add(rq);
1312 prev = __i915_request_commit(rq);
1314 if (rcu_access_pointer(rq->context->gem_context))
1315 attr = i915_request_gem_context(rq)->sched;
1318 * Boost actual workloads past semaphores!
1320 * With semaphores we spin on one engine waiting for another,
1321 * simply to reduce the latency of starting our work when
1322 * the signaler completes. However, if there is any other
1323 * work that we could be doing on this engine instead, that
1324 * is better utilisation and will reduce the overall duration
1325 * of the current work. To avoid PI boosting a semaphore
1326 * far in the distance past over useful work, we keep a history
1327 * of any semaphore use along our dependency chain.
1329 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1330 attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1333 * Boost priorities to new clients (new request flows).
1335 * Allow interactive/synchronous clients to jump ahead of
1336 * the bulk clients. (FQ_CODEL)
1338 if (list_empty(&rq->sched.signalers_list))
1339 attr.priority |= I915_PRIORITY_WAIT;
1341 local_bh_disable();
1342 __i915_request_queue(rq, &attr);
1343 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1346 * In typical scenarios, we do not expect the previous request on
1347 * the timeline to be still tracked by timeline->last_request if it
1348 * has been completed. If the completed request is still here, that
1349 * implies that request retirement is a long way behind submission,
1350 * suggesting that we haven't been retiring frequently enough from
1351 * the combination of retire-before-alloc, waiters and the background
1352 * retirement worker. So if the last request on this timeline was
1353 * already completed, do a catch up pass, flushing the retirement queue
1354 * up to this client. Since we have now moved the heaviest operations
1355 * during retirement onto secondary workers, such as freeing objects
1356 * or contexts, retiring a bunch of requests is mostly list management
1357 * (and cache misses), and so we should not be overly penalizing this
1358 * client by performing excess work, though we may still performing
1359 * work on behalf of others -- but instead we should benefit from
1360 * improved resource management. (Well, that's the theory at least.)
1362 if (prev &&
1363 i915_request_completed(prev) &&
1364 rcu_access_pointer(prev->timeline) == tl)
1365 i915_request_retire_upto(prev);
1367 mutex_unlock(&tl->mutex);
1370 static unsigned long local_clock_us(unsigned int *cpu)
1372 unsigned long t;
1375 * Cheaply and approximately convert from nanoseconds to microseconds.
1376 * The result and subsequent calculations are also defined in the same
1377 * approximate microseconds units. The principal source of timing
1378 * error here is from the simple truncation.
1380 * Note that local_clock() is only defined wrt to the current CPU;
1381 * the comparisons are no longer valid if we switch CPUs. Instead of
1382 * blocking preemption for the entire busywait, we can detect the CPU
1383 * switch and use that as indicator of system load and a reason to
1384 * stop busywaiting, see busywait_stop().
1386 *cpu = get_cpu();
1387 t = local_clock() >> 10;
1388 put_cpu();
1390 return t;
1393 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1395 unsigned int this_cpu;
1397 if (time_after(local_clock_us(&this_cpu), timeout))
1398 return true;
1400 return this_cpu != cpu;
1403 static bool __i915_spin_request(const struct i915_request * const rq,
1404 int state, unsigned long timeout_us)
1406 unsigned int cpu;
1409 * Only wait for the request if we know it is likely to complete.
1411 * We don't track the timestamps around requests, nor the average
1412 * request length, so we do not have a good indicator that this
1413 * request will complete within the timeout. What we do know is the
1414 * order in which requests are executed by the context and so we can
1415 * tell if the request has been started. If the request is not even
1416 * running yet, it is a fair assumption that it will not complete
1417 * within our relatively short timeout.
1419 if (!i915_request_is_running(rq))
1420 return false;
1423 * When waiting for high frequency requests, e.g. during synchronous
1424 * rendering split between the CPU and GPU, the finite amount of time
1425 * required to set up the irq and wait upon it limits the response
1426 * rate. By busywaiting on the request completion for a short while we
1427 * can service the high frequency waits as quick as possible. However,
1428 * if it is a slow request, we want to sleep as quickly as possible.
1429 * The tradeoff between waiting and sleeping is roughly the time it
1430 * takes to sleep on a request, on the order of a microsecond.
1433 timeout_us += local_clock_us(&cpu);
1434 do {
1435 if (i915_request_completed(rq))
1436 return true;
1438 if (signal_pending_state(state, current))
1439 break;
1441 if (busywait_stop(timeout_us, cpu))
1442 break;
1444 cpu_relax();
1445 } while (!need_resched());
1447 return false;
1450 struct request_wait {
1451 struct dma_fence_cb cb;
1452 struct task_struct *tsk;
1455 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1457 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1459 wake_up_process(wait->tsk);
1463 * i915_request_wait - wait until execution of request has finished
1464 * @rq: the request to wait upon
1465 * @flags: how to wait
1466 * @timeout: how long to wait in jiffies
1468 * i915_request_wait() waits for the request to be completed, for a
1469 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1470 * unbounded wait).
1472 * Returns the remaining time (in jiffies) if the request completed, which may
1473 * be zero or -ETIME if the request is unfinished after the timeout expires.
1474 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1475 * pending before the request completes.
1477 long i915_request_wait(struct i915_request *rq,
1478 unsigned int flags,
1479 long timeout)
1481 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1482 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1483 struct request_wait wait;
1485 might_sleep();
1486 GEM_BUG_ON(timeout < 0);
1488 if (dma_fence_is_signaled(&rq->fence))
1489 return timeout;
1491 if (!timeout)
1492 return -ETIME;
1494 trace_i915_request_wait_begin(rq, flags);
1497 * We must never wait on the GPU while holding a lock as we
1498 * may need to perform a GPU reset. So while we don't need to
1499 * serialise wait/reset with an explicit lock, we do want
1500 * lockdep to detect potential dependency cycles.
1502 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1505 * Optimistic spin before touching IRQs.
1507 * We may use a rather large value here to offset the penalty of
1508 * switching away from the active task. Frequently, the client will
1509 * wait upon an old swapbuffer to throttle itself to remain within a
1510 * frame of the gpu. If the client is running in lockstep with the gpu,
1511 * then it should not be waiting long at all, and a sleep now will incur
1512 * extra scheduler latency in producing the next frame. To try to
1513 * avoid adding the cost of enabling/disabling the interrupt to the
1514 * short wait, we first spin to see if the request would have completed
1515 * in the time taken to setup the interrupt.
1517 * We need upto 5us to enable the irq, and upto 20us to hide the
1518 * scheduler latency of a context switch, ignoring the secondary
1519 * impacts from a context switch such as cache eviction.
1521 * The scheme used for low-latency IO is called "hybrid interrupt
1522 * polling". The suggestion there is to sleep until just before you
1523 * expect to be woken by the device interrupt and then poll for its
1524 * completion. That requires having a good predictor for the request
1525 * duration, which we currently lack.
1527 if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1528 __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1529 dma_fence_signal(&rq->fence);
1530 goto out;
1534 * This client is about to stall waiting for the GPU. In many cases
1535 * this is undesirable and limits the throughput of the system, as
1536 * many clients cannot continue processing user input/output whilst
1537 * blocked. RPS autotuning may take tens of milliseconds to respond
1538 * to the GPU load and thus incurs additional latency for the client.
1539 * We can circumvent that by promoting the GPU frequency to maximum
1540 * before we sleep. This makes the GPU throttle up much more quickly
1541 * (good for benchmarks and user experience, e.g. window animations),
1542 * but at a cost of spending more power processing the workload
1543 * (bad for battery).
1545 if (flags & I915_WAIT_PRIORITY) {
1546 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1547 intel_rps_boost(rq);
1548 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1551 wait.tsk = current;
1552 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1553 goto out;
1555 for (;;) {
1556 set_current_state(state);
1558 if (i915_request_completed(rq)) {
1559 dma_fence_signal(&rq->fence);
1560 break;
1563 if (signal_pending_state(state, current)) {
1564 timeout = -ERESTARTSYS;
1565 break;
1568 if (!timeout) {
1569 timeout = -ETIME;
1570 break;
1573 intel_engine_flush_submission(rq->engine);
1574 timeout = io_schedule_timeout(timeout);
1576 __set_current_state(TASK_RUNNING);
1578 dma_fence_remove_callback(&rq->fence, &wait.cb);
1580 out:
1581 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1582 trace_i915_request_wait_end(rq);
1583 return timeout;
1586 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1587 #include "selftests/mock_request.c"
1588 #include "selftests/i915_request.c"
1589 #endif
1591 static void i915_global_request_shrink(void)
1593 kmem_cache_shrink(global.slab_dependencies);
1594 kmem_cache_shrink(global.slab_execute_cbs);
1595 kmem_cache_shrink(global.slab_requests);
1598 static void i915_global_request_exit(void)
1600 kmem_cache_destroy(global.slab_dependencies);
1601 kmem_cache_destroy(global.slab_execute_cbs);
1602 kmem_cache_destroy(global.slab_requests);
1605 static struct i915_global_request global = { {
1606 .shrink = i915_global_request_shrink,
1607 .exit = i915_global_request_exit,
1608 } };
1610 int __init i915_global_request_init(void)
1612 global.slab_requests =
1613 kmem_cache_create("i915_request",
1614 sizeof(struct i915_request),
1615 __alignof__(struct i915_request),
1616 SLAB_HWCACHE_ALIGN |
1617 SLAB_RECLAIM_ACCOUNT |
1618 SLAB_TYPESAFE_BY_RCU,
1619 __i915_request_ctor);
1620 if (!global.slab_requests)
1621 return -ENOMEM;
1623 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1624 SLAB_HWCACHE_ALIGN |
1625 SLAB_RECLAIM_ACCOUNT |
1626 SLAB_TYPESAFE_BY_RCU);
1627 if (!global.slab_execute_cbs)
1628 goto err_requests;
1630 global.slab_dependencies = KMEM_CACHE(i915_dependency,
1631 SLAB_HWCACHE_ALIGN |
1632 SLAB_RECLAIM_ACCOUNT);
1633 if (!global.slab_dependencies)
1634 goto err_execute_cbs;
1636 i915_global_register(&global.base);
1637 return 0;
1639 err_execute_cbs:
1640 kmem_cache_destroy(global.slab_execute_cbs);
1641 err_requests:
1642 kmem_cache_destroy(global.slab_requests);
1643 return -ENOMEM;