2 * Copyright (c) Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors: Dave Airlie <airlied@redhat.com>
24 * Jerome Glisse <jglisse@redhat.com>
25 * Pauli Nieminen <suokkos@gmail.com>
28 /* simple list based uncached page pool
29 * - Pool collects resently freed pages for reuse
30 * - Use page->lru to keep a free list
31 * - doesn't track currently in use pages
34 #define pr_fmt(fmt) "[TTM] " fmt
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
46 #include <linux/atomic.h>
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50 #include <drm/ttm/ttm_set_memory.h>
52 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
53 #define SMALL_ALLOCATION 16
54 #define FREE_ALL_PAGES (~0U)
55 /* times are in msecs */
56 #define PAGE_FREE_INTERVAL 1000
59 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
61 * @lock: Protects the shared pool from concurrnet access. Must be used with
62 * irqsave/irqrestore variants because pool allocator maybe called from
64 * @fill_lock: Prevent concurrent calls to fill.
65 * @list: Pool of free uc/wc pages for fast reuse.
66 * @gfp_flags: Flags to pass for alloc_page.
67 * @npages: Number of pages in pool.
69 struct ttm_page_pool
{
72 struct list_head list
;
77 unsigned long nrefills
;
82 * Limits for the pool. They are handled without locks because only place where
83 * they may change is in sysfs store. They won't have immediate effect anyway
84 * so forcing serialization to access them is pointless.
87 struct ttm_pool_opts
{
96 * struct ttm_pool_manager - Holds memory pools for fst allocation
98 * Manager is read only object for pool code so it doesn't need locking.
100 * @free_interval: minimum number of jiffies between freeing pages from pool.
101 * @page_alloc_inited: reference counting for pool allocation.
102 * @work: Work that is used to shrink the pool. Work is only run when there is
103 * some pages to free.
104 * @small_allocation: Limit in number of pages what is small allocation.
106 * @pools: All pool objects in use.
108 struct ttm_pool_manager
{
110 struct shrinker mm_shrink
;
111 struct ttm_pool_opts options
;
114 struct ttm_page_pool pools
[NUM_POOLS
];
116 struct ttm_page_pool wc_pool
;
117 struct ttm_page_pool uc_pool
;
118 struct ttm_page_pool wc_pool_dma32
;
119 struct ttm_page_pool uc_pool_dma32
;
120 struct ttm_page_pool wc_pool_huge
;
121 struct ttm_page_pool uc_pool_huge
;
126 static struct attribute ttm_page_pool_max
= {
127 .name
= "pool_max_size",
128 .mode
= S_IRUGO
| S_IWUSR
130 static struct attribute ttm_page_pool_small
= {
131 .name
= "pool_small_allocation",
132 .mode
= S_IRUGO
| S_IWUSR
134 static struct attribute ttm_page_pool_alloc_size
= {
135 .name
= "pool_allocation_size",
136 .mode
= S_IRUGO
| S_IWUSR
139 static struct attribute
*ttm_pool_attrs
[] = {
141 &ttm_page_pool_small
,
142 &ttm_page_pool_alloc_size
,
146 static void ttm_pool_kobj_release(struct kobject
*kobj
)
148 struct ttm_pool_manager
*m
=
149 container_of(kobj
, struct ttm_pool_manager
, kobj
);
153 static ssize_t
ttm_pool_store(struct kobject
*kobj
,
154 struct attribute
*attr
, const char *buffer
, size_t size
)
156 struct ttm_pool_manager
*m
=
157 container_of(kobj
, struct ttm_pool_manager
, kobj
);
160 chars
= sscanf(buffer
, "%u", &val
);
164 /* Convert kb to number of pages */
165 val
= val
/ (PAGE_SIZE
>> 10);
167 if (attr
== &ttm_page_pool_max
)
168 m
->options
.max_size
= val
;
169 else if (attr
== &ttm_page_pool_small
)
170 m
->options
.small
= val
;
171 else if (attr
== &ttm_page_pool_alloc_size
) {
172 if (val
> NUM_PAGES_TO_ALLOC
*8) {
173 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
174 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 7),
175 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
177 } else if (val
> NUM_PAGES_TO_ALLOC
) {
178 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
179 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
181 m
->options
.alloc_size
= val
;
187 static ssize_t
ttm_pool_show(struct kobject
*kobj
,
188 struct attribute
*attr
, char *buffer
)
190 struct ttm_pool_manager
*m
=
191 container_of(kobj
, struct ttm_pool_manager
, kobj
);
194 if (attr
== &ttm_page_pool_max
)
195 val
= m
->options
.max_size
;
196 else if (attr
== &ttm_page_pool_small
)
197 val
= m
->options
.small
;
198 else if (attr
== &ttm_page_pool_alloc_size
)
199 val
= m
->options
.alloc_size
;
201 val
= val
* (PAGE_SIZE
>> 10);
203 return snprintf(buffer
, PAGE_SIZE
, "%u\n", val
);
206 static const struct sysfs_ops ttm_pool_sysfs_ops
= {
207 .show
= &ttm_pool_show
,
208 .store
= &ttm_pool_store
,
211 static struct kobj_type ttm_pool_kobj_type
= {
212 .release
= &ttm_pool_kobj_release
,
213 .sysfs_ops
= &ttm_pool_sysfs_ops
,
214 .default_attrs
= ttm_pool_attrs
,
217 static struct ttm_pool_manager
*_manager
;
220 * Select the right pool or requested caching state and ttm flags. */
221 static struct ttm_page_pool
*ttm_get_pool(int flags
, bool huge
,
222 enum ttm_caching_state cstate
)
226 if (cstate
== tt_cached
)
234 if (flags
& TTM_PAGE_FLAG_DMA32
) {
243 return &_manager
->pools
[pool_index
];
246 /* set memory back to wb and free the pages. */
247 static void ttm_pages_put(struct page
*pages
[], unsigned npages
,
250 unsigned int i
, pages_nr
= (1 << order
);
253 if (ttm_set_pages_array_wb(pages
, npages
))
254 pr_err("Failed to set %d pages to wb!\n", npages
);
257 for (i
= 0; i
< npages
; ++i
) {
259 if (ttm_set_pages_wb(pages
[i
], pages_nr
))
260 pr_err("Failed to set %d pages to wb!\n", pages_nr
);
262 __free_pages(pages
[i
], order
);
266 static void ttm_pool_update_free_locked(struct ttm_page_pool
*pool
,
267 unsigned freed_pages
)
269 pool
->npages
-= freed_pages
;
270 pool
->nfrees
+= freed_pages
;
274 * Free pages from pool.
276 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
277 * number of pages in one go.
279 * @pool: to free the pages from
280 * @free_all: If set to true will free all pages in pool
281 * @use_static: Safe to use static buffer
283 static int ttm_page_pool_free(struct ttm_page_pool
*pool
, unsigned nr_free
,
286 static struct page
*static_buf
[NUM_PAGES_TO_ALLOC
];
287 unsigned long irq_flags
;
289 struct page
**pages_to_free
;
290 unsigned freed_pages
= 0,
291 npages_to_free
= nr_free
;
293 if (NUM_PAGES_TO_ALLOC
< nr_free
)
294 npages_to_free
= NUM_PAGES_TO_ALLOC
;
297 pages_to_free
= static_buf
;
299 pages_to_free
= kmalloc_array(npages_to_free
,
300 sizeof(struct page
*),
302 if (!pages_to_free
) {
303 pr_debug("Failed to allocate memory for pool free operation\n");
308 spin_lock_irqsave(&pool
->lock
, irq_flags
);
310 list_for_each_entry_reverse(p
, &pool
->list
, lru
) {
311 if (freed_pages
>= npages_to_free
)
314 pages_to_free
[freed_pages
++] = p
;
315 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
316 if (freed_pages
>= NUM_PAGES_TO_ALLOC
) {
317 /* remove range of pages from the pool */
318 __list_del(p
->lru
.prev
, &pool
->list
);
320 ttm_pool_update_free_locked(pool
, freed_pages
);
322 * Because changing page caching is costly
323 * we unlock the pool to prevent stalling.
325 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
327 ttm_pages_put(pages_to_free
, freed_pages
, pool
->order
);
328 if (likely(nr_free
!= FREE_ALL_PAGES
))
329 nr_free
-= freed_pages
;
331 if (NUM_PAGES_TO_ALLOC
>= nr_free
)
332 npages_to_free
= nr_free
;
334 npages_to_free
= NUM_PAGES_TO_ALLOC
;
338 /* free all so restart the processing */
342 /* Not allowed to fall through or break because
343 * following context is inside spinlock while we are
351 /* remove range of pages from the pool */
353 __list_del(&p
->lru
, &pool
->list
);
355 ttm_pool_update_free_locked(pool
, freed_pages
);
356 nr_free
-= freed_pages
;
359 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
362 ttm_pages_put(pages_to_free
, freed_pages
, pool
->order
);
364 if (pages_to_free
!= static_buf
)
365 kfree(pages_to_free
);
370 * Callback for mm to request pool to reduce number of page held.
372 * XXX: (dchinner) Deadlock warning!
374 * This code is crying out for a shrinker per pool....
377 ttm_pool_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
379 static DEFINE_MUTEX(lock
);
380 static unsigned start_pool
;
382 unsigned pool_offset
;
383 struct ttm_page_pool
*pool
;
384 int shrink_pages
= sc
->nr_to_scan
;
385 unsigned long freed
= 0;
386 unsigned int nr_free_pool
;
388 if (!mutex_trylock(&lock
))
390 pool_offset
= ++start_pool
% NUM_POOLS
;
391 /* select start pool in round robin fashion */
392 for (i
= 0; i
< NUM_POOLS
; ++i
) {
393 unsigned nr_free
= shrink_pages
;
396 if (shrink_pages
== 0)
399 pool
= &_manager
->pools
[(i
+ pool_offset
)%NUM_POOLS
];
400 page_nr
= (1 << pool
->order
);
401 /* OK to use static buffer since global mutex is held. */
402 nr_free_pool
= roundup(nr_free
, page_nr
) >> pool
->order
;
403 shrink_pages
= ttm_page_pool_free(pool
, nr_free_pool
, true);
404 freed
+= (nr_free_pool
- shrink_pages
) << pool
->order
;
405 if (freed
>= sc
->nr_to_scan
)
407 shrink_pages
<<= pool
->order
;
415 ttm_pool_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
418 unsigned long count
= 0;
419 struct ttm_page_pool
*pool
;
421 for (i
= 0; i
< NUM_POOLS
; ++i
) {
422 pool
= &_manager
->pools
[i
];
423 count
+= (pool
->npages
<< pool
->order
);
429 static int ttm_pool_mm_shrink_init(struct ttm_pool_manager
*manager
)
431 manager
->mm_shrink
.count_objects
= ttm_pool_shrink_count
;
432 manager
->mm_shrink
.scan_objects
= ttm_pool_shrink_scan
;
433 manager
->mm_shrink
.seeks
= 1;
434 return register_shrinker(&manager
->mm_shrink
);
437 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager
*manager
)
439 unregister_shrinker(&manager
->mm_shrink
);
442 static int ttm_set_pages_caching(struct page
**pages
,
443 enum ttm_caching_state cstate
, unsigned cpages
)
446 /* Set page caching */
449 r
= ttm_set_pages_array_uc(pages
, cpages
);
451 pr_err("Failed to set %d pages to uc!\n", cpages
);
454 r
= ttm_set_pages_array_wc(pages
, cpages
);
456 pr_err("Failed to set %d pages to wc!\n", cpages
);
465 * Free pages the pages that failed to change the caching state. If there is
466 * any pages that have changed their caching state already put them to the
469 static void ttm_handle_caching_state_failure(struct list_head
*pages
,
470 int ttm_flags
, enum ttm_caching_state cstate
,
471 struct page
**failed_pages
, unsigned cpages
)
474 /* Failed pages have to be freed */
475 for (i
= 0; i
< cpages
; ++i
) {
476 list_del(&failed_pages
[i
]->lru
);
477 __free_page(failed_pages
[i
]);
482 * Allocate new pages with correct caching.
484 * This function is reentrant if caller updates count depending on number of
485 * pages returned in pages array.
487 static int ttm_alloc_new_pages(struct list_head
*pages
, gfp_t gfp_flags
,
488 int ttm_flags
, enum ttm_caching_state cstate
,
489 unsigned count
, unsigned order
)
491 struct page
**caching_array
;
494 unsigned i
, j
, cpages
;
495 unsigned npages
= 1 << order
;
496 unsigned max_cpages
= min(count
<< order
, (unsigned)NUM_PAGES_TO_ALLOC
);
498 /* allocate array for page caching change */
499 caching_array
= kmalloc_array(max_cpages
, sizeof(struct page
*),
502 if (!caching_array
) {
503 pr_debug("Unable to allocate table for new pages\n");
507 for (i
= 0, cpages
= 0; i
< count
; ++i
) {
508 p
= alloc_pages(gfp_flags
, order
);
511 pr_debug("Unable to get page %u\n", i
);
513 /* store already allocated pages in the pool after
514 * setting the caching state */
516 r
= ttm_set_pages_caching(caching_array
,
519 ttm_handle_caching_state_failure(pages
,
521 caching_array
, cpages
);
527 list_add(&p
->lru
, pages
);
529 #ifdef CONFIG_HIGHMEM
530 /* gfp flags of highmem page should never be dma32 so we
531 * we should be fine in such case
537 for (j
= 0; j
< npages
; ++j
) {
538 caching_array
[cpages
++] = p
++;
539 if (cpages
== max_cpages
) {
541 r
= ttm_set_pages_caching(caching_array
,
544 ttm_handle_caching_state_failure(pages
,
546 caching_array
, cpages
);
555 r
= ttm_set_pages_caching(caching_array
, cstate
, cpages
);
557 ttm_handle_caching_state_failure(pages
,
559 caching_array
, cpages
);
562 kfree(caching_array
);
568 * Fill the given pool if there aren't enough pages and the requested number of
571 static void ttm_page_pool_fill_locked(struct ttm_page_pool
*pool
, int ttm_flags
,
572 enum ttm_caching_state cstate
,
573 unsigned count
, unsigned long *irq_flags
)
579 * Only allow one pool fill operation at a time.
580 * If pool doesn't have enough pages for the allocation new pages are
581 * allocated from outside of pool.
586 pool
->fill_lock
= true;
588 /* If allocation request is small and there are not enough
589 * pages in a pool we fill the pool up first. */
590 if (count
< _manager
->options
.small
591 && count
> pool
->npages
) {
592 struct list_head new_pages
;
593 unsigned alloc_size
= _manager
->options
.alloc_size
;
596 * Can't change page caching if in irqsave context. We have to
597 * drop the pool->lock.
599 spin_unlock_irqrestore(&pool
->lock
, *irq_flags
);
601 INIT_LIST_HEAD(&new_pages
);
602 r
= ttm_alloc_new_pages(&new_pages
, pool
->gfp_flags
, ttm_flags
,
603 cstate
, alloc_size
, 0);
604 spin_lock_irqsave(&pool
->lock
, *irq_flags
);
607 list_splice(&new_pages
, &pool
->list
);
609 pool
->npages
+= alloc_size
;
611 pr_debug("Failed to fill pool (%p)\n", pool
);
612 /* If we have any pages left put them to the pool. */
613 list_for_each_entry(p
, &new_pages
, lru
) {
616 list_splice(&new_pages
, &pool
->list
);
617 pool
->npages
+= cpages
;
621 pool
->fill_lock
= false;
625 * Allocate pages from the pool and put them on the return list.
627 * @return zero for success or negative error code.
629 static int ttm_page_pool_get_pages(struct ttm_page_pool
*pool
,
630 struct list_head
*pages
,
632 enum ttm_caching_state cstate
,
633 unsigned count
, unsigned order
)
635 unsigned long irq_flags
;
640 spin_lock_irqsave(&pool
->lock
, irq_flags
);
642 ttm_page_pool_fill_locked(pool
, ttm_flags
, cstate
, count
,
645 if (count
>= pool
->npages
) {
646 /* take all pages from the pool */
647 list_splice_init(&pool
->list
, pages
);
648 count
-= pool
->npages
;
652 /* find the last pages to include for requested number of pages. Split
653 * pool to begin and halve it to reduce search space. */
654 if (count
<= pool
->npages
/2) {
656 list_for_each(p
, &pool
->list
) {
661 i
= pool
->npages
+ 1;
662 list_for_each_prev(p
, &pool
->list
) {
667 /* Cut 'count' number of pages from the pool */
668 list_cut_position(pages
, &pool
->list
, p
);
669 pool
->npages
-= count
;
672 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
674 /* clear the pages coming from the pool if requested */
675 if (ttm_flags
& TTM_PAGE_FLAG_ZERO_ALLOC
) {
678 list_for_each_entry(page
, pages
, lru
) {
679 if (PageHighMem(page
))
680 clear_highpage(page
);
682 clear_page(page_address(page
));
686 /* If pool didn't have enough pages allocate new one. */
688 gfp_t gfp_flags
= pool
->gfp_flags
;
690 /* set zero flag for page allocation if required */
691 if (ttm_flags
& TTM_PAGE_FLAG_ZERO_ALLOC
)
692 gfp_flags
|= __GFP_ZERO
;
694 if (ttm_flags
& TTM_PAGE_FLAG_NO_RETRY
)
695 gfp_flags
|= __GFP_RETRY_MAYFAIL
;
697 /* ttm_alloc_new_pages doesn't reference pool so we can run
698 * multiple requests in parallel.
700 r
= ttm_alloc_new_pages(pages
, gfp_flags
, ttm_flags
, cstate
,
707 /* Put all pages in pages list to correct pool to wait for reuse */
708 static void ttm_put_pages(struct page
**pages
, unsigned npages
, int flags
,
709 enum ttm_caching_state cstate
)
711 struct ttm_page_pool
*pool
= ttm_get_pool(flags
, false, cstate
);
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 struct ttm_page_pool
*huge
= ttm_get_pool(flags
, true, cstate
);
715 unsigned long irq_flags
;
719 /* No pool for this memory type so free the pages */
722 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
723 struct page
*p
= pages
[i
];
725 unsigned order
= 0, j
;
732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
733 if (!(flags
& TTM_PAGE_FLAG_DMA32
) &&
734 (npages
- i
) >= HPAGE_PMD_NR
) {
735 for (j
= 1; j
< HPAGE_PMD_NR
; ++j
)
736 if (++p
!= pages
[i
+ j
])
739 if (j
== HPAGE_PMD_NR
)
740 order
= HPAGE_PMD_ORDER
;
744 if (page_count(pages
[i
]) != 1)
745 pr_err("Erroneous page count. Leaking pages.\n");
746 __free_pages(pages
[i
], order
);
758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 unsigned max_size
, n2free
;
762 spin_lock_irqsave(&huge
->lock
, irq_flags
);
763 while ((npages
- i
) >= HPAGE_PMD_NR
) {
764 struct page
*p
= pages
[i
];
770 for (j
= 1; j
< HPAGE_PMD_NR
; ++j
)
771 if (++p
!= pages
[i
+ j
])
774 if (j
!= HPAGE_PMD_NR
)
777 list_add_tail(&pages
[i
]->lru
, &huge
->list
);
779 for (j
= 0; j
< HPAGE_PMD_NR
; ++j
)
784 /* Check that we don't go over the pool limit */
785 max_size
= _manager
->options
.max_size
;
786 max_size
/= HPAGE_PMD_NR
;
787 if (huge
->npages
> max_size
)
788 n2free
= huge
->npages
- max_size
;
791 spin_unlock_irqrestore(&huge
->lock
, irq_flags
);
793 ttm_page_pool_free(huge
, n2free
, false);
797 spin_lock_irqsave(&pool
->lock
, irq_flags
);
800 if (page_count(pages
[i
]) != 1)
801 pr_err("Erroneous page count. Leaking pages.\n");
802 list_add_tail(&pages
[i
]->lru
, &pool
->list
);
808 /* Check that we don't go over the pool limit */
810 if (pool
->npages
> _manager
->options
.max_size
) {
811 npages
= pool
->npages
- _manager
->options
.max_size
;
812 /* free at least NUM_PAGES_TO_ALLOC number of pages
813 * to reduce calls to set_memory_wb */
814 if (npages
< NUM_PAGES_TO_ALLOC
)
815 npages
= NUM_PAGES_TO_ALLOC
;
817 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
819 ttm_page_pool_free(pool
, npages
, false);
823 * On success pages list will hold count number of correctly
826 static int ttm_get_pages(struct page
**pages
, unsigned npages
, int flags
,
827 enum ttm_caching_state cstate
)
829 struct ttm_page_pool
*pool
= ttm_get_pool(flags
, false, cstate
);
830 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
831 struct ttm_page_pool
*huge
= ttm_get_pool(flags
, true, cstate
);
833 struct list_head plist
;
834 struct page
*p
= NULL
;
835 unsigned count
, first
;
838 /* No pool for cached pages */
840 gfp_t gfp_flags
= GFP_USER
;
842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
846 /* set zero flag for page allocation if required */
847 if (flags
& TTM_PAGE_FLAG_ZERO_ALLOC
)
848 gfp_flags
|= __GFP_ZERO
;
850 if (flags
& TTM_PAGE_FLAG_NO_RETRY
)
851 gfp_flags
|= __GFP_RETRY_MAYFAIL
;
853 if (flags
& TTM_PAGE_FLAG_DMA32
)
854 gfp_flags
|= GFP_DMA32
;
856 gfp_flags
|= GFP_HIGHUSER
;
859 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
860 if (!(gfp_flags
& GFP_DMA32
)) {
861 while (npages
>= HPAGE_PMD_NR
) {
862 gfp_t huge_flags
= gfp_flags
;
864 huge_flags
|= GFP_TRANSHUGE_LIGHT
| __GFP_NORETRY
|
865 __GFP_KSWAPD_RECLAIM
;
866 huge_flags
&= ~__GFP_MOVABLE
;
867 huge_flags
&= ~__GFP_COMP
;
868 p
= alloc_pages(huge_flags
, HPAGE_PMD_ORDER
);
872 for (j
= 0; j
< HPAGE_PMD_NR
; ++j
)
875 npages
-= HPAGE_PMD_NR
;
882 p
= alloc_page(gfp_flags
);
884 pr_debug("Unable to allocate page\n");
888 /* Swap the pages if we detect consecutive order */
889 if (i
> first
&& pages
[i
- 1] == p
- 1)
890 swap(p
, pages
[i
- 1]);
900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
901 if (huge
&& npages
>= HPAGE_PMD_NR
) {
902 INIT_LIST_HEAD(&plist
);
903 ttm_page_pool_get_pages(huge
, &plist
, flags
, cstate
,
904 npages
/ HPAGE_PMD_NR
,
907 list_for_each_entry(p
, &plist
, lru
) {
910 for (j
= 0; j
< HPAGE_PMD_NR
; ++j
)
911 pages
[count
++] = &p
[j
];
916 INIT_LIST_HEAD(&plist
);
917 r
= ttm_page_pool_get_pages(pool
, &plist
, flags
, cstate
,
921 list_for_each_entry(p
, &plist
, lru
) {
922 struct page
*tmp
= p
;
924 /* Swap the pages if we detect consecutive order */
925 if (count
> first
&& pages
[count
- 1] == tmp
- 1)
926 swap(tmp
, pages
[count
- 1]);
927 pages
[count
++] = tmp
;
931 /* If there is any pages in the list put them back to
934 pr_debug("Failed to allocate extra pages for large request\n");
935 ttm_put_pages(pages
, count
, flags
, cstate
);
942 static void ttm_page_pool_init_locked(struct ttm_page_pool
*pool
, gfp_t flags
,
943 char *name
, unsigned int order
)
945 spin_lock_init(&pool
->lock
);
946 pool
->fill_lock
= false;
947 INIT_LIST_HEAD(&pool
->list
);
948 pool
->npages
= pool
->nfrees
= 0;
949 pool
->gfp_flags
= flags
;
954 int ttm_page_alloc_init(struct ttm_mem_global
*glob
, unsigned max_pages
)
957 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
958 unsigned order
= HPAGE_PMD_ORDER
;
965 pr_info("Initializing pool allocator\n");
967 _manager
= kzalloc(sizeof(*_manager
), GFP_KERNEL
);
971 ttm_page_pool_init_locked(&_manager
->wc_pool
, GFP_HIGHUSER
, "wc", 0);
973 ttm_page_pool_init_locked(&_manager
->uc_pool
, GFP_HIGHUSER
, "uc", 0);
975 ttm_page_pool_init_locked(&_manager
->wc_pool_dma32
,
976 GFP_USER
| GFP_DMA32
, "wc dma", 0);
978 ttm_page_pool_init_locked(&_manager
->uc_pool_dma32
,
979 GFP_USER
| GFP_DMA32
, "uc dma", 0);
981 ttm_page_pool_init_locked(&_manager
->wc_pool_huge
,
982 (GFP_TRANSHUGE_LIGHT
| __GFP_NORETRY
|
983 __GFP_KSWAPD_RECLAIM
) &
984 ~(__GFP_MOVABLE
| __GFP_COMP
),
987 ttm_page_pool_init_locked(&_manager
->uc_pool_huge
,
988 (GFP_TRANSHUGE_LIGHT
| __GFP_NORETRY
|
989 __GFP_KSWAPD_RECLAIM
) &
990 ~(__GFP_MOVABLE
| __GFP_COMP
)
993 _manager
->options
.max_size
= max_pages
;
994 _manager
->options
.small
= SMALL_ALLOCATION
;
995 _manager
->options
.alloc_size
= NUM_PAGES_TO_ALLOC
;
997 ret
= kobject_init_and_add(&_manager
->kobj
, &ttm_pool_kobj_type
,
998 &glob
->kobj
, "pool");
999 if (unlikely(ret
!= 0))
1002 ret
= ttm_pool_mm_shrink_init(_manager
);
1003 if (unlikely(ret
!= 0))
1008 kobject_put(&_manager
->kobj
);
1013 void ttm_page_alloc_fini(void)
1017 pr_info("Finalizing pool allocator\n");
1018 ttm_pool_mm_shrink_fini(_manager
);
1020 /* OK to use static buffer since global mutex is no longer used. */
1021 for (i
= 0; i
< NUM_POOLS
; ++i
)
1022 ttm_page_pool_free(&_manager
->pools
[i
], FREE_ALL_PAGES
, true);
1024 kobject_put(&_manager
->kobj
);
1029 ttm_pool_unpopulate_helper(struct ttm_tt
*ttm
, unsigned mem_count_update
)
1031 struct ttm_mem_global
*mem_glob
= &ttm_mem_glob
;
1034 if (mem_count_update
== 0)
1037 for (i
= 0; i
< mem_count_update
; ++i
) {
1041 ttm_mem_global_free_page(mem_glob
, ttm
->pages
[i
], PAGE_SIZE
);
1045 ttm_put_pages(ttm
->pages
, ttm
->num_pages
, ttm
->page_flags
,
1046 ttm
->caching_state
);
1047 ttm
->state
= tt_unpopulated
;
1050 int ttm_pool_populate(struct ttm_tt
*ttm
, struct ttm_operation_ctx
*ctx
)
1052 struct ttm_mem_global
*mem_glob
= &ttm_mem_glob
;
1056 if (ttm
->state
!= tt_unpopulated
)
1059 if (ttm_check_under_lowerlimit(mem_glob
, ttm
->num_pages
, ctx
))
1062 ret
= ttm_get_pages(ttm
->pages
, ttm
->num_pages
, ttm
->page_flags
,
1063 ttm
->caching_state
);
1064 if (unlikely(ret
!= 0)) {
1065 ttm_pool_unpopulate_helper(ttm
, 0);
1069 for (i
= 0; i
< ttm
->num_pages
; ++i
) {
1070 ret
= ttm_mem_global_alloc_page(mem_glob
, ttm
->pages
[i
],
1072 if (unlikely(ret
!= 0)) {
1073 ttm_pool_unpopulate_helper(ttm
, i
);
1078 if (unlikely(ttm
->page_flags
& TTM_PAGE_FLAG_SWAPPED
)) {
1079 ret
= ttm_tt_swapin(ttm
);
1080 if (unlikely(ret
!= 0)) {
1081 ttm_pool_unpopulate(ttm
);
1086 ttm
->state
= tt_unbound
;
1089 EXPORT_SYMBOL(ttm_pool_populate
);
1091 void ttm_pool_unpopulate(struct ttm_tt
*ttm
)
1093 ttm_pool_unpopulate_helper(ttm
, ttm
->num_pages
);
1095 EXPORT_SYMBOL(ttm_pool_unpopulate
);
1097 int ttm_populate_and_map_pages(struct device
*dev
, struct ttm_dma_tt
*tt
,
1098 struct ttm_operation_ctx
*ctx
)
1103 r
= ttm_pool_populate(&tt
->ttm
, ctx
);
1107 for (i
= 0; i
< tt
->ttm
.num_pages
; ++i
) {
1108 struct page
*p
= tt
->ttm
.pages
[i
];
1109 size_t num_pages
= 1;
1111 for (j
= i
+ 1; j
< tt
->ttm
.num_pages
; ++j
) {
1112 if (++p
!= tt
->ttm
.pages
[j
])
1118 tt
->dma_address
[i
] = dma_map_page(dev
, tt
->ttm
.pages
[i
],
1119 0, num_pages
* PAGE_SIZE
,
1121 if (dma_mapping_error(dev
, tt
->dma_address
[i
])) {
1123 dma_unmap_page(dev
, tt
->dma_address
[i
],
1124 PAGE_SIZE
, DMA_BIDIRECTIONAL
);
1125 tt
->dma_address
[i
] = 0;
1127 ttm_pool_unpopulate(&tt
->ttm
);
1131 for (j
= 1; j
< num_pages
; ++j
) {
1132 tt
->dma_address
[i
+ 1] = tt
->dma_address
[i
] + PAGE_SIZE
;
1138 EXPORT_SYMBOL(ttm_populate_and_map_pages
);
1140 void ttm_unmap_and_unpopulate_pages(struct device
*dev
, struct ttm_dma_tt
*tt
)
1144 for (i
= 0; i
< tt
->ttm
.num_pages
;) {
1145 struct page
*p
= tt
->ttm
.pages
[i
];
1146 size_t num_pages
= 1;
1148 if (!tt
->dma_address
[i
] || !tt
->ttm
.pages
[i
]) {
1153 for (j
= i
+ 1; j
< tt
->ttm
.num_pages
; ++j
) {
1154 if (++p
!= tt
->ttm
.pages
[j
])
1160 dma_unmap_page(dev
, tt
->dma_address
[i
], num_pages
* PAGE_SIZE
,
1165 ttm_pool_unpopulate(&tt
->ttm
);
1167 EXPORT_SYMBOL(ttm_unmap_and_unpopulate_pages
);
1169 int ttm_page_alloc_debugfs(struct seq_file
*m
, void *data
)
1171 struct ttm_page_pool
*p
;
1173 char *h
[] = {"pool", "refills", "pages freed", "size"};
1175 seq_printf(m
, "No pool allocator running.\n");
1178 seq_printf(m
, "%7s %12s %13s %8s\n",
1179 h
[0], h
[1], h
[2], h
[3]);
1180 for (i
= 0; i
< NUM_POOLS
; ++i
) {
1181 p
= &_manager
->pools
[i
];
1183 seq_printf(m
, "%7s %12ld %13ld %8d\n",
1184 p
->name
, p
->nrefills
,
1185 p
->nfrees
, p
->npages
);
1189 EXPORT_SYMBOL(ttm_page_alloc_debugfs
);