2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
29 * - Pool collects resently freed pages for reuse (and hooks up to
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
36 #define pr_fmt(fmt) "[TTM] " fmt
38 #include <linux/dma-mapping.h>
39 #include <linux/list.h>
40 #include <linux/seq_file.h> /* for seq_printf */
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/highmem.h>
44 #include <linux/mm_types.h>
45 #include <linux/module.h>
47 #include <linux/atomic.h>
48 #include <linux/device.h>
49 #include <linux/kthread.h>
50 #include <drm/ttm/ttm_bo_driver.h>
51 #include <drm/ttm/ttm_page_alloc.h>
52 #include <drm/ttm/ttm_set_memory.h>
54 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
55 #define SMALL_ALLOCATION 4
56 #define FREE_ALL_PAGES (~0U)
57 #define VADDR_FLAG_HUGE_POOL 1UL
58 #define VADDR_FLAG_UPDATED_COUNT 2UL
70 * The pool structure. There are up to nine pools:
71 * - generic (not restricted to DMA32):
72 * - write combined, uncached, cached.
73 * - dma32 (up to 2^32 - so up 4GB):
74 * - write combined, uncached, cached.
75 * - huge (not restricted to DMA32):
76 * - write combined, uncached, cached.
77 * for each 'struct device'. The 'cached' is for pages that are actively used.
78 * The other ones can be shrunk by the shrinker API if neccessary.
79 * @pools: The 'struct device->dma_pools' link.
80 * @type: Type of the pool
81 * @lock: Protects the free_list from concurrnet access. Must be
82 * used with irqsave/irqrestore variants because pool allocator maybe called
84 * @free_list: Pool of pages that are free to be used. No order requirements.
85 * @dev: The device that is associated with these pools.
86 * @size: Size used during DMA allocation.
87 * @npages_free: Count of available pages for re-use.
88 * @npages_in_use: Count of pages that are in use.
89 * @nfrees: Stats when pool is shrinking.
90 * @nrefills: Stats when the pool is grown.
91 * @gfp_flags: Flags to pass for alloc_page.
92 * @name: Name of the pool.
93 * @dev_name: Name derieved from dev - similar to how dev_info works.
94 * Used during shutdown as the dev_info during release is unavailable.
97 struct list_head pools
; /* The 'struct device->dma_pools link */
100 struct list_head free_list
;
103 unsigned npages_free
;
104 unsigned npages_in_use
;
105 unsigned long nfrees
; /* Stats when shrunk. */
106 unsigned long nrefills
; /* Stats when grown. */
108 char name
[13]; /* "cached dma32" */
109 char dev_name
[64]; /* Constructed from dev */
113 * The accounting page keeping track of the allocated page along with
115 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
116 * @vaddr: The virtual address of the page and a flag if the page belongs to a
118 * @dma: The bus address of the page. If the page is not allocated
119 * via the DMA API, it will be -1.
122 struct list_head page_list
;
129 * Limits for the pool. They are handled without locks because only place where
130 * they may change is in sysfs store. They won't have immediate effect anyway
131 * so forcing serialization to access them is pointless.
134 struct ttm_pool_opts
{
141 * Contains the list of all of the 'struct device' and their corresponding
142 * DMA pools. Guarded by _mutex->lock.
143 * @pools: The link to 'struct ttm_pool_manager->pools'
144 * @dev: The 'struct device' associated with the 'pool'
145 * @pool: The 'struct dma_pool' associated with the 'dev'
147 struct device_pools
{
148 struct list_head pools
;
150 struct dma_pool
*pool
;
154 * struct ttm_pool_manager - Holds memory pools for fast allocation
156 * @lock: Lock used when adding/removing from pools
157 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
158 * @options: Limits for the pool.
159 * @npools: Total amount of pools in existence.
160 * @shrinker: The structure used by [un|]register_shrinker
162 struct ttm_pool_manager
{
164 struct list_head pools
;
165 struct ttm_pool_opts options
;
167 struct shrinker mm_shrink
;
171 static struct ttm_pool_manager
*_manager
;
173 static struct attribute ttm_page_pool_max
= {
174 .name
= "pool_max_size",
175 .mode
= S_IRUGO
| S_IWUSR
177 static struct attribute ttm_page_pool_small
= {
178 .name
= "pool_small_allocation",
179 .mode
= S_IRUGO
| S_IWUSR
181 static struct attribute ttm_page_pool_alloc_size
= {
182 .name
= "pool_allocation_size",
183 .mode
= S_IRUGO
| S_IWUSR
186 static struct attribute
*ttm_pool_attrs
[] = {
188 &ttm_page_pool_small
,
189 &ttm_page_pool_alloc_size
,
193 static void ttm_pool_kobj_release(struct kobject
*kobj
)
195 struct ttm_pool_manager
*m
=
196 container_of(kobj
, struct ttm_pool_manager
, kobj
);
200 static ssize_t
ttm_pool_store(struct kobject
*kobj
, struct attribute
*attr
,
201 const char *buffer
, size_t size
)
203 struct ttm_pool_manager
*m
=
204 container_of(kobj
, struct ttm_pool_manager
, kobj
);
208 chars
= sscanf(buffer
, "%u", &val
);
212 /* Convert kb to number of pages */
213 val
= val
/ (PAGE_SIZE
>> 10);
215 if (attr
== &ttm_page_pool_max
) {
216 m
->options
.max_size
= val
;
217 } else if (attr
== &ttm_page_pool_small
) {
218 m
->options
.small
= val
;
219 } else if (attr
== &ttm_page_pool_alloc_size
) {
220 if (val
> NUM_PAGES_TO_ALLOC
*8) {
221 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
222 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 7),
223 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
225 } else if (val
> NUM_PAGES_TO_ALLOC
) {
226 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
227 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
229 m
->options
.alloc_size
= val
;
235 static ssize_t
ttm_pool_show(struct kobject
*kobj
, struct attribute
*attr
,
238 struct ttm_pool_manager
*m
=
239 container_of(kobj
, struct ttm_pool_manager
, kobj
);
242 if (attr
== &ttm_page_pool_max
)
243 val
= m
->options
.max_size
;
244 else if (attr
== &ttm_page_pool_small
)
245 val
= m
->options
.small
;
246 else if (attr
== &ttm_page_pool_alloc_size
)
247 val
= m
->options
.alloc_size
;
249 val
= val
* (PAGE_SIZE
>> 10);
251 return snprintf(buffer
, PAGE_SIZE
, "%u\n", val
);
254 static const struct sysfs_ops ttm_pool_sysfs_ops
= {
255 .show
= &ttm_pool_show
,
256 .store
= &ttm_pool_store
,
259 static struct kobj_type ttm_pool_kobj_type
= {
260 .release
= &ttm_pool_kobj_release
,
261 .sysfs_ops
= &ttm_pool_sysfs_ops
,
262 .default_attrs
= ttm_pool_attrs
,
265 static int ttm_set_pages_caching(struct dma_pool
*pool
,
266 struct page
**pages
, unsigned cpages
)
269 /* Set page caching */
270 if (pool
->type
& IS_UC
) {
271 r
= ttm_set_pages_array_uc(pages
, cpages
);
273 pr_err("%s: Failed to set %d pages to uc!\n",
274 pool
->dev_name
, cpages
);
276 if (pool
->type
& IS_WC
) {
277 r
= ttm_set_pages_array_wc(pages
, cpages
);
279 pr_err("%s: Failed to set %d pages to wc!\n",
280 pool
->dev_name
, cpages
);
285 static void __ttm_dma_free_page(struct dma_pool
*pool
, struct dma_page
*d_page
)
287 unsigned long attrs
= 0;
288 dma_addr_t dma
= d_page
->dma
;
289 d_page
->vaddr
&= ~VADDR_FLAG_HUGE_POOL
;
290 if (pool
->type
& IS_HUGE
)
291 attrs
= DMA_ATTR_NO_WARN
;
293 dma_free_attrs(pool
->dev
, pool
->size
, (void *)d_page
->vaddr
, dma
, attrs
);
298 static struct dma_page
*__ttm_dma_alloc_page(struct dma_pool
*pool
)
300 struct dma_page
*d_page
;
301 unsigned long attrs
= 0;
304 d_page
= kmalloc(sizeof(struct dma_page
), GFP_KERNEL
);
308 if (pool
->type
& IS_HUGE
)
309 attrs
= DMA_ATTR_NO_WARN
;
311 vaddr
= dma_alloc_attrs(pool
->dev
, pool
->size
, &d_page
->dma
,
312 pool
->gfp_flags
, attrs
);
314 if (is_vmalloc_addr(vaddr
))
315 d_page
->p
= vmalloc_to_page(vaddr
);
317 d_page
->p
= virt_to_page(vaddr
);
318 d_page
->vaddr
= (unsigned long)vaddr
;
319 if (pool
->type
& IS_HUGE
)
320 d_page
->vaddr
|= VADDR_FLAG_HUGE_POOL
;
327 static enum pool_type
ttm_to_type(int flags
, enum ttm_caching_state cstate
)
329 enum pool_type type
= IS_UNDEFINED
;
331 if (flags
& TTM_PAGE_FLAG_DMA32
)
333 if (cstate
== tt_cached
)
335 else if (cstate
== tt_uncached
)
343 static void ttm_pool_update_free_locked(struct dma_pool
*pool
,
344 unsigned freed_pages
)
346 pool
->npages_free
-= freed_pages
;
347 pool
->nfrees
+= freed_pages
;
351 /* set memory back to wb and free the pages. */
352 static void ttm_dma_page_put(struct dma_pool
*pool
, struct dma_page
*d_page
)
354 struct page
*page
= d_page
->p
;
357 /* Don't set WB on WB page pool. */
358 if (!(pool
->type
& IS_CACHED
)) {
359 num_pages
= pool
->size
/ PAGE_SIZE
;
360 if (ttm_set_pages_wb(page
, num_pages
))
361 pr_err("%s: Failed to set %d pages to wb!\n",
362 pool
->dev_name
, num_pages
);
365 list_del(&d_page
->page_list
);
366 __ttm_dma_free_page(pool
, d_page
);
369 static void ttm_dma_pages_put(struct dma_pool
*pool
, struct list_head
*d_pages
,
370 struct page
*pages
[], unsigned npages
)
372 struct dma_page
*d_page
, *tmp
;
374 if (pool
->type
& IS_HUGE
) {
375 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
)
376 ttm_dma_page_put(pool
, d_page
);
381 /* Don't set WB on WB page pool. */
382 if (npages
&& !(pool
->type
& IS_CACHED
) &&
383 ttm_set_pages_array_wb(pages
, npages
))
384 pr_err("%s: Failed to set %d pages to wb!\n",
385 pool
->dev_name
, npages
);
387 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
388 list_del(&d_page
->page_list
);
389 __ttm_dma_free_page(pool
, d_page
);
394 * Free pages from pool.
396 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
397 * number of pages in one go.
399 * @pool: to free the pages from
400 * @nr_free: If set to true will free all pages in pool
401 * @use_static: Safe to use static buffer
403 static unsigned ttm_dma_page_pool_free(struct dma_pool
*pool
, unsigned nr_free
,
406 static struct page
*static_buf
[NUM_PAGES_TO_ALLOC
];
407 unsigned long irq_flags
;
408 struct dma_page
*dma_p
, *tmp
;
409 struct page
**pages_to_free
;
410 struct list_head d_pages
;
411 unsigned freed_pages
= 0,
412 npages_to_free
= nr_free
;
414 if (NUM_PAGES_TO_ALLOC
< nr_free
)
415 npages_to_free
= NUM_PAGES_TO_ALLOC
;
418 pages_to_free
= static_buf
;
420 pages_to_free
= kmalloc_array(npages_to_free
,
421 sizeof(struct page
*),
424 if (!pages_to_free
) {
425 pr_debug("%s: Failed to allocate memory for pool free operation\n",
429 INIT_LIST_HEAD(&d_pages
);
431 spin_lock_irqsave(&pool
->lock
, irq_flags
);
433 /* We picking the oldest ones off the list */
434 list_for_each_entry_safe_reverse(dma_p
, tmp
, &pool
->free_list
,
436 if (freed_pages
>= npages_to_free
)
439 /* Move the dma_page from one list to another. */
440 list_move(&dma_p
->page_list
, &d_pages
);
442 pages_to_free
[freed_pages
++] = dma_p
->p
;
443 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
444 if (freed_pages
>= NUM_PAGES_TO_ALLOC
) {
446 ttm_pool_update_free_locked(pool
, freed_pages
);
448 * Because changing page caching is costly
449 * we unlock the pool to prevent stalling.
451 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
453 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
,
456 INIT_LIST_HEAD(&d_pages
);
458 if (likely(nr_free
!= FREE_ALL_PAGES
))
459 nr_free
-= freed_pages
;
461 if (NUM_PAGES_TO_ALLOC
>= nr_free
)
462 npages_to_free
= nr_free
;
464 npages_to_free
= NUM_PAGES_TO_ALLOC
;
468 /* free all so restart the processing */
472 /* Not allowed to fall through or break because
473 * following context is inside spinlock while we are
481 /* remove range of pages from the pool */
483 ttm_pool_update_free_locked(pool
, freed_pages
);
484 nr_free
-= freed_pages
;
487 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
490 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
, freed_pages
);
492 if (pages_to_free
!= static_buf
)
493 kfree(pages_to_free
);
497 static void ttm_dma_free_pool(struct device
*dev
, enum pool_type type
)
499 struct device_pools
*p
;
500 struct dma_pool
*pool
;
505 mutex_lock(&_manager
->lock
);
506 list_for_each_entry_reverse(p
, &_manager
->pools
, pools
) {
510 if (pool
->type
!= type
)
518 list_for_each_entry_reverse(pool
, &dev
->dma_pools
, pools
) {
519 if (pool
->type
!= type
)
521 /* Takes a spinlock.. */
522 /* OK to use static buffer since global mutex is held. */
523 ttm_dma_page_pool_free(pool
, FREE_ALL_PAGES
, true);
524 WARN_ON(((pool
->npages_in_use
+ pool
->npages_free
) != 0));
525 /* This code path is called after _all_ references to the
526 * struct device has been dropped - so nobody should be
527 * touching it. In case somebody is trying to _add_ we are
528 * guarded by the mutex. */
529 list_del(&pool
->pools
);
533 mutex_unlock(&_manager
->lock
);
537 * On free-ing of the 'struct device' this deconstructor is run.
538 * Albeit the pool might have already been freed earlier.
540 static void ttm_dma_pool_release(struct device
*dev
, void *res
)
542 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
545 ttm_dma_free_pool(dev
, pool
->type
);
548 static int ttm_dma_pool_match(struct device
*dev
, void *res
, void *match_data
)
550 return *(struct dma_pool
**)res
== match_data
;
553 static struct dma_pool
*ttm_dma_pool_init(struct device
*dev
, gfp_t flags
,
556 const char *n
[] = {"wc", "uc", "cached", " dma32", "huge"};
557 enum pool_type t
[] = {IS_WC
, IS_UC
, IS_CACHED
, IS_DMA32
, IS_HUGE
};
558 struct device_pools
*sec_pool
= NULL
;
559 struct dma_pool
*pool
= NULL
, **ptr
;
567 ptr
= devres_alloc(ttm_dma_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
573 pool
= kmalloc_node(sizeof(struct dma_pool
), GFP_KERNEL
,
578 sec_pool
= kmalloc_node(sizeof(struct device_pools
), GFP_KERNEL
,
583 INIT_LIST_HEAD(&sec_pool
->pools
);
585 sec_pool
->pool
= pool
;
587 INIT_LIST_HEAD(&pool
->free_list
);
588 INIT_LIST_HEAD(&pool
->pools
);
589 spin_lock_init(&pool
->lock
);
591 pool
->npages_free
= pool
->npages_in_use
= 0;
593 pool
->gfp_flags
= flags
;
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 pool
->size
= HPAGE_PMD_SIZE
;
601 pool
->size
= PAGE_SIZE
;
605 for (i
= 0; i
< ARRAY_SIZE(t
); i
++) {
607 p
+= snprintf(p
, sizeof(pool
->name
) - (p
- pool
->name
),
612 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
613 * - the kobj->name has already been deallocated.*/
614 snprintf(pool
->dev_name
, sizeof(pool
->dev_name
), "%s %s",
615 dev_driver_string(dev
), dev_name(dev
));
616 mutex_lock(&_manager
->lock
);
617 /* You can get the dma_pool from either the global: */
618 list_add(&sec_pool
->pools
, &_manager
->pools
);
620 /* or from 'struct device': */
621 list_add(&pool
->pools
, &dev
->dma_pools
);
622 mutex_unlock(&_manager
->lock
);
625 devres_add(dev
, ptr
);
635 static struct dma_pool
*ttm_dma_find_pool(struct device
*dev
,
638 struct dma_pool
*pool
, *tmp
;
640 if (type
== IS_UNDEFINED
)
643 /* NB: We iterate on the 'struct dev' which has no spinlock, but
644 * it does have a kref which we have taken. The kref is taken during
645 * graphic driver loading - in the drm_pci_init it calls either
646 * pci_dev_get or pci_register_driver which both end up taking a kref
647 * on 'struct device'.
649 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
650 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
651 * thing is at that point of time there are no pages associated with the
652 * driver so this function will not be called.
654 list_for_each_entry_safe(pool
, tmp
, &dev
->dma_pools
, pools
)
655 if (pool
->type
== type
)
661 * Free pages the pages that failed to change the caching state. If there
662 * are pages that have changed their caching state already put them to the
665 static void ttm_dma_handle_caching_state_failure(struct dma_pool
*pool
,
666 struct list_head
*d_pages
,
667 struct page
**failed_pages
,
670 struct dma_page
*d_page
, *tmp
;
677 /* Find the failed page. */
678 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
681 /* .. and then progress over the full list. */
682 list_del(&d_page
->page_list
);
683 __ttm_dma_free_page(pool
, d_page
);
693 * Allocate 'count' pages, and put 'need' number of them on the
694 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
695 * The full list of pages should also be on 'd_pages'.
696 * We return zero for success, and negative numbers as errors.
698 static int ttm_dma_pool_alloc_new_pages(struct dma_pool
*pool
,
699 struct list_head
*d_pages
,
702 struct page
**caching_array
;
703 struct dma_page
*dma_p
;
706 unsigned i
, j
, npages
, cpages
;
707 unsigned max_cpages
= min(count
,
708 (unsigned)(PAGE_SIZE
/sizeof(struct page
*)));
710 /* allocate array for page caching change */
711 caching_array
= kmalloc_array(max_cpages
, sizeof(struct page
*),
714 if (!caching_array
) {
715 pr_debug("%s: Unable to allocate table for new pages\n",
721 pr_debug("%s: (%s:%d) Getting %d pages\n",
722 pool
->dev_name
, pool
->name
, current
->pid
, count
);
724 for (i
= 0, cpages
= 0; i
< count
; ++i
) {
725 dma_p
= __ttm_dma_alloc_page(pool
);
727 pr_debug("%s: Unable to get page %u\n",
730 /* store already allocated pages in the pool after
731 * setting the caching state */
733 r
= ttm_set_pages_caching(pool
, caching_array
,
736 ttm_dma_handle_caching_state_failure(
737 pool
, d_pages
, caching_array
,
744 list_add(&dma_p
->page_list
, d_pages
);
746 #ifdef CONFIG_HIGHMEM
747 /* gfp flags of highmem page should never be dma32 so we
748 * we should be fine in such case
754 npages
= pool
->size
/ PAGE_SIZE
;
755 for (j
= 0; j
< npages
; ++j
) {
756 caching_array
[cpages
++] = p
+ j
;
757 if (cpages
== max_cpages
) {
758 /* Note: Cannot hold the spinlock */
759 r
= ttm_set_pages_caching(pool
, caching_array
,
762 ttm_dma_handle_caching_state_failure(
763 pool
, d_pages
, caching_array
,
773 r
= ttm_set_pages_caching(pool
, caching_array
, cpages
);
775 ttm_dma_handle_caching_state_failure(pool
, d_pages
,
776 caching_array
, cpages
);
779 kfree(caching_array
);
784 * @return count of pages still required to fulfill the request.
786 static int ttm_dma_page_pool_fill_locked(struct dma_pool
*pool
,
787 unsigned long *irq_flags
)
789 unsigned count
= _manager
->options
.small
;
790 int r
= pool
->npages_free
;
792 if (count
> pool
->npages_free
) {
793 struct list_head d_pages
;
795 INIT_LIST_HEAD(&d_pages
);
797 spin_unlock_irqrestore(&pool
->lock
, *irq_flags
);
799 /* Returns how many more are neccessary to fulfill the
801 r
= ttm_dma_pool_alloc_new_pages(pool
, &d_pages
, count
);
803 spin_lock_irqsave(&pool
->lock
, *irq_flags
);
805 /* Add the fresh to the end.. */
806 list_splice(&d_pages
, &pool
->free_list
);
808 pool
->npages_free
+= count
;
811 struct dma_page
*d_page
;
814 pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
815 pool
->dev_name
, pool
->name
, r
);
817 list_for_each_entry(d_page
, &d_pages
, page_list
) {
820 list_splice_tail(&d_pages
, &pool
->free_list
);
821 pool
->npages_free
+= cpages
;
829 * The populate list is actually a stack (not that is matters as TTM
830 * allocates one page at a time.
831 * return dma_page pointer if success, otherwise NULL.
833 static struct dma_page
*ttm_dma_pool_get_pages(struct dma_pool
*pool
,
834 struct ttm_dma_tt
*ttm_dma
,
837 struct dma_page
*d_page
= NULL
;
838 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
839 unsigned long irq_flags
;
842 spin_lock_irqsave(&pool
->lock
, irq_flags
);
843 count
= ttm_dma_page_pool_fill_locked(pool
, &irq_flags
);
845 d_page
= list_first_entry(&pool
->free_list
, struct dma_page
, page_list
);
846 ttm
->pages
[index
] = d_page
->p
;
847 ttm_dma
->dma_address
[index
] = d_page
->dma
;
848 list_move_tail(&d_page
->page_list
, &ttm_dma
->pages_list
);
849 pool
->npages_in_use
+= 1;
850 pool
->npages_free
-= 1;
852 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
856 static gfp_t
ttm_dma_pool_gfp_flags(struct ttm_dma_tt
*ttm_dma
, bool huge
)
858 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
861 if (ttm
->page_flags
& TTM_PAGE_FLAG_DMA32
)
862 gfp_flags
= GFP_USER
| GFP_DMA32
;
864 gfp_flags
= GFP_HIGHUSER
;
865 if (ttm
->page_flags
& TTM_PAGE_FLAG_ZERO_ALLOC
)
866 gfp_flags
|= __GFP_ZERO
;
869 gfp_flags
|= GFP_TRANSHUGE_LIGHT
| __GFP_NORETRY
|
870 __GFP_KSWAPD_RECLAIM
;
871 gfp_flags
&= ~__GFP_MOVABLE
;
872 gfp_flags
&= ~__GFP_COMP
;
875 if (ttm
->page_flags
& TTM_PAGE_FLAG_NO_RETRY
)
876 gfp_flags
|= __GFP_RETRY_MAYFAIL
;
882 * On success pages list will hold count number of correctly
883 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
885 int ttm_dma_populate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
,
886 struct ttm_operation_ctx
*ctx
)
888 struct ttm_mem_global
*mem_glob
= &ttm_mem_glob
;
889 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
890 unsigned long num_pages
= ttm
->num_pages
;
891 struct dma_pool
*pool
;
892 struct dma_page
*d_page
;
897 if (ttm
->state
!= tt_unpopulated
)
900 if (ttm_check_under_lowerlimit(mem_glob
, num_pages
, ctx
))
903 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
906 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
909 if (ttm
->page_flags
& TTM_PAGE_FLAG_DMA32
)
912 pool
= ttm_dma_find_pool(dev
, type
| IS_HUGE
);
914 gfp_t gfp_flags
= ttm_dma_pool_gfp_flags(ttm_dma
, true);
916 pool
= ttm_dma_pool_init(dev
, gfp_flags
, type
| IS_HUGE
);
917 if (IS_ERR_OR_NULL(pool
))
921 while (num_pages
>= HPAGE_PMD_NR
) {
924 d_page
= ttm_dma_pool_get_pages(pool
, ttm_dma
, i
);
928 ret
= ttm_mem_global_alloc_page(mem_glob
, ttm
->pages
[i
],
930 if (unlikely(ret
!= 0)) {
931 ttm_dma_unpopulate(ttm_dma
, dev
);
935 d_page
->vaddr
|= VADDR_FLAG_UPDATED_COUNT
;
936 for (j
= i
+ 1; j
< (i
+ HPAGE_PMD_NR
); ++j
) {
937 ttm
->pages
[j
] = ttm
->pages
[j
- 1] + 1;
938 ttm_dma
->dma_address
[j
] = ttm_dma
->dma_address
[j
- 1] +
943 num_pages
-= HPAGE_PMD_NR
;
949 pool
= ttm_dma_find_pool(dev
, type
);
951 gfp_t gfp_flags
= ttm_dma_pool_gfp_flags(ttm_dma
, false);
953 pool
= ttm_dma_pool_init(dev
, gfp_flags
, type
);
954 if (IS_ERR_OR_NULL(pool
))
959 d_page
= ttm_dma_pool_get_pages(pool
, ttm_dma
, i
);
961 ttm_dma_unpopulate(ttm_dma
, dev
);
965 ret
= ttm_mem_global_alloc_page(mem_glob
, ttm
->pages
[i
],
967 if (unlikely(ret
!= 0)) {
968 ttm_dma_unpopulate(ttm_dma
, dev
);
972 d_page
->vaddr
|= VADDR_FLAG_UPDATED_COUNT
;
977 if (unlikely(ttm
->page_flags
& TTM_PAGE_FLAG_SWAPPED
)) {
978 ret
= ttm_tt_swapin(ttm
);
979 if (unlikely(ret
!= 0)) {
980 ttm_dma_unpopulate(ttm_dma
, dev
);
985 ttm
->state
= tt_unbound
;
988 EXPORT_SYMBOL_GPL(ttm_dma_populate
);
990 /* Put all pages in pages list to correct pool to wait for reuse */
991 void ttm_dma_unpopulate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
)
993 struct ttm_mem_global
*mem_glob
= &ttm_mem_glob
;
994 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
995 struct dma_pool
*pool
;
996 struct dma_page
*d_page
, *next
;
998 bool is_cached
= false;
999 unsigned count
, i
, npages
= 0;
1000 unsigned long irq_flags
;
1002 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
1004 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1005 pool
= ttm_dma_find_pool(dev
, type
| IS_HUGE
);
1008 list_for_each_entry_safe(d_page
, next
, &ttm_dma
->pages_list
,
1010 if (!(d_page
->vaddr
& VADDR_FLAG_HUGE_POOL
))
1014 if (d_page
->vaddr
& VADDR_FLAG_UPDATED_COUNT
) {
1015 ttm_mem_global_free_page(mem_glob
, d_page
->p
,
1017 d_page
->vaddr
&= ~VADDR_FLAG_UPDATED_COUNT
;
1019 ttm_dma_page_put(pool
, d_page
);
1022 spin_lock_irqsave(&pool
->lock
, irq_flags
);
1023 pool
->npages_in_use
-= count
;
1024 pool
->nfrees
+= count
;
1025 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
1029 pool
= ttm_dma_find_pool(dev
, type
);
1033 is_cached
= (ttm_dma_find_pool(pool
->dev
,
1034 ttm_to_type(ttm
->page_flags
, tt_cached
)) == pool
);
1036 /* make sure pages array match list and count number of pages */
1038 list_for_each_entry_safe(d_page
, next
, &ttm_dma
->pages_list
,
1040 ttm
->pages
[count
] = d_page
->p
;
1043 if (d_page
->vaddr
& VADDR_FLAG_UPDATED_COUNT
) {
1044 ttm_mem_global_free_page(mem_glob
, d_page
->p
,
1046 d_page
->vaddr
&= ~VADDR_FLAG_UPDATED_COUNT
;
1050 ttm_dma_page_put(pool
, d_page
);
1053 spin_lock_irqsave(&pool
->lock
, irq_flags
);
1054 pool
->npages_in_use
-= count
;
1056 pool
->nfrees
+= count
;
1058 pool
->npages_free
+= count
;
1059 list_splice(&ttm_dma
->pages_list
, &pool
->free_list
);
1061 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1062 * to free in order to minimize calls to set_memory_wb().
1064 if (pool
->npages_free
>= (_manager
->options
.max_size
+
1065 NUM_PAGES_TO_ALLOC
))
1066 npages
= pool
->npages_free
- _manager
->options
.max_size
;
1068 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
1070 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
1071 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1072 ttm
->pages
[i
] = NULL
;
1073 ttm_dma
->dma_address
[i
] = 0;
1076 /* shrink pool if necessary (only on !is_cached pools)*/
1078 ttm_dma_page_pool_free(pool
, npages
, false);
1079 ttm
->state
= tt_unpopulated
;
1081 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate
);
1084 * Callback for mm to request pool to reduce number of page held.
1086 * XXX: (dchinner) Deadlock warning!
1088 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1091 static unsigned long
1092 ttm_dma_pool_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
1094 static unsigned start_pool
;
1096 unsigned pool_offset
;
1097 unsigned shrink_pages
= sc
->nr_to_scan
;
1098 struct device_pools
*p
;
1099 unsigned long freed
= 0;
1101 if (list_empty(&_manager
->pools
))
1104 if (!mutex_trylock(&_manager
->lock
))
1106 if (!_manager
->npools
)
1108 pool_offset
= ++start_pool
% _manager
->npools
;
1109 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1114 if (shrink_pages
== 0)
1116 /* Do it in round-robin fashion. */
1117 if (++idx
< pool_offset
)
1119 nr_free
= shrink_pages
;
1120 /* OK to use static buffer since global mutex is held. */
1121 shrink_pages
= ttm_dma_page_pool_free(p
->pool
, nr_free
, true);
1122 freed
+= nr_free
- shrink_pages
;
1124 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1125 p
->pool
->dev_name
, p
->pool
->name
, current
->pid
,
1126 nr_free
, shrink_pages
);
1129 mutex_unlock(&_manager
->lock
);
1133 static unsigned long
1134 ttm_dma_pool_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
1136 struct device_pools
*p
;
1137 unsigned long count
= 0;
1139 if (!mutex_trylock(&_manager
->lock
))
1141 list_for_each_entry(p
, &_manager
->pools
, pools
)
1142 count
+= p
->pool
->npages_free
;
1143 mutex_unlock(&_manager
->lock
);
1147 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager
*manager
)
1149 manager
->mm_shrink
.count_objects
= ttm_dma_pool_shrink_count
;
1150 manager
->mm_shrink
.scan_objects
= &ttm_dma_pool_shrink_scan
;
1151 manager
->mm_shrink
.seeks
= 1;
1152 return register_shrinker(&manager
->mm_shrink
);
1155 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager
*manager
)
1157 unregister_shrinker(&manager
->mm_shrink
);
1160 int ttm_dma_page_alloc_init(struct ttm_mem_global
*glob
, unsigned max_pages
)
1166 pr_info("Initializing DMA pool allocator\n");
1168 _manager
= kzalloc(sizeof(*_manager
), GFP_KERNEL
);
1172 mutex_init(&_manager
->lock
);
1173 INIT_LIST_HEAD(&_manager
->pools
);
1175 _manager
->options
.max_size
= max_pages
;
1176 _manager
->options
.small
= SMALL_ALLOCATION
;
1177 _manager
->options
.alloc_size
= NUM_PAGES_TO_ALLOC
;
1179 /* This takes care of auto-freeing the _manager */
1180 ret
= kobject_init_and_add(&_manager
->kobj
, &ttm_pool_kobj_type
,
1181 &glob
->kobj
, "dma_pool");
1182 if (unlikely(ret
!= 0))
1185 ret
= ttm_dma_pool_mm_shrink_init(_manager
);
1186 if (unlikely(ret
!= 0))
1191 kobject_put(&_manager
->kobj
);
1196 void ttm_dma_page_alloc_fini(void)
1198 struct device_pools
*p
, *t
;
1200 pr_info("Finalizing DMA pool allocator\n");
1201 ttm_dma_pool_mm_shrink_fini(_manager
);
1203 list_for_each_entry_safe_reverse(p
, t
, &_manager
->pools
, pools
) {
1204 dev_dbg(p
->dev
, "(%s:%d) Freeing.\n", p
->pool
->name
,
1206 WARN_ON(devres_destroy(p
->dev
, ttm_dma_pool_release
,
1207 ttm_dma_pool_match
, p
->pool
));
1208 ttm_dma_free_pool(p
->dev
, p
->pool
->type
);
1210 kobject_put(&_manager
->kobj
);
1214 int ttm_dma_page_alloc_debugfs(struct seq_file
*m
, void *data
)
1216 struct device_pools
*p
;
1217 struct dma_pool
*pool
= NULL
;
1220 seq_printf(m
, "No pool allocator running.\n");
1223 seq_printf(m
, " pool refills pages freed inuse available name\n");
1224 mutex_lock(&_manager
->lock
);
1225 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1226 struct device
*dev
= p
->dev
;
1230 seq_printf(m
, "%13s %12ld %13ld %8d %8d %8s\n",
1231 pool
->name
, pool
->nrefills
,
1232 pool
->nfrees
, pool
->npages_in_use
,
1236 mutex_unlock(&_manager
->lock
);
1239 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs
);