crypto: chcr - small packet Tx stalls the queue
[linux/fpc-iii.git] / kernel / futex.c
blobf89abca89513dbd4512a92e34c5343df805218c4
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
71 #include <asm/futex.h>
73 #include "locking/rtmutex_common.h"
76 * READ this before attempting to hack on futexes!
78 * Basic futex operation and ordering guarantees
79 * =============================================
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
131 * lock(hash_bucket(futex)); |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
152 * This yields the following case (where X:=waiters, Y:=futex):
154 * X = Y = 0
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
197 * Priority Inheritance state:
199 struct futex_pi_state {
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
204 struct list_head list;
207 * The PI object:
209 struct rt_mutex pi_mutex;
211 struct task_struct *owner;
212 atomic_t refcount;
214 union futex_key key;
215 } __randomize_layout;
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
239 struct futex_q {
240 struct plist_node list;
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
282 * Fault injections for futexes.
284 #ifdef CONFIG_FAIL_FUTEX
286 static struct {
287 struct fault_attr attr;
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
295 static int __init setup_fail_futex(char *str)
297 return setup_fault_attr(&fail_futex.attr, str);
299 __setup("fail_futex=", setup_fail_futex);
301 static bool should_fail_futex(bool fshared)
303 if (fail_futex.ignore_private && !fshared)
304 return false;
306 return should_fail(&fail_futex.attr, 1);
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
311 static int __init fail_futex_debugfs(void)
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
327 return 0;
330 late_initcall(fail_futex_debugfs);
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
334 #else
335 static inline bool should_fail_futex(bool fshared)
337 return false;
339 #endif /* CONFIG_FAIL_FUTEX */
341 static inline void futex_get_mm(union futex_key *key)
343 mmgrab(key->private.mm);
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
349 smp_mb__after_atomic();
353 * Reflects a new waiter being added to the waitqueue.
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
360 * Full barrier (A), see the ordering comment above.
362 smp_mb__after_atomic();
363 #endif
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
407 * Return 1 if two futex_keys are equal, 0 otherwise.
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
422 static void get_futex_key_refs(union futex_key *key)
424 if (!key->both.ptr)
425 return;
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
450 smp_mb(); /* explicit smp_mb(); (B) */
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
460 static void drop_futex_key_refs(union futex_key *key)
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
489 * Return: a negative error code or 0
491 * The key words are stored in @key on success.
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
497 * lock_page() might sleep, the caller should not hold a spinlock.
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
509 * The futex address must be "naturally" aligned.
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
541 err = get_user_pages_fast(address, 1, 1, &page);
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
550 if (err < 0)
551 return err;
552 else
553 err = 0;
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
605 if (shmem_swizzled)
606 goto again;
608 return -EFAULT;
612 * Private mappings are handled in a simple way.
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
621 if (PageAnon(page)) {
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
637 } else {
638 struct inode *inode;
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
651 rcu_read_lock();
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
657 goto again;
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
665 goto again;
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
684 goto again;
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
693 goto out;
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
702 out:
703 put_page(page);
704 return err;
707 static inline void put_futex_key(union futex_key *key)
709 drop_futex_key_refs(key);
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
724 static int fault_in_user_writeable(u32 __user *uaddr)
726 struct mm_struct *mm = current->mm;
727 int ret;
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
734 return ret < 0 ? ret : 0;
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
742 * Must be called with the hb lock held.
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
747 struct futex_q *this;
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
753 return NULL;
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
759 int ret;
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
765 return ret;
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
770 int ret;
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
776 return ret ? -EFAULT : 0;
781 * PI code:
783 static int refill_pi_state_cache(void)
785 struct futex_pi_state *pi_state;
787 if (likely(current->pi_state_cache))
788 return 0;
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
792 if (!pi_state)
793 return -ENOMEM;
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
801 current->pi_state_cache = pi_state;
803 return 0;
806 static struct futex_pi_state *alloc_pi_state(void)
808 struct futex_pi_state *pi_state = current->pi_state_cache;
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
813 return pi_state;
816 static void get_pi_state(struct futex_pi_state *pi_state)
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
825 static void put_pi_state(struct futex_pi_state *pi_state)
827 if (!pi_state)
828 return;
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
837 if (pi_state->owner) {
838 struct task_struct *owner;
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
865 #ifdef CONFIG_FUTEX_PI
868 * This task is holding PI mutexes at exit time => bad.
869 * Kernel cleans up PI-state, but userspace is likely hosed.
870 * (Robust-futex cleanup is separate and might save the day for userspace.)
872 void exit_pi_state_list(struct task_struct *curr)
874 struct list_head *next, *head = &curr->pi_state_list;
875 struct futex_pi_state *pi_state;
876 struct futex_hash_bucket *hb;
877 union futex_key key = FUTEX_KEY_INIT;
879 if (!futex_cmpxchg_enabled)
880 return;
882 * We are a ZOMBIE and nobody can enqueue itself on
883 * pi_state_list anymore, but we have to be careful
884 * versus waiters unqueueing themselves:
886 raw_spin_lock_irq(&curr->pi_lock);
887 while (!list_empty(head)) {
888 next = head->next;
889 pi_state = list_entry(next, struct futex_pi_state, list);
890 key = pi_state->key;
891 hb = hash_futex(&key);
894 * We can race against put_pi_state() removing itself from the
895 * list (a waiter going away). put_pi_state() will first
896 * decrement the reference count and then modify the list, so
897 * its possible to see the list entry but fail this reference
898 * acquire.
900 * In that case; drop the locks to let put_pi_state() make
901 * progress and retry the loop.
903 if (!atomic_inc_not_zero(&pi_state->refcount)) {
904 raw_spin_unlock_irq(&curr->pi_lock);
905 cpu_relax();
906 raw_spin_lock_irq(&curr->pi_lock);
907 continue;
909 raw_spin_unlock_irq(&curr->pi_lock);
911 spin_lock(&hb->lock);
912 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
913 raw_spin_lock(&curr->pi_lock);
915 * We dropped the pi-lock, so re-check whether this
916 * task still owns the PI-state:
918 if (head->next != next) {
919 /* retain curr->pi_lock for the loop invariant */
920 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
921 spin_unlock(&hb->lock);
922 put_pi_state(pi_state);
923 continue;
926 WARN_ON(pi_state->owner != curr);
927 WARN_ON(list_empty(&pi_state->list));
928 list_del_init(&pi_state->list);
929 pi_state->owner = NULL;
931 raw_spin_unlock(&curr->pi_lock);
932 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
933 spin_unlock(&hb->lock);
935 rt_mutex_futex_unlock(&pi_state->pi_mutex);
936 put_pi_state(pi_state);
938 raw_spin_lock_irq(&curr->pi_lock);
940 raw_spin_unlock_irq(&curr->pi_lock);
943 #endif
946 * We need to check the following states:
948 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
950 * [1] NULL | --- | --- | 0 | 0/1 | Valid
951 * [2] NULL | --- | --- | >0 | 0/1 | Valid
953 * [3] Found | NULL | -- | Any | 0/1 | Invalid
955 * [4] Found | Found | NULL | 0 | 1 | Valid
956 * [5] Found | Found | NULL | >0 | 1 | Invalid
958 * [6] Found | Found | task | 0 | 1 | Valid
960 * [7] Found | Found | NULL | Any | 0 | Invalid
962 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
963 * [9] Found | Found | task | 0 | 0 | Invalid
964 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
966 * [1] Indicates that the kernel can acquire the futex atomically. We
967 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
969 * [2] Valid, if TID does not belong to a kernel thread. If no matching
970 * thread is found then it indicates that the owner TID has died.
972 * [3] Invalid. The waiter is queued on a non PI futex
974 * [4] Valid state after exit_robust_list(), which sets the user space
975 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
977 * [5] The user space value got manipulated between exit_robust_list()
978 * and exit_pi_state_list()
980 * [6] Valid state after exit_pi_state_list() which sets the new owner in
981 * the pi_state but cannot access the user space value.
983 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
985 * [8] Owner and user space value match
987 * [9] There is no transient state which sets the user space TID to 0
988 * except exit_robust_list(), but this is indicated by the
989 * FUTEX_OWNER_DIED bit. See [4]
991 * [10] There is no transient state which leaves owner and user space
992 * TID out of sync.
995 * Serialization and lifetime rules:
997 * hb->lock:
999 * hb -> futex_q, relation
1000 * futex_q -> pi_state, relation
1002 * (cannot be raw because hb can contain arbitrary amount
1003 * of futex_q's)
1005 * pi_mutex->wait_lock:
1007 * {uval, pi_state}
1009 * (and pi_mutex 'obviously')
1011 * p->pi_lock:
1013 * p->pi_state_list -> pi_state->list, relation
1015 * pi_state->refcount:
1017 * pi_state lifetime
1020 * Lock order:
1022 * hb->lock
1023 * pi_mutex->wait_lock
1024 * p->pi_lock
1029 * Validate that the existing waiter has a pi_state and sanity check
1030 * the pi_state against the user space value. If correct, attach to
1031 * it.
1033 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034 struct futex_pi_state *pi_state,
1035 struct futex_pi_state **ps)
1037 pid_t pid = uval & FUTEX_TID_MASK;
1038 u32 uval2;
1039 int ret;
1042 * Userspace might have messed up non-PI and PI futexes [3]
1044 if (unlikely(!pi_state))
1045 return -EINVAL;
1048 * We get here with hb->lock held, and having found a
1049 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051 * which in turn means that futex_lock_pi() still has a reference on
1052 * our pi_state.
1054 * The waiter holding a reference on @pi_state also protects against
1055 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057 * free pi_state before we can take a reference ourselves.
1059 WARN_ON(!atomic_read(&pi_state->refcount));
1062 * Now that we have a pi_state, we can acquire wait_lock
1063 * and do the state validation.
1065 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1068 * Since {uval, pi_state} is serialized by wait_lock, and our current
1069 * uval was read without holding it, it can have changed. Verify it
1070 * still is what we expect it to be, otherwise retry the entire
1071 * operation.
1073 if (get_futex_value_locked(&uval2, uaddr))
1074 goto out_efault;
1076 if (uval != uval2)
1077 goto out_eagain;
1080 * Handle the owner died case:
1082 if (uval & FUTEX_OWNER_DIED) {
1084 * exit_pi_state_list sets owner to NULL and wakes the
1085 * topmost waiter. The task which acquires the
1086 * pi_state->rt_mutex will fixup owner.
1088 if (!pi_state->owner) {
1090 * No pi state owner, but the user space TID
1091 * is not 0. Inconsistent state. [5]
1093 if (pid)
1094 goto out_einval;
1096 * Take a ref on the state and return success. [4]
1098 goto out_attach;
1102 * If TID is 0, then either the dying owner has not
1103 * yet executed exit_pi_state_list() or some waiter
1104 * acquired the rtmutex in the pi state, but did not
1105 * yet fixup the TID in user space.
1107 * Take a ref on the state and return success. [6]
1109 if (!pid)
1110 goto out_attach;
1111 } else {
1113 * If the owner died bit is not set, then the pi_state
1114 * must have an owner. [7]
1116 if (!pi_state->owner)
1117 goto out_einval;
1121 * Bail out if user space manipulated the futex value. If pi
1122 * state exists then the owner TID must be the same as the
1123 * user space TID. [9/10]
1125 if (pid != task_pid_vnr(pi_state->owner))
1126 goto out_einval;
1128 out_attach:
1129 get_pi_state(pi_state);
1130 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131 *ps = pi_state;
1132 return 0;
1134 out_einval:
1135 ret = -EINVAL;
1136 goto out_error;
1138 out_eagain:
1139 ret = -EAGAIN;
1140 goto out_error;
1142 out_efault:
1143 ret = -EFAULT;
1144 goto out_error;
1146 out_error:
1147 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148 return ret;
1151 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1152 struct task_struct *tsk)
1154 u32 uval2;
1157 * If PF_EXITPIDONE is not yet set, then try again.
1159 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1160 return -EAGAIN;
1163 * Reread the user space value to handle the following situation:
1165 * CPU0 CPU1
1167 * sys_exit() sys_futex()
1168 * do_exit() futex_lock_pi()
1169 * futex_lock_pi_atomic()
1170 * exit_signals(tsk) No waiters:
1171 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1172 * mm_release(tsk) Set waiter bit
1173 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1174 * Set owner died attach_to_pi_owner() {
1175 * *uaddr = 0xC0000000; tsk = get_task(PID);
1176 * } if (!tsk->flags & PF_EXITING) {
1177 * ... attach();
1178 * tsk->flags |= PF_EXITPIDONE; } else {
1179 * if (!(tsk->flags & PF_EXITPIDONE))
1180 * return -EAGAIN;
1181 * return -ESRCH; <--- FAIL
1184 * Returning ESRCH unconditionally is wrong here because the
1185 * user space value has been changed by the exiting task.
1187 * The same logic applies to the case where the exiting task is
1188 * already gone.
1190 if (get_futex_value_locked(&uval2, uaddr))
1191 return -EFAULT;
1193 /* If the user space value has changed, try again. */
1194 if (uval2 != uval)
1195 return -EAGAIN;
1198 * The exiting task did not have a robust list, the robust list was
1199 * corrupted or the user space value in *uaddr is simply bogus.
1200 * Give up and tell user space.
1202 return -ESRCH;
1206 * Lookup the task for the TID provided from user space and attach to
1207 * it after doing proper sanity checks.
1209 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1210 struct futex_pi_state **ps)
1212 pid_t pid = uval & FUTEX_TID_MASK;
1213 struct futex_pi_state *pi_state;
1214 struct task_struct *p;
1217 * We are the first waiter - try to look up the real owner and attach
1218 * the new pi_state to it, but bail out when TID = 0 [1]
1220 * The !pid check is paranoid. None of the call sites should end up
1221 * with pid == 0, but better safe than sorry. Let the caller retry
1223 if (!pid)
1224 return -EAGAIN;
1225 p = find_get_task_by_vpid(pid);
1226 if (!p)
1227 return handle_exit_race(uaddr, uval, NULL);
1229 if (unlikely(p->flags & PF_KTHREAD)) {
1230 put_task_struct(p);
1231 return -EPERM;
1235 * We need to look at the task state flags to figure out,
1236 * whether the task is exiting. To protect against the do_exit
1237 * change of the task flags, we do this protected by
1238 * p->pi_lock:
1240 raw_spin_lock_irq(&p->pi_lock);
1241 if (unlikely(p->flags & PF_EXITING)) {
1243 * The task is on the way out. When PF_EXITPIDONE is
1244 * set, we know that the task has finished the
1245 * cleanup:
1247 int ret = handle_exit_race(uaddr, uval, p);
1249 raw_spin_unlock_irq(&p->pi_lock);
1250 put_task_struct(p);
1251 return ret;
1255 * No existing pi state. First waiter. [2]
1257 * This creates pi_state, we have hb->lock held, this means nothing can
1258 * observe this state, wait_lock is irrelevant.
1260 pi_state = alloc_pi_state();
1263 * Initialize the pi_mutex in locked state and make @p
1264 * the owner of it:
1266 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1268 /* Store the key for possible exit cleanups: */
1269 pi_state->key = *key;
1271 WARN_ON(!list_empty(&pi_state->list));
1272 list_add(&pi_state->list, &p->pi_state_list);
1274 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1275 * because there is no concurrency as the object is not published yet.
1277 pi_state->owner = p;
1278 raw_spin_unlock_irq(&p->pi_lock);
1280 put_task_struct(p);
1282 *ps = pi_state;
1284 return 0;
1287 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1288 struct futex_hash_bucket *hb,
1289 union futex_key *key, struct futex_pi_state **ps)
1291 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1294 * If there is a waiter on that futex, validate it and
1295 * attach to the pi_state when the validation succeeds.
1297 if (top_waiter)
1298 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1301 * We are the first waiter - try to look up the owner based on
1302 * @uval and attach to it.
1304 return attach_to_pi_owner(uaddr, uval, key, ps);
1307 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1309 u32 uninitialized_var(curval);
1311 if (unlikely(should_fail_futex(true)))
1312 return -EFAULT;
1314 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1315 return -EFAULT;
1317 /* If user space value changed, let the caller retry */
1318 return curval != uval ? -EAGAIN : 0;
1322 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1323 * @uaddr: the pi futex user address
1324 * @hb: the pi futex hash bucket
1325 * @key: the futex key associated with uaddr and hb
1326 * @ps: the pi_state pointer where we store the result of the
1327 * lookup
1328 * @task: the task to perform the atomic lock work for. This will
1329 * be "current" except in the case of requeue pi.
1330 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1332 * Return:
1333 * - 0 - ready to wait;
1334 * - 1 - acquired the lock;
1335 * - <0 - error
1337 * The hb->lock and futex_key refs shall be held by the caller.
1339 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1340 union futex_key *key,
1341 struct futex_pi_state **ps,
1342 struct task_struct *task, int set_waiters)
1344 u32 uval, newval, vpid = task_pid_vnr(task);
1345 struct futex_q *top_waiter;
1346 int ret;
1349 * Read the user space value first so we can validate a few
1350 * things before proceeding further.
1352 if (get_futex_value_locked(&uval, uaddr))
1353 return -EFAULT;
1355 if (unlikely(should_fail_futex(true)))
1356 return -EFAULT;
1359 * Detect deadlocks.
1361 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1362 return -EDEADLK;
1364 if ((unlikely(should_fail_futex(true))))
1365 return -EDEADLK;
1368 * Lookup existing state first. If it exists, try to attach to
1369 * its pi_state.
1371 top_waiter = futex_top_waiter(hb, key);
1372 if (top_waiter)
1373 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1376 * No waiter and user TID is 0. We are here because the
1377 * waiters or the owner died bit is set or called from
1378 * requeue_cmp_pi or for whatever reason something took the
1379 * syscall.
1381 if (!(uval & FUTEX_TID_MASK)) {
1383 * We take over the futex. No other waiters and the user space
1384 * TID is 0. We preserve the owner died bit.
1386 newval = uval & FUTEX_OWNER_DIED;
1387 newval |= vpid;
1389 /* The futex requeue_pi code can enforce the waiters bit */
1390 if (set_waiters)
1391 newval |= FUTEX_WAITERS;
1393 ret = lock_pi_update_atomic(uaddr, uval, newval);
1394 /* If the take over worked, return 1 */
1395 return ret < 0 ? ret : 1;
1399 * First waiter. Set the waiters bit before attaching ourself to
1400 * the owner. If owner tries to unlock, it will be forced into
1401 * the kernel and blocked on hb->lock.
1403 newval = uval | FUTEX_WAITERS;
1404 ret = lock_pi_update_atomic(uaddr, uval, newval);
1405 if (ret)
1406 return ret;
1408 * If the update of the user space value succeeded, we try to
1409 * attach to the owner. If that fails, no harm done, we only
1410 * set the FUTEX_WAITERS bit in the user space variable.
1412 return attach_to_pi_owner(uaddr, newval, key, ps);
1416 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1417 * @q: The futex_q to unqueue
1419 * The q->lock_ptr must not be NULL and must be held by the caller.
1421 static void __unqueue_futex(struct futex_q *q)
1423 struct futex_hash_bucket *hb;
1425 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1426 || WARN_ON(plist_node_empty(&q->list)))
1427 return;
1429 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1430 plist_del(&q->list, &hb->chain);
1431 hb_waiters_dec(hb);
1435 * The hash bucket lock must be held when this is called.
1436 * Afterwards, the futex_q must not be accessed. Callers
1437 * must ensure to later call wake_up_q() for the actual
1438 * wakeups to occur.
1440 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1442 struct task_struct *p = q->task;
1444 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1445 return;
1448 * Queue the task for later wakeup for after we've released
1449 * the hb->lock. wake_q_add() grabs reference to p.
1451 wake_q_add(wake_q, p);
1452 __unqueue_futex(q);
1454 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1455 * is written, without taking any locks. This is possible in the event
1456 * of a spurious wakeup, for example. A memory barrier is required here
1457 * to prevent the following store to lock_ptr from getting ahead of the
1458 * plist_del in __unqueue_futex().
1460 smp_store_release(&q->lock_ptr, NULL);
1464 * Caller must hold a reference on @pi_state.
1466 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1468 u32 uninitialized_var(curval), newval;
1469 struct task_struct *new_owner;
1470 bool postunlock = false;
1471 DEFINE_WAKE_Q(wake_q);
1472 int ret = 0;
1474 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1475 if (WARN_ON_ONCE(!new_owner)) {
1477 * As per the comment in futex_unlock_pi() this should not happen.
1479 * When this happens, give up our locks and try again, giving
1480 * the futex_lock_pi() instance time to complete, either by
1481 * waiting on the rtmutex or removing itself from the futex
1482 * queue.
1484 ret = -EAGAIN;
1485 goto out_unlock;
1489 * We pass it to the next owner. The WAITERS bit is always kept
1490 * enabled while there is PI state around. We cleanup the owner
1491 * died bit, because we are the owner.
1493 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1495 if (unlikely(should_fail_futex(true)))
1496 ret = -EFAULT;
1498 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1499 ret = -EFAULT;
1501 } else if (curval != uval) {
1503 * If a unconditional UNLOCK_PI operation (user space did not
1504 * try the TID->0 transition) raced with a waiter setting the
1505 * FUTEX_WAITERS flag between get_user() and locking the hash
1506 * bucket lock, retry the operation.
1508 if ((FUTEX_TID_MASK & curval) == uval)
1509 ret = -EAGAIN;
1510 else
1511 ret = -EINVAL;
1514 if (ret)
1515 goto out_unlock;
1518 * This is a point of no return; once we modify the uval there is no
1519 * going back and subsequent operations must not fail.
1522 raw_spin_lock(&pi_state->owner->pi_lock);
1523 WARN_ON(list_empty(&pi_state->list));
1524 list_del_init(&pi_state->list);
1525 raw_spin_unlock(&pi_state->owner->pi_lock);
1527 raw_spin_lock(&new_owner->pi_lock);
1528 WARN_ON(!list_empty(&pi_state->list));
1529 list_add(&pi_state->list, &new_owner->pi_state_list);
1530 pi_state->owner = new_owner;
1531 raw_spin_unlock(&new_owner->pi_lock);
1533 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1535 out_unlock:
1536 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1538 if (postunlock)
1539 rt_mutex_postunlock(&wake_q);
1541 return ret;
1545 * Express the locking dependencies for lockdep:
1547 static inline void
1548 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1550 if (hb1 <= hb2) {
1551 spin_lock(&hb1->lock);
1552 if (hb1 < hb2)
1553 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1554 } else { /* hb1 > hb2 */
1555 spin_lock(&hb2->lock);
1556 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1560 static inline void
1561 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1563 spin_unlock(&hb1->lock);
1564 if (hb1 != hb2)
1565 spin_unlock(&hb2->lock);
1569 * Wake up waiters matching bitset queued on this futex (uaddr).
1571 static int
1572 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1574 struct futex_hash_bucket *hb;
1575 struct futex_q *this, *next;
1576 union futex_key key = FUTEX_KEY_INIT;
1577 int ret;
1578 DEFINE_WAKE_Q(wake_q);
1580 if (!bitset)
1581 return -EINVAL;
1583 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1584 if (unlikely(ret != 0))
1585 goto out;
1587 hb = hash_futex(&key);
1589 /* Make sure we really have tasks to wakeup */
1590 if (!hb_waiters_pending(hb))
1591 goto out_put_key;
1593 spin_lock(&hb->lock);
1595 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1596 if (match_futex (&this->key, &key)) {
1597 if (this->pi_state || this->rt_waiter) {
1598 ret = -EINVAL;
1599 break;
1602 /* Check if one of the bits is set in both bitsets */
1603 if (!(this->bitset & bitset))
1604 continue;
1606 mark_wake_futex(&wake_q, this);
1607 if (++ret >= nr_wake)
1608 break;
1612 spin_unlock(&hb->lock);
1613 wake_up_q(&wake_q);
1614 out_put_key:
1615 put_futex_key(&key);
1616 out:
1617 return ret;
1620 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1622 unsigned int op = (encoded_op & 0x70000000) >> 28;
1623 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1624 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1625 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1626 int oldval, ret;
1628 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1629 if (oparg < 0 || oparg > 31) {
1630 char comm[sizeof(current->comm)];
1632 * kill this print and return -EINVAL when userspace
1633 * is sane again
1635 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1636 get_task_comm(comm, current), oparg);
1637 oparg &= 31;
1639 oparg = 1 << oparg;
1642 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1643 return -EFAULT;
1645 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1646 if (ret)
1647 return ret;
1649 switch (cmp) {
1650 case FUTEX_OP_CMP_EQ:
1651 return oldval == cmparg;
1652 case FUTEX_OP_CMP_NE:
1653 return oldval != cmparg;
1654 case FUTEX_OP_CMP_LT:
1655 return oldval < cmparg;
1656 case FUTEX_OP_CMP_GE:
1657 return oldval >= cmparg;
1658 case FUTEX_OP_CMP_LE:
1659 return oldval <= cmparg;
1660 case FUTEX_OP_CMP_GT:
1661 return oldval > cmparg;
1662 default:
1663 return -ENOSYS;
1668 * Wake up all waiters hashed on the physical page that is mapped
1669 * to this virtual address:
1671 static int
1672 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1673 int nr_wake, int nr_wake2, int op)
1675 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1676 struct futex_hash_bucket *hb1, *hb2;
1677 struct futex_q *this, *next;
1678 int ret, op_ret;
1679 DEFINE_WAKE_Q(wake_q);
1681 retry:
1682 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1683 if (unlikely(ret != 0))
1684 goto out;
1685 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1686 if (unlikely(ret != 0))
1687 goto out_put_key1;
1689 hb1 = hash_futex(&key1);
1690 hb2 = hash_futex(&key2);
1692 retry_private:
1693 double_lock_hb(hb1, hb2);
1694 op_ret = futex_atomic_op_inuser(op, uaddr2);
1695 if (unlikely(op_ret < 0)) {
1697 double_unlock_hb(hb1, hb2);
1699 #ifndef CONFIG_MMU
1701 * we don't get EFAULT from MMU faults if we don't have an MMU,
1702 * but we might get them from range checking
1704 ret = op_ret;
1705 goto out_put_keys;
1706 #endif
1708 if (unlikely(op_ret != -EFAULT)) {
1709 ret = op_ret;
1710 goto out_put_keys;
1713 ret = fault_in_user_writeable(uaddr2);
1714 if (ret)
1715 goto out_put_keys;
1717 if (!(flags & FLAGS_SHARED))
1718 goto retry_private;
1720 put_futex_key(&key2);
1721 put_futex_key(&key1);
1722 goto retry;
1725 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1726 if (match_futex (&this->key, &key1)) {
1727 if (this->pi_state || this->rt_waiter) {
1728 ret = -EINVAL;
1729 goto out_unlock;
1731 mark_wake_futex(&wake_q, this);
1732 if (++ret >= nr_wake)
1733 break;
1737 if (op_ret > 0) {
1738 op_ret = 0;
1739 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1740 if (match_futex (&this->key, &key2)) {
1741 if (this->pi_state || this->rt_waiter) {
1742 ret = -EINVAL;
1743 goto out_unlock;
1745 mark_wake_futex(&wake_q, this);
1746 if (++op_ret >= nr_wake2)
1747 break;
1750 ret += op_ret;
1753 out_unlock:
1754 double_unlock_hb(hb1, hb2);
1755 wake_up_q(&wake_q);
1756 out_put_keys:
1757 put_futex_key(&key2);
1758 out_put_key1:
1759 put_futex_key(&key1);
1760 out:
1761 return ret;
1765 * requeue_futex() - Requeue a futex_q from one hb to another
1766 * @q: the futex_q to requeue
1767 * @hb1: the source hash_bucket
1768 * @hb2: the target hash_bucket
1769 * @key2: the new key for the requeued futex_q
1771 static inline
1772 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1773 struct futex_hash_bucket *hb2, union futex_key *key2)
1777 * If key1 and key2 hash to the same bucket, no need to
1778 * requeue.
1780 if (likely(&hb1->chain != &hb2->chain)) {
1781 plist_del(&q->list, &hb1->chain);
1782 hb_waiters_dec(hb1);
1783 hb_waiters_inc(hb2);
1784 plist_add(&q->list, &hb2->chain);
1785 q->lock_ptr = &hb2->lock;
1787 get_futex_key_refs(key2);
1788 q->key = *key2;
1792 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1793 * @q: the futex_q
1794 * @key: the key of the requeue target futex
1795 * @hb: the hash_bucket of the requeue target futex
1797 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1798 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1799 * to the requeue target futex so the waiter can detect the wakeup on the right
1800 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1801 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1802 * to protect access to the pi_state to fixup the owner later. Must be called
1803 * with both q->lock_ptr and hb->lock held.
1805 static inline
1806 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1807 struct futex_hash_bucket *hb)
1809 get_futex_key_refs(key);
1810 q->key = *key;
1812 __unqueue_futex(q);
1814 WARN_ON(!q->rt_waiter);
1815 q->rt_waiter = NULL;
1817 q->lock_ptr = &hb->lock;
1819 wake_up_state(q->task, TASK_NORMAL);
1823 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1824 * @pifutex: the user address of the to futex
1825 * @hb1: the from futex hash bucket, must be locked by the caller
1826 * @hb2: the to futex hash bucket, must be locked by the caller
1827 * @key1: the from futex key
1828 * @key2: the to futex key
1829 * @ps: address to store the pi_state pointer
1830 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1832 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1833 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1834 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1835 * hb1 and hb2 must be held by the caller.
1837 * Return:
1838 * - 0 - failed to acquire the lock atomically;
1839 * - >0 - acquired the lock, return value is vpid of the top_waiter
1840 * - <0 - error
1842 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1843 struct futex_hash_bucket *hb1,
1844 struct futex_hash_bucket *hb2,
1845 union futex_key *key1, union futex_key *key2,
1846 struct futex_pi_state **ps, int set_waiters)
1848 struct futex_q *top_waiter = NULL;
1849 u32 curval;
1850 int ret, vpid;
1852 if (get_futex_value_locked(&curval, pifutex))
1853 return -EFAULT;
1855 if (unlikely(should_fail_futex(true)))
1856 return -EFAULT;
1859 * Find the top_waiter and determine if there are additional waiters.
1860 * If the caller intends to requeue more than 1 waiter to pifutex,
1861 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1862 * as we have means to handle the possible fault. If not, don't set
1863 * the bit unecessarily as it will force the subsequent unlock to enter
1864 * the kernel.
1866 top_waiter = futex_top_waiter(hb1, key1);
1868 /* There are no waiters, nothing for us to do. */
1869 if (!top_waiter)
1870 return 0;
1872 /* Ensure we requeue to the expected futex. */
1873 if (!match_futex(top_waiter->requeue_pi_key, key2))
1874 return -EINVAL;
1877 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1878 * the contended case or if set_waiters is 1. The pi_state is returned
1879 * in ps in contended cases.
1881 vpid = task_pid_vnr(top_waiter->task);
1882 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1883 set_waiters);
1884 if (ret == 1) {
1885 requeue_pi_wake_futex(top_waiter, key2, hb2);
1886 return vpid;
1888 return ret;
1892 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1893 * @uaddr1: source futex user address
1894 * @flags: futex flags (FLAGS_SHARED, etc.)
1895 * @uaddr2: target futex user address
1896 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1897 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1898 * @cmpval: @uaddr1 expected value (or %NULL)
1899 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1900 * pi futex (pi to pi requeue is not supported)
1902 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1903 * uaddr2 atomically on behalf of the top waiter.
1905 * Return:
1906 * - >=0 - on success, the number of tasks requeued or woken;
1907 * - <0 - on error
1909 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1910 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1911 u32 *cmpval, int requeue_pi)
1913 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1914 int drop_count = 0, task_count = 0, ret;
1915 struct futex_pi_state *pi_state = NULL;
1916 struct futex_hash_bucket *hb1, *hb2;
1917 struct futex_q *this, *next;
1918 DEFINE_WAKE_Q(wake_q);
1920 if (nr_wake < 0 || nr_requeue < 0)
1921 return -EINVAL;
1924 * When PI not supported: return -ENOSYS if requeue_pi is true,
1925 * consequently the compiler knows requeue_pi is always false past
1926 * this point which will optimize away all the conditional code
1927 * further down.
1929 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1930 return -ENOSYS;
1932 if (requeue_pi) {
1934 * Requeue PI only works on two distinct uaddrs. This
1935 * check is only valid for private futexes. See below.
1937 if (uaddr1 == uaddr2)
1938 return -EINVAL;
1941 * requeue_pi requires a pi_state, try to allocate it now
1942 * without any locks in case it fails.
1944 if (refill_pi_state_cache())
1945 return -ENOMEM;
1947 * requeue_pi must wake as many tasks as it can, up to nr_wake
1948 * + nr_requeue, since it acquires the rt_mutex prior to
1949 * returning to userspace, so as to not leave the rt_mutex with
1950 * waiters and no owner. However, second and third wake-ups
1951 * cannot be predicted as they involve race conditions with the
1952 * first wake and a fault while looking up the pi_state. Both
1953 * pthread_cond_signal() and pthread_cond_broadcast() should
1954 * use nr_wake=1.
1956 if (nr_wake != 1)
1957 return -EINVAL;
1960 retry:
1961 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1962 if (unlikely(ret != 0))
1963 goto out;
1964 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1965 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1966 if (unlikely(ret != 0))
1967 goto out_put_key1;
1970 * The check above which compares uaddrs is not sufficient for
1971 * shared futexes. We need to compare the keys:
1973 if (requeue_pi && match_futex(&key1, &key2)) {
1974 ret = -EINVAL;
1975 goto out_put_keys;
1978 hb1 = hash_futex(&key1);
1979 hb2 = hash_futex(&key2);
1981 retry_private:
1982 hb_waiters_inc(hb2);
1983 double_lock_hb(hb1, hb2);
1985 if (likely(cmpval != NULL)) {
1986 u32 curval;
1988 ret = get_futex_value_locked(&curval, uaddr1);
1990 if (unlikely(ret)) {
1991 double_unlock_hb(hb1, hb2);
1992 hb_waiters_dec(hb2);
1994 ret = get_user(curval, uaddr1);
1995 if (ret)
1996 goto out_put_keys;
1998 if (!(flags & FLAGS_SHARED))
1999 goto retry_private;
2001 put_futex_key(&key2);
2002 put_futex_key(&key1);
2003 goto retry;
2005 if (curval != *cmpval) {
2006 ret = -EAGAIN;
2007 goto out_unlock;
2011 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2013 * Attempt to acquire uaddr2 and wake the top waiter. If we
2014 * intend to requeue waiters, force setting the FUTEX_WAITERS
2015 * bit. We force this here where we are able to easily handle
2016 * faults rather in the requeue loop below.
2018 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2019 &key2, &pi_state, nr_requeue);
2022 * At this point the top_waiter has either taken uaddr2 or is
2023 * waiting on it. If the former, then the pi_state will not
2024 * exist yet, look it up one more time to ensure we have a
2025 * reference to it. If the lock was taken, ret contains the
2026 * vpid of the top waiter task.
2027 * If the lock was not taken, we have pi_state and an initial
2028 * refcount on it. In case of an error we have nothing.
2030 if (ret > 0) {
2031 WARN_ON(pi_state);
2032 drop_count++;
2033 task_count++;
2035 * If we acquired the lock, then the user space value
2036 * of uaddr2 should be vpid. It cannot be changed by
2037 * the top waiter as it is blocked on hb2 lock if it
2038 * tries to do so. If something fiddled with it behind
2039 * our back the pi state lookup might unearth it. So
2040 * we rather use the known value than rereading and
2041 * handing potential crap to lookup_pi_state.
2043 * If that call succeeds then we have pi_state and an
2044 * initial refcount on it.
2046 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2049 switch (ret) {
2050 case 0:
2051 /* We hold a reference on the pi state. */
2052 break;
2054 /* If the above failed, then pi_state is NULL */
2055 case -EFAULT:
2056 double_unlock_hb(hb1, hb2);
2057 hb_waiters_dec(hb2);
2058 put_futex_key(&key2);
2059 put_futex_key(&key1);
2060 ret = fault_in_user_writeable(uaddr2);
2061 if (!ret)
2062 goto retry;
2063 goto out;
2064 case -EAGAIN:
2066 * Two reasons for this:
2067 * - Owner is exiting and we just wait for the
2068 * exit to complete.
2069 * - The user space value changed.
2071 double_unlock_hb(hb1, hb2);
2072 hb_waiters_dec(hb2);
2073 put_futex_key(&key2);
2074 put_futex_key(&key1);
2075 cond_resched();
2076 goto retry;
2077 default:
2078 goto out_unlock;
2082 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2083 if (task_count - nr_wake >= nr_requeue)
2084 break;
2086 if (!match_futex(&this->key, &key1))
2087 continue;
2090 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2091 * be paired with each other and no other futex ops.
2093 * We should never be requeueing a futex_q with a pi_state,
2094 * which is awaiting a futex_unlock_pi().
2096 if ((requeue_pi && !this->rt_waiter) ||
2097 (!requeue_pi && this->rt_waiter) ||
2098 this->pi_state) {
2099 ret = -EINVAL;
2100 break;
2104 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2105 * lock, we already woke the top_waiter. If not, it will be
2106 * woken by futex_unlock_pi().
2108 if (++task_count <= nr_wake && !requeue_pi) {
2109 mark_wake_futex(&wake_q, this);
2110 continue;
2113 /* Ensure we requeue to the expected futex for requeue_pi. */
2114 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2115 ret = -EINVAL;
2116 break;
2120 * Requeue nr_requeue waiters and possibly one more in the case
2121 * of requeue_pi if we couldn't acquire the lock atomically.
2123 if (requeue_pi) {
2125 * Prepare the waiter to take the rt_mutex. Take a
2126 * refcount on the pi_state and store the pointer in
2127 * the futex_q object of the waiter.
2129 get_pi_state(pi_state);
2130 this->pi_state = pi_state;
2131 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2132 this->rt_waiter,
2133 this->task);
2134 if (ret == 1) {
2136 * We got the lock. We do neither drop the
2137 * refcount on pi_state nor clear
2138 * this->pi_state because the waiter needs the
2139 * pi_state for cleaning up the user space
2140 * value. It will drop the refcount after
2141 * doing so.
2143 requeue_pi_wake_futex(this, &key2, hb2);
2144 drop_count++;
2145 continue;
2146 } else if (ret) {
2148 * rt_mutex_start_proxy_lock() detected a
2149 * potential deadlock when we tried to queue
2150 * that waiter. Drop the pi_state reference
2151 * which we took above and remove the pointer
2152 * to the state from the waiters futex_q
2153 * object.
2155 this->pi_state = NULL;
2156 put_pi_state(pi_state);
2158 * We stop queueing more waiters and let user
2159 * space deal with the mess.
2161 break;
2164 requeue_futex(this, hb1, hb2, &key2);
2165 drop_count++;
2169 * We took an extra initial reference to the pi_state either
2170 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2171 * need to drop it here again.
2173 put_pi_state(pi_state);
2175 out_unlock:
2176 double_unlock_hb(hb1, hb2);
2177 wake_up_q(&wake_q);
2178 hb_waiters_dec(hb2);
2181 * drop_futex_key_refs() must be called outside the spinlocks. During
2182 * the requeue we moved futex_q's from the hash bucket at key1 to the
2183 * one at key2 and updated their key pointer. We no longer need to
2184 * hold the references to key1.
2186 while (--drop_count >= 0)
2187 drop_futex_key_refs(&key1);
2189 out_put_keys:
2190 put_futex_key(&key2);
2191 out_put_key1:
2192 put_futex_key(&key1);
2193 out:
2194 return ret ? ret : task_count;
2197 /* The key must be already stored in q->key. */
2198 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2199 __acquires(&hb->lock)
2201 struct futex_hash_bucket *hb;
2203 hb = hash_futex(&q->key);
2206 * Increment the counter before taking the lock so that
2207 * a potential waker won't miss a to-be-slept task that is
2208 * waiting for the spinlock. This is safe as all queue_lock()
2209 * users end up calling queue_me(). Similarly, for housekeeping,
2210 * decrement the counter at queue_unlock() when some error has
2211 * occurred and we don't end up adding the task to the list.
2213 hb_waiters_inc(hb);
2215 q->lock_ptr = &hb->lock;
2217 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2218 return hb;
2221 static inline void
2222 queue_unlock(struct futex_hash_bucket *hb)
2223 __releases(&hb->lock)
2225 spin_unlock(&hb->lock);
2226 hb_waiters_dec(hb);
2229 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2231 int prio;
2234 * The priority used to register this element is
2235 * - either the real thread-priority for the real-time threads
2236 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2237 * - or MAX_RT_PRIO for non-RT threads.
2238 * Thus, all RT-threads are woken first in priority order, and
2239 * the others are woken last, in FIFO order.
2241 prio = min(current->normal_prio, MAX_RT_PRIO);
2243 plist_node_init(&q->list, prio);
2244 plist_add(&q->list, &hb->chain);
2245 q->task = current;
2249 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2250 * @q: The futex_q to enqueue
2251 * @hb: The destination hash bucket
2253 * The hb->lock must be held by the caller, and is released here. A call to
2254 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2255 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2256 * or nothing if the unqueue is done as part of the wake process and the unqueue
2257 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2258 * an example).
2260 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2261 __releases(&hb->lock)
2263 __queue_me(q, hb);
2264 spin_unlock(&hb->lock);
2268 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2269 * @q: The futex_q to unqueue
2271 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2272 * be paired with exactly one earlier call to queue_me().
2274 * Return:
2275 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2276 * - 0 - if the futex_q was already removed by the waking thread
2278 static int unqueue_me(struct futex_q *q)
2280 spinlock_t *lock_ptr;
2281 int ret = 0;
2283 /* In the common case we don't take the spinlock, which is nice. */
2284 retry:
2286 * q->lock_ptr can change between this read and the following spin_lock.
2287 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2288 * optimizing lock_ptr out of the logic below.
2290 lock_ptr = READ_ONCE(q->lock_ptr);
2291 if (lock_ptr != NULL) {
2292 spin_lock(lock_ptr);
2294 * q->lock_ptr can change between reading it and
2295 * spin_lock(), causing us to take the wrong lock. This
2296 * corrects the race condition.
2298 * Reasoning goes like this: if we have the wrong lock,
2299 * q->lock_ptr must have changed (maybe several times)
2300 * between reading it and the spin_lock(). It can
2301 * change again after the spin_lock() but only if it was
2302 * already changed before the spin_lock(). It cannot,
2303 * however, change back to the original value. Therefore
2304 * we can detect whether we acquired the correct lock.
2306 if (unlikely(lock_ptr != q->lock_ptr)) {
2307 spin_unlock(lock_ptr);
2308 goto retry;
2310 __unqueue_futex(q);
2312 BUG_ON(q->pi_state);
2314 spin_unlock(lock_ptr);
2315 ret = 1;
2318 drop_futex_key_refs(&q->key);
2319 return ret;
2323 * PI futexes can not be requeued and must remove themself from the
2324 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2325 * and dropped here.
2327 static void unqueue_me_pi(struct futex_q *q)
2328 __releases(q->lock_ptr)
2330 __unqueue_futex(q);
2332 BUG_ON(!q->pi_state);
2333 put_pi_state(q->pi_state);
2334 q->pi_state = NULL;
2336 spin_unlock(q->lock_ptr);
2339 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2340 struct task_struct *argowner)
2342 struct futex_pi_state *pi_state = q->pi_state;
2343 u32 uval, uninitialized_var(curval), newval;
2344 struct task_struct *oldowner, *newowner;
2345 u32 newtid;
2346 int ret;
2348 lockdep_assert_held(q->lock_ptr);
2350 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2352 oldowner = pi_state->owner;
2355 * We are here because either:
2357 * - we stole the lock and pi_state->owner needs updating to reflect
2358 * that (@argowner == current),
2360 * or:
2362 * - someone stole our lock and we need to fix things to point to the
2363 * new owner (@argowner == NULL).
2365 * Either way, we have to replace the TID in the user space variable.
2366 * This must be atomic as we have to preserve the owner died bit here.
2368 * Note: We write the user space value _before_ changing the pi_state
2369 * because we can fault here. Imagine swapped out pages or a fork
2370 * that marked all the anonymous memory readonly for cow.
2372 * Modifying pi_state _before_ the user space value would leave the
2373 * pi_state in an inconsistent state when we fault here, because we
2374 * need to drop the locks to handle the fault. This might be observed
2375 * in the PID check in lookup_pi_state.
2377 retry:
2378 if (!argowner) {
2379 if (oldowner != current) {
2381 * We raced against a concurrent self; things are
2382 * already fixed up. Nothing to do.
2384 ret = 0;
2385 goto out_unlock;
2388 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2389 /* We got the lock after all, nothing to fix. */
2390 ret = 0;
2391 goto out_unlock;
2395 * Since we just failed the trylock; there must be an owner.
2397 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2398 BUG_ON(!newowner);
2399 } else {
2400 WARN_ON_ONCE(argowner != current);
2401 if (oldowner == current) {
2403 * We raced against a concurrent self; things are
2404 * already fixed up. Nothing to do.
2406 ret = 0;
2407 goto out_unlock;
2409 newowner = argowner;
2412 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2413 /* Owner died? */
2414 if (!pi_state->owner)
2415 newtid |= FUTEX_OWNER_DIED;
2417 if (get_futex_value_locked(&uval, uaddr))
2418 goto handle_fault;
2420 for (;;) {
2421 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2423 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2424 goto handle_fault;
2425 if (curval == uval)
2426 break;
2427 uval = curval;
2431 * We fixed up user space. Now we need to fix the pi_state
2432 * itself.
2434 if (pi_state->owner != NULL) {
2435 raw_spin_lock(&pi_state->owner->pi_lock);
2436 WARN_ON(list_empty(&pi_state->list));
2437 list_del_init(&pi_state->list);
2438 raw_spin_unlock(&pi_state->owner->pi_lock);
2441 pi_state->owner = newowner;
2443 raw_spin_lock(&newowner->pi_lock);
2444 WARN_ON(!list_empty(&pi_state->list));
2445 list_add(&pi_state->list, &newowner->pi_state_list);
2446 raw_spin_unlock(&newowner->pi_lock);
2447 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2449 return 0;
2452 * To handle the page fault we need to drop the locks here. That gives
2453 * the other task (either the highest priority waiter itself or the
2454 * task which stole the rtmutex) the chance to try the fixup of the
2455 * pi_state. So once we are back from handling the fault we need to
2456 * check the pi_state after reacquiring the locks and before trying to
2457 * do another fixup. When the fixup has been done already we simply
2458 * return.
2460 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2461 * drop hb->lock since the caller owns the hb -> futex_q relation.
2462 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2464 handle_fault:
2465 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2466 spin_unlock(q->lock_ptr);
2468 ret = fault_in_user_writeable(uaddr);
2470 spin_lock(q->lock_ptr);
2471 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2474 * Check if someone else fixed it for us:
2476 if (pi_state->owner != oldowner) {
2477 ret = 0;
2478 goto out_unlock;
2481 if (ret)
2482 goto out_unlock;
2484 goto retry;
2486 out_unlock:
2487 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2488 return ret;
2491 static long futex_wait_restart(struct restart_block *restart);
2494 * fixup_owner() - Post lock pi_state and corner case management
2495 * @uaddr: user address of the futex
2496 * @q: futex_q (contains pi_state and access to the rt_mutex)
2497 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2499 * After attempting to lock an rt_mutex, this function is called to cleanup
2500 * the pi_state owner as well as handle race conditions that may allow us to
2501 * acquire the lock. Must be called with the hb lock held.
2503 * Return:
2504 * - 1 - success, lock taken;
2505 * - 0 - success, lock not taken;
2506 * - <0 - on error (-EFAULT)
2508 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2510 int ret = 0;
2512 if (locked) {
2514 * Got the lock. We might not be the anticipated owner if we
2515 * did a lock-steal - fix up the PI-state in that case:
2517 * Speculative pi_state->owner read (we don't hold wait_lock);
2518 * since we own the lock pi_state->owner == current is the
2519 * stable state, anything else needs more attention.
2521 if (q->pi_state->owner != current)
2522 ret = fixup_pi_state_owner(uaddr, q, current);
2523 goto out;
2527 * If we didn't get the lock; check if anybody stole it from us. In
2528 * that case, we need to fix up the uval to point to them instead of
2529 * us, otherwise bad things happen. [10]
2531 * Another speculative read; pi_state->owner == current is unstable
2532 * but needs our attention.
2534 if (q->pi_state->owner == current) {
2535 ret = fixup_pi_state_owner(uaddr, q, NULL);
2536 goto out;
2540 * Paranoia check. If we did not take the lock, then we should not be
2541 * the owner of the rt_mutex.
2543 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2544 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2545 "pi-state %p\n", ret,
2546 q->pi_state->pi_mutex.owner,
2547 q->pi_state->owner);
2550 out:
2551 return ret ? ret : locked;
2555 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2556 * @hb: the futex hash bucket, must be locked by the caller
2557 * @q: the futex_q to queue up on
2558 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2560 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2561 struct hrtimer_sleeper *timeout)
2564 * The task state is guaranteed to be set before another task can
2565 * wake it. set_current_state() is implemented using smp_store_mb() and
2566 * queue_me() calls spin_unlock() upon completion, both serializing
2567 * access to the hash list and forcing another memory barrier.
2569 set_current_state(TASK_INTERRUPTIBLE);
2570 queue_me(q, hb);
2572 /* Arm the timer */
2573 if (timeout)
2574 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2577 * If we have been removed from the hash list, then another task
2578 * has tried to wake us, and we can skip the call to schedule().
2580 if (likely(!plist_node_empty(&q->list))) {
2582 * If the timer has already expired, current will already be
2583 * flagged for rescheduling. Only call schedule if there
2584 * is no timeout, or if it has yet to expire.
2586 if (!timeout || timeout->task)
2587 freezable_schedule();
2589 __set_current_state(TASK_RUNNING);
2593 * futex_wait_setup() - Prepare to wait on a futex
2594 * @uaddr: the futex userspace address
2595 * @val: the expected value
2596 * @flags: futex flags (FLAGS_SHARED, etc.)
2597 * @q: the associated futex_q
2598 * @hb: storage for hash_bucket pointer to be returned to caller
2600 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2601 * compare it with the expected value. Handle atomic faults internally.
2602 * Return with the hb lock held and a q.key reference on success, and unlocked
2603 * with no q.key reference on failure.
2605 * Return:
2606 * - 0 - uaddr contains val and hb has been locked;
2607 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2609 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2610 struct futex_q *q, struct futex_hash_bucket **hb)
2612 u32 uval;
2613 int ret;
2616 * Access the page AFTER the hash-bucket is locked.
2617 * Order is important:
2619 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2620 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2622 * The basic logical guarantee of a futex is that it blocks ONLY
2623 * if cond(var) is known to be true at the time of blocking, for
2624 * any cond. If we locked the hash-bucket after testing *uaddr, that
2625 * would open a race condition where we could block indefinitely with
2626 * cond(var) false, which would violate the guarantee.
2628 * On the other hand, we insert q and release the hash-bucket only
2629 * after testing *uaddr. This guarantees that futex_wait() will NOT
2630 * absorb a wakeup if *uaddr does not match the desired values
2631 * while the syscall executes.
2633 retry:
2634 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2635 if (unlikely(ret != 0))
2636 return ret;
2638 retry_private:
2639 *hb = queue_lock(q);
2641 ret = get_futex_value_locked(&uval, uaddr);
2643 if (ret) {
2644 queue_unlock(*hb);
2646 ret = get_user(uval, uaddr);
2647 if (ret)
2648 goto out;
2650 if (!(flags & FLAGS_SHARED))
2651 goto retry_private;
2653 put_futex_key(&q->key);
2654 goto retry;
2657 if (uval != val) {
2658 queue_unlock(*hb);
2659 ret = -EWOULDBLOCK;
2662 out:
2663 if (ret)
2664 put_futex_key(&q->key);
2665 return ret;
2668 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2669 ktime_t *abs_time, u32 bitset)
2671 struct hrtimer_sleeper timeout, *to = NULL;
2672 struct restart_block *restart;
2673 struct futex_hash_bucket *hb;
2674 struct futex_q q = futex_q_init;
2675 int ret;
2677 if (!bitset)
2678 return -EINVAL;
2679 q.bitset = bitset;
2681 if (abs_time) {
2682 to = &timeout;
2684 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2685 CLOCK_REALTIME : CLOCK_MONOTONIC,
2686 HRTIMER_MODE_ABS);
2687 hrtimer_init_sleeper(to, current);
2688 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2689 current->timer_slack_ns);
2692 retry:
2694 * Prepare to wait on uaddr. On success, holds hb lock and increments
2695 * q.key refs.
2697 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2698 if (ret)
2699 goto out;
2701 /* queue_me and wait for wakeup, timeout, or a signal. */
2702 futex_wait_queue_me(hb, &q, to);
2704 /* If we were woken (and unqueued), we succeeded, whatever. */
2705 ret = 0;
2706 /* unqueue_me() drops q.key ref */
2707 if (!unqueue_me(&q))
2708 goto out;
2709 ret = -ETIMEDOUT;
2710 if (to && !to->task)
2711 goto out;
2714 * We expect signal_pending(current), but we might be the
2715 * victim of a spurious wakeup as well.
2717 if (!signal_pending(current))
2718 goto retry;
2720 ret = -ERESTARTSYS;
2721 if (!abs_time)
2722 goto out;
2724 restart = &current->restart_block;
2725 restart->fn = futex_wait_restart;
2726 restart->futex.uaddr = uaddr;
2727 restart->futex.val = val;
2728 restart->futex.time = *abs_time;
2729 restart->futex.bitset = bitset;
2730 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2732 ret = -ERESTART_RESTARTBLOCK;
2734 out:
2735 if (to) {
2736 hrtimer_cancel(&to->timer);
2737 destroy_hrtimer_on_stack(&to->timer);
2739 return ret;
2743 static long futex_wait_restart(struct restart_block *restart)
2745 u32 __user *uaddr = restart->futex.uaddr;
2746 ktime_t t, *tp = NULL;
2748 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2749 t = restart->futex.time;
2750 tp = &t;
2752 restart->fn = do_no_restart_syscall;
2754 return (long)futex_wait(uaddr, restart->futex.flags,
2755 restart->futex.val, tp, restart->futex.bitset);
2760 * Userspace tried a 0 -> TID atomic transition of the futex value
2761 * and failed. The kernel side here does the whole locking operation:
2762 * if there are waiters then it will block as a consequence of relying
2763 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2764 * a 0 value of the futex too.).
2766 * Also serves as futex trylock_pi()'ing, and due semantics.
2768 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2769 ktime_t *time, int trylock)
2771 struct hrtimer_sleeper timeout, *to = NULL;
2772 struct futex_pi_state *pi_state = NULL;
2773 struct rt_mutex_waiter rt_waiter;
2774 struct futex_hash_bucket *hb;
2775 struct futex_q q = futex_q_init;
2776 int res, ret;
2778 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2779 return -ENOSYS;
2781 if (refill_pi_state_cache())
2782 return -ENOMEM;
2784 if (time) {
2785 to = &timeout;
2786 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2787 HRTIMER_MODE_ABS);
2788 hrtimer_init_sleeper(to, current);
2789 hrtimer_set_expires(&to->timer, *time);
2792 retry:
2793 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2794 if (unlikely(ret != 0))
2795 goto out;
2797 retry_private:
2798 hb = queue_lock(&q);
2800 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2801 if (unlikely(ret)) {
2803 * Atomic work succeeded and we got the lock,
2804 * or failed. Either way, we do _not_ block.
2806 switch (ret) {
2807 case 1:
2808 /* We got the lock. */
2809 ret = 0;
2810 goto out_unlock_put_key;
2811 case -EFAULT:
2812 goto uaddr_faulted;
2813 case -EAGAIN:
2815 * Two reasons for this:
2816 * - Task is exiting and we just wait for the
2817 * exit to complete.
2818 * - The user space value changed.
2820 queue_unlock(hb);
2821 put_futex_key(&q.key);
2822 cond_resched();
2823 goto retry;
2824 default:
2825 goto out_unlock_put_key;
2829 WARN_ON(!q.pi_state);
2832 * Only actually queue now that the atomic ops are done:
2834 __queue_me(&q, hb);
2836 if (trylock) {
2837 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2838 /* Fixup the trylock return value: */
2839 ret = ret ? 0 : -EWOULDBLOCK;
2840 goto no_block;
2843 rt_mutex_init_waiter(&rt_waiter);
2846 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2847 * hold it while doing rt_mutex_start_proxy(), because then it will
2848 * include hb->lock in the blocking chain, even through we'll not in
2849 * fact hold it while blocking. This will lead it to report -EDEADLK
2850 * and BUG when futex_unlock_pi() interleaves with this.
2852 * Therefore acquire wait_lock while holding hb->lock, but drop the
2853 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2854 * serializes against futex_unlock_pi() as that does the exact same
2855 * lock handoff sequence.
2857 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2858 spin_unlock(q.lock_ptr);
2859 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2860 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2862 if (ret) {
2863 if (ret == 1)
2864 ret = 0;
2866 spin_lock(q.lock_ptr);
2867 goto no_block;
2871 if (unlikely(to))
2872 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2874 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2876 spin_lock(q.lock_ptr);
2878 * If we failed to acquire the lock (signal/timeout), we must
2879 * first acquire the hb->lock before removing the lock from the
2880 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2881 * wait lists consistent.
2883 * In particular; it is important that futex_unlock_pi() can not
2884 * observe this inconsistency.
2886 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2887 ret = 0;
2889 no_block:
2891 * Fixup the pi_state owner and possibly acquire the lock if we
2892 * haven't already.
2894 res = fixup_owner(uaddr, &q, !ret);
2896 * If fixup_owner() returned an error, proprogate that. If it acquired
2897 * the lock, clear our -ETIMEDOUT or -EINTR.
2899 if (res)
2900 ret = (res < 0) ? res : 0;
2903 * If fixup_owner() faulted and was unable to handle the fault, unlock
2904 * it and return the fault to userspace.
2906 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2907 pi_state = q.pi_state;
2908 get_pi_state(pi_state);
2911 /* Unqueue and drop the lock */
2912 unqueue_me_pi(&q);
2914 if (pi_state) {
2915 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2916 put_pi_state(pi_state);
2919 goto out_put_key;
2921 out_unlock_put_key:
2922 queue_unlock(hb);
2924 out_put_key:
2925 put_futex_key(&q.key);
2926 out:
2927 if (to) {
2928 hrtimer_cancel(&to->timer);
2929 destroy_hrtimer_on_stack(&to->timer);
2931 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2933 uaddr_faulted:
2934 queue_unlock(hb);
2936 ret = fault_in_user_writeable(uaddr);
2937 if (ret)
2938 goto out_put_key;
2940 if (!(flags & FLAGS_SHARED))
2941 goto retry_private;
2943 put_futex_key(&q.key);
2944 goto retry;
2948 * Userspace attempted a TID -> 0 atomic transition, and failed.
2949 * This is the in-kernel slowpath: we look up the PI state (if any),
2950 * and do the rt-mutex unlock.
2952 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2954 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2955 union futex_key key = FUTEX_KEY_INIT;
2956 struct futex_hash_bucket *hb;
2957 struct futex_q *top_waiter;
2958 int ret;
2960 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2961 return -ENOSYS;
2963 retry:
2964 if (get_user(uval, uaddr))
2965 return -EFAULT;
2967 * We release only a lock we actually own:
2969 if ((uval & FUTEX_TID_MASK) != vpid)
2970 return -EPERM;
2972 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2973 if (ret)
2974 return ret;
2976 hb = hash_futex(&key);
2977 spin_lock(&hb->lock);
2980 * Check waiters first. We do not trust user space values at
2981 * all and we at least want to know if user space fiddled
2982 * with the futex value instead of blindly unlocking.
2984 top_waiter = futex_top_waiter(hb, &key);
2985 if (top_waiter) {
2986 struct futex_pi_state *pi_state = top_waiter->pi_state;
2988 ret = -EINVAL;
2989 if (!pi_state)
2990 goto out_unlock;
2993 * If current does not own the pi_state then the futex is
2994 * inconsistent and user space fiddled with the futex value.
2996 if (pi_state->owner != current)
2997 goto out_unlock;
2999 get_pi_state(pi_state);
3001 * By taking wait_lock while still holding hb->lock, we ensure
3002 * there is no point where we hold neither; and therefore
3003 * wake_futex_pi() must observe a state consistent with what we
3004 * observed.
3006 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3007 spin_unlock(&hb->lock);
3009 /* drops pi_state->pi_mutex.wait_lock */
3010 ret = wake_futex_pi(uaddr, uval, pi_state);
3012 put_pi_state(pi_state);
3015 * Success, we're done! No tricky corner cases.
3017 if (!ret)
3018 goto out_putkey;
3020 * The atomic access to the futex value generated a
3021 * pagefault, so retry the user-access and the wakeup:
3023 if (ret == -EFAULT)
3024 goto pi_faulted;
3026 * A unconditional UNLOCK_PI op raced against a waiter
3027 * setting the FUTEX_WAITERS bit. Try again.
3029 if (ret == -EAGAIN) {
3030 put_futex_key(&key);
3031 goto retry;
3034 * wake_futex_pi has detected invalid state. Tell user
3035 * space.
3037 goto out_putkey;
3041 * We have no kernel internal state, i.e. no waiters in the
3042 * kernel. Waiters which are about to queue themselves are stuck
3043 * on hb->lock. So we can safely ignore them. We do neither
3044 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3045 * owner.
3047 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3048 spin_unlock(&hb->lock);
3049 goto pi_faulted;
3053 * If uval has changed, let user space handle it.
3055 ret = (curval == uval) ? 0 : -EAGAIN;
3057 out_unlock:
3058 spin_unlock(&hb->lock);
3059 out_putkey:
3060 put_futex_key(&key);
3061 return ret;
3063 pi_faulted:
3064 put_futex_key(&key);
3066 ret = fault_in_user_writeable(uaddr);
3067 if (!ret)
3068 goto retry;
3070 return ret;
3074 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3075 * @hb: the hash_bucket futex_q was original enqueued on
3076 * @q: the futex_q woken while waiting to be requeued
3077 * @key2: the futex_key of the requeue target futex
3078 * @timeout: the timeout associated with the wait (NULL if none)
3080 * Detect if the task was woken on the initial futex as opposed to the requeue
3081 * target futex. If so, determine if it was a timeout or a signal that caused
3082 * the wakeup and return the appropriate error code to the caller. Must be
3083 * called with the hb lock held.
3085 * Return:
3086 * - 0 = no early wakeup detected;
3087 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3089 static inline
3090 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3091 struct futex_q *q, union futex_key *key2,
3092 struct hrtimer_sleeper *timeout)
3094 int ret = 0;
3097 * With the hb lock held, we avoid races while we process the wakeup.
3098 * We only need to hold hb (and not hb2) to ensure atomicity as the
3099 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3100 * It can't be requeued from uaddr2 to something else since we don't
3101 * support a PI aware source futex for requeue.
3103 if (!match_futex(&q->key, key2)) {
3104 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3106 * We were woken prior to requeue by a timeout or a signal.
3107 * Unqueue the futex_q and determine which it was.
3109 plist_del(&q->list, &hb->chain);
3110 hb_waiters_dec(hb);
3112 /* Handle spurious wakeups gracefully */
3113 ret = -EWOULDBLOCK;
3114 if (timeout && !timeout->task)
3115 ret = -ETIMEDOUT;
3116 else if (signal_pending(current))
3117 ret = -ERESTARTNOINTR;
3119 return ret;
3123 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3124 * @uaddr: the futex we initially wait on (non-pi)
3125 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3126 * the same type, no requeueing from private to shared, etc.
3127 * @val: the expected value of uaddr
3128 * @abs_time: absolute timeout
3129 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3130 * @uaddr2: the pi futex we will take prior to returning to user-space
3132 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3133 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3134 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3135 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3136 * without one, the pi logic would not know which task to boost/deboost, if
3137 * there was a need to.
3139 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3140 * via the following--
3141 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3142 * 2) wakeup on uaddr2 after a requeue
3143 * 3) signal
3144 * 4) timeout
3146 * If 3, cleanup and return -ERESTARTNOINTR.
3148 * If 2, we may then block on trying to take the rt_mutex and return via:
3149 * 5) successful lock
3150 * 6) signal
3151 * 7) timeout
3152 * 8) other lock acquisition failure
3154 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3156 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3158 * Return:
3159 * - 0 - On success;
3160 * - <0 - On error
3162 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3163 u32 val, ktime_t *abs_time, u32 bitset,
3164 u32 __user *uaddr2)
3166 struct hrtimer_sleeper timeout, *to = NULL;
3167 struct futex_pi_state *pi_state = NULL;
3168 struct rt_mutex_waiter rt_waiter;
3169 struct futex_hash_bucket *hb;
3170 union futex_key key2 = FUTEX_KEY_INIT;
3171 struct futex_q q = futex_q_init;
3172 int res, ret;
3174 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3175 return -ENOSYS;
3177 if (uaddr == uaddr2)
3178 return -EINVAL;
3180 if (!bitset)
3181 return -EINVAL;
3183 if (abs_time) {
3184 to = &timeout;
3185 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3186 CLOCK_REALTIME : CLOCK_MONOTONIC,
3187 HRTIMER_MODE_ABS);
3188 hrtimer_init_sleeper(to, current);
3189 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3190 current->timer_slack_ns);
3194 * The waiter is allocated on our stack, manipulated by the requeue
3195 * code while we sleep on uaddr.
3197 rt_mutex_init_waiter(&rt_waiter);
3199 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3200 if (unlikely(ret != 0))
3201 goto out;
3203 q.bitset = bitset;
3204 q.rt_waiter = &rt_waiter;
3205 q.requeue_pi_key = &key2;
3208 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3209 * count.
3211 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3212 if (ret)
3213 goto out_key2;
3216 * The check above which compares uaddrs is not sufficient for
3217 * shared futexes. We need to compare the keys:
3219 if (match_futex(&q.key, &key2)) {
3220 queue_unlock(hb);
3221 ret = -EINVAL;
3222 goto out_put_keys;
3225 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3226 futex_wait_queue_me(hb, &q, to);
3228 spin_lock(&hb->lock);
3229 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3230 spin_unlock(&hb->lock);
3231 if (ret)
3232 goto out_put_keys;
3235 * In order for us to be here, we know our q.key == key2, and since
3236 * we took the hb->lock above, we also know that futex_requeue() has
3237 * completed and we no longer have to concern ourselves with a wakeup
3238 * race with the atomic proxy lock acquisition by the requeue code. The
3239 * futex_requeue dropped our key1 reference and incremented our key2
3240 * reference count.
3243 /* Check if the requeue code acquired the second futex for us. */
3244 if (!q.rt_waiter) {
3246 * Got the lock. We might not be the anticipated owner if we
3247 * did a lock-steal - fix up the PI-state in that case.
3249 if (q.pi_state && (q.pi_state->owner != current)) {
3250 spin_lock(q.lock_ptr);
3251 ret = fixup_pi_state_owner(uaddr2, &q, current);
3252 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3253 pi_state = q.pi_state;
3254 get_pi_state(pi_state);
3257 * Drop the reference to the pi state which
3258 * the requeue_pi() code acquired for us.
3260 put_pi_state(q.pi_state);
3261 spin_unlock(q.lock_ptr);
3263 } else {
3264 struct rt_mutex *pi_mutex;
3267 * We have been woken up by futex_unlock_pi(), a timeout, or a
3268 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3269 * the pi_state.
3271 WARN_ON(!q.pi_state);
3272 pi_mutex = &q.pi_state->pi_mutex;
3273 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3275 spin_lock(q.lock_ptr);
3276 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3277 ret = 0;
3279 debug_rt_mutex_free_waiter(&rt_waiter);
3281 * Fixup the pi_state owner and possibly acquire the lock if we
3282 * haven't already.
3284 res = fixup_owner(uaddr2, &q, !ret);
3286 * If fixup_owner() returned an error, proprogate that. If it
3287 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3289 if (res)
3290 ret = (res < 0) ? res : 0;
3293 * If fixup_pi_state_owner() faulted and was unable to handle
3294 * the fault, unlock the rt_mutex and return the fault to
3295 * userspace.
3297 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3298 pi_state = q.pi_state;
3299 get_pi_state(pi_state);
3302 /* Unqueue and drop the lock. */
3303 unqueue_me_pi(&q);
3306 if (pi_state) {
3307 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3308 put_pi_state(pi_state);
3311 if (ret == -EINTR) {
3313 * We've already been requeued, but cannot restart by calling
3314 * futex_lock_pi() directly. We could restart this syscall, but
3315 * it would detect that the user space "val" changed and return
3316 * -EWOULDBLOCK. Save the overhead of the restart and return
3317 * -EWOULDBLOCK directly.
3319 ret = -EWOULDBLOCK;
3322 out_put_keys:
3323 put_futex_key(&q.key);
3324 out_key2:
3325 put_futex_key(&key2);
3327 out:
3328 if (to) {
3329 hrtimer_cancel(&to->timer);
3330 destroy_hrtimer_on_stack(&to->timer);
3332 return ret;
3336 * Support for robust futexes: the kernel cleans up held futexes at
3337 * thread exit time.
3339 * Implementation: user-space maintains a per-thread list of locks it
3340 * is holding. Upon do_exit(), the kernel carefully walks this list,
3341 * and marks all locks that are owned by this thread with the
3342 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3343 * always manipulated with the lock held, so the list is private and
3344 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3345 * field, to allow the kernel to clean up if the thread dies after
3346 * acquiring the lock, but just before it could have added itself to
3347 * the list. There can only be one such pending lock.
3351 * sys_set_robust_list() - Set the robust-futex list head of a task
3352 * @head: pointer to the list-head
3353 * @len: length of the list-head, as userspace expects
3355 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3356 size_t, len)
3358 if (!futex_cmpxchg_enabled)
3359 return -ENOSYS;
3361 * The kernel knows only one size for now:
3363 if (unlikely(len != sizeof(*head)))
3364 return -EINVAL;
3366 current->robust_list = head;
3368 return 0;
3372 * sys_get_robust_list() - Get the robust-futex list head of a task
3373 * @pid: pid of the process [zero for current task]
3374 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3375 * @len_ptr: pointer to a length field, the kernel fills in the header size
3377 SYSCALL_DEFINE3(get_robust_list, int, pid,
3378 struct robust_list_head __user * __user *, head_ptr,
3379 size_t __user *, len_ptr)
3381 struct robust_list_head __user *head;
3382 unsigned long ret;
3383 struct task_struct *p;
3385 if (!futex_cmpxchg_enabled)
3386 return -ENOSYS;
3388 rcu_read_lock();
3390 ret = -ESRCH;
3391 if (!pid)
3392 p = current;
3393 else {
3394 p = find_task_by_vpid(pid);
3395 if (!p)
3396 goto err_unlock;
3399 ret = -EPERM;
3400 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3401 goto err_unlock;
3403 head = p->robust_list;
3404 rcu_read_unlock();
3406 if (put_user(sizeof(*head), len_ptr))
3407 return -EFAULT;
3408 return put_user(head, head_ptr);
3410 err_unlock:
3411 rcu_read_unlock();
3413 return ret;
3417 * Process a futex-list entry, check whether it's owned by the
3418 * dying task, and do notification if so:
3420 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3422 u32 uval, uninitialized_var(nval), mval;
3424 retry:
3425 if (get_user(uval, uaddr))
3426 return -1;
3428 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3430 * Ok, this dying thread is truly holding a futex
3431 * of interest. Set the OWNER_DIED bit atomically
3432 * via cmpxchg, and if the value had FUTEX_WAITERS
3433 * set, wake up a waiter (if any). (We have to do a
3434 * futex_wake() even if OWNER_DIED is already set -
3435 * to handle the rare but possible case of recursive
3436 * thread-death.) The rest of the cleanup is done in
3437 * userspace.
3439 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3441 * We are not holding a lock here, but we want to have
3442 * the pagefault_disable/enable() protection because
3443 * we want to handle the fault gracefully. If the
3444 * access fails we try to fault in the futex with R/W
3445 * verification via get_user_pages. get_user() above
3446 * does not guarantee R/W access. If that fails we
3447 * give up and leave the futex locked.
3449 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3450 if (fault_in_user_writeable(uaddr))
3451 return -1;
3452 goto retry;
3454 if (nval != uval)
3455 goto retry;
3458 * Wake robust non-PI futexes here. The wakeup of
3459 * PI futexes happens in exit_pi_state():
3461 if (!pi && (uval & FUTEX_WAITERS))
3462 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3464 return 0;
3468 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3470 static inline int fetch_robust_entry(struct robust_list __user **entry,
3471 struct robust_list __user * __user *head,
3472 unsigned int *pi)
3474 unsigned long uentry;
3476 if (get_user(uentry, (unsigned long __user *)head))
3477 return -EFAULT;
3479 *entry = (void __user *)(uentry & ~1UL);
3480 *pi = uentry & 1;
3482 return 0;
3486 * Walk curr->robust_list (very carefully, it's a userspace list!)
3487 * and mark any locks found there dead, and notify any waiters.
3489 * We silently return on any sign of list-walking problem.
3491 void exit_robust_list(struct task_struct *curr)
3493 struct robust_list_head __user *head = curr->robust_list;
3494 struct robust_list __user *entry, *next_entry, *pending;
3495 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3496 unsigned int uninitialized_var(next_pi);
3497 unsigned long futex_offset;
3498 int rc;
3500 if (!futex_cmpxchg_enabled)
3501 return;
3504 * Fetch the list head (which was registered earlier, via
3505 * sys_set_robust_list()):
3507 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3508 return;
3510 * Fetch the relative futex offset:
3512 if (get_user(futex_offset, &head->futex_offset))
3513 return;
3515 * Fetch any possibly pending lock-add first, and handle it
3516 * if it exists:
3518 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3519 return;
3521 next_entry = NULL; /* avoid warning with gcc */
3522 while (entry != &head->list) {
3524 * Fetch the next entry in the list before calling
3525 * handle_futex_death:
3527 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3529 * A pending lock might already be on the list, so
3530 * don't process it twice:
3532 if (entry != pending)
3533 if (handle_futex_death((void __user *)entry + futex_offset,
3534 curr, pi))
3535 return;
3536 if (rc)
3537 return;
3538 entry = next_entry;
3539 pi = next_pi;
3541 * Avoid excessively long or circular lists:
3543 if (!--limit)
3544 break;
3546 cond_resched();
3549 if (pending)
3550 handle_futex_death((void __user *)pending + futex_offset,
3551 curr, pip);
3554 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3555 u32 __user *uaddr2, u32 val2, u32 val3)
3557 int cmd = op & FUTEX_CMD_MASK;
3558 unsigned int flags = 0;
3560 if (!(op & FUTEX_PRIVATE_FLAG))
3561 flags |= FLAGS_SHARED;
3563 if (op & FUTEX_CLOCK_REALTIME) {
3564 flags |= FLAGS_CLOCKRT;
3565 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3566 cmd != FUTEX_WAIT_REQUEUE_PI)
3567 return -ENOSYS;
3570 switch (cmd) {
3571 case FUTEX_LOCK_PI:
3572 case FUTEX_UNLOCK_PI:
3573 case FUTEX_TRYLOCK_PI:
3574 case FUTEX_WAIT_REQUEUE_PI:
3575 case FUTEX_CMP_REQUEUE_PI:
3576 if (!futex_cmpxchg_enabled)
3577 return -ENOSYS;
3580 switch (cmd) {
3581 case FUTEX_WAIT:
3582 val3 = FUTEX_BITSET_MATCH_ANY;
3583 /* fall through */
3584 case FUTEX_WAIT_BITSET:
3585 return futex_wait(uaddr, flags, val, timeout, val3);
3586 case FUTEX_WAKE:
3587 val3 = FUTEX_BITSET_MATCH_ANY;
3588 /* fall through */
3589 case FUTEX_WAKE_BITSET:
3590 return futex_wake(uaddr, flags, val, val3);
3591 case FUTEX_REQUEUE:
3592 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3593 case FUTEX_CMP_REQUEUE:
3594 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3595 case FUTEX_WAKE_OP:
3596 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3597 case FUTEX_LOCK_PI:
3598 return futex_lock_pi(uaddr, flags, timeout, 0);
3599 case FUTEX_UNLOCK_PI:
3600 return futex_unlock_pi(uaddr, flags);
3601 case FUTEX_TRYLOCK_PI:
3602 return futex_lock_pi(uaddr, flags, NULL, 1);
3603 case FUTEX_WAIT_REQUEUE_PI:
3604 val3 = FUTEX_BITSET_MATCH_ANY;
3605 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3606 uaddr2);
3607 case FUTEX_CMP_REQUEUE_PI:
3608 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3610 return -ENOSYS;
3614 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3615 struct timespec __user *, utime, u32 __user *, uaddr2,
3616 u32, val3)
3618 struct timespec ts;
3619 ktime_t t, *tp = NULL;
3620 u32 val2 = 0;
3621 int cmd = op & FUTEX_CMD_MASK;
3623 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3624 cmd == FUTEX_WAIT_BITSET ||
3625 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3626 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3627 return -EFAULT;
3628 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3629 return -EFAULT;
3630 if (!timespec_valid(&ts))
3631 return -EINVAL;
3633 t = timespec_to_ktime(ts);
3634 if (cmd == FUTEX_WAIT)
3635 t = ktime_add_safe(ktime_get(), t);
3636 tp = &t;
3639 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3640 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3642 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3643 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3644 val2 = (u32) (unsigned long) utime;
3646 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3649 static void __init futex_detect_cmpxchg(void)
3651 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3652 u32 curval;
3655 * This will fail and we want it. Some arch implementations do
3656 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3657 * functionality. We want to know that before we call in any
3658 * of the complex code paths. Also we want to prevent
3659 * registration of robust lists in that case. NULL is
3660 * guaranteed to fault and we get -EFAULT on functional
3661 * implementation, the non-functional ones will return
3662 * -ENOSYS.
3664 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3665 futex_cmpxchg_enabled = 1;
3666 #endif
3669 static int __init futex_init(void)
3671 unsigned int futex_shift;
3672 unsigned long i;
3674 #if CONFIG_BASE_SMALL
3675 futex_hashsize = 16;
3676 #else
3677 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3678 #endif
3680 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3681 futex_hashsize, 0,
3682 futex_hashsize < 256 ? HASH_SMALL : 0,
3683 &futex_shift, NULL,
3684 futex_hashsize, futex_hashsize);
3685 futex_hashsize = 1UL << futex_shift;
3687 futex_detect_cmpxchg();
3689 for (i = 0; i < futex_hashsize; i++) {
3690 atomic_set(&futex_queues[i].waiters, 0);
3691 plist_head_init(&futex_queues[i].chain);
3692 spin_lock_init(&futex_queues[i].lock);
3695 return 0;
3697 core_initcall(futex_init);