ALSA: control: Hardening for potential Spectre v1
[linux/fpc-iii.git] / ipc / mqueue.c
blob28a142f1be36d2ee8fa493661902a96c324371bc
1 /*
2 * POSIX message queues filesystem for Linux.
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
13 * This file is released under the GPL.
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
39 #include <net/sock.h>
40 #include "util.h"
42 #define MQUEUE_MAGIC 0x19800202
43 #define DIRENT_SIZE 20
44 #define FILENT_SIZE 80
46 #define SEND 0
47 #define RECV 1
49 #define STATE_NONE 0
50 #define STATE_READY 1
52 struct posix_msg_tree_node {
53 struct rb_node rb_node;
54 struct list_head msg_list;
55 int priority;
58 struct ext_wait_queue { /* queue of sleeping tasks */
59 struct task_struct *task;
60 struct list_head list;
61 struct msg_msg *msg; /* ptr of loaded message */
62 int state; /* one of STATE_* values */
65 struct mqueue_inode_info {
66 spinlock_t lock;
67 struct inode vfs_inode;
68 wait_queue_head_t wait_q;
70 struct rb_root msg_tree;
71 struct posix_msg_tree_node *node_cache;
72 struct mq_attr attr;
74 struct sigevent notify;
75 struct pid *notify_owner;
76 struct user_namespace *notify_user_ns;
77 struct user_struct *user; /* user who created, for accounting */
78 struct sock *notify_sock;
79 struct sk_buff *notify_cookie;
81 /* for tasks waiting for free space and messages, respectively */
82 struct ext_wait_queue e_wait_q[2];
84 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
87 static const struct inode_operations mqueue_dir_inode_operations;
88 static const struct file_operations mqueue_file_operations;
89 static const struct super_operations mqueue_super_ops;
90 static void remove_notification(struct mqueue_inode_info *info);
92 static struct kmem_cache *mqueue_inode_cachep;
94 static struct ctl_table_header *mq_sysctl_table;
96 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
98 return container_of(inode, struct mqueue_inode_info, vfs_inode);
102 * This routine should be called with the mq_lock held.
104 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
106 return get_ipc_ns(inode->i_sb->s_fs_info);
109 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
111 struct ipc_namespace *ns;
113 spin_lock(&mq_lock);
114 ns = __get_ns_from_inode(inode);
115 spin_unlock(&mq_lock);
116 return ns;
119 /* Auxiliary functions to manipulate messages' list */
120 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
122 struct rb_node **p, *parent = NULL;
123 struct posix_msg_tree_node *leaf;
125 p = &info->msg_tree.rb_node;
126 while (*p) {
127 parent = *p;
128 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
130 if (likely(leaf->priority == msg->m_type))
131 goto insert_msg;
132 else if (msg->m_type < leaf->priority)
133 p = &(*p)->rb_left;
134 else
135 p = &(*p)->rb_right;
137 if (info->node_cache) {
138 leaf = info->node_cache;
139 info->node_cache = NULL;
140 } else {
141 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
142 if (!leaf)
143 return -ENOMEM;
144 INIT_LIST_HEAD(&leaf->msg_list);
146 leaf->priority = msg->m_type;
147 rb_link_node(&leaf->rb_node, parent, p);
148 rb_insert_color(&leaf->rb_node, &info->msg_tree);
149 insert_msg:
150 info->attr.mq_curmsgs++;
151 info->qsize += msg->m_ts;
152 list_add_tail(&msg->m_list, &leaf->msg_list);
153 return 0;
156 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
158 struct rb_node **p, *parent = NULL;
159 struct posix_msg_tree_node *leaf;
160 struct msg_msg *msg;
162 try_again:
163 p = &info->msg_tree.rb_node;
164 while (*p) {
165 parent = *p;
167 * During insert, low priorities go to the left and high to the
168 * right. On receive, we want the highest priorities first, so
169 * walk all the way to the right.
171 p = &(*p)->rb_right;
173 if (!parent) {
174 if (info->attr.mq_curmsgs) {
175 pr_warn_once("Inconsistency in POSIX message queue, "
176 "no tree element, but supposedly messages "
177 "should exist!\n");
178 info->attr.mq_curmsgs = 0;
180 return NULL;
182 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
183 if (unlikely(list_empty(&leaf->msg_list))) {
184 pr_warn_once("Inconsistency in POSIX message queue, "
185 "empty leaf node but we haven't implemented "
186 "lazy leaf delete!\n");
187 rb_erase(&leaf->rb_node, &info->msg_tree);
188 if (info->node_cache) {
189 kfree(leaf);
190 } else {
191 info->node_cache = leaf;
193 goto try_again;
194 } else {
195 msg = list_first_entry(&leaf->msg_list,
196 struct msg_msg, m_list);
197 list_del(&msg->m_list);
198 if (list_empty(&leaf->msg_list)) {
199 rb_erase(&leaf->rb_node, &info->msg_tree);
200 if (info->node_cache) {
201 kfree(leaf);
202 } else {
203 info->node_cache = leaf;
207 info->attr.mq_curmsgs--;
208 info->qsize -= msg->m_ts;
209 return msg;
212 static struct inode *mqueue_get_inode(struct super_block *sb,
213 struct ipc_namespace *ipc_ns, umode_t mode,
214 struct mq_attr *attr)
216 struct user_struct *u = current_user();
217 struct inode *inode;
218 int ret = -ENOMEM;
220 inode = new_inode(sb);
221 if (!inode)
222 goto err;
224 inode->i_ino = get_next_ino();
225 inode->i_mode = mode;
226 inode->i_uid = current_fsuid();
227 inode->i_gid = current_fsgid();
228 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
230 if (S_ISREG(mode)) {
231 struct mqueue_inode_info *info;
232 unsigned long mq_bytes, mq_treesize;
234 inode->i_fop = &mqueue_file_operations;
235 inode->i_size = FILENT_SIZE;
236 /* mqueue specific info */
237 info = MQUEUE_I(inode);
238 spin_lock_init(&info->lock);
239 init_waitqueue_head(&info->wait_q);
240 INIT_LIST_HEAD(&info->e_wait_q[0].list);
241 INIT_LIST_HEAD(&info->e_wait_q[1].list);
242 info->notify_owner = NULL;
243 info->notify_user_ns = NULL;
244 info->qsize = 0;
245 info->user = NULL; /* set when all is ok */
246 info->msg_tree = RB_ROOT;
247 info->node_cache = NULL;
248 memset(&info->attr, 0, sizeof(info->attr));
249 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
250 ipc_ns->mq_msg_default);
251 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
252 ipc_ns->mq_msgsize_default);
253 if (attr) {
254 info->attr.mq_maxmsg = attr->mq_maxmsg;
255 info->attr.mq_msgsize = attr->mq_msgsize;
258 * We used to allocate a static array of pointers and account
259 * the size of that array as well as one msg_msg struct per
260 * possible message into the queue size. That's no longer
261 * accurate as the queue is now an rbtree and will grow and
262 * shrink depending on usage patterns. We can, however, still
263 * account one msg_msg struct per message, but the nodes are
264 * allocated depending on priority usage, and most programs
265 * only use one, or a handful, of priorities. However, since
266 * this is pinned memory, we need to assume worst case, so
267 * that means the min(mq_maxmsg, max_priorities) * struct
268 * posix_msg_tree_node.
270 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
271 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
272 sizeof(struct posix_msg_tree_node);
274 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
275 info->attr.mq_msgsize);
277 spin_lock(&mq_lock);
278 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
279 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
280 spin_unlock(&mq_lock);
281 /* mqueue_evict_inode() releases info->messages */
282 ret = -EMFILE;
283 goto out_inode;
285 u->mq_bytes += mq_bytes;
286 spin_unlock(&mq_lock);
288 /* all is ok */
289 info->user = get_uid(u);
290 } else if (S_ISDIR(mode)) {
291 inc_nlink(inode);
292 /* Some things misbehave if size == 0 on a directory */
293 inode->i_size = 2 * DIRENT_SIZE;
294 inode->i_op = &mqueue_dir_inode_operations;
295 inode->i_fop = &simple_dir_operations;
298 return inode;
299 out_inode:
300 iput(inode);
301 err:
302 return ERR_PTR(ret);
305 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
307 struct inode *inode;
308 struct ipc_namespace *ns = sb->s_fs_info;
310 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
311 sb->s_blocksize = PAGE_SIZE;
312 sb->s_blocksize_bits = PAGE_SHIFT;
313 sb->s_magic = MQUEUE_MAGIC;
314 sb->s_op = &mqueue_super_ops;
316 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
317 if (IS_ERR(inode))
318 return PTR_ERR(inode);
320 sb->s_root = d_make_root(inode);
321 if (!sb->s_root)
322 return -ENOMEM;
323 return 0;
326 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
327 int flags, const char *dev_name,
328 void *data)
330 struct ipc_namespace *ns;
331 if (flags & MS_KERNMOUNT) {
332 ns = data;
333 data = NULL;
334 } else {
335 ns = current->nsproxy->ipc_ns;
337 return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
340 static void init_once(void *foo)
342 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
344 inode_init_once(&p->vfs_inode);
347 static struct inode *mqueue_alloc_inode(struct super_block *sb)
349 struct mqueue_inode_info *ei;
351 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
352 if (!ei)
353 return NULL;
354 return &ei->vfs_inode;
357 static void mqueue_i_callback(struct rcu_head *head)
359 struct inode *inode = container_of(head, struct inode, i_rcu);
360 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
363 static void mqueue_destroy_inode(struct inode *inode)
365 call_rcu(&inode->i_rcu, mqueue_i_callback);
368 static void mqueue_evict_inode(struct inode *inode)
370 struct mqueue_inode_info *info;
371 struct user_struct *user;
372 unsigned long mq_bytes, mq_treesize;
373 struct ipc_namespace *ipc_ns;
374 struct msg_msg *msg;
376 clear_inode(inode);
378 if (S_ISDIR(inode->i_mode))
379 return;
381 ipc_ns = get_ns_from_inode(inode);
382 info = MQUEUE_I(inode);
383 spin_lock(&info->lock);
384 while ((msg = msg_get(info)) != NULL)
385 free_msg(msg);
386 kfree(info->node_cache);
387 spin_unlock(&info->lock);
389 /* Total amount of bytes accounted for the mqueue */
390 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
391 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
392 sizeof(struct posix_msg_tree_node);
394 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
395 info->attr.mq_msgsize);
397 user = info->user;
398 if (user) {
399 spin_lock(&mq_lock);
400 user->mq_bytes -= mq_bytes;
402 * get_ns_from_inode() ensures that the
403 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
404 * to which we now hold a reference, or it is NULL.
405 * We can't put it here under mq_lock, though.
407 if (ipc_ns)
408 ipc_ns->mq_queues_count--;
409 spin_unlock(&mq_lock);
410 free_uid(user);
412 if (ipc_ns)
413 put_ipc_ns(ipc_ns);
416 static int mqueue_create(struct inode *dir, struct dentry *dentry,
417 umode_t mode, bool excl)
419 struct inode *inode;
420 struct mq_attr *attr = dentry->d_fsdata;
421 int error;
422 struct ipc_namespace *ipc_ns;
424 spin_lock(&mq_lock);
425 ipc_ns = __get_ns_from_inode(dir);
426 if (!ipc_ns) {
427 error = -EACCES;
428 goto out_unlock;
431 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
432 !capable(CAP_SYS_RESOURCE)) {
433 error = -ENOSPC;
434 goto out_unlock;
436 ipc_ns->mq_queues_count++;
437 spin_unlock(&mq_lock);
439 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
440 if (IS_ERR(inode)) {
441 error = PTR_ERR(inode);
442 spin_lock(&mq_lock);
443 ipc_ns->mq_queues_count--;
444 goto out_unlock;
447 put_ipc_ns(ipc_ns);
448 dir->i_size += DIRENT_SIZE;
449 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
451 d_instantiate(dentry, inode);
452 dget(dentry);
453 return 0;
454 out_unlock:
455 spin_unlock(&mq_lock);
456 if (ipc_ns)
457 put_ipc_ns(ipc_ns);
458 return error;
461 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
463 struct inode *inode = d_inode(dentry);
465 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
466 dir->i_size -= DIRENT_SIZE;
467 drop_nlink(inode);
468 dput(dentry);
469 return 0;
473 * This is routine for system read from queue file.
474 * To avoid mess with doing here some sort of mq_receive we allow
475 * to read only queue size & notification info (the only values
476 * that are interesting from user point of view and aren't accessible
477 * through std routines)
479 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
480 size_t count, loff_t *off)
482 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
483 char buffer[FILENT_SIZE];
484 ssize_t ret;
486 spin_lock(&info->lock);
487 snprintf(buffer, sizeof(buffer),
488 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
489 info->qsize,
490 info->notify_owner ? info->notify.sigev_notify : 0,
491 (info->notify_owner &&
492 info->notify.sigev_notify == SIGEV_SIGNAL) ?
493 info->notify.sigev_signo : 0,
494 pid_vnr(info->notify_owner));
495 spin_unlock(&info->lock);
496 buffer[sizeof(buffer)-1] = '\0';
498 ret = simple_read_from_buffer(u_data, count, off, buffer,
499 strlen(buffer));
500 if (ret <= 0)
501 return ret;
503 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
504 return ret;
507 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
509 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
511 spin_lock(&info->lock);
512 if (task_tgid(current) == info->notify_owner)
513 remove_notification(info);
515 spin_unlock(&info->lock);
516 return 0;
519 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
521 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
522 int retval = 0;
524 poll_wait(filp, &info->wait_q, poll_tab);
526 spin_lock(&info->lock);
527 if (info->attr.mq_curmsgs)
528 retval = POLLIN | POLLRDNORM;
530 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
531 retval |= POLLOUT | POLLWRNORM;
532 spin_unlock(&info->lock);
534 return retval;
537 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
538 static void wq_add(struct mqueue_inode_info *info, int sr,
539 struct ext_wait_queue *ewp)
541 struct ext_wait_queue *walk;
543 ewp->task = current;
545 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
546 if (walk->task->static_prio <= current->static_prio) {
547 list_add_tail(&ewp->list, &walk->list);
548 return;
551 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
555 * Puts current task to sleep. Caller must hold queue lock. After return
556 * lock isn't held.
557 * sr: SEND or RECV
559 static int wq_sleep(struct mqueue_inode_info *info, int sr,
560 ktime_t *timeout, struct ext_wait_queue *ewp)
562 int retval;
563 signed long time;
565 wq_add(info, sr, ewp);
567 for (;;) {
568 __set_current_state(TASK_INTERRUPTIBLE);
570 spin_unlock(&info->lock);
571 time = schedule_hrtimeout_range_clock(timeout, 0,
572 HRTIMER_MODE_ABS, CLOCK_REALTIME);
574 if (ewp->state == STATE_READY) {
575 retval = 0;
576 goto out;
578 spin_lock(&info->lock);
579 if (ewp->state == STATE_READY) {
580 retval = 0;
581 goto out_unlock;
583 if (signal_pending(current)) {
584 retval = -ERESTARTSYS;
585 break;
587 if (time == 0) {
588 retval = -ETIMEDOUT;
589 break;
592 list_del(&ewp->list);
593 out_unlock:
594 spin_unlock(&info->lock);
595 out:
596 return retval;
600 * Returns waiting task that should be serviced first or NULL if none exists
602 static struct ext_wait_queue *wq_get_first_waiter(
603 struct mqueue_inode_info *info, int sr)
605 struct list_head *ptr;
607 ptr = info->e_wait_q[sr].list.prev;
608 if (ptr == &info->e_wait_q[sr].list)
609 return NULL;
610 return list_entry(ptr, struct ext_wait_queue, list);
614 static inline void set_cookie(struct sk_buff *skb, char code)
616 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
620 * The next function is only to split too long sys_mq_timedsend
622 static void __do_notify(struct mqueue_inode_info *info)
624 /* notification
625 * invoked when there is registered process and there isn't process
626 * waiting synchronously for message AND state of queue changed from
627 * empty to not empty. Here we are sure that no one is waiting
628 * synchronously. */
629 if (info->notify_owner &&
630 info->attr.mq_curmsgs == 1) {
631 struct siginfo sig_i;
632 switch (info->notify.sigev_notify) {
633 case SIGEV_NONE:
634 break;
635 case SIGEV_SIGNAL:
636 /* sends signal */
638 sig_i.si_signo = info->notify.sigev_signo;
639 sig_i.si_errno = 0;
640 sig_i.si_code = SI_MESGQ;
641 sig_i.si_value = info->notify.sigev_value;
642 /* map current pid/uid into info->owner's namespaces */
643 rcu_read_lock();
644 sig_i.si_pid = task_tgid_nr_ns(current,
645 ns_of_pid(info->notify_owner));
646 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
647 rcu_read_unlock();
649 kill_pid_info(info->notify.sigev_signo,
650 &sig_i, info->notify_owner);
651 break;
652 case SIGEV_THREAD:
653 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
654 netlink_sendskb(info->notify_sock, info->notify_cookie);
655 break;
657 /* after notification unregisters process */
658 put_pid(info->notify_owner);
659 put_user_ns(info->notify_user_ns);
660 info->notify_owner = NULL;
661 info->notify_user_ns = NULL;
663 wake_up(&info->wait_q);
666 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
667 ktime_t *expires, struct timespec *ts)
669 if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
670 return -EFAULT;
671 if (!timespec_valid(ts))
672 return -EINVAL;
674 *expires = timespec_to_ktime(*ts);
675 return 0;
678 static void remove_notification(struct mqueue_inode_info *info)
680 if (info->notify_owner != NULL &&
681 info->notify.sigev_notify == SIGEV_THREAD) {
682 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
683 netlink_sendskb(info->notify_sock, info->notify_cookie);
685 put_pid(info->notify_owner);
686 put_user_ns(info->notify_user_ns);
687 info->notify_owner = NULL;
688 info->notify_user_ns = NULL;
691 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
693 int mq_treesize;
694 unsigned long total_size;
696 if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
697 return -EINVAL;
698 if (capable(CAP_SYS_RESOURCE)) {
699 if (attr->mq_maxmsg > HARD_MSGMAX ||
700 attr->mq_msgsize > HARD_MSGSIZEMAX)
701 return -EINVAL;
702 } else {
703 if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
704 attr->mq_msgsize > ipc_ns->mq_msgsize_max)
705 return -EINVAL;
707 /* check for overflow */
708 if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
709 return -EOVERFLOW;
710 mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
711 min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
712 sizeof(struct posix_msg_tree_node);
713 total_size = attr->mq_maxmsg * attr->mq_msgsize;
714 if (total_size + mq_treesize < total_size)
715 return -EOVERFLOW;
716 return 0;
720 * Invoked when creating a new queue via sys_mq_open
722 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
723 struct path *path, int oflag, umode_t mode,
724 struct mq_attr *attr)
726 const struct cred *cred = current_cred();
727 int ret;
729 if (attr) {
730 ret = mq_attr_ok(ipc_ns, attr);
731 if (ret)
732 return ERR_PTR(ret);
733 /* store for use during create */
734 path->dentry->d_fsdata = attr;
735 } else {
736 struct mq_attr def_attr;
738 def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
739 ipc_ns->mq_msg_default);
740 def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
741 ipc_ns->mq_msgsize_default);
742 ret = mq_attr_ok(ipc_ns, &def_attr);
743 if (ret)
744 return ERR_PTR(ret);
747 mode &= ~current_umask();
748 ret = vfs_create(dir, path->dentry, mode, true);
749 path->dentry->d_fsdata = NULL;
750 if (ret)
751 return ERR_PTR(ret);
752 return dentry_open(path, oflag, cred);
755 /* Opens existing queue */
756 static struct file *do_open(struct path *path, int oflag)
758 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
759 MAY_READ | MAY_WRITE };
760 int acc;
761 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
762 return ERR_PTR(-EINVAL);
763 acc = oflag2acc[oflag & O_ACCMODE];
764 if (inode_permission(d_inode(path->dentry), acc))
765 return ERR_PTR(-EACCES);
766 return dentry_open(path, oflag, current_cred());
769 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
770 struct mq_attr __user *, u_attr)
772 struct path path;
773 struct file *filp;
774 struct filename *name;
775 struct mq_attr attr;
776 int fd, error;
777 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
778 struct vfsmount *mnt = ipc_ns->mq_mnt;
779 struct dentry *root = mnt->mnt_root;
780 int ro;
782 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
783 return -EFAULT;
785 audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
787 if (IS_ERR(name = getname(u_name)))
788 return PTR_ERR(name);
790 fd = get_unused_fd_flags(O_CLOEXEC);
791 if (fd < 0)
792 goto out_putname;
794 ro = mnt_want_write(mnt); /* we'll drop it in any case */
795 error = 0;
796 inode_lock(d_inode(root));
797 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
798 if (IS_ERR(path.dentry)) {
799 error = PTR_ERR(path.dentry);
800 goto out_putfd;
802 path.mnt = mntget(mnt);
804 if (oflag & O_CREAT) {
805 if (d_really_is_positive(path.dentry)) { /* entry already exists */
806 audit_inode(name, path.dentry, 0);
807 if (oflag & O_EXCL) {
808 error = -EEXIST;
809 goto out;
811 filp = do_open(&path, oflag);
812 } else {
813 if (ro) {
814 error = ro;
815 goto out;
817 audit_inode_parent_hidden(name, root);
818 filp = do_create(ipc_ns, d_inode(root),
819 &path, oflag, mode,
820 u_attr ? &attr : NULL);
822 } else {
823 if (d_really_is_negative(path.dentry)) {
824 error = -ENOENT;
825 goto out;
827 audit_inode(name, path.dentry, 0);
828 filp = do_open(&path, oflag);
831 if (!IS_ERR(filp))
832 fd_install(fd, filp);
833 else
834 error = PTR_ERR(filp);
835 out:
836 path_put(&path);
837 out_putfd:
838 if (error) {
839 put_unused_fd(fd);
840 fd = error;
842 inode_unlock(d_inode(root));
843 if (!ro)
844 mnt_drop_write(mnt);
845 out_putname:
846 putname(name);
847 return fd;
850 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
852 int err;
853 struct filename *name;
854 struct dentry *dentry;
855 struct inode *inode = NULL;
856 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
857 struct vfsmount *mnt = ipc_ns->mq_mnt;
859 name = getname(u_name);
860 if (IS_ERR(name))
861 return PTR_ERR(name);
863 audit_inode_parent_hidden(name, mnt->mnt_root);
864 err = mnt_want_write(mnt);
865 if (err)
866 goto out_name;
867 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
868 dentry = lookup_one_len(name->name, mnt->mnt_root,
869 strlen(name->name));
870 if (IS_ERR(dentry)) {
871 err = PTR_ERR(dentry);
872 goto out_unlock;
875 inode = d_inode(dentry);
876 if (!inode) {
877 err = -ENOENT;
878 } else {
879 ihold(inode);
880 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
882 dput(dentry);
884 out_unlock:
885 inode_unlock(d_inode(mnt->mnt_root));
886 if (inode)
887 iput(inode);
888 mnt_drop_write(mnt);
889 out_name:
890 putname(name);
892 return err;
895 /* Pipelined send and receive functions.
897 * If a receiver finds no waiting message, then it registers itself in the
898 * list of waiting receivers. A sender checks that list before adding the new
899 * message into the message array. If there is a waiting receiver, then it
900 * bypasses the message array and directly hands the message over to the
901 * receiver. The receiver accepts the message and returns without grabbing the
902 * queue spinlock:
904 * - Set pointer to message.
905 * - Queue the receiver task for later wakeup (without the info->lock).
906 * - Update its state to STATE_READY. Now the receiver can continue.
907 * - Wake up the process after the lock is dropped. Should the process wake up
908 * before this wakeup (due to a timeout or a signal) it will either see
909 * STATE_READY and continue or acquire the lock to check the state again.
911 * The same algorithm is used for senders.
914 /* pipelined_send() - send a message directly to the task waiting in
915 * sys_mq_timedreceive() (without inserting message into a queue).
917 static inline void pipelined_send(struct wake_q_head *wake_q,
918 struct mqueue_inode_info *info,
919 struct msg_msg *message,
920 struct ext_wait_queue *receiver)
922 receiver->msg = message;
923 list_del(&receiver->list);
924 wake_q_add(wake_q, receiver->task);
926 * Rely on the implicit cmpxchg barrier from wake_q_add such
927 * that we can ensure that updating receiver->state is the last
928 * write operation: As once set, the receiver can continue,
929 * and if we don't have the reference count from the wake_q,
930 * yet, at that point we can later have a use-after-free
931 * condition and bogus wakeup.
933 receiver->state = STATE_READY;
936 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
937 * gets its message and put to the queue (we have one free place for sure). */
938 static inline void pipelined_receive(struct wake_q_head *wake_q,
939 struct mqueue_inode_info *info)
941 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
943 if (!sender) {
944 /* for poll */
945 wake_up_interruptible(&info->wait_q);
946 return;
948 if (msg_insert(sender->msg, info))
949 return;
951 list_del(&sender->list);
952 wake_q_add(wake_q, sender->task);
953 sender->state = STATE_READY;
956 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
957 size_t, msg_len, unsigned int, msg_prio,
958 const struct timespec __user *, u_abs_timeout)
960 struct fd f;
961 struct inode *inode;
962 struct ext_wait_queue wait;
963 struct ext_wait_queue *receiver;
964 struct msg_msg *msg_ptr;
965 struct mqueue_inode_info *info;
966 ktime_t expires, *timeout = NULL;
967 struct timespec ts;
968 struct posix_msg_tree_node *new_leaf = NULL;
969 int ret = 0;
970 WAKE_Q(wake_q);
972 if (u_abs_timeout) {
973 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
974 if (res)
975 return res;
976 timeout = &expires;
979 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
980 return -EINVAL;
982 audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
984 f = fdget(mqdes);
985 if (unlikely(!f.file)) {
986 ret = -EBADF;
987 goto out;
990 inode = file_inode(f.file);
991 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
992 ret = -EBADF;
993 goto out_fput;
995 info = MQUEUE_I(inode);
996 audit_file(f.file);
998 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
999 ret = -EBADF;
1000 goto out_fput;
1003 if (unlikely(msg_len > info->attr.mq_msgsize)) {
1004 ret = -EMSGSIZE;
1005 goto out_fput;
1008 /* First try to allocate memory, before doing anything with
1009 * existing queues. */
1010 msg_ptr = load_msg(u_msg_ptr, msg_len);
1011 if (IS_ERR(msg_ptr)) {
1012 ret = PTR_ERR(msg_ptr);
1013 goto out_fput;
1015 msg_ptr->m_ts = msg_len;
1016 msg_ptr->m_type = msg_prio;
1019 * msg_insert really wants us to have a valid, spare node struct so
1020 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1021 * fall back to that if necessary.
1023 if (!info->node_cache)
1024 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1026 spin_lock(&info->lock);
1028 if (!info->node_cache && new_leaf) {
1029 /* Save our speculative allocation into the cache */
1030 INIT_LIST_HEAD(&new_leaf->msg_list);
1031 info->node_cache = new_leaf;
1032 new_leaf = NULL;
1033 } else {
1034 kfree(new_leaf);
1037 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1038 if (f.file->f_flags & O_NONBLOCK) {
1039 ret = -EAGAIN;
1040 } else {
1041 wait.task = current;
1042 wait.msg = (void *) msg_ptr;
1043 wait.state = STATE_NONE;
1044 ret = wq_sleep(info, SEND, timeout, &wait);
1046 * wq_sleep must be called with info->lock held, and
1047 * returns with the lock released
1049 goto out_free;
1051 } else {
1052 receiver = wq_get_first_waiter(info, RECV);
1053 if (receiver) {
1054 pipelined_send(&wake_q, info, msg_ptr, receiver);
1055 } else {
1056 /* adds message to the queue */
1057 ret = msg_insert(msg_ptr, info);
1058 if (ret)
1059 goto out_unlock;
1060 __do_notify(info);
1062 inode->i_atime = inode->i_mtime = inode->i_ctime =
1063 current_time(inode);
1065 out_unlock:
1066 spin_unlock(&info->lock);
1067 wake_up_q(&wake_q);
1068 out_free:
1069 if (ret)
1070 free_msg(msg_ptr);
1071 out_fput:
1072 fdput(f);
1073 out:
1074 return ret;
1077 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1078 size_t, msg_len, unsigned int __user *, u_msg_prio,
1079 const struct timespec __user *, u_abs_timeout)
1081 ssize_t ret;
1082 struct msg_msg *msg_ptr;
1083 struct fd f;
1084 struct inode *inode;
1085 struct mqueue_inode_info *info;
1086 struct ext_wait_queue wait;
1087 ktime_t expires, *timeout = NULL;
1088 struct timespec ts;
1089 struct posix_msg_tree_node *new_leaf = NULL;
1091 if (u_abs_timeout) {
1092 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1093 if (res)
1094 return res;
1095 timeout = &expires;
1098 audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1100 f = fdget(mqdes);
1101 if (unlikely(!f.file)) {
1102 ret = -EBADF;
1103 goto out;
1106 inode = file_inode(f.file);
1107 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1108 ret = -EBADF;
1109 goto out_fput;
1111 info = MQUEUE_I(inode);
1112 audit_file(f.file);
1114 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1115 ret = -EBADF;
1116 goto out_fput;
1119 /* checks if buffer is big enough */
1120 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1121 ret = -EMSGSIZE;
1122 goto out_fput;
1126 * msg_insert really wants us to have a valid, spare node struct so
1127 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1128 * fall back to that if necessary.
1130 if (!info->node_cache)
1131 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1133 spin_lock(&info->lock);
1135 if (!info->node_cache && new_leaf) {
1136 /* Save our speculative allocation into the cache */
1137 INIT_LIST_HEAD(&new_leaf->msg_list);
1138 info->node_cache = new_leaf;
1139 } else {
1140 kfree(new_leaf);
1143 if (info->attr.mq_curmsgs == 0) {
1144 if (f.file->f_flags & O_NONBLOCK) {
1145 spin_unlock(&info->lock);
1146 ret = -EAGAIN;
1147 } else {
1148 wait.task = current;
1149 wait.state = STATE_NONE;
1150 ret = wq_sleep(info, RECV, timeout, &wait);
1151 msg_ptr = wait.msg;
1153 } else {
1154 WAKE_Q(wake_q);
1156 msg_ptr = msg_get(info);
1158 inode->i_atime = inode->i_mtime = inode->i_ctime =
1159 current_time(inode);
1161 /* There is now free space in queue. */
1162 pipelined_receive(&wake_q, info);
1163 spin_unlock(&info->lock);
1164 wake_up_q(&wake_q);
1165 ret = 0;
1167 if (ret == 0) {
1168 ret = msg_ptr->m_ts;
1170 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1171 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1172 ret = -EFAULT;
1174 free_msg(msg_ptr);
1176 out_fput:
1177 fdput(f);
1178 out:
1179 return ret;
1183 * Notes: the case when user wants us to deregister (with NULL as pointer)
1184 * and he isn't currently owner of notification, will be silently discarded.
1185 * It isn't explicitly defined in the POSIX.
1187 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1188 const struct sigevent __user *, u_notification)
1190 int ret;
1191 struct fd f;
1192 struct sock *sock;
1193 struct inode *inode;
1194 struct sigevent notification;
1195 struct mqueue_inode_info *info;
1196 struct sk_buff *nc;
1198 if (u_notification) {
1199 if (copy_from_user(&notification, u_notification,
1200 sizeof(struct sigevent)))
1201 return -EFAULT;
1204 audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1206 nc = NULL;
1207 sock = NULL;
1208 if (u_notification != NULL) {
1209 if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1210 notification.sigev_notify != SIGEV_SIGNAL &&
1211 notification.sigev_notify != SIGEV_THREAD))
1212 return -EINVAL;
1213 if (notification.sigev_notify == SIGEV_SIGNAL &&
1214 !valid_signal(notification.sigev_signo)) {
1215 return -EINVAL;
1217 if (notification.sigev_notify == SIGEV_THREAD) {
1218 long timeo;
1220 /* create the notify skb */
1221 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1222 if (!nc) {
1223 ret = -ENOMEM;
1224 goto out;
1226 if (copy_from_user(nc->data,
1227 notification.sigev_value.sival_ptr,
1228 NOTIFY_COOKIE_LEN)) {
1229 ret = -EFAULT;
1230 goto out;
1233 /* TODO: add a header? */
1234 skb_put(nc, NOTIFY_COOKIE_LEN);
1235 /* and attach it to the socket */
1236 retry:
1237 f = fdget(notification.sigev_signo);
1238 if (!f.file) {
1239 ret = -EBADF;
1240 goto out;
1242 sock = netlink_getsockbyfilp(f.file);
1243 fdput(f);
1244 if (IS_ERR(sock)) {
1245 ret = PTR_ERR(sock);
1246 sock = NULL;
1247 goto out;
1250 timeo = MAX_SCHEDULE_TIMEOUT;
1251 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1252 if (ret == 1) {
1253 sock = NULL;
1254 goto retry;
1256 if (ret) {
1257 sock = NULL;
1258 nc = NULL;
1259 goto out;
1264 f = fdget(mqdes);
1265 if (!f.file) {
1266 ret = -EBADF;
1267 goto out;
1270 inode = file_inode(f.file);
1271 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1272 ret = -EBADF;
1273 goto out_fput;
1275 info = MQUEUE_I(inode);
1277 ret = 0;
1278 spin_lock(&info->lock);
1279 if (u_notification == NULL) {
1280 if (info->notify_owner == task_tgid(current)) {
1281 remove_notification(info);
1282 inode->i_atime = inode->i_ctime = current_time(inode);
1284 } else if (info->notify_owner != NULL) {
1285 ret = -EBUSY;
1286 } else {
1287 switch (notification.sigev_notify) {
1288 case SIGEV_NONE:
1289 info->notify.sigev_notify = SIGEV_NONE;
1290 break;
1291 case SIGEV_THREAD:
1292 info->notify_sock = sock;
1293 info->notify_cookie = nc;
1294 sock = NULL;
1295 nc = NULL;
1296 info->notify.sigev_notify = SIGEV_THREAD;
1297 break;
1298 case SIGEV_SIGNAL:
1299 info->notify.sigev_signo = notification.sigev_signo;
1300 info->notify.sigev_value = notification.sigev_value;
1301 info->notify.sigev_notify = SIGEV_SIGNAL;
1302 break;
1305 info->notify_owner = get_pid(task_tgid(current));
1306 info->notify_user_ns = get_user_ns(current_user_ns());
1307 inode->i_atime = inode->i_ctime = current_time(inode);
1309 spin_unlock(&info->lock);
1310 out_fput:
1311 fdput(f);
1312 out:
1313 if (sock)
1314 netlink_detachskb(sock, nc);
1315 else if (nc)
1316 dev_kfree_skb(nc);
1318 return ret;
1321 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1322 const struct mq_attr __user *, u_mqstat,
1323 struct mq_attr __user *, u_omqstat)
1325 int ret;
1326 struct mq_attr mqstat, omqstat;
1327 struct fd f;
1328 struct inode *inode;
1329 struct mqueue_inode_info *info;
1331 if (u_mqstat != NULL) {
1332 if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1333 return -EFAULT;
1334 if (mqstat.mq_flags & (~O_NONBLOCK))
1335 return -EINVAL;
1338 f = fdget(mqdes);
1339 if (!f.file) {
1340 ret = -EBADF;
1341 goto out;
1344 inode = file_inode(f.file);
1345 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1346 ret = -EBADF;
1347 goto out_fput;
1349 info = MQUEUE_I(inode);
1351 spin_lock(&info->lock);
1353 omqstat = info->attr;
1354 omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1355 if (u_mqstat) {
1356 audit_mq_getsetattr(mqdes, &mqstat);
1357 spin_lock(&f.file->f_lock);
1358 if (mqstat.mq_flags & O_NONBLOCK)
1359 f.file->f_flags |= O_NONBLOCK;
1360 else
1361 f.file->f_flags &= ~O_NONBLOCK;
1362 spin_unlock(&f.file->f_lock);
1364 inode->i_atime = inode->i_ctime = current_time(inode);
1367 spin_unlock(&info->lock);
1369 ret = 0;
1370 if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1371 sizeof(struct mq_attr)))
1372 ret = -EFAULT;
1374 out_fput:
1375 fdput(f);
1376 out:
1377 return ret;
1380 static const struct inode_operations mqueue_dir_inode_operations = {
1381 .lookup = simple_lookup,
1382 .create = mqueue_create,
1383 .unlink = mqueue_unlink,
1386 static const struct file_operations mqueue_file_operations = {
1387 .flush = mqueue_flush_file,
1388 .poll = mqueue_poll_file,
1389 .read = mqueue_read_file,
1390 .llseek = default_llseek,
1393 static const struct super_operations mqueue_super_ops = {
1394 .alloc_inode = mqueue_alloc_inode,
1395 .destroy_inode = mqueue_destroy_inode,
1396 .evict_inode = mqueue_evict_inode,
1397 .statfs = simple_statfs,
1400 static struct file_system_type mqueue_fs_type = {
1401 .name = "mqueue",
1402 .mount = mqueue_mount,
1403 .kill_sb = kill_litter_super,
1404 .fs_flags = FS_USERNS_MOUNT,
1407 int mq_init_ns(struct ipc_namespace *ns)
1409 ns->mq_queues_count = 0;
1410 ns->mq_queues_max = DFLT_QUEUESMAX;
1411 ns->mq_msg_max = DFLT_MSGMAX;
1412 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1413 ns->mq_msg_default = DFLT_MSG;
1414 ns->mq_msgsize_default = DFLT_MSGSIZE;
1416 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1417 if (IS_ERR(ns->mq_mnt)) {
1418 int err = PTR_ERR(ns->mq_mnt);
1419 ns->mq_mnt = NULL;
1420 return err;
1422 return 0;
1425 void mq_clear_sbinfo(struct ipc_namespace *ns)
1427 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1430 void mq_put_mnt(struct ipc_namespace *ns)
1432 kern_unmount(ns->mq_mnt);
1435 static int __init init_mqueue_fs(void)
1437 int error;
1439 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1440 sizeof(struct mqueue_inode_info), 0,
1441 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1442 if (mqueue_inode_cachep == NULL)
1443 return -ENOMEM;
1445 /* ignore failures - they are not fatal */
1446 mq_sysctl_table = mq_register_sysctl_table();
1448 error = register_filesystem(&mqueue_fs_type);
1449 if (error)
1450 goto out_sysctl;
1452 spin_lock_init(&mq_lock);
1454 error = mq_init_ns(&init_ipc_ns);
1455 if (error)
1456 goto out_filesystem;
1458 return 0;
1460 out_filesystem:
1461 unregister_filesystem(&mqueue_fs_type);
1462 out_sysctl:
1463 if (mq_sysctl_table)
1464 unregister_sysctl_table(mq_sysctl_table);
1465 kmem_cache_destroy(mqueue_inode_cachep);
1466 return error;
1469 device_initcall(init_mqueue_fs);