2 * EFI stub implementation that is shared by arm and arm64 architectures.
3 * This should be #included by the EFI stub implementation files.
5 * Copyright (C) 2013,2014 Linaro Limited
6 * Roy Franz <roy.franz@linaro.org
7 * Copyright (C) 2013 Red Hat, Inc.
8 * Mark Salter <msalter@redhat.com>
10 * This file is part of the Linux kernel, and is made available under the
11 * terms of the GNU General Public License version 2.
15 #include <linux/efi.h>
16 #include <linux/sort.h>
22 * This is the base address at which to start allocating virtual memory ranges
23 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
24 * any allocation we choose, and eliminate the risk of a conflict after kexec.
25 * The value chosen is the largest non-zero power of 2 suitable for this purpose
26 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
27 * be mapped efficiently.
28 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
29 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
30 * entire footprint of the UEFI runtime services memory regions)
32 #define EFI_RT_VIRTUAL_BASE SZ_512M
33 #define EFI_RT_VIRTUAL_SIZE SZ_512M
36 # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE_64
38 # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
41 static u64 virtmap_base
= EFI_RT_VIRTUAL_BASE
;
43 efi_status_t
efi_open_volume(efi_system_table_t
*sys_table_arg
,
44 void *__image
, void **__fh
)
46 efi_file_io_interface_t
*io
;
47 efi_loaded_image_t
*image
= __image
;
48 efi_file_handle_t
*fh
;
49 efi_guid_t fs_proto
= EFI_FILE_SYSTEM_GUID
;
51 void *handle
= (void *)(unsigned long)image
->device_handle
;
53 status
= sys_table_arg
->boottime
->handle_protocol(handle
,
54 &fs_proto
, (void **)&io
);
55 if (status
!= EFI_SUCCESS
) {
56 efi_printk(sys_table_arg
, "Failed to handle fs_proto\n");
60 status
= io
->open_volume(io
, &fh
);
61 if (status
!= EFI_SUCCESS
)
62 efi_printk(sys_table_arg
, "Failed to open volume\n");
68 void efi_char16_printk(efi_system_table_t
*sys_table_arg
,
71 struct efi_simple_text_output_protocol
*out
;
73 out
= (struct efi_simple_text_output_protocol
*)sys_table_arg
->con_out
;
74 out
->output_string(out
, str
);
77 static struct screen_info
*setup_graphics(efi_system_table_t
*sys_table_arg
)
79 efi_guid_t gop_proto
= EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID
;
82 void **gop_handle
= NULL
;
83 struct screen_info
*si
= NULL
;
86 status
= efi_call_early(locate_handle
, EFI_LOCATE_BY_PROTOCOL
,
87 &gop_proto
, NULL
, &size
, gop_handle
);
88 if (status
== EFI_BUFFER_TOO_SMALL
) {
89 si
= alloc_screen_info(sys_table_arg
);
92 efi_setup_gop(sys_table_arg
, si
, &gop_proto
, size
);
98 * This function handles the architcture specific differences between arm and
99 * arm64 regarding where the kernel image must be loaded and any memory that
100 * must be reserved. On failure it is required to free all
101 * all allocations it has made.
103 efi_status_t
handle_kernel_image(efi_system_table_t
*sys_table
,
104 unsigned long *image_addr
,
105 unsigned long *image_size
,
106 unsigned long *reserve_addr
,
107 unsigned long *reserve_size
,
108 unsigned long dram_base
,
109 efi_loaded_image_t
*image
);
111 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
112 * that is described in the PE/COFF header. Most of the code is the same
113 * for both archictectures, with the arch-specific code provided in the
114 * handle_kernel_image() function.
116 unsigned long efi_entry(void *handle
, efi_system_table_t
*sys_table
,
117 unsigned long *image_addr
)
119 efi_loaded_image_t
*image
;
121 unsigned long image_size
= 0;
122 unsigned long dram_base
;
123 /* addr/point and size pairs for memory management*/
124 unsigned long initrd_addr
;
126 unsigned long fdt_addr
= 0; /* Original DTB */
127 unsigned long fdt_size
= 0;
128 char *cmdline_ptr
= NULL
;
129 int cmdline_size
= 0;
130 unsigned long new_fdt_addr
;
131 efi_guid_t loaded_image_proto
= LOADED_IMAGE_PROTOCOL_GUID
;
132 unsigned long reserve_addr
= 0;
133 unsigned long reserve_size
= 0;
134 enum efi_secureboot_mode secure_boot
;
135 struct screen_info
*si
;
137 /* Check if we were booted by the EFI firmware */
138 if (sys_table
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
)
141 status
= check_platform_features(sys_table
);
142 if (status
!= EFI_SUCCESS
)
146 * Get a handle to the loaded image protocol. This is used to get
147 * information about the running image, such as size and the command
150 status
= sys_table
->boottime
->handle_protocol(handle
,
151 &loaded_image_proto
, (void *)&image
);
152 if (status
!= EFI_SUCCESS
) {
153 pr_efi_err(sys_table
, "Failed to get loaded image protocol\n");
157 dram_base
= get_dram_base(sys_table
);
158 if (dram_base
== EFI_ERROR
) {
159 pr_efi_err(sys_table
, "Failed to find DRAM base\n");
164 * Get the command line from EFI, using the LOADED_IMAGE
165 * protocol. We are going to copy the command line into the
166 * device tree, so this can be allocated anywhere.
168 cmdline_ptr
= efi_convert_cmdline(sys_table
, image
, &cmdline_size
);
170 pr_efi_err(sys_table
, "getting command line via LOADED_IMAGE_PROTOCOL\n");
174 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND
) ||
175 IS_ENABLED(CONFIG_CMDLINE_FORCE
) ||
177 efi_parse_options(CONFIG_CMDLINE
);
179 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE
) && cmdline_size
> 0)
180 efi_parse_options(cmdline_ptr
);
182 pr_efi(sys_table
, "Booting Linux Kernel...\n");
184 si
= setup_graphics(sys_table
);
186 status
= handle_kernel_image(sys_table
, image_addr
, &image_size
,
190 if (status
!= EFI_SUCCESS
) {
191 pr_efi_err(sys_table
, "Failed to relocate kernel\n");
192 goto fail_free_cmdline
;
195 /* Ask the firmware to clear memory on unclean shutdown */
196 efi_enable_reset_attack_mitigation(sys_table
);
198 secure_boot
= efi_get_secureboot(sys_table
);
201 * Unauthenticated device tree data is a security hazard, so ignore
202 * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
203 * boot is enabled if we can't determine its state.
205 if (secure_boot
!= efi_secureboot_mode_disabled
&&
206 strstr(cmdline_ptr
, "dtb=")) {
207 pr_efi(sys_table
, "Ignoring DTB from command line.\n");
209 status
= handle_cmdline_files(sys_table
, image
, cmdline_ptr
,
211 ~0UL, &fdt_addr
, &fdt_size
);
213 if (status
!= EFI_SUCCESS
) {
214 pr_efi_err(sys_table
, "Failed to load device tree!\n");
215 goto fail_free_image
;
220 pr_efi(sys_table
, "Using DTB from command line\n");
222 /* Look for a device tree configuration table entry. */
223 fdt_addr
= (uintptr_t)get_fdt(sys_table
, &fdt_size
);
225 pr_efi(sys_table
, "Using DTB from configuration table\n");
229 pr_efi(sys_table
, "Generating empty DTB\n");
231 status
= handle_cmdline_files(sys_table
, image
, cmdline_ptr
, "initrd=",
232 efi_get_max_initrd_addr(dram_base
,
234 (unsigned long *)&initrd_addr
,
235 (unsigned long *)&initrd_size
);
236 if (status
!= EFI_SUCCESS
)
237 pr_efi_err(sys_table
, "Failed initrd from command line!\n");
239 efi_random_get_seed(sys_table
);
243 * Randomize the base of the UEFI runtime services region.
244 * Preserve the 2 MB alignment of the region by taking a
245 * shift of 21 bit positions into account when scaling
246 * the headroom value using a 32-bit random value.
248 static const u64 headroom
= EFI_RT_VIRTUAL_LIMIT
-
249 EFI_RT_VIRTUAL_BASE
-
253 status
= efi_get_random_bytes(sys_table
, sizeof(rnd
),
255 if (status
== EFI_SUCCESS
) {
256 virtmap_base
= EFI_RT_VIRTUAL_BASE
+
257 (((headroom
>> 21) * rnd
) >> (32 - 21));
261 new_fdt_addr
= fdt_addr
;
262 status
= allocate_new_fdt_and_exit_boot(sys_table
, handle
,
263 &new_fdt_addr
, efi_get_max_fdt_addr(dram_base
),
264 initrd_addr
, initrd_size
, cmdline_ptr
,
268 * If all went well, we need to return the FDT address to the
269 * calling function so it can be passed to kernel as part of
270 * the kernel boot protocol.
272 if (status
== EFI_SUCCESS
)
275 pr_efi_err(sys_table
, "Failed to update FDT and exit boot services\n");
277 efi_free(sys_table
, initrd_size
, initrd_addr
);
278 efi_free(sys_table
, fdt_size
, fdt_addr
);
281 efi_free(sys_table
, image_size
, *image_addr
);
282 efi_free(sys_table
, reserve_size
, reserve_addr
);
284 free_screen_info(sys_table
, si
);
285 efi_free(sys_table
, cmdline_size
, (unsigned long)cmdline_ptr
);
290 static int cmp_mem_desc(const void *l
, const void *r
)
292 const efi_memory_desc_t
*left
= l
, *right
= r
;
294 return (left
->phys_addr
> right
->phys_addr
) ? 1 : -1;
298 * Returns whether region @left ends exactly where region @right starts,
299 * or false if either argument is NULL.
301 static bool regions_are_adjacent(efi_memory_desc_t
*left
,
302 efi_memory_desc_t
*right
)
306 if (left
== NULL
|| right
== NULL
)
309 left_end
= left
->phys_addr
+ left
->num_pages
* EFI_PAGE_SIZE
;
311 return left_end
== right
->phys_addr
;
315 * Returns whether region @left and region @right have compatible memory type
316 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
318 static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t
*left
,
319 efi_memory_desc_t
*right
)
321 static const u64 mem_type_mask
= EFI_MEMORY_WB
| EFI_MEMORY_WT
|
322 EFI_MEMORY_WC
| EFI_MEMORY_UC
|
325 return ((left
->attribute
^ right
->attribute
) & mem_type_mask
) == 0;
329 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
331 * This function populates the virt_addr fields of all memory region descriptors
332 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
333 * are also copied to @runtime_map, and their total count is returned in @count.
335 void efi_get_virtmap(efi_memory_desc_t
*memory_map
, unsigned long map_size
,
336 unsigned long desc_size
, efi_memory_desc_t
*runtime_map
,
339 u64 efi_virt_base
= virtmap_base
;
340 efi_memory_desc_t
*in
, *prev
= NULL
, *out
= runtime_map
;
344 * To work around potential issues with the Properties Table feature
345 * introduced in UEFI 2.5, which may split PE/COFF executable images
346 * in memory into several RuntimeServicesCode and RuntimeServicesData
347 * regions, we need to preserve the relative offsets between adjacent
348 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
349 * The easiest way to find adjacent regions is to sort the memory map
350 * before traversing it.
352 sort(memory_map
, map_size
/ desc_size
, desc_size
, cmp_mem_desc
, NULL
);
354 for (l
= 0; l
< map_size
; l
+= desc_size
, prev
= in
) {
357 in
= (void *)memory_map
+ l
;
358 if (!(in
->attribute
& EFI_MEMORY_RUNTIME
))
361 paddr
= in
->phys_addr
;
362 size
= in
->num_pages
* EFI_PAGE_SIZE
;
365 * Make the mapping compatible with 64k pages: this allows
366 * a 4k page size kernel to kexec a 64k page size kernel and
369 if (!regions_are_adjacent(prev
, in
) ||
370 !regions_have_compatible_memory_type_attrs(prev
, in
)) {
372 paddr
= round_down(in
->phys_addr
, SZ_64K
);
373 size
+= in
->phys_addr
- paddr
;
376 * Avoid wasting memory on PTEs by choosing a virtual
377 * base that is compatible with section mappings if this
378 * region has the appropriate size and physical
379 * alignment. (Sections are 2 MB on 4k granule kernels)
381 if (IS_ALIGNED(in
->phys_addr
, SZ_2M
) && size
>= SZ_2M
)
382 efi_virt_base
= round_up(efi_virt_base
, SZ_2M
);
384 efi_virt_base
= round_up(efi_virt_base
, SZ_64K
);
387 in
->virt_addr
= efi_virt_base
+ in
->phys_addr
- paddr
;
388 efi_virt_base
+= size
;
390 memcpy(out
, in
, desc_size
);
391 out
= (void *)out
+ desc_size
;